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NORMAL APPROXIMATION FOR COVERAGE MODELS OVER
BINOMIAL POINT PROCESSES

BY LARRY GOLDSTEIN AND MATHEW D. PENROSE1

University of Southern California and University of Bath

We give error bounds which demonstrate optimal rates of convergence in
the CLT for the total covered volume and the number of isolated shapes, for
germ-grain models with fixed grain radius over a binomial point process of n

points in a toroidal spatial region of volume n. The proof is based on Stein’s
method via size-biased couplings.

1. Introduction. Given a collection of n independent uniformly distributed
random points in a d-dimensional cube of volume n (the so-called binomial point
process), let V denote the (random) total volume of the union of interpenetrating
balls of fixed radius ρ centered at these points, and let S denote the number of balls
of radius ρ/2 (centered at the same set of points) which are singletons, that is, do
not overlap any other such ball. These variables are fundamental topics of interest
in the stochastic geometry of coverage processes and random geometric graphs [9,
10, 13, 18].

As n → ∞ with ρ fixed (the so-called thermodynamic limit), both V and S

are known to satisfy a central limit theorem (CLT) [12, 13, 16]. In the present
work we provide associated Berry–Esseen type results; that is, we show under
periodic boundary conditions that the cumulative distribution functions converge
to that of the normal at the same O(n−1/2) rate as for a sum of n independent
identically distributed variables, and provide bounds on the quality of the normal
approximation for finite n.

Were we to consider instead a Poisson-distributed number of points, that is,
a Poisson point process instead of a binomial one, both of our variables of interest
could be expressed as sums of locally dependent random variables, and thereby
Berry–Esseen type bounds could be (and have been) obtained by known methods
[1, 8, 15, 17]. But with a nonrandom number of points, the local dependence is
lost and the de-Poissonization arguments in [13, 16] do not provide error bounds
for the de-Poissonized CLTs. The early work of Moran [11, 12] on V was in re-
sponse to queries in the statistical physics literature (including the well-known
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paper of Widom and Rowlinson [19]) which specifically addressed normal approx-
imation of V for nonrandom n, and in general, it seems worthwhile to study the
de-Poissonized setting since in practice one might well observe the actual number
of points, in which case the conditional distribution of any test statistic, based on
what is observed, will be over a binomial rather than a Poisson point process.

The variables V and S are just two of a large class of variables of interest that
can be expressed as a sum, over the n points, of terms that depend only on the con-
figuration of nearby points in some sense. General CLTs have been developed for
such variables [14, 16] and general Berry–Esseen type results are available in the
Poissonized setting [8, 15, 17], but it remains open to provide a generally applica-
ble Berry–Esseen type result for such sums when n is nonrandom (see however [3],
which is discussed further in Section 2). However, there seem to be good prospects
of adapting the approach of the present paper (which is new in the geometrical set-
ting) to a wider class of geometrical sums.

Our approach to normal approximation is based on Stein’s method via size-
biased couplings. Given a nonnegative random variable Y with positive finite mean
μ = EY , we say Y ′ has the Y size-biased distribution if P [Y ′ ∈ dy] = (y/μ)P [Y ∈
dy], or more formally, if

E[Yg(Y )] = μEg(Y ′) for bounded continuous functions f .(1.1)

The method of size-biased couplings was introduced by Baldi, Rinott and Stein [2],
who used it to develop bounds of order σ−1/2 to the normal approximation to the
number of local maxima Y of a random function on a graph, where σ 2 = Var(Y ).
Goldstein and Rinott [7] extended the technique to multivariate normal approxi-
mations, and improved the rate to σ−1 for the expectation of smooth functions of
a vector Y recording the number of edges with certain fixed degrees in a random
graph. In [6], the method is used to give bounds of order σ−1 for various functions
on graphs and permutations.

Here we shall use Lemma 3.1 below, which improves the constant in a more
general result from [6]. Loosely speaking, this result says that given any coupling
of Y and Y ′ on a common space, an upper bound on the distance between the
distribution of Y and the normal can be found which involves functions of the
joint distribution of Y,Y ′ in terms of (i) the uniform distance between Y and Y ′,
that is, the L∞ norm of Y − Y ′, and (ii) the variance of E[Y − Y ′|Y ].

In Section 4 we show how to find a coupled realization of Y ′ that is uniformly
close to Y , for those Y under consideration here. To do this we show that here the
size-biasing amounts to conditioning the (binomial) number of points falling in a
certain (randomly located) ρ-ball to be nonzero, and can be achieved by modifying
at most a single point location to obtain Y ′ from Y , so that ‖Y ′ −Y‖∞ is bounded.
This construction may be of independent interest, along with Lemma 4.1 (a general
result on how to size-bias a conditional probability) and Lemma 3.1.
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2. Results. Let d ≥ 1 and n ≥ 4 be integers. Suppose U1, . . . ,Un are indepen-
dent random d-vectors, uniformly distributed over the cube Cn := [0, n1/d)d (we
write Ui rather than Un,i because the value of n should be clear from the context).
Write Un for the point set {U1, . . . ,Un}. For x, y in the cube Cn, let D(x,y) de-
note the distance between x and y under the Euclidean toroidal metric on Cn. For
x ∈ Cn and r > 0 let Br(x) denote the ball {y ∈ Cn :D(x,y) ≤ r}. Let Bi,r denote
the ball Br(Ui). Given r , the collection of balls Bi,r form a coverage process (also
known as a germ-grain model) in Cn; see [9, 18]. Let ρ > 0, and define

V := Volume

(
n⋃

i=1

Bi,ρ

)
;(2.1)

S :=
n∑

i=1

1
{

Un ∩ Bi,ρ = {Ui}}.(2.2)

Then V is the total covered volume for the coverage process with r = ρ, while S

is the number of singletons (isolated balls) in the case r = ρ/2, and may also be
viewed as the number of isolated points in the geometric graph on vertex set Un

with distance parameter ρ [13].
Let Z denote a standard normal random variable. Given a random variable X

with SD(X) := √
Var(X) ∈ (0,∞), let DX denote the Kolmogorov distance be-

tween the distribution of X (scaled and centered) and that of Z, that is,

DX := sup
t∈R

∣∣∣∣P
[
X − EX

SD(X)
≤ t

]
− P [Z ≤ t]

∣∣∣∣.
Our main results provide bounds in the normal approximation for V and S; if ρ is
fixed then as n → ∞,

DV = O(n−1/2); DS = �(n−1/2).(2.3)

Recall that an = �(bn) means that an = O(bn) and bn = O(an). We conjecture
that the first bound in (2.3) can be improved to �(n−1/2).

To state our results more precisely, we need further notation. Set πd to be the
volume of the unit ball in d dimensions, that is, πd := πd/2/�(1 + d/2), and φ :=
πdρd . We say two unit balls touch if their closures intersect, but their interiors do
not. Let κd (respectively, κ∗

d ) denote the maximum number of closed unit balls in
d dimensions that can be packed so they all intersect (respectively, touch) a closed
unit ball at the origin, but are disjoint from each other (respectively, have disjoint
interiors). Then κ∗

d is the so-called kissing number in d dimensions, which has
been studied for centuries (see [5, 20]). It is not hard to see κ∗

d is an upper bound
for κd , and in most dimensions it seems likely that κd = κ∗

d , but κ2 = 5 whereas
κ∗

2 = 6. It is known that κ3 = κ∗
3 = 12. Set κ+

d := 1 + κd .
Set μV := E[V ], μS := E[S], σV := SD(V ), and σS := SD(S). It is straightfor-

ward to write down formulae for μV , μS , σ 2
V and σ 2

S ; see (7.1), (7.2) and (7.3).
Our first two main results provide nonasymptotic upper bounds on the Kolmoro-

gorov distance.
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THEOREM 2.1. If n > 6dφ, then

DV ≤ μV

5σ 2
V

(√
11φ2

σV

+ 5
√

ηV (n,ρ)√
n

+ 2φ√
σV

)2

with

ηV (n,ρ) := 2φ2((3d + 1)φ + 1
)2

×
(

1 + (2d + 1)6dφ +
(

2n − 6dφ

n − 6dφ

)
62dφ2

)
(2.4)

+ 2φ4
(

3(4d + 2d)φ + 3(4d)φ2
(

2n − 3(2d)φ

n − 3(2d)φ

)
+ 4 + 2

n

)
.

