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Concentration of Measure

Distributional tail bounds can be provided in cases where
exact computation is intractable.

Concentration of measure results can provide exponentially
decaying tail bounds with explicit constants.
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Log Sobolev Inequality

For a probability measure µ on Rn and f a non-negative real
valued measurable function, let

Entµ(f ) = Eµ[f log f ]− Eµ[f ] log Eµ[f ].

If

Entµ(f 2) ≤ 2CEµ‖∇f ‖2,

then for every 1-Lipschitz function F : Rn → R,

Pµ(F ≥ EF + r) ≤ e−r
2/2C

Herbst (Unpublished), Gross (1975), Ledoux and Talagrand
(1991), Talagrand (1995), Ledoux (1999)
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Transportation Method

For µ and ν probability measures, define the Lp transport distance

W d
p (ν, µ) = inf

(∫ ∫
d(x , y)pdπ(x , y)

)1/p

,

we say µ satisfies the Lp-transportation cost inequality if for some
C such that for al ν

W d
p (µ, ν) ≤

√
2CH(ν|µ) where H(ν|µ) = Eν log

dν

dµ
.
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Transportation Method

The measure µ satisfies the L1 transportation cost inequality if and
only if for all Lipschitz functions F

Eµe
λ(F−EF ) ≤ exp

(
λ2

2
C‖F‖2Lip

)
for all λ ∈ R,

in which case

µ(F − EF > r) ≤ exp

(
− r2

2C‖F‖2Lip

)
for all r ∈ R.

Bobkov and Götze (1999), Marton (1996), Talagrand (1996)



Concentration Pair Couplings Size Bias Zero Bias Matrix Concentration Summary

Aside: Improved Log Sobolev
For γ standard Gaussian measure in Rn, and a probability measure
ν with dν = hdγ classical LSI can be written

H(ν|γ) =

∫
Rn

h log hdγ ≤ 1

2

∫
Rn

‖∇h‖2

h
dγ =

1

2
I (ν|γ).

Ledoux, Nourdin and Peccati (2014) show

H(ν|γ) ≤ 1

2
S2(ν|γ) log

(
1 +

I (ν|γ)

S2(ν|γ)

)
where the ‘Stein discrepancy’ is given by

S(ν|γ) =

(∫
Rd

‖τν − In‖2HSdν

)1/2

,

with τν a (multivariate) Stein coefficient,∫
Rd

x · ∇φ(x)dν =

∫
Rd

〈τν ,Hess(φ)〉dν.
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Bounded Difference Inequality

If Y = f (X1, . . . ,Xn) with X1, . . . ,Xn independent, and for every
i = 1, . . . , n the differences of the function f : Rn → R

sup
xi ,x

′
i

|f (x1, . . . , xi−1, xi , xi+1, . . . , xn)− f (x1, . . . , xi−1, x
′
i , xi+1, . . . , xn)|

are bounded by ci , then

P (|Y − E[Y ]| ≥ t) ≤ 2 exp

(
− t2

2
∑n

k=1 c
2
k

)
.

Hoeffding (1963), Azuma (1967), McDiarmid (1989)
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Longest Common Subsequence Problem

Let L(m, n) be the length of the longest common subsequence
between (X1, . . . ,Xm) and (Xm+1, . . . ,Xm+n), two sequences of
independent letters of lengths m and n from some discrete
alphabet.

As changing one letter can change the longest common
subsequence by at most one, L(m, n) attains the two sided tail
bound 2 exp

(
−t2/2(n + m)

)
about its expectation.

Though the distribution of L(m, n) is intractable (even the
constant c = limm→∞ L(m,m)/m is famously unknown for fair
coin tossing), much can be said about its tails.
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Talagrand Isoperimetric Inequality

Let L(x1, . . . , xn) be a real valued function for xi ∈ Rd , i = 1, . . . , n
such that there exists weight functions αi (x) such that

L(x1, . . . , xn) ≤ L(y1, . . . , yn) +
n∑

i=1

αi (x)1(xi 6= yi )

and
∑n

i=1 αi (x)2 ≤ c2 for some constant c . Then for X1, . . . ,Xn,
i.i.d. U([0, 1]d),

P (|L(X1, . . . ,Xn)−Mn| ≥ t) ≤ 4 exp(−t2/4c2)

where Mn is the median of L(X1, . . . ,Xn).
Applications, e.g. Steiner Tree, Traveling Salesman Problem. Need
to construct weights αi (x),, and bound their sum of squares.
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Self Bounding Functions

The function f (x), x = (x1, . . . , xn) is (a, b) self bounding if there
exist functions fi (x

i ), xi = (x1, . . . , xi−1, xi+1, . . . , xn) such that

n∑
i=1

(f (x)− fi (x
i )) ≤ af (x) + b

and

0 ≤ f (x)− fi (x
i ) ≤ 1 for all x.
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Self Bounding Functions

For say, the upper tail, with c = (3a− 1)/6, Y = f (X1, . . . ,Xn),
with X1, . . . ,Xn independent, for all t ≥ 0,

P(Y − E[Y ] ≥ t) ≤ exp

(
− t2

2(aE[Y ] + b + c+t)

)
.

