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DNA and protein sequence comparisons are performed by a number of computational
algorithms. Most of these algorithms search for the alignment of two sequences that optimizes
some alignment score. It is an important problem to assess the statistical significance of a given
score. In this paper we use newly developed methods for Poisson approximation to derive
estimates of the statistical significance of k-word matches on a diagonal of a sequence
comparison. We require at least g of the k letters of the words to match whers 0<g<k. The
distribution of the number of matches on a diagonal is approximated as well as the distribution of
the order statistics of the sizes of clumps of matches on the diagonal. These methods provide an
casily computed approximation of the distribution of the longest exact matching word between
sequences. The methods are validated using comparisons of vertebrate and E. coli protein
sequences. In addition, we compare two HLA class 11 transplantation antigens by this method
and contrast the results with a dynamic programming approach. Several open problems are
outlined in the Jast section.

1. Introduction. International sequence databases _provide rapid and easy
access to increasing DNA and protein data. These databases are extremely
important to the progress of biology. Databases can provide pointers to the
scientific literature associated with a specific sequence or a family of sequences,
as well as provide the information base to test hypotheses about new or existing
sequences. One of the most common uses of sequence databases is to screen the
database with a new sequence in order to find homologous sequences. There
are some striking examples where unexpected sequence similarities were
discovered by these database searches. Platelet derived growth factor and the
v-sis oncogene product are highly similar and the similarity was found by a
database search. Because of this similarity, it is now believed that the v-sis gene
encodes a2 growth factor. Another example of a computer discovery is the
similarity between bovine cyclic AMP dependent kinase and the Rousavian
and Maloney murine sarcoma vitus src proteins. This similarity supports the
origination of the src genes in host genomes. In addition to more dramatic
findings, sequence comparisons are used routinely to create or test hypotheses
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786 L. GOLDSTEIN AND M. S. WATERMAN

about the function of a protein or DNA sequence or about the membership of a
sequence in a family. ‘

Many algorithms have been developed to find similarities between two
sequences. The most widely used family of programs for database searches has
been developed by Wilbur and Lipman (1983), Lipman and Pearson (1985)
and Pearson and Lipman (1988) and includes the programs FASTN, FASTP,
FASTA and LFASTA. These useful and rapid programs are based on locating
regions which have an unusual degree of similarity. After these regions are
located, a more refined analysis is applied to produce the best alignments. The
recent paper by Pearson (1990) gives a nice review of these methods. Among
other methods developed to compare sequences, dynamic programming is the
method in widest use. Beginning with Needleman and Wunsch (1970), many
refinements and improvements have been developed (for a review, see
Waterman, 1984, 1989). In fact the final alignments in the FASTP, FASTA and
LFASTA use these dynamic programming algorithms, restricted to a specific
region to decrease computation time.

One of the key steps in any database search is evaluation of scores, or
numerical measures of sequence similarity for sequence relationships that
warrant further examinations. When tens of thousands of comparisons are
made, it is not possible to manually examine them all; statistical methods are
usually employed. Moreover, it is useful to know the statistical distribution of
alignment scores under a null distribution. This allows the scientist to
accurately estimate p-values and to test hypotheses about the relatedness of
sequences. Of course the null distribution of alignment scores is useful for
sequence comparisons that are not part of full database searches. The purpose
of the present paper is to apply and extend some recent results in probability
theory to a class of problems in sequence comparisons.

In Arratia et al. (1989) a general approach is presented for the Poisson
approximation of dependent events. This approach has the advantages of being
simple to use and intuitive, as well as providing bounds for the error incurred in
making the approximation itself. This general method was motivated by our
interests in sequence comparisons, in particular the distribution of the Smith
and Waterman (1981) dynamic programming score functions. In Smith et al.
(1985), a CRAY was used to compute a large number of Smith~Waterman
scores by comparing DNA sequences from GenBank. The central term in the
growth of score with separate lengths is O(log(nm)) where n and m are the
lengths of the two sequences being compared. A number of mathematical
results were motivated by this study. The probability distribution of the longest
exact match between two random sequences is known as well as the longest
match with k mismatches (Arratia et al., 1986). Also see Karlin (1983) for an
announcement of related results. The extreme value distribution is used to
approximate scores which exceed the central term. With Arratia et al. (1989)
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and Arratia et al. (1990b), the Poisson approximation was developed and even
more difficult problems could be approached. Generalization to sequence
matching with scores was begun by Arratia et al. (1988). In Karlin aqd A]t;chul
(1990) much more general scoring schemes are cons_ide.red. Th(‘:lr Poisson
approximation formula is used to assess statistical significance in the new
database search method BLAST (Altschul et al., 1990). Finally Arratia et al.
(1990a) and Arratia and Waterman (1989) study the distribution of the longest
region with at least a x 100% matches, where a> P (two random letters match).
Poisson approximation is key to proving the results in Arratia et al. (1990g).