THEOREM 2.2. If n > max(3d,2d+1 + 1)φ, then

DS ≤ n − μS

5σ 2
S

(√√√√11(κ+
d )2

σS

+ 5
√

ηS(n,ρ)√
n

+ 2κ+
d√
σS

)2

with

ηS(n,ρ) := 2(1 + 2κd)2
(

1 + (2d + 1)3dφ +
(

2n − 3dφ

n − 3dφ

)
9dφ2

)

+ (κ+
d )2

2

((
2d + 2(3d) + 3

)
φ(2.5)

+ (2d+1 + 1)

(
2n − (2d+1 + 1)φ

n − (2d+1 + 1)φ

)
φ2 + 4n − 2

n − 1

)
.

By using the inequality (x + y)2 ≤ 2(x2 + y2), the bounds in Theorems 2.1
and 2.2 can replaced by bounds which are simpler, though less sharp.

The next result confirms that for large n, all of μV , σ 2
V , μS and σ 2

S are �(n), so
that (2.3) follows from Theorems 2.1 and 2.2. To provide details we require further
notation.

For 0 ≤ r ≤ 2, write ωd(r) for the volume of the union of two unit balls in R
d

with centers distant r apart (see (7.5) for a formula). Define the integral

Jr,d(ρ) := dπd

∫ r

0
exp(−ρdωd(t))td−1 dt(2.6)

and the functions

gV (ρ) := ρdJ2,d(ρ) − (2dφ + φ2)e−2φ;(2.7)

gS(ρ) := e−φ − (
1 + (2d − 2)φ + φ2)e−2φ + ρd(J2,d(ρ) − J1,d(ρ)

)
.(2.8)

Also, define ηV (ρ) := limn→∞ ηV (n,ρ) and ηS(ρ) := limn→∞ ηS(n,ρ). Formu-
lae for these limits are immediate from the definitions (2.4) and (2.5).
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THEOREM 2.3. If ρ is fixed then as n → ∞,

lim
n→∞

(
1 − n−1μV (ρ)

)= lim
n→∞(n−1μS(ρ)) = e−φ;(2.9)

lim
n→∞(n−1σ 2

V ) = gV (ρ) > 0;(2.10)

lim
n→∞(n−1σ 2

S ) = gS(ρ) > 0(2.11)

and

lim sup
n→∞

(n1/2DV ) ≤ 1 − e−φ

5gV (ρ)

(√
11φ2

gV (ρ)1/2 + 5η
1/2
V + 2φ

gV (ρ)1/4

)2

;(2.12)

lim sup
n→∞

(n1/2DS) ≤ 1 − e−φ

5gS(ρ)

(√
11(κ+

d )2

gS(ρ)1/2 + 5η
1/2
S + 2κ+

d

gS(ρ)1/4

)2

;(2.13)

lim inf
n→∞ (n1/2DS) ≥ (8πgS(ρ))−1/2.(2.14)

Theorems 2.1 and 2.2 are proved in Sections 5 and 6, respectively. Theorem 2.3
is proved in Section 7, where we also derive numerical values for the asymptotic
upper bounds in Theorem 2.3, for some particular cases.

Remarks. The limiting variances in (2.10), respectively (2.11), are consistent
with those given by Moran [11, 12], respectively, Penrose ([13], Theorem 4.14).
Moran and Penrose do not explicitly rule out the possibility that these limiting
variances might be zero, as we do here.

Clearly (2.12) and (2.13) imply central limit theorems whereby both (V −
μV )/σV and (S − μS)/σS converge in distribution to the standard normal,
thereby providing an alternative to existing proofs of these central limit theorems
[12, 13, 16]. In the Poissonized setting, nonasymptotic bounds analogous to those
in Theorems 2.1 and 2.2 are given in [15] and imply O(n−1/2) bounds analogous
to (2.12) and (2.13). In the de-Poissonized setting considered here, Chatterjee [3]
provides bounds similar to those in (2.12) and (2.13), which hold for general met-
ric spaces, but using the Kantorovich–Wasserstein distance, rather than the Kol-
mogorov distance considered here, and without providing any explicit constants.
As stated in [3], “obtaining optimal rates for the Kolmogorov distance requires
extra work and new ideas.”

Generalizations of our results should be possible in many directions. These in-
clude:

More general germ-grain models. Replace the balls of fixed radius in the de-
scription of V and S by (independent identically distributed) balls of random ra-
dius, or more generally, random shapes.
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Random measures. Consider the random measure associated with V (the
Lebesgue measure on the covered region) or with S (a sum of Dirac measures
at the isolated points), and look at normal approximation for the random variable
given by the integral of a test function f on Cn with respect to that measure.

Euclidean distance. Suppose in the definition of V and S, that the periodic
boundary conditions on Cn are dropped, that is, the toroidal distance D is replaced
by the ordinary Euclidean distance.

Nonuniform points. Consider a sequence of independent random points
(Xn)n≥1 with a common density function ν : Rd → R. Placing balls of radius rn
around each point of Xn := {X1, . . . ,Xn}, for some specified sequence rn tending
to zero, one may define quantities analogous to V and S. When rn ∝ n−1/d this
is a rescaling of our model but allows for nonuniform ν. Our approach might also
provide information about other asymptotic regimes.

k-nearest neighbors. Let k ∈ N and consider the number of points Ui whose
kth nearest neighbor in the point set Un \ {Ui} lies at a distance greater than ρ. The
case k = 1 reduces to S.

These extensions generally seem to be nontrivial, and worthy of further study.

3. Lemmas. The proof of (2.12) and (2.13) is based on the following result.
This result improves the constant which would be obtained by applying the more
general Theorem 1.2 of [6] to the particular case of Kolmogorov distance.

LEMMA 3.1. Let Y ≥ 0 be a random variable with mean μ and variance
σ 2 ∈ (0,∞), and let Y s be defined on the same probability space, with the Y -size
biased distribution. If P [|Y s − Y | ≤ B] = 1 for some constant B > 0, then

DY ≤ μ

5σ 2

(√
11B2

σ
+ 5� + 2B√

σ

)2

,(3.1)

where � := √
Var(E[Y s − Y |Y ]).

PROOF. Given z ∈ R and ε > 0, define real-valued functions hz and hz,ε by

hz(x) = 1(−∞,z](x), hz,ε(x) = ε−1
∫ ε

0
hz(x − t) dt, z ∈ R.

Then with W := (Y − μ)/σ and Z denoting a standard normal, by definition

DY = sup{|Ehz(W) − Ehz(Z)| : z ∈ R}.(3.2)

For ε > 0, set

Dε
Y := sup{|Ehz,ε(W) − Ehz,ε(Z)| : z ∈ R}.(3.3)
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Fix z and ε, and let f be the unique bounded solution of the Stein equation

f ′(w) − wf (w) = hz,ε(w) − Ehz,ε(Z)

for hz,ε; see [4]. With some abuse of notation, let Ws = (Y s − μ)/σ . Then

E[hz,ε(W) − Ehz,ε(Z)]
= E[f ′(W) − Wf (W)]
= E

[
f ′(W) − μ

σ

(
f (Ws) − f (W)

)]
(3.4)

= E

[
f ′(W)

(
1 − μ

σ
(Ws − W)

)

− μ

σ

∫ Ws−W

0

(
f ′(W + t) − f ′(W)

)
dt

]
.