For instance, if (a, b) = (1, 0) the denominator of the exponent is
2(E[Y ] + t/3), so as t →∞ rate is exp(−3t/2).

McDiarmid and Reed (2006)
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Use of Stein’s Method Couplings

• Stein’s method developed for distributional approximation
(Normal, Poisson) through use of characterizing equation.

• Implementation of the method often involves coupling
constructions, with the quality of the resulting bounds
reflecting the closeness of the coupling.

• Such couplings can be thought of as a type of distributional
perturbation that measures dependence.

• Concentration of measure results should hold when ‘good’
couplings exist (small perturbation).
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Stein Couplings

We say the triple (G ,W ,W ′) is a Stein coupling if for all f ∈ F ,

E [G (f (W )− f (W ′))] = E [Wf (W )].

Chen and Röllin (2010), for normal approximation; exchangeable
pair and size bias are special cases.

For f (w) = eθw and m(θ) = E [eθW ], right hand side is

E [Wf (W )] = E [WeθW ] = m′(θ).

Obtain differential inequality for m(θ): Herbst argument.
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Exchangeable Pair Couplings

Let (X,X′) be exchangeable,

F (X,X′) = −F (X′,X) and E[F (X,X′)|X] = f (X)

with

∆(X) ≤ bf (X) + c where ∆(X) =
1

2
E[|(f (X)− f (X′))F (X,X′)|

∣∣X].

Then Y = f (X) satisfies

P(Y ≥ t) ≤ 2 exp

(
− t2

2c + 2bt

)
.

Subgaussian left tail bound. No independence assumption.
Chatterjee (2006), Chatterjee and Dey (2010).
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Exchangeable Pair Couplings

With m(θ) = E [eθf (X)], we have

m′(θ) =
1

2
E
[(

eθf (X) − eθf (X
′)
)
F (X,X′)

]
Apply

|ex − ey | ≤ 1

2
|x − y | |ex + ey |

to obtain, taking θ ≥ 0 for the right tail bound,

|m′(θ)| ≤ θ

4
E
(
eθf (X) + eθf (X

′)
)
|
(
f (X)− f (X′)

)
F (X,X′)|

=
θ

2
E
(
eθf (X)∆(X) + eθf (X

′)∆(X′)
)

= E
[
θeθf (X)∆(X)

]
≤ θE (bf (X) + c) eθf (X) = bθm′(θ) + cθm(θ).
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Curie Weiss Model

Consider the complete graph on n vertices V = {1, . . . , n} with
Hamiltonian

Hh(σ) =
1

n

∑
j<k

σjσk + h
∑
i∈V

σj

and the measure it generates on σ = (σi )i∈V , σi ∈ {−1, 1}

pβ,h(σ) = Z−1β,he
βHh(σ).

Let

m =
1

n

∑
j∈V

σj and mi =
1

n

∑
j :j 6=i

σj .
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Curie Weiss Concentration

Take h = 0 for simplicity. Then

P
(
|m − tanh(βm)| ≥ β

n
+ t

)
≤ 2e−nt

2/(4+4β).

The magnetization m is concentrated about the roots of the
equation

x = tanh(βx).

Seems not possible to use concentration results that would require
expressing m in terms of independent random variables.
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Curie Weiss Concentration
Choose v ∈ V uniformly and sample σ′v from the conditional
distribution of σv given σj , j 6∈ Nv . Then the configurations
(X ,X ′) are exchangeable. Now let

F (X ,X ′) =
n∑

i=1

(σi − σ′i ) = σv − σ′v .

Then F (X ,X ′) is anti-symmetric, and

f (X ) = E [F (X ,X ′)|X ] =
1

n

n∑
i=1

(
σi − E (σ′i |X )

)
≈ m − tanh(βm),

since E (σ′i |X ) = P(σi = 1|σj , j 6= i)− P(σi = −1|σj , j 6= i), and

P(σi = 1|σj , j 6= i) =
eβmi

eβmi + e−βmi
,

so

E (σi |σj , j 6= i) =
eβmi − e−βmi

eβmi + e−βmi
= tanh(βmi ).
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Size Bias Couplings

For a nonnegative random variable Y with finite nonzero mean µ,
we say that Y s has the Y -size bias distribution if

E[Yg(Y )] = µE[g(Y s)] for all g .