In this paper we study variants of the following problem. Choose a word size
k. For sequences 4,4, ... A4,,, B,B, ... B, consider diagonals (4;, B;) with
i—j constant. For various quality matching, we study the k-wprd matches on
the diagonals. Many of our results are derived for one dlagpnal. In the
examples and discussion (Sections 7 and 8), we consider all the dlagongls. No
insertions or deletions are allowed in our analysis. In return for this limitation
we obtain many results that are computable and in closed form. If we require g
of k letters to be identical in order to declare a k-word match, each match has
quality a=g/k. In contrast with Arratia et al. (1990a), where they study long
regions of quality a=g/k, we study the statistical properties of k-word ma'tches,
where k is not required to be large. Of course when g=k=1, we are simply
looking at single letter matches on a diagonal. .

The simplicity and power of these Poisson approximation techniques are not
too widely known, so we have included simplified versions of the two basic
theorems in Section 2. The second theorem is a process version for Poisson
approximation which is necessary to prove some of our results. The outline of
the paper is:

Section 2. Two Poisson approximation theorems.
Section 3. Clump size distribution.
3.1. Perfect matching.
Section 4. Poisson approximation for quality g/k matches.
4.1. Perfect matching.
4.1.1k=1,5=0.
41.2.k>1,s5=1.
Section 5. Approximation by the compound Poisson distribution.
5.1. Perfect matching.
Section 6. Maximum clump size distribution.
Section 7. Data analysis.
Section 8. Discussion: open problems.

Section 3 studies the “clumps” of 1’s along the diagonal, where 1 denotes a
quality g/k match. This clumping occurs because there is dependence betwgen
overlapping k-words. Clump is rigorously defined, and in Theqrem 3 re‘ﬁect.lon
principal techniques are applied to approximate the clump size distribution.
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The case of perfect matching, g =k, has a nice geometric clump size distribution
and is given in Section 3.1. While the size of the clumps are not equivalent to
other scores such as LFASTA and Smith~Waterman obtain, they are analogous.

In Section 4 we turn to studying the number of clumps on a diagonal, which
is approximated by a Poisson distribution. Bounds on the approximation can
be given for one choice of clump definition. When g=k more precise
information is presented in Section 4.1. k=1 gives the binomial distribution
(4.1.1) while k> 1 is handled in (4.1.2).

In Section 5, we study the total number of quality g/k k-word matches on a
diagonal. As we will see, there are approximately a Poisson number of clumps,
and the clump size distribution is also known. Therefore the total number of g/k
matches on a diagonal should be a compound Poisson distribution. Again we
can give bounds on the approximation. The perfect matching case of =k has
an easily computable form. In spite of the “local” nature of the FASTA family of
programs, many investigators have used the diagonal/hashing technique
described in Wilbur and Lipman (1983) to compute total hits on a diagonal. In
fact a recursive scheme to approximate the statistical significance of total
number of perfect matches when g=k has been given by Mott et al. (1989).
Their recursions do not have an analytical solution and must be solved
numerically. :

When scanning a dot matrix for regions of biological significance, the
maximum clump size distribution is of much interest. Section 6 studies this
relevant random variable. In fact we study the order statistics for the clump size
along a diagonal and obtain nice formulas for their distribution. In this case the
maximum clump size for all diagonals can be studied. As is expected in this
problem, the largest clump, in the case g =k, has an integerized extreme value
distribution.

Section 7 presents some data analysis.

Finally Section 8 discusses some open problems. Our treatment deals with a
diagonal in isolation, while real sequence comparisons must simultaneously
consider all diagonals. The dependence has been studied for other, related
problems. Sequences have unequal lengths and distributions. If the differences
are not too great, the same results should hold. Handling non-independent
letters is also a problem of interest. Our approximate matching k-words do not
allow insertions and deletions, a feature that would be very difficult to include
in the analysis. Finally, the Poisson approximation theorems give error bounds
for total variation distance while relative error would be very valuable.