The following bounds on the solution f can be found in [4]:

|f ′(w)| ≤ 1(3.5)

and

|f ′(w + t) − f ′(w)| ≤ (|w| + 1)|t | + ε−1
∫ t∨0

t∧0
1[z,z+ε](w + u)du.(3.6)

Noting that EY s = EY 2/μ by (1.1) with g(y) = y, we find that

μ

σ
E[Ws − W ] = μ

σ 2

(
EY 2

μ
− μ

)
= 1,

and therefore, taking expectation by conditioning, and then using (3.5), we have∣∣∣∣E
{
f ′(W)E

[
1 − μ

σ
(Ws − W)

∣∣∣W]}∣∣∣∣≤ μ

σ

√
Var(E[Ws − W |W ]) = μ

σ 2 �.

Now, using (3.4) and (3.6) yields

|E[hz,ε(W) − Ehz,ε(Z)]|

≤ μ

σ 2 � + μ

σ
E

[∫ (Ws−W)∨0

(Ws−W)∧0
(|W | + 1)|t |dt

+
∫ B/σ

−B/σ
ε−1

∫ t∨0

t∧0
1[z,z+ε](W + u)dudt

]
(3.7)

≤ μ

σ 2 � + μB2

2σ 3 (E|W | + 1) + μ

σ
ε−1

∫ B/σ

−B/σ

∫ t∨0

t∧0
(0.4ε + 2DY )dudt

≤ μ

σ 2 � + 1.4
μ

σ 3 B2 + 2μ

σ 3 B2ε−1DY ,
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where in the second-to-last inequality above we have used the fact that

P [α ≤ W ≤ β] ≤ (β − α)/
√

2π + 2DY ,

and in the last, the fact that E|W | ≤ 1. By (3.2) we see that Dε
Y is bounded by (3.7),

and since (3.2) and (3.3) imply DY ≤ 0.4ε + Dε
Y , substitution yields

DY ≤ γ (ε) := aε + b

1 − c/ε
,

where

a := 2

5
, b := μ

σ 2 � + 7

5

μ

σ 3 B2 and c := 2μB2

σ 3 .

The optimum bound on DY is at the positive root of γ ′(ε) = 0, namely ε = c + r

where r :=
√

c2 + cb/a.
We wish to calculate γ (c + r). The denominator equals

1 − c

c + r
= 1 − c(c − r)

c2 − r2 = 1 + a(c − r)

b
= b + a(c − r)

b
,

and therefore

γ (c + r) = b

(
a(c + r) + b

a(c − r) + b

)
= b

(
c + b/a + r

c + b/a − r

)

= b

(
(c + b/a + r)2

(c + b/a)2 − r2

)
= b

(
(c + b/a + r)2

cb/a + (b/a)2

)

= a

(
(c + b/a + r)2

c + (b/a)

)
= a

(
(c + b/a + √

c
√

c + b/a)2

c + (b/a)

)

= a
(√

c + b/a + √
c
)2 = 2

5

(√
11

2

μB2

σ 3 + 5

2

μ

σ 2 � +
√

2μB2

σ 3

)2

,

and this bound on DY yields (3.1). �

Let Bin(n,p) denote the binomial distribution with parameters n ∈ N and
p ∈ (0,1). Our next two lemmas are concerned with binomial and conditioned
binomial distributions. Lemma 3.2 is used to prove Lemma 3.3.

LEMMA 3.2. Let m ∈ N and p ∈ (0,1). Suppose N ∼ Bin(m,p), and
L(N ′) = L(N |N > 0), N ′′ − 1 ∼ Bin(m − 1,p). Then for all k ∈ N,

P [N ≥ k] ≤ P [N ′ ≥ k] ≤ P [N ′′ ≥ k].(3.8)

PROOF. The first inequality in (3.8) is easy since for k ≥ 1, by definition
P [N ′ ≥ k] = P [N ≥ k]/P [N ≥ 1]. It remains to prove the second inequality. Sup-
pose ξ1, ξ2, . . . are independent Bernoulli random variables with parameter p. Let
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M = min{i : ξi = 1} and Ñ ′′ :=∑M+m−1
i=M ξi . Then M and Ñ ′′ are independent and

L(Ñ ′′) = L(N ′′).
Define the random variables

J :=
⌈
M

m

⌉
and Ñ ′ :=

mJ∑
i=m(J−1)+1

ξi .

In other words, split the sequence of Bernoulli trials into disjoint intervals of
length m, and let Ñ ′ denote the number of successful Bernoulli trials in the first
such interval that contains at least one successful trial.

Then Ñ ′ has the distribution of N ′, and by construction Ñ ′ ≤ Ñ ′′ almost surely.
Since Ñ ′′ has the distribution of N ′′, this shows that N ′ is stochastically dominated
by N ′′, that is, the second inequality in (3.8) holds. �

Our next lemma demonstrates the existence of a “uniformly close coupling”
of random variables with a binomial distribution, and with the same distribution
conditioned to be nonzero (denoted, respectively, N and M in the lemma). This
result will be used in Section 4 to provide a uniformly close coupling of V [given
by (2.2)] and its size biased version, and likewise for S (in fact, for n − S).

LEMMA 3.3. Let m ∈ N and p ∈ (0,1). Suppose N ∼ Bin(m,p), with N =∑m
i=1 ξi where ξi are independent Bernoulli variables with parameter p. Defining

πk by

πk :=
⎧⎨
⎩

P [N > k|N > 0] − P [N > k]
P [N = k](1 − (k/m))

, if 0 ≤ k ≤ m − 1,

0, if k = m,
(3.9)

we then have 0 ≤ πk ≤ 1 for all k ∈ {0, . . . ,m}.
Suppose also that B is a further Bernoulli variable with P(B = 1|ξ1, . . . , ξm) =

πN , and suppose I is an independent discrete uniform random variable over
{1,2, . . . ,m}. Set M := N + (1 − ξI )B, that is, let M be given by the same sum as
N except that if B = 1 the I th term is set to 1. Then

L(M) = L(N |N > 0).(3.10)

PROOF. Lemma 3.2 shows πk ≥ 0. For the upper bound, set N ′′ = 1 +∑m
i=2 ξi . Then N ′′ − 1 ∼ Bin(m − 1,p) and N ′′ is equal either to N or to N + 1,

with P [N ′′ = k + 1|N = k] = 1 − (k/m) for 0 ≤ k ≤ m. Hence for all k, by Lem-
ma 3.2,

P [N > k] + P [N = k](1 − k/m) = P [N ′′ > k] ≥ P [N > k|N > 0]
so πk ≤ 1. Also, assertion (3.10) follows by (3.9) and the fact that

{M > k} = {N > k} ∪ {N = k, B = 1, ξI = 0}. �
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Our next result refers to measurable real-valued functions ψ defined on all pairs
(x, X ) such that X is a finite subset of Cn and x ∈ X . We say that such a functional
ψ is translation-invariant if ψ(x, X ) = ψ(y+x, y+ X ) for all x, X and all y ∈ Cn

(here addition is in the torus Cn, and y + X := {y + w :w ∈ X }). For r > 0, we
say that ψ has radius r if ψ(x, X ) is unaffected by the addition of points to, or
removal of points from, the point set X at a distance more than r from x, that is,
if for all (x, X ) we have ψ(x, X ) = ψ(x, X ∩ Br(x)). The notion of radius is the
same as that of range of interaction used in [15]; see also the notion of radius of
stabilization, in [15, 17] and elsewhere. We also define

‖ψ‖ := ess sup
x,X

{|ψ(x, X )|};

rng(ψ) := ess sup
x,X

{ψ(x, X )} − ess inf
x,X

{ψ(x, X )}.