When Y is a sum of (possibly dependent) non-trivial indictors,
then we may form Y s by choosing one proportional to is
expectation and setting it to one, and for the remainder, sampling
from the conditional distribution of the others given that the
chosen one now takes the value one.
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Bounded Coupling implies Concentration Inequality

Let Y be a nonnegative random variable with finite positive mean
µ. Suppose there exists a coupling of Y to a variable Y s having
the Y -size bias distribution that satisfies Y s ≤ Y + c for some
c > 0 with probability one. Then,

max (1t≥0P(Y − µ ≥ t), 1−µ≤t≤0P(Y − µ ≤ t)) ≤ b(t;µ, c)

where

b(t;µ, c) =

(
µ

µ+ t

)(t+µ)/c

et/c .

Ghosh and G. (2011), improvement by Arratia and Baxendale
(2013)

Poisson behavior, rate exp(−t log t) as t →∞.
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Proof of Upper Tail Bound
For θ ≥ 0,

eθY
s

= eθ(Y+Y s−Y ) ≤ ecθeθY . (1)

With mY s (θ) = EeθY s
, and similarly for mY (θ),

µmY s (θ) = µEeθY
s

= E[YeθY ] = m′Y (θ)

so multiplying by µ in (1) and taking expectation yields

m′Y (θ) ≤ µecθmY (θ).

Integration yields

mY (θ) ≤ exp
(µ
c

(
ecθ − 1

))
and the bound is obtained upon choosing θ = log(t/µ)/c in

P(Y ≥ t) = P(e−θteθY ≥ 1) ≤ e−θt+
µ
c (ecθ−1).
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Local Maxima on Graphs

Let G = (V, E) be a given graph, and for every v ∈ V let Vv ⊂ V
be the neighbors of v , with v 6∈ Vv . Let {Cg , g ∈ V} be a
collection of independent and identically distributed continuous
random variables, and let Xv be the indicator that vertex v
corresponds to a local maximum value with respect to the
neighborhood Vv , that is

Xv (Cw ,w ∈ Vv ) =
∏
w∈Vv

1(Cv > Cw ), v ∈ V.

The sum

Y =
∑
v∈V

Xv

is the number of local maxima on G.
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Size Biasing {Xv , v ∈ V}

Choose V = v proportional to EXv . If Xv = 1, that is, if v is
already a local maxima, let Xv = X. Otherwise, interchange the
value Cv at v with the value Cw at the vertex w that achieves the
maximum over Vv , and let Xv be the indicators of local maxima on
this new configuration. Then Y s , the number of local maxima on
XI , has the Y -size bias distribution.

Making the value at v larger could not have made more local
maxima among Vv , but could have among Vw , so

Y s ≤ Y + c where c = max
w∈V
|Vw |.
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Bounded Difference Inequality

Changing value at single vertex w can at most change number of
local maxima f by size of neighborhood |Vw |, so f is a bounded
difference function and so satisfies

P(Y − µ ≥ t) ≤ exp

(
− t2∑

w∈V |Vw |2

)
.

If neighborhood sizes are constant c , say, behaves like
exp(−t2/c2n).
Size bias bound has Poisson tails, and can show is smaller than

P(Y − µ ≥ t) ≤ exp

(
− t2

2c(µ+ t/3)

)
.

Replaces n by µ. Can have function of n2 variables, e.g. color
edges in a graph, count number of ‘monochromatic’ vertices.
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Self Bounding and Configuration Functions

Consider a collection of ‘hereditary’ sets Πk ⊂ Ωk , k = 0, . . . , n,
that is (x1, . . . , xk) ∈ Πk implies (xi1 , . . . , xij ) ∈ Πj for any
1 ≤ i1 < . . . < iij ≤ k . Consider the function f (x) that assigns to
x ∈ Ωn the size k of the largest subsequence of x that lies in Πk .
With fi (x) the function f evaluated at x after removing its i th

coordinate, we have

0 ≤ f (x)− fi (x) ≤ 1 and
n∑

i=1

(f (x)− fi (x)) ≤ f (x)

as removing a single coordinate from x reduces f by at most one,
and there at most f = k ‘important’ coordinates. Hence,
configuration functions are self bounding.
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Self Bounding Functions

The number of local maxima is a configuration function, with
(xi1 , . . . , xij ) ∈ Πj when the vertices indexed by i1, . . . , ij are local
maxima; hence the number of local maxima Y is a self bounding
function. Hence, Y satisfies the concentration bound

P(Y − µ ≥ t) ≤ exp

(
− t2

2(µ+ t/3)

)
.