2. Two Poisson Approximation Theorems. We first present the Poisson
approximation theorems that we apply below. Somewhat more _general
versions of these theorems appear in Arratia et al. (1989) and Arratia et al.
(1990a).
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Let I be an index set, and assume that for each ae/ there is a Bernoulii
random variable X, {0, 1}. The random variable X, denotes the occurrence
(X,=1) or non-occurrence (X,=0) of an event. Let p,= EX,:

w=Y X,

ael

and 1= EW. W is the total number of occurrences of events; 4 is the expected
number. Should each p, be small, |I |, the size of index set large, and the X, not
too dependent, then we should expect W to be approximately equal in
distribution to Z, a Poisson random variable with parameter 2. This fact is well
known when the X, are independent. The theorems that follow demonstrate
that the approximation is valid in cases where there is dependence, and they
provide a bound on the error in the approximation.

In many examples, and in particular all those that concern us below, the
dependence between the X, can be confided in a “neighborhood of
dependence”. More precisely, suppose that for each « we can find a set B, such
that:

X, is independent of {X;}, B¢B,. (1)
Define:
by=) Y by
ael PeB,
and
by,=Y Y P, Where p,p=E(X,Xp). )
ael a+ peB,

Let Z denote a Poisson random variable with mean 1, so that for
k=0,1,2,...,P(Z=k)=e~*I*/k!. For h a real valued function let || || = sup,
|h(k)|. We denote the total variation distance between the distributions of X
and Y by:

|x-7|= llil?‘pl | ER(X)— ER(Y)| =2 sup |P(XeA)—P(YeA)|.

A more general version of the following theorems appears in Arratia et al.
(1989).

THEOREM 1. Let W be the number of occurrences of dependent events, and let Z
be a Poisson random variable with EZ=EW = .. Then, under condition (1):

1—e™?

Y
A

w—-2Z|| <, +by) < (b, +b,).
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To approximate the distributions occurring below that depend on the entire
process of indicators { X,} ,; we will use the following theorem. We note that the
set B, used in the calculation of b, and b, is not necessarily the same in
Theorems 1 and 2.

THEOREM 2. For each ael, let Z, be a Poisson random variable with mean p,,
with. the Z_ mutually independent. Then, under condition 1, the total variation
distance between the process X =1{X,},q and the Poisson process Z={Z }

) ael
satisfies:

$|IX—Z||<(2b, +2b,).

3. Clump Size Distribution. Consider two sequences A=4,4, ... 4, and
B=B,B, ... B, from an alphabet {l,, ..., 1} of size d. Suppose that both
sequences are composed of independent letters with distribution P(4 =1,)=r,,
P(B=1)=s,. The probability that two letters match is:

™M=

p= ) rs;.
i

1

Recall that diagonals are made up of (4;, B;) pairs with j—i constant; that is,
a sequence comparison at fixed offset. By reindexing the portion of both
sequences that are involved in the comparison if necessary, this segment taken
to be of length n, we see that without loss of generality all diagonals we study
may be considered as comparisons between two sequences of equal length:

A Ay .. A,
B,B,...B,

Consider a window of length k beginning at position a€, where:
I={a: 1<a<n—k+1};

this window is made up of the portion of the above two sequences at positions
o, a+1,...,a+k—1, that is the k-words from the two sequences. In such a
window we look for a “quality g/k match”, that is, whether we have g or more of
the k (4, B) pairs of letters in the window agree or are identical.

More precisely, let:

D,=1(4,=B,),

that is, D, is 1 if the letters in the ath position agree, and zero otherwise. The
window of length k that begins at position a has:

M¢=D1+Da+l +oo D¢+k—l
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matching letters. We say we have a quality g/k match begin at position « if:
Y,=1(M,>q)

takes the value 1.

The locations where there is a quality g/k match, that is, the colleciton of « for
which ¥, =1, tend to occur in “clumps”. We will see that by defining a “clump”
appropriately, the total number of clumps W will be approximately Poisson.
This is an example of the Poisson clumping heuristic of Aldous (1989). In what
follows, the clump size, that is, the number of indices « in a clump for which
Y, =1, is of central importance. We now define the clump distribution.