Recall that Un := {U1, . . . ,Un} denotes a collection of n independent uniformly
distributed points in Cn, and πd is the volume of the unit d-ball.

LEMMA 3.4. Let n ∈ N and k ∈ N with 2 ≤ k ≤ n. Suppose that for i =
1, . . . , k, ψi is a measurable real-valued function defined on all pairs (x, X )

with X a finite set in Cn and x ∈ X . Suppose for each i that ψi is translation-
invariant and has radius ri for some ri ∈ (0,∞), and that ‖ψi‖ < ∞, and
E[ψ1(U1, Un)] = 0. With φi := πdrd

i , suppose also that φ2 + · · · + φk < n. Then∣∣∣∣∣E
[

k∏
i=1

ψi(Ui, Un)

]∣∣∣∣∣≤
(
n−1

k∏
i=2

‖ψi‖
)

rng(ψ1)

×
(
πd

(
k∑

i=2

(r1 + ri)
d

)

+ φ1

(
k − 1 +

(
k∑

i=2

φi

)(
2n −∑k

i=2 φi

n −∑k
i=2 φi

)))
.

PROOF. Given x = (x1, . . . , xk) ∈ Ck
n , define the set of points

U x
n := {x1, . . . , xk,Uk+1, . . . ,Un}.

Let Fn be the set of x = (x1, . . . , xk) ∈ Ck
n such that D(x1, xi) > r1 + ri for i ∈

{2, . . . , k}, and let Fc
n := Ck

n \ Fn. Then by the law of total probability,

E

[
k∏

i=1

ψi(Ui, Un)

]
= n−k

∫
Fn

E

k∏
i=1

ψi(xi, U x
n) dx

+ n−k
∫
Fc

n

E

k∏
i=1

ψi(xi, U x
n) dx.
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Since E[ψ1(U1, Un)] = 0 it follows that ‖ψ1‖ ≤ rng(ψ1), so that∣∣∣∣∣n−k
∫
Fc

n

E

k∏
i=1

ψi(xi, U x
n) dx

∣∣∣∣∣≤
(

k∏
i=1

‖ψi‖
)
P [(U1, . . . ,Uk) ∈ Fc

n ]
(3.11)

≤ rng(ψ1)

(
k∏

i=2

‖ψi‖
)

k∑
i=2

πd(r1 + ri)
d/n.

Fix x = (x1, . . . , xk) ∈ Fn. For m ∈ Z+, let h1(m) := Eψ1(x1, {x1} ∪ Ym), where
Ym denotes a collection of m uniformly distributed points in Br1(x1). Let h2(m) :=
E
∏k

i=2 ψi(xi, {x2, . . . , xk} ∪ Y ′
m), where Y ′

m denotes a collection of m uniformly
distributed points in

⋃k
i=2 Bri (xi).

If N1 and N2 denote the number of points of {Uk+1, . . . ,Un} in Br1(x1) and in⋃k
i=2 Bri (xi), respectively, then the values of ψ1(x1, U x

n) and of
∏k

i=2 ψi(xi, U x
n)

are conditionally independent, given (N1,N2), because the regions Br1(x1) and⋃k
i=2 Bri (xi) are disjoint since we assume x ∈ Fn. Hence, we assert that

E

[
k∏

i=1

ψi(xi, U x
n)

]
= E[h1(N1)h2(N2)],(3.12)

where (N1,N2,N3) have the multinomial distribution

(N1,N2,N3) ∼ Mult
(
n − k; a1

n
,
a2

n
,
a3

n

)
(3.13)

with a1 denoting the volume of a ball of radius r1 in Cn [so that a1 ≤ φ1 = πdrd
1

with equality if r1 ≤ (1/2)n1/d ] while a2 is the volume of
⋃k

i=2 Bri (xi) in Cn and
a3 := n − a1 − a2. To verify (3.12), use the law of total probability to decompose
the left-hand side as a sum over possible values of (N1,N2).

Also, if Ñ1 ∼ Bin(n − 1, a1
n

) then E[h1(Ñ1)] = 0, because of the assumption
that E[ψ1(U1, Un)] = 0, along with translation invariance; the value of E[h1(Ñ1)]
does not depend on x1.

We give a coupling of N1 to another random variable N ′
1 with the same distri-

bution as Ñ1 that is independent of N2, for which we can give a useful bound on
P [N1 �= N ′

1].
Consider throwing a series of colored balls so each ball can land in one of three

urns, where the probability of landing in urn i is ai/n for 1 ≤ i ≤ 3. First, throw
n − k white balls and let N∗

1 ,N2,N
∗
3 denote the number of white balls in urn i for

i = 1,2,3, respectively, that is, let (N∗
1 ,N2,N

∗
3 ) have the Mult(n − k; a1

n
, a2

n
,

a3
n

)

distribution. Now pick out the n− k −N2 balls in urns 1 and 3, paint them red, and
throw them again; that is, given the values of N∗

1 ,N2,N
∗
3 let Nr

1 ,Nr
2 ,Nr

3 count
the number of red balls in urns 1,2,3, respectively, and so be nonnegative integer
valued variables such that

L((Nr
1 ,Nr

2 ,Nr
3 )|N∗

1 ,N2) = Mult
(
n − k − N2; a1

n
,
a2

n
,
a3

n

)
.
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Now take the Nr
2 red balls in urn 2, paint them blue, and throw them again but

condition them to land in urns 1 and 3 (or equivalently, throw each blue ball again
and again until it avoids urn 2), so that

L((Nb
1 ,Nb

3 )|N∗
1 ,N2,N

r
1 ,Nr

2 ) = Mult
(
Nr

2 ; a1

a1 + a3
,

a3

a1 + a3

)
.

Finally, throw k − 1 + N2 green balls, making the total number of green, red and
blue balls n − 1, and record how many land in urn 1, so

L(N
g
1 |N∗

1 ,N2,N
r
1 ,Nr

2 ,Nb
1 ) = Bin

(
k − 1 + N2; a1

n

)
.

Now set

N1 = Nr
1 + Nb

1 , N3 = Nr
3 + Nb

3 and N ′
1 = Nr

1 + N
g
1 .

Then (N1,N2,N3) have the multinomial distribution given by (3.13). Also, N ′
1 ∼

Bin(n − 1, a1
n

) and N ′
1 is independent of N2.

Since N ′
1 = N1 − Nb

1 + N
g
1 , we have that

P [N1 �= N ′
1] ≤ E[Ng

1 ] + E[Nb
1 ] ≤ a1

n
(k − 1 + EN2) +

(
a1

a1 + a3

)
E[Nr

2 ]

≤ a1

n
(k − 1 + a2) +

(
a1

n − a2

)
a2

so that

∣∣E[h2(N2)
(
h1(N1) − h1(N

′
1)
)]∣∣≤ a1

n

(
k − 1 + a2 +

(
na2

n − a2

))
rng(ψ1)

k∏
i=2

‖ψi‖

and since N ′
1 is independent of N2 with N ′

1 ∼ Bin(n − 1, a1
n

),

E[h1(N
′
1)h2(N2)] = 0,

so by (3.12) and the fact that a1 ≤ φ1 and a2 ≤ ∑k
i=2 φi and the assumption that∑k

i=2 φi < n,∣∣∣∣∣E
[

k∏
i=1

ψi(xi, U x
n)

]∣∣∣∣∣
≤ a1

n

(
k − 1 + a2

(
2n − a2

n − a2

))
rng(ψ1)

k∏
i=2

‖ψi‖

≤ φ1

n

(
k − 1 +

(
k∑

i=2

φi

)(
2n −∑k

i=2 φi

n −∑k
i=2 φi

))
rng(ψ1)

k∏
i=2

‖ψi‖.