Size bias bound is of Poisson type with tail rate exp(−t log t).
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Multivariate Concentration

Let Y have mean µ and variances σ2. Size bias in direction i ,

E [Yig(Y)] = E [Yi ]E [g(Yi )].

If ‖Yi − Y‖2 ≤ K then (mgf, operations componentwise)

P

(
Y − µ

σ
≥ t

)
≤ exp

(
− ‖t‖22

2(K1 + K2‖t‖2)

)
,

for

K1 =
2K

σ(1)
‖µ
σ
‖2 and K2 =

K

2σ(1)
.

Applications, e.g. counting patterns in permutations, Işlak and
Ghosh (2013).
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Zero Bias Coupling

For the mean zero, variance σ2 random variable, we say Y ∗ has
the Y -zero bias distribution when

E[Yf (Y )] = σ2E[f ′(Y ∗)] for all smooth f .

Restatement of Stein’s lemma: Y is normal if and only if
Y ∗ =d Y .
If Y and Y ∗ can be coupled on the same space such that
|Y ∗ − Y | ≤ c a.s., then (mgf),

P(Y ≥ t) ≤ exp

(
− t2

2(σ2 + ct)

)
.
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the Y -zero bias distribution when

E[Yf (Y )] = σ2E[f ′(Y ∗)] for all smooth f .

Restatement of Stein’s lemma: Y is normal if and only if
Y ∗ =d Y .
If Y and Y ∗ can be coupled on the same space such that
|Y ∗ − Y | ≤ c a.s., then (mgf),

P(Y ≥ t) ≤ exp

(
− t2

2(σ2 + ct)

)
.
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Combinatorial CLT

Zero bias coupling can produce bounds for Hoeffdings statistic

Y =
n∑

i=1

aiπ(i)

when π is chosen uniformly over the symmetric group Sn, and
when its distribution is constant over cycle type.

Permutations π chosen uniformly from involutions, π2 = id,
without fixed points; arises in matched pairs experiments.

Dependence. G. and Işlak (2014).
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Concentration Pair Couplings Size Bias Zero Bias Matrix Concentration Summary

Combinatorial CLT

Zero bias coupling can produce bounds for Hoeffdings statistic

Y =
n∑

i=1

aiπ(i)

when π is chosen uniformly over the symmetric group Sn, and
when its distribution is constant over cycle type.

Permutations π chosen uniformly from involutions, π2 = id,
without fixed points; arises in matched pairs experiments.

Dependence. G. and Işlak (2014).
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Combinatorial CLT, Exchangeable Pair Coupling

Under the assumption that 0 ≤ aij ≤ 1, using the exchangeable
pair Chatterjee produces the bound

P(|Y − µA| ≥ t) ≤ 2 exp

(
− t2

4µA + 2t

)
,

and under this same condition the zero bias bound gives

P(|Y − µA| ≥ t) ≤ 2 exp

(
− t2

2σ2A + 16t

)
,

which is smaller whenever t ≤ (2µA − σ2A)/7, holding
asymptotically everywhere if aij are i.i.d., say, as then Eσ2A < EµA.
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Matrix Concentration Inequalities
Let (Z,Z′) be exchangeable, (X ,X ′) a pair of d × d Hermitian

matrices,

E [K (Z,Z′)|Z] = X , K (Z,Z′) = −K (Z′,Z)

and

VX =
1

2
E [(X − X ′)2|Z], VK =

1

2
E [K (Z,Z′)2|Z].

If there exists s > 0 such that

VX 4 s−1 (cX + vI ) and VK 4 s (cX + vI ) a.s,

then for all t ≥ 0,

P(λmax(X ) ≥ t) ≤ d exp

(
− t2

2v + 2ct

)
.

Paulin, Mackey and Tropp 2013.
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Matrix Concentration Inequalities

Proof by differential inequality for trace moment generating
function m(θ) = E tr[eθX ] ≥ Eλmax(eθX ). Real valued inequality
used earlier

|ex − ey | ≤ 1

2
|x − y | |ex + ey |

replaced by matrix inequality, holding for all Hermitian A,B,C and
s > 0,

tr[C (eA − eB)] ≤ 1

4
tr
[
(s(A− B)2 + s−1C 2)(eA + eB)

]
.

Can obtain ‘bounded difference’ inequality, and handle Dobrushin
type dependence.
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Summary

Concentration of measure results can provide exponential tail
bounds on complicated distributions.

Many concentration of measure results require independence.

Stein type couplings, posses E [Wf (W )] term for use in
Herbst type arguments.

Couplings, like perturbations, can measure departures from
independence.

Bounded or otherwise well behaved Stein couplings imply
concentration of measure, and central limit behavior.
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