The Bernoulli variable X, will indicate that a clump begins at position a. The
random variables X, will be obtained from Y, by:

X=Y(-Y, ). (=Y )=Y, ][ 0-%._)

The parameter s will depend on the quality g and the word size k. For example,
if g=k> 1, we see below that s=11is the appropriate choice. We will write g/k/s
when referring to these parameters. We take ¥, =0 for ¢ <0. In words, we say a
new clump begins at position « if the window at position « contains a quality
g/k match, but there were no quality g/k matches at position a—1, a— 2,...,
a—s. Let C be the random variable that counts the number of g/k matchesina
clump. More precisely, suppose a clump begins at position a, that 1s, suppose
that X, = 1. The clump that begins at position « ends at the index B =B, where:

p=min{y>a: ¥,=1,7,,,=0,..., Y, =0} (3)

y+s

Hence, for such B, C is the random variable with distribution given by:

P(C=m)=P<i Y,=m|X,=1> m=1,2,.... @)

r=a

For the purpose of defining C, we take the sequence of indicators D, to be
doubly infinite.

Consider a window of length k starting at position « containing exactly g
matches. The window at position a+ 1 shares all but one of its entries with the
window at a; it has either g—1, g, or g-+1 matches. In particular,
M,,,=M,+(D,,,—D,); the increment E,=D,,,—D, is either —1,0 or 1.

Defining:
E=D, D,

we see that if X,=1and y>a:
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Y
Y,=1ifandonlyif ) E=>0.

t=a+1

In what follows, it is useful to visualize the collection of the above partial
sums as “paths” in the sense of Feller (1968, Vol. I, Ch. 3). The height of the
path ¥, at a corresponds to the number of matches in the k long window
starting at « and either gain one unit of height, lose one unit of height, or stay
constant when moving, i.e. sliding the window, one step to the right.

LEMMA 3. For j>1 the number of paths from (0, ) to (1, 0), which are strictly
positive at times 1,2, ... ,1—1 and have u negative steps is equal to:

j 1-1 ps T
< ug .
u<u_j’u_1,1——2u+j>’ !f-] 4 J+L ZJ

More precisely, this expression counts the number of paths:

V.=j+ 2 E

t=1

such that V,>0 for 1<a<l—1,V,=0and }|_, HE =—1}=u.

This is the same as the number of paths which begin at (0, 0), end at {1, —j), are
strictly negative at times 1,2, . . .1—1 and have u negative steps.

For j=0, the number of paths V,=Y *_, E, such that V,>0 for 1<a<I-1,
Vi=0and ., {E,=—1}=uis:

1 1-2
- if 1<u<|3).
u (u— Lu—1, 1—2u)’ yisusls]

Proof. By the reflection principle, the first expression is the number of paths
from (0, j) to (I—1, — 1), with u negative steps, subtracted from the number of
paths from (0, j) to (I—1, 1) with u— 1 negative steps:

-1 _ -1
u—j,u—1,1-2u+j u—j—1,u,l=2u+j/)

That this is the same as the number of paths of the second type is true by
reflection, time reversal and translation. The argument for j=0 is similar. B

Feller (1968, Vol. I, Ch. 3) considers paths which go only up or down; thatis,
they cannot remain constant. In particular, Feller’s formula 3.7 follows as a
special case of the above expression for j=0 when 2u=1.
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Under an independent increment approximation, the clump size distribution
P(C=m) is derived by an application of Theorem 4 following the proof.

THEOREM 4. Let:
P(E=1)=p,, P(E=-1)=p_, P(E=O)=p0

and supposeE |, E,, ... areindependent each with the distribution of E. For j >0
let:

V,=j+ Y E,
=
Define:
B=infla: V,=0,V,,,<0,...,V,, <0},
R*=inf{l: V,>0, 1<a<g]-1, V;=0},
f;,,=PR*=1),
C=|{a:1<a<p, V,=0}},
and finally:
q,=P(C=m) with j=0.
Then:

=16, ifl=1

0721 1 1—2 .
— U, l=2u if1>2. (5)
(u_lsu_l,l—zu) [p+p-] pO lfl/Z

]

fO.l
u=1 u

For j>1,f;,=0 if1<j. Otherwise, for 1>j:

] j+[(l-j)/21j 1-1 = iny =20+ 6
T ug] E(u—j,u_l,l—2u+j> p+ p—pO . ( )
Furthermore, letting:
Po + Z fo.i ifi=1
bi = i=2 (7)

£, ifi>2,

we have:
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Y1, ifm=1

t=1
GW={ ®)
Z biqm-—i !fm>2

i=1

A solution to the above recursion yields an explicit formula for q,, given for
m=1 in the equation above and otherwise by:

Im+1=q, Z < Ial > ﬁ b fm>1 9)

aes al’az"‘ "am i=1

where:

a=(a,,a,,...,a,), d={a: 3,20, ¥ iai=m} and |a|= Y a,.
i=1

i=1

Proof. Consider first f,, ;. Clearly, f, ;= P(R* =1)=p,. Otherwise, f, ,=
P(R* =1) is calculated by using Lemma 3 to count the number of paths that
have first return time at ! which use u negative steps, multiplying by their
probability, and summing. The probability f;, is calculated similarly. In order
for C=1, the path must go from (0, 0) to (1, —1) and end at (s, —t) for
t=1,2,...,s without touching or hitting the axis. Ending at a given ¢ has
probability f, ., by Lemma 3, summing yields g, . To derive the recursion for g,
we argue as follows. The first increment E, is either —1,0 or 1. If E, >0 then
R*<m—1,else C>m. If R* =ifor 2<i<m~—1, an event of probability f, ;,
then the portion of the path between time 0 and i leaves us to collect m — i more
such indices on the new clump that begins at i, and this occurs with probability
Gm-i- If E; =0, which occurs with probability p,, we collect a total of m indices j
for which V>0 if the new clump starting at (1, 0) has a total of m—1 such
indices. This occurs with probability g,,_, . Defining R~ in the obvious way, if
E, <0 then R™ <5, else $=0. For E, <0 and a return time at i, 2<i<s, we

need to collect m— 1 more such indices, which occurs with probability g, _, .
[ ]

Although the increments of the path that records g/k matches are not
independent, one may obtain a good first order approximation to the clump
distribution by replacing the increments of the path by independent
increments. This is especially of interest since the actual clump distribution
based on the exchangeability of the increments of the true path is complex. This
analysis will appear elsewhere.

To use an independent increment approximation, consider that given X, =1,
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a Bernoulli variabie that makes up the window beginning at « has probability
a=g/k of being 1; the Bernoulli variables outside this window are 1 with
probability p. Hence, we should have a net loss of 1 with probability a(1 — p)in
sliding this window over one position: we lose a 1 inside the window with
probability a and gain a zero outside the window with probability 1 — p. Similar
remarks apply to obtain the probabilities of having a net loss of 0 or net gain of
1. Note that the Bernoulii variables inside the window, though exchangeable,
are not quite independent; their sum is constrained to add to g, for example.
Hence, with:

pi=p(l—a), p_=a(l-p), py=ap+(l—a)(l1—-p),

the probabilities g,, from the above equations give good approximations to
P(C=m). For example, writing g/k/s for our parameters, for 6/12/3 matching
we have simulated and calculated values of E[C] and E{C] of 4.57 and 4.92.

3.1. Perfect matching. q=k>1, s=1. When s=1 it is easy to see that
g, =p_=(1—p). Furthermore, when g=k we have all Bernoulli variables
in a window where X,=1 are 1. Hence, the clump propagates when shifting
the window one unit if and only if the Bernoulli variable outside the window
at position a+ k is 1. Therefore, the clump is of size at least x with probability
p*. In this case, the distributions of C and € coincide; one may verify
that equation (9) reduces to the geometric when a=1 and s=1: P(C=m)=
P(C=m)=(1—p)p™.

4. Poisson Approximation for Number of Clumps. Suppose the quality g of a
window of length k is chosen so that there are only few windows on the average
that have quality g/k matches. In this case the total number of clumps should be
approximately Poisson.

The total number of clumps on a diagonal is:

n—k+1
w= Y X,.

a=1

We note that W is the sum of dependent indicator random variables. With
proper choice of B, so that condition (1) is satisfied, Theorem 1 yields the
following corollary on how far the distribution of W is from that of the Poisson
random variable Z with the same mean.

COROLLARY 5. Let Z be Poisson with mean .=EW. Then:
FIW=Z[|< (b, +b,) (1 —e~*)/4,

where b, and b, are given by equation (2) where:
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B,={B:|p—a|<k+s—1}.