The preceding bound holds uniformly over all possible values of x = (x1, . . . , xk) ∈
Fn. Combined with (3.11), this shows that the asserted bound holds. �
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LEMMA 3.5. Suppose ψ1 is as defined in Lemma 3.4. Then with notation from
that result, if φ1 < n then

Var

[
1

n

n∑
i=1

ψ1(Ui, Un)

]

≤ ‖ψ1‖2

n
(1 + 2dφ1) + ‖ψ1‖

n

(
φ1 + φ2

1

(
2n − φ1

n − φ1

))
rng(ψ1).

PROOF. By the case k = 2 of Lemma 3.4,

Cov(ψ1(U1, Un),ψ1(U2, Un))

= E[ψ1(U1, Un)ψ1(U2, Un)]
≤ ‖ψ1‖

n

(
2dφ1‖ψ1‖ + φ1

(
1 + φ1

(
2n − φ1

n − φ1

))
rng(ψ1)

)

and since

Var

[
1

n

n∑
i=1

ψ1(Ui, Un)

]
= n−1 Var[ψ1(U1, Un)]

+ n − 1

n
Cov(ψ1(U1, Un),ψ1(U2, Un)),

the result follows. �

4. Size-biased coupling constructions. We now give a simple lemma which
shows how to size-bias a random variable that can be expressed as a conditional
probability of an event arising from some further randomization.

LEMMA 4.1. Suppose Y is a random variable given by Y = aP [A|F ], where
F is some σ -algebra, a > 0 is a constant, and A is an event with 0 < P [A] < 1.
Then Y ′ has the Y size biased distribution if

L(Y ′) = L(Y |A).(4.1)

PROOF. With L(Y ′) defined by (4.1), we must show for all bounded and con-
tinuous g : R → R, that E[g(Y ′)] = E[Yg(Y )]/E[Y ] [see (1.1)]. But

E[g(Y ′)] = E[g(Y )|A] = E[g(Y )1A]/P [A]
= E[g(Y )P [A|F ]]/P [A],

where the last equality follows because g(Y ) is F -measurable. The last expression
equals E[Yg(Y )]/E[Y ], as required. �
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Let V and S be given by (2.1), (2.2), respectively. Set W = n − S (the number
of nonsingletons). We assert that either V or W can be expressed as n times the
conditional probability of some event A, given the locations of the points of Un, so
that Lemma 4.1 is applicable. For V , take A = AV to be the event that an additional
uniformly distributed random point U0 in Cn lies in the covered region

⋃n
i=1 Bi,ρ .

For W , take A = AW to be the event that an element of Un, selected uniformly at
random, is nonisolated.

Event AV can be written as the event that NV > 0, where NV denotes the num-
ber of points of Un in Bρ(U0), and NV ∼ Bin(n,φ/n) (recall φ := πdρd and Cn

has volume n). A point set (denoted UV ) with the conditional distribution of Un

given NV can be obtained as follows:

I. Sample a uniform random point in Cn, denoted U0.
II. Set m = n. Sample N = NV independent uniform random points in Bρ(U0),

and m − N independent uniform random points in Cn \ Bρ(U0).
III. Let UV be the union of the two samples of uniform points.

Therefore, coupled realizations of UV and U ′
V (having, respectively, the distribu-

tion of Un and the conditional distribution of Un given NV > 0), and hence coupled
realizations of V and V ′, can be obtained as follows.

1. Set m = n.
2. Sample U0 uniformly at random over Cn.
3. Sample m random d-vectors independently and uniformly over Cn, and denote

this point set by Um,1.
4. Let N denote the number of points of Um,1 in Bρ(U0).
5. Sample a Bernoulli random variable B with P [B = 1] = πN , where (πk, k ≥ 0)

is given by (3.9).
6. Sample a random d-vector U which is uniform over Bρ(U0).
7. If B = 1, then select one of the points of Um,1 uniformly at random, and move

it to U . Denote the resulting modification of Um,1 by Um,2. If B = 0 then set
Um,2 := Um,1.

8. Set UV := Um,1 and U ′
V := Um,2. Set V := gV (UV ) and V ′ := gV (U ′

V ), where
gV (U ) := Vol(

⋃
x∈U Bρ(x)).

By Lemma 3.3, the number of points of Um,2 in Bρ(U0) has the distribution
L(NV |NV > 0), and hence L(U ′

V ) = L(UV |NV > 0). So by Lemma 4.1, V ′ has
the V size biased distribution.

In the case of W , AW is the event that NW > 0, where NW denotes the number
of points of Un \ {U0} in Bρ(U0), and now U0 denotes a point of Un selected uni-
formly at random. So NW ∼ Bin(n − 1, φ/n). We can obtain a point set (denoted
UW ) with the conditional distribution of Un given NW by the same steps as for UV

except that now in Step II we put m = n − 1 and N = NW , and in Step III, UW is
the union of the two samples of uniform random points with an added point at U0.
Hence, we can obtain coupled realizations of W and W ′ by the same sequence of
steps as described above for (V ,V ′), except that the following steps are modified:
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• In Step 1, set m = n − 1 (this affects Steps 3 and 5.)
• In Step 8, set UW := Um,1 ∪ {U0}, and U ′

W := Um,2 ∪ {U0}. Set W := gW(UW)

and W ′ := gW(U ′
W) with gW(U ) :=∑

x∈U 1{U ∩ Bρ(x) �= {x}}.
By a similar argument to the V case, W ′ has the W size biased distribution.

5. Proof of Theorem 2.1. We couple V ′ to V as described in Section 4. Since
V ′ differs from V through the moving of at most a single point, clearly |V ′ −V | ≤
πdρd := φ. Hence, by Lemma 3.1 with B = φ, to prove Theorem 2.1 it suffices to
prove the following.

PROPOSITION 5.1. Under the assumptions of Theorem 2.1, Var(E[V ′ −
V |V ]) ≤ n−1ηV (n,ρ), where ηV (n,ρ) is given by (2.4).

PROOF. Let G be the σ -algebra generated by the point set UV . List the
points of UV , in an order chosen uniformly at random, as U1, . . . ,Un, and set
U := (U1, . . . ,Un). Then V is G -measurable. The conditional variance formula,
with X = E[V ′ − V |G], yields

Var(E[V ′ − V |V ]) = Var(E[X|V ]) ≤ Var(X),

so it suffices to prove

Var(E[V ′ − V |G]) ≤ n−1ηV (n,ρ).(5.1)

For x ∈ Cn, let ξx denote the probability that B = 1, given Un and given that
U0 = x, that is, ξx = πNx , where Nx denotes the number of points of UV in Bρ(x).
Let Rxj denote the expectation (over U ) of the increment in the covered volume if
Uj is moved to a uniform randomly selected location U in Bρ(x). Note that for x

and j fixed, Rxj is determined by U. Then, since both U0 and I are independent
of G ,

E[V ′ − V |G] = 1

n

∫
Cn

ξx

(
1

n

n∑
j=1

Rxj

)
dx,

where the first factor of 1/n comes from the probability density of U0, and the
second arises as the probability that I takes the value j .