We estimate the quantities above as follows. First, ignoring boundary effects
we have that A is approximately (n—k+ 1)p,. Now:

p.=EX,=P(X,=1)=P(X,=1|Y,=1)P(Y,=1).
Easily:

k .
P(Y,=1)=P(Bin(k, p)>q)= X, C) pitl—p)*~.

i=q

Furthermore P(X,= 1! Y,=1) is the average proportion of time a g/k match
starts a clump, and therefore the same as the average number of clumps per
matches, or, in other words, the reciprocal of the average clump size, that is,
P(X,=1|Y,=1)=1/E[C]. Hence:

2= (n—k+1)P(Bin(k, p) >9)/ELC].

For a bound on the error, first take s = k; this choice asymptotically will drive
the error bound to zero as n— oo (Arratia et al., 1989). Furthermore, it can be
shown that with s=k:

a—p<P(X,=1|Y,= 1)< (a—p)+2(1 —a)e~*He@P
where H(a, p) is defined by:
H(a, p)=alog(a/p)+(1—a) log((1 —a)/(1-p))- (10)

However, for small window sizes or cases with a close to p, (a— p) may not yield
a good approximation to 1/E[C].

For our choice of B,:
B,|

b, = |1l|B|p?=1° ITIT <2Kf(n—k).
Taking f>a, note that X X,=0 for peB, and a<f<a+k. Otherwise, for
a+k<B<2k we have p,,=E[X X, ] < E[X,Y;)=E[X]Y,]= E[C]p?. Hence,
b, < E[C]b,, and we may bound the error by (1 + E[C])2k/(n—k).

We are not constrained to take s=k. In fact, we have found through
simulation that for “small” (non-asymptotic) word sizes, the total number of
clumps follow a Poisson distribution more closely for other choices of s. The
value of s that gives the best fit to the Poisson may be found in Table 1. This
table was constructed by simulation of 1 000 diagonals of length n=1 000 with
a matching probability of p=0.25. For these s, we would expect theerrorin the
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fit to the Poisson to be less; hence the above calculation with s=k may be used
as an upper bound. In the table, entries of ~ appear where ¢/k<0.25, and
entries of * appear where there were less than five hits expected in the 1000
simulations. We should remark that the larger values of s vary somewhat with
the simulation, with very little difference in the fit to the Poisson.

4.1. Perfect matching: q=k. In the case =k more precise information is
available.

41.1.k=1,s=0. Wheng=k=1ands=0thesum Wis the total numberof -

matches on the diagonal and has a simple binomial distribution B(n, p). In this
instance the formula:

PW>an)= 3 <’.’)pf(1—p)"’f
. j=lan]+1 J

is exact but often computationally unfeasible. One may easily apply Theorem 1
to obtain a Poisson approximation. With B,={a} condition (1) is satisfied,
and Theorem 1 yields the following:

k\ql234567891011121314151617181920

—
BPLNLAULNDIVANO = #

—_— R = R RN W WW NN = —
——
A h UL N

AphpbULUNOAERBNDEW-

NNV WWW s * R
AW R % ® N
NN*'{{"

# # % % % %

LR SR JER N

* % ® »

#*

-

—
VOWL-~3h H b=

=
L2 2 20 2 S S S R B S S SR R SN S S N SO
L4 2N 20 2 2 B 2 JNR S AR S SN
LA 20 NN 2 SN I S OSSR
200 2 2 SO U IO C S TRV S

NN WARLBULMBEWLWAW—

[EPONIIND I I S S S I S SRR

Table 1. Optimal values of s for g/k

COROLLARY 6.
HwW—-Z|j<np?,

where Z is Poisson with mean np.
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Hence, P(W > an) is approximated by P(Z > an) to within an error of np?,

Other useful bounds and approximations using the methods of large
deviations are given in Arratia and Gordon (1989) and mentioned here for
completeness. These approximations are not only very accurate but intuitively
informative as well.

THEOREM 7. For O<p<a<l], large deviation theory for the binomial
distribution yields that:

P(W=an)ge™™,

and

1 1 .
P(W>an) ~T=: (m)e H
where H=H(a, p) ‘and is defined in (10) and
r=p(l —a)/(a(1-p)).
We write f(x) ~ g(x) to mean lim,_, , f(x)/g(x)=1.
4.1.2.k>1,s=1. For the case of perfect matching g=k>1 and s=1, the
value of 1 and upper bounds on b, and b, can be made explicit (see Arratia et

al., 1989, for a more complete treatment). Here, all the X, have the same
distribution for «>2. We have:

2=pH{1+(n—k) (1-p)} (11)
exactly. Take:
B,={p:|p—a|<k}.