Let Hx be the expectation (over U ) of the increment in the covered volume
when a point is inserted into UV at a uniform random location U ∈ Bρ(x), and let
Tj be the increment in the covered volume when point Uj is removed from U (for
fixed x and j , both Hx and Tj are determined by U). If Uj is far distant from x then
Rxj = Hx + Tj . Set Qxj := Rxj − Hx − Tj , which is in fact the expectation (over
U ) of the total volume of the otherwise uncovered regions lying within distance ρ
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both of U and of Uj (such regions contribute to Tj but not to Hx or Rxj ). Then

E[V ′ − V |G] = 1

n2

∫
Cn

n∑
j=1

ξx(Hx + Tj + Qxj ) dx

(5.2)

= 1

n

∫
Cn

ξx

(
Hx + 1

n

n∑
j=1

Qxj

)
dx + 1

n2

∫
Cn

n∑
j=1

ξxTj dx.

Set φ := πdρd . We have that 0 ≤ Hx ≤ φ, 0 ≥ Tj ≥ −φ and if D(x,Uj ) > 3ρ

then Qxj = 0. Moreover, if D(x,Uj ) > 3ρ for all j ∈ {1, . . . , n}, then Hx = φ and
if D(x,Uj ) > ρ for all j ∈ {1, . . . , n}, then ξx = 1. Finally, Qxj ≥ 0 and

0 ≤ Hx + 1

n

n∑
j=1

Qxj ≤ Hx +
n∑

j=1

Qxj ≤ φ.

Hence setting

τx := ξx

(
Hx + 1

n

n∑
j=1

Qxj

)
− φ,

we have that −φ ≤ τx ≤ 0, and τx is determined by the collection of points of
Un within distance 3ρ of x, and τx = 0 if there are no such points of Un. We can
rewrite (5.2) as

E[V ′ − V |G] = φ + 1

n

∫
Cn

τx dx + 1

n

(
n∑

j=1

Tj

)
+ 1

n2

∫
Cn

n∑
j=1

(ξx − 1)Tj dx.

Recalling that Br(x) := {y ∈ Cn :D(x,y) ≤ r}, let �i,r be the set of points
y ∈ Br(Ui) such that D(y,Ui) < D(y,Uj ) for all j ∈ {1, . . . , n} \ {i} (i.e., the
intersection of the r-ball around Ui and the Voronoi cell of Ui relative to Un). Set

S′
i :=

∫
�i,3ρ

τx dx, S′′
i :=

∫
�i,ρ

(ξx − 1) dx.

Then

E[V ′ − V |G] = φ +
(

1

n

n∑
i=1

S′
i

)
+
(

1

n

n∑
j=1

Tj

)
+
(

1

n2

n∑
i=1

S′′
i Ti

)

(5.3)

+
(

1

n2

∑
(i,j) : i �=j

S′′
i Tj

)
,

and if we put b = ETi (which does not depend on i), we have

1

n2

∑
(i,j) : i �=j

S′′
i Tj = 1

n2

( ∑
(i,j) : i �=j

S′′
i (Tj − b)

)
+ b(n − 1)

n2

(
n∑

i=1

S′′
i

)
,
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so by (5.3),

E[V ′ − V |G]
= φ + 1

n2

( ∑
(i,j) : i �=j

S′′
i (Tj − b)

)

+ 1

n

n∑
i=1

(
S′

i + Ti + (
n−1Ti + (1 − n−1)b

)
S′′

i

)
.

Since (x + y)2 ≤ 2(x2 + y2) for any real x, y,

Var(E[V ′ − V |G])

≤ 2 Var

(
1

n

n∑
i=1

(
S′

i + Ti + (
n−1Ti + (1 − n−1)b

)
S′′

i

))
(5.4)

+ 2 Var
(

1

n2

( ∑
(i,j) : i �=j

S′′
i (Tj − b)

))
.

Table 1 summarizes upper and lower bounds and the radius of the relevant vari-
ables, where the radius of a variable indexed by i is the smallest distance from
Ui one needs to look to establish its value (as with the functionals considered in
Lemma 3.4).

Hence, the variable

S′
i + Ti + (

n−1Ti + (1 − n−1)b
)
S′′

i

has radius 6ρ relative to Ui and lies between −φ−3dφ2 and φ2, so that its centered
value is bounded in absolute value by (3d +1)φ2 +φ, and this also bounds its range
of possible values. So by Lemma 3.5 and the assumption that 6dφ < n,

Var

(
1

n

n∑
i=1

(
S′

i + Ti + (n−1Ti + (1 − n−1)b)S′′
i

))

(5.5)

≤ φ2((3d + 1)φ + 1)2

n

(
1 + (2d + 1)6dφ +

(
2n − 6dφ

n − 6dφ

)
62dφ2

)
.

TABLE 1
Radii and bounds for covered volume

Variable τx Ti S′′
i S′

i (n−1Ti + (1 − n−1)b)S′′
i

Radius 3ρ 2ρ 2ρ 6ρ 2ρ

Lower bound −φ −φ −φ −3dφ2 0
Upper bound 0 0 0 0 φ2

Note: The last two columns are deduced from the previous columns.
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Now consider the last term in the right-hand side of (5.4). Set T̄j := Tj − b. Then

Var
( ∑

(i,j) : i �=j

S′′
i T̄j

)

= n(n − 1)(n − 2)(n − 3)Cov(S ′′
1 T̄2, S

′′
3 T̄4)

+ n(n − 1)(n − 2)
(
Cov(S′′

1 T̄2, S
′′
1 T̄3)(5.6)

+ Cov(S′′
2 T̄1, S

′′
3 T̄1) + 2 Cov(S′′

1 T̄2, S
′′
3 T̄1)

)
+ n(n − 1)

(
Var(S′′

1 T̄2) + Cov(S′′
1 T̄2, S

′′
2 T̄1)

)
.

It follows from the case k = 4 of Lemma 3.4 and the assumption 6dφ < n (which
implies 3(2dφ) < n) that

Cov(S′′
1 T̄2, S

′′
3 T̄4) = E[S′′

1 T̄2S
′′
3 T̄4] − (E[S′′

1 T̄2])2 ≤ E[S′′
1 T̄2S

′′
3 T̄4]

≤ φ4

n

(
3πd(4ρ)d + 2dφ

(
3 + 3(2d)φ

(
2n − 3(2d)φ

n − 3(2d)φ

)))

= 3φ4

n

(
(4d + 2d)φ + 4dφ2

(
2n − 3(2d)φ

n − 3(2d)φ

))
.

Since we can always bound Cov(S′′
i T̄j , S

′′
i′ T̄j ′) above by φ4, we have from (5.6)

that

Var
(

1

n2

( ∑
(i,j) : i �=j

S′′
i (Tj − b)

))
(5.7)

≤ φ4

n

(
3(4d + 2d)φ + 3(4d)φ2

(
2n − 3(2d)φ

n − 3(2d)φ

)
+ 4 + 2

n

)
.

By (5.4), (5.5) and (5.7) we have that

(n/2)Var(E[V ′ − V |G])

≤ φ2((3d + 1)φ + 1
)2(1 + (2d + 1)6dφ +

(
2n − 6dφ

n − 6dφ

)
62dφ2

)

+ φ4
(

3(4d + 2d)φ + 3(4d)φ2
(

2n − 3(2d)φ

n − 3(2d)φ

)
+ 4 + 2

n

)
.

This completes the proof of Proposition 6.1, and hence of Theorem 2.1. �

6. Proof of Theorem 2.2. We couple W ′ to W as described in Section 4. Thus
W = gW(UW) and W ′ = gW(U ′

W), where U ′
W is obtained from UW by moving at

most a single randomly selected point of UW \{U0} to a (uniform random) location
in Bρ(U0), if B = 1, and leaving UW unchanged if B = 0.
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The number of points that can be made isolated by removing a single point from
UW is almost surely bounded by κd . Moreover, the number of points that can be
made nonisolated by inserting a point (including the inserted point itself) is almost
surely bounded by κd + 1. Hence |W −W ′| ≤ κd + 1, so we may take B = κd + 1.