By breaking up the sum for b, into terms which include «=1 and those which
do not:

b, <232k +1)/(n—k+1)+2ip~. (12)

Due to the term (1—Y,_,), a clump must begin with a mismatch. Hence, for
BeB,, f#« we have X, X,=0. Hence, b,=0. .

In the special case g=k>1 and a uniform distribution on the letters in the
alphabet, matches in different diagonals are independent. We use Theorem 1to
obtain an approximation to the distribution of the length of the longest
matching word. Let N=N(n,, n,, k) be the maximum number of matches
between all words of length k from sequence A compared to all words of length
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k from B, of lengths n, , n,, respectively. Then the probability P(V <k), that is,
the probability that the best match between any k word in A and any k word in
B is less than k can be approximated using the equivalence:

(N<k}={W=0},

where W is a sum of indicator variables, and hence approximately Poisson by
Theorem 1. In this case, in analogy to equation (11) (see Goldstein, 1990 for
details): :

A=p*{(n;+n,—2k+ 1)+ (n, —k)(n,— k) (1 —p)},
and we have the closed form approximation with error bound:
| P(N <k)—exp(—2A)| < (b, +b,).

Since the uniformity of the alphabet gives independence between matches on
different diagonals, we have by analogy with the above and equation (12)
b,=0 and an error bound of no more than:

b, <A2Q2k+ 1)/((n, —k+1) (n,— k+ 1))+ 24p*.

For example, in matching two sequences of DNA, one of length n, =103 and
the other of length n, =154, a common word of length k=9 corresponds to a
A=0.04, and hence a probability of exp(—4)=0.039 with an error of less than
2.5x 1076, Mott et al. (1990) consider a recursive formula to approximate the
probability of such a match, in their case considerably more computation is
required and error bounds are not available.

Arratia et al. (1990a) gives bounds on the Poisson approximation for the
length of the longest match for arbitrary alphabet distribution.

5. Approximation by the Compound Poisson Distribution. We now obtain an
approximation for the total number of g/k matches on a diagonal:

First, we have shown that the total number of clumps on a diagonal is
approximately equal in distribution to the Poisson random variable Z. Let
C,, C,, ... be independent copies of C, and define:

C*j=C1+C2+ +q j=12,...

If there are, say, j clumps on a diagonal, then S counts a total of m matches of
quality g/k if C,+ C,+ -+ +C;=m, that is, if C*/=m.
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Form=1, 2,...thedistribution of C*/ can be found from the distribution of
C by the simple recursive relations:

P(C=m) j=1
P(C*=m)=) m-1 (13)

Y P(C* " V=m—i)P(C=i) j=2.

i=1

With P(C=m)=gq,,, the above recursion yields the solution:

PC¥=m= Y . (14)
1

iy tizg+ertij=m k=

Since there are about Z clumps, we see that the distribution of S'is close to the
distribution of:

where Z, C,, C,, ... are independent. The distribution of $ is called a
compound Poisson distribution, or more precisely, the Poisson distribution
compounded by the distribution of C.

By conditioning on Z =j, we find that for m=0:

PS=m)= Y PS=m|Z=)PZ=)),

j=1
or

P(Z=m) ifm=1
PS=m)=) m (16)
Y P(C*=m)P(Z=j) ifm=1.

j=1

By equation (15), the probability generating function ¢g4(x) = E[x%]is obtained
by composing the generating function of the Poisson with that of C:

bs(x)=d2(dc(x)) =exp{A(dc(x)—1)}. (17

One may approximate the significance P(S>a) by P($ > a); bounds for the
quality of this approximation using Theorem 2 are given in Theoren? 8. For
small a the significance probability may be approximated using equation (16)
as:

TESTING STATISTICAL SIGNIFICANCE IN SEQUENCE COMPARISONS 801
~ [n] ry
P(S>a)=1-— Z P(S=m). (18)
m=0

For the case of large a one may apply the Chernoff bound (see Billingsley,
1986) to obtain:

P($>a)<min y~° ¢g(y). (19)
yx1

We now apply Theorem 2 to obtain an error bound when approximating the
distribution of S by §. Recall that Theorem 2 is the process version of Poisson
approximation for dependent Bernoulli random variables.