By the symmetry of the normal distribution, D−S = DS and hence DW = DS .
Thus, Theorem 2.2 follows from Lemma 3.1 along with the following:

PROPOSITION 6.1. Under the assumptions of Theorem 2.2, Var(E[W ′ −
W |W ]) ≤ n−1ηS(n,ρ), where ηS(n,ρ) is given by (2.5).

PROOF. Here we let G denote the σ -algebra generated by the unlabelled point
set U := UW . Then W ′ is G -measurable, and by the conditional variance formula
(as in the proof of Proposition 5.1), it suffices to prove that

Var(E[W ′ − W |G]) ≤ n−1ηS(n,ρ).(6.1)

Label the points of U , in an order chosen uniformly at random, as U1, . . . ,Un,
and set U := (U1, . . . ,Un). ξi = πNi

, where Ni denotes the number of points of
U \{Ui} in Bρ(Ui). Let Rij denote the expectation (over U ) of the increment in the
number of nonisolated points when Uj is moved to a uniform randomly selected
location U in Bρ(Ui). Then

E[W ′ − W |G] = 1

n(n − 1)

∑
(i,j) : i �=j

ξiRij ,

where
∑

(i,j) : i �=j denotes summation over pairs of distinct integers i, j in [1, n].
Now let Hi be the expectation (over U ) of the increment in the number of

isolated points when a point is inserted into U at a uniform random location
U ∈ Bρ(Ui), and let Tj be the increment in the number of isolated points when
point Uj is removed from U (both Hi and Tj are determined by U). If Uj is far
distant from Ui then Rij = −Hi − Tj . In fact, setting Qij := Rij + Hi + Tj , we
have that Qij is the expectation (over U ) of the number of otherwise isolated points
of U within distance ρ both of U and of Uj (such points contribute to Tj but not
to Hi or Rij ). Then

E[W ′ − W |G] = 1

n(n − 1)

∑
(i,j) : i �=j

ξi(−Hi − Tj + Qij )

(6.2)

= 1

n

n∑
i=1

ξiτi − 1

n(n − 1)

∑
(i,j) : i �=j

ξiTj ,

where we set

τi := −Hi + 1

n − 1

∑
j : j �=i

Qij .(6.3)
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Put a := E[ξi] (given n, this expectation does not depend on i) and put b := (κd −
1)/2. Then

1

n(n − 1)

∑
(i,j) : i �=j

ξiTj = 1

n(n − 1)

( ∑
(i,j) : i �=j

(ξi − a)(Tj − b)

)

+ a

n

(
n∑

j=1

Tj

)
+ b

n

(
n∑

i=1

(ξi − a)

)
.

Hence we can rewrite (6.2) as

E[W ′ −W |G] = 1

n

n∑
i=1

(
ξiτi −aTi −b(ξi −a)

)− 1

n(n − 1)

∑
(i,j) : i �=j

(ξi −a)(Tj −b).

Since (x + y)2 ≤ 2(x2 + y2) for any real x, y, it follows that

Var(E[W ′ − W |G]) ≤ 2 Var

(
1

n

n∑
i=1

(
ξi(τi − b) + a(b − Ti)

))

(6.4)

+ 2 Var
(

1

n(n − 1)

∑
(i,j) : i �=j

(ξi − a)(Tj − b)

)
.

We have that −κd ≤ Hi ≤ 0, −1 ≤ Tj ≤ κd , and Qij ≥ 0. Also,

0 ≤ −Hi + ∑
j : j �=i

Qij ≤ κd,

and if D(Ui,Uj ) > 3ρ then Qij = 0. Hence, 0 ≤ τi ≤ κd , and τi is determined by
the collection of points of U within distance 3ρ of Ui . Table 2 summarizes this
discussion; recall from Table 1 the notion of radius.

From the last column in this table, we see that after centering, the terms in first
sum in the right-hand side of (6.4) have radius 3ρ and absolute values bounded
by 1 + 2κd . Moreover, even after centering each of these terms has range (i.e.,
essential supremum minus essential infimum) which is also bounded by 1 + 2κd

TABLE 2
Radii and bounds for singletons

Variable Hi Ti ξi τi ξi(τi − b) a(b − Ti) ξi(τi − b) + a(b − Ti)

Radius 3ρ 2ρ ρ 3ρ 3ρ 2ρ 3ρ

ess inf −κd −1 0 0 (1 − κd)/2 −(κd + 1)/2 −κd

ess sup 0 κd 1 κd (κd + 1)/2 (κd + 1)/2 κd + 1

Note: The last three columns are deduced from the preceding columns and the definitions of a, b.
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(this range is unaffected by the centering). Hence with φ := πdρd , Lemma 3.5,
using the assumption 3dφ < n, yields

Var

(
1

n

n∑
i=1

(
ξi(τi − b) + a(b − Ti)

))

(6.5)

≤ (1 + 2κd)2

n

(
1 + (2d + 1)3dφ +

(
2n − 3dφ

n − 3dφ

)
(3dφ)2

)
.

Now consider the second sum in the right-hand side of (6.4). Set ξ̄i := ξi − a and
T̄j := Tj − b. Then

Var
( ∑

(i,j) : i �=j

(ξi − a)(Tj − b)

)

= n(n − 1)(n − 2)(n − 3)Cov(ξ̄1T̄2, ξ̄3T̄4)

+ n(n − 1)(n − 2)
(
Cov(ξ̄1T̄2, ξ̄1T̄3)(6.6)

+ Cov(ξ̄2T̄1, ξ̄3T̄1) + 2 Cov(ξ̄1T̄2, ξ̄3T̄1)
)

+ n(n − 1)
(
Var(ξ̄1T̄2) + Cov(ξ̄1T̄2, ξ̄2T̄1)

)
.

Note that ξ̄i has absolute value bounded by 1, and range of possible values also
bounded by 1, and mean zero. Also, T̄j has absolute value almost surely bounded
by (κd + 1)/2 (its mean might not be zero). Hence, the case k = 4 of Lemma 3.4
[taking r1 = r2 = ρ and r3 = r4 = 2ρ so that φ2 + φ3 + φ4 = (2d+1 + 1)φ] yields

Cov(ξ̄1T̄2, ξ̄3T̄4)

= E[ξ̄1T̄2ξ̄3T̄4] − (E[ξ̄1T̄2])2 ≤ E[ξ̄1T̄2ξ̄3T̄4]

≤ (κd + 1)2

4n

(
φ
(
2(3d) + 2d)+ 3φ + (2d+1 + 1)φ2

(
2n − (2d+1 + 1)φ

n − (2d+1 + 1)φ

))
,

where we have also used the assumption that (2d+1 + 1)φ < n. Since we can al-
ways bound Cov(ξ̄i T̄j , ξ̄i′ T̄j ′) by ((κd + 1)/2)2, we have from (6.6) that

Var
(

1

n(n − 1)

( ∑
(i,j) : i �=j

(ξi − a)(Tj − b)

))

≤ (κd + 1)2

4n

((
2(3d) + 2d + 3

)
φ

(6.7)

+ (2d+1 + 1)φ2
(

2n − (2d+1 + 1)φ

n − (2d+1 + 1)φ

))

+
(

κd + 1

2

)2(4

n
+ 2

n(n − 1)

)
.
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By (6.4), (6.5) and (6.7), we have that

nVar(E[W ′ − W |G])

≤ 2(1 + 2κd)2
(

1 + (2d + 1)3dφ +
(

2n − 3dφ

n − 3dφ

)
9dφ2

)

+ (κd + 1)2

2

((
2(3d) + 2d + 3

)
φ + (2d+1 + 1)

(
2n − (2d+1 + 1)φ

n − (2d+1 + 1)φ

)
φ2
)

+ (κd + 1)2

2

(
4 + 2

n − 1

)
.

This completes the proof of Proposition 6.1, and hence of Theorem 2.2. �

7. Proof of Theorem 2.3 and numerics. Again set φ := πdρd . It is easy to
see that provided 2ρ < n1/d ,

E[V ] = n
(
1 − (1 − φ/n)n

); E[S] = n(1 − φ/n)n−1,(7.1)

and (2.9) follows from this.
Write | · | for the Euclidean norm and recall that ωd(|x|) denotes the volume of

the union of unit balls centered at the origin 0 and at x. If Ix denotes the indicator
of the event that x is not contained in any of the balls Bρ,i , then provided 4ρ < n1/d

we have the exact formula

Var(V ) = Var(n − V )

= Var
∫
Cn

Ix dx

=
∫
Cn

∫
Cn

E[IxIy]dx dy − (
n(1 − φ/n)n

)2(7.2)

= n

∫
B2ρ(0)

(
1 − ρdωd(|y|/ρ)

n

)n

dy

+ n(n − 2dφ)

(
1 − 2φ

n

)n

− n2(1 − φ/n)2n.

PROOF OF (2.10). For asymptotics as n → ∞ with ρ fixed, use the MacLau-
rin expansion of log(1 − x) to obtain

(
1 − 2φ

n

)n

= e−2φ exp
(
−2φ2

n
+ O(n−2)

)
;

(
1 − φ

n

)2n

= e−2φ exp
(
−φ2

n
+ O(n−2)

)
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so that

n−1 Var(V ) =
∫
B2ρ(0)

(
1 − ρdωd(|y|/ρ)

n

)n

dy

+ ne−2φ

((
1 − 2dφ

n

)
exp

(
−2φ2

n

)
− exp

(
−φ2

n

)
+ O(n−2)

)

→
(∫

B2ρ(0)
exp

(−ρdωd(|y|/ρ)
)
dy

)
− e−2φ(2dφ + φ2)

and this limit is equal to gV (ρ) as defined by (2.7), so the first part of (2.10) is
proven.

It remains to show that gV (ρ) > 0. This can be done either by using the last
part of Theorem 2.1 of [16], or directly. We leave it to the reader to check that the
conditions of the last part of Theorem 2.1 are satisfied here, or to look up the direct
argument which is in the first version of this paper (arXiv:0812.3084). Thus (2.10)
holds in its entirety. �

The computations for S are somewhat similar. With Xi denoting the indicator
of the event that Ui is isolated,

Var(S) = nVar(X1) + n(n − 1)Cov(X1,X2)

= n(1 − φ/n)n−1(1 − (1 − φ/n)n−1)+ n(n − 1)Cov(X1,X2).

Since Cov(X1,X2) = E[X1X2] − E[X1]2, provided 4ρ < n1/d we can write

Var(S) = n(1 − φ/n)n−1(1 − (1 − φ/n)n−1)
+ (n − 1)

∫
B2ρ(0)\Bρ(0)

(
1 − ρdωd(|y|/ρ)

n

)n−2

dy(7.3)

+ n(n − 1)

((
1 − 2dφ

n

)(
1 − 2φ

n

)n−2

−
(

1 − φ

n

)2n−2)
.

PROOF OF (2.11). For asymptotics as n → ∞ with ρ fixed, by again using
the MacLaurin expansion of log(1 − x) we obtain(

1 − 2φ

n

)n−2

= exp
(
(n − 2)

(
−2φ

n
− 2φ2

n2 + O(n−3)

))

= exp
(
−2φ + 4φ − 2φ2

n
+ O(n−2)

)
and (

1 − φ

n

)2n−2

= exp
(
(2n − 2)

(
−φ

n
− φ2

2n2 + O(n−3)

))

= exp
(
−2φ + 2φ − φ2

n
+ O(n−2)

)

http://www.arxiv.org/abs/0812.3084
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and hence the last term in the right-hand side of (7.3) is equal to

n(n − 1) exp(−2φ)

×
((

1 − 2dφ

n

)
exp

(
4φ − 2φ2

n

)
− exp

(
2φ − φ2

n

)
+ O(n−2)

)

= n(n − 1) exp(−2φ)

(
−2dφ

n
+ 2φ

n
− φ2

n
+ O(n−2)

)
,

so that

lim
n→∞n−1 Var(S)

= e−φ(1 − e−φ) − e−2φ((2d − 2)φ + φ2)+
∫
B2ρ(0)\Bρ(0)

e−ρdωd(|y|/ρ) dy

= e−φ − (
1 + (2d − 2)φ + φ2)e−2φ + ρd

∫
B2(0)\B1(0)

e−ρdωd(|u|) du,

and since this limit is equal to gS(ρ) as defined by (2.8), we have proved the first
part of (2.11), namely, convergence to gS(ρ).

To complete the proof of (2.11), we need to show that gS(ρ) > 0. This can be
done by the same arguments as for the proof of (2.10). Hence, (2.11) holds in its
entirety. �

PROOF OF THEOREM 2.3. It remains only to prove (2.12), (2.13) and (2.14).
By definition ηV (ρ) = limn→∞ ηV (n,ρ) and ηS(ρ) = limn→∞ ηS(n,ρ). Then
(2.12) follows at once from Theorem 2.1, along with (2.9) and (2.10). Similarly,
(2.13) follows at once from Theorem 2.2 along with (2.9), and (2.11).

Finally, we demonstrate the asymptotic lower bound (2.14). For any random
variable X, let FX denote its cumulative distribution function and let fX denote its
probability density function (if it has one). Let ε ∈ (0,1). Set

t1 := [μS] − μS

σS

; t2 := [μS] − μS + 1 − ε

σS

.

Here [·] denotes integer part, so that |ti | ≤ σ−1
S for i = 1,2. By the unimodality of

the standard normal density,

FZ(t2) − FZ(t1) ≥ (t2 − t1)min(fZ(t1), fZ(t2))
(7.4)

≥ (1 − ε)σ−1
S fZ(σ−1

S ).

On the other hand, since S is integer-valued, F(S−μS)/σS
(t1) is equal to

F(S−μS)/σS
(t2), so that by (7.4)

DS ≥ (1/2)(1 − ε)σ−1
S fZ(σ−1

S ).

Scaling by n1/2, letting n → ∞, using (2.11) and letting ε → 0 yields (2.14). �
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To conclude, we compute some numerical values for the asymptotic upper
bounds appearing in (2.12) and (2.13). For this we need to compute Jr,d(ρ) de-
fined by (2.6) (for r = 1 and r = 2), and for this in turn, we need to compute
ωd(u), the volume of the union of two unit balls in d-space whose centers are at
points (x, x′ say) distance u apart (u ≤ 2). Clearly, ω1(u) = 2+u, and generalizing
(6) of [11] to arbitrary d ≥ 2, we have

ωd(u) = πd + πd−1

∫ u

0

(
1 − (t/2)2)(d−1)/2

dt, d ≥ 2.(7.5)

Using the preceding formulae, we have computed numerical values for the asymp-
totic upper bounds in Theorem 2.3, for the cases with ρ = 1 and d ≤ 3. These are
as follows to five significant figures, where δV (ρ) denotes the right-hand side of
(2.12) and δS(ρ) denotes the right-hand side of (2.13):

δV (1) =
⎧⎨
⎩

6.4252 × 103, if d = 1,
8.6212 × 105, if d = 2,
1.4451 × 108, if d = 3,

δS(1) =
⎧⎨
⎩

2.1024 × 103, if d = 1,
4.6833 × 104, if d = 2,
1.0578 × 106, if d = 3.
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