THEOREM 8. The total variation distance between S and § satisfies:
3lIs—S|l< @b, +2b,)+22P(C > k),
where b, and b, are given in equation (2) for:
B,={B:|p—a|<2(k—1)+s].
Proof. We follow Arratia et al. (1990a). For i=1,2,...,k—1 let:

’Ya.i=(1—Ya+i)Ya+i—l Y H (I_Ya-j)!
i=1

and
Xa.k=Y¢+k—-1 D 4 H (l_Ya—j)'

j=1

We have expanded the index set so that we may keep track of the type or size of
the clump occurring at a. Here, a clump is of type i, for i <k, if it is of size i, and
of type k if it is of size k or greater. It is clear that:

X=2 X, (20)
Furthermore, since for i=1, 2,..., k, X,, is a function of the independent
Bernoulli random variables {D,_,, ..., D,,,,_,}, we see that by taking:
B,={B:|p—ua|<2(k~1)+s}

condition (1) is satisfied. Using the partition structure (20) as in Arratia et al.
(1990a) we have that b, and b, of Theorem 2 may be calculated from
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equation (2) with the unpartitioned random variables, that is, with p.=EX,
and p,=EX X, . Forasubset Ac{0, 1, ...}, definea function h on X and Z by:

k
h(X)=1A(i iX“,,-) h(Z)=1A(Z iZ..i).
i=1 i=1

An. application of theorem 2 now yields that the total variation distance
between h(X) and h(Z) is at most 2(2b, + 2b,). Now note that S=h(X) and
S=h(Z) except when there is a clump of size of more than k. For X, the
probability that there exists :such a clump may be bounded using the
Bonferroni inequality, with f=§, as in equation (3):

[ [
P(Elaz: X=1Y Y,>k><2p<x,=1, Y Y,;k)
r=a a y=a

=y P(i Yy>k|X¢=l)P(X,=1)=P(C>k) Y .
a y=a «

=1P(C>k).

By construction P(X,=1)=P(Z,=1) and a similar computation for Z
completes the proof. ]
Estimates for the values of , b,, and b, may be obtained as in the previous
section, taking into account that B, has been enlarged.

5.1. Perfect matching: =k, s=1. As noted above, for the case of perfe'ct
matching with g=k and s=1 the distribution of the clump size C is geometric,
that is:

P(C=m)=(1-p)p™"' m=1,2,....

Using equation (14) we have:
. -1 - ..
P(C*":m):(;n_l)(l_p)jpm d m=j)]+l9""
and that therefore, by equation (16):

e"' ifm=0

PS=m)={ _,=n m—l)(l(l—p))"p'""'
¢ j‘:-:g (]_1 ]'

1
otherwise. (21)
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This equation that approximates the distribution for perfect matching appears
in Karlin and Ost (1987), Theorem 2.4.

We establish a corresponding Chernoff bound for the tail of this distribution,
and obtain an upper bound on the total variation distance of the Poisson
approximation. To obtain the Chernoff bound (19), note that since:

dclx) =

xX—px
1—-px
by relation (17):

1—
%(x);exp{—z E }

Equation (19) now yields:
P($>a)<y~“bs(y)
where y=max(l, x) and: '

A1 —p)+2ap—./2*(1—p)? +4api(1—p)
x= 2ap? )

We can obtain an upper bound to the total variation distance between S and $
by applying Theorem 8; this yields the following.

COROLLARY 9. For any set A:
|P(SeA)-—P(§eA)| <4234k —1)/(n—k)+ 5ip* (22)

where the value of 4 is given in equation (11).
Proof. Let B, be as in Theorem 8. By Theorem 8, we need only calculate b,,
b, and P(C>k). The latter equals p*. To calculate b,, break up the sum
ZM, P.Pg into two parts, depending on whether or not p, appears. This
yields the bound:

b, <2*(4k—1)/(n—k)+2ip*.

In order to bound b, note that if ja— | <k, a# f then XX, =0, since at least
one of the indices is not 1, that clump of perfect matches begins with a
mismatch. For |a— | >k, X, is independent of X, is independent of X, and so
EX,Xy=EX,EX,. Hence b, <b, . nu

Hence, when using probabilities computed from the distribution of §, one
makes an error of no more than the above when approximating the probability
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of the same event for S. It will be seen below that this bound is conservative and
the approximation performs especially well in the region of interest.

6. Maximum Clump Size Distributions. We now consider the distribution of
the number of g/k matches in the longest clump. Again, let W=) X, . For each
o such that X,=1, we have a total of:

8
=YY,
y=a

g/k matches, where = f, is as in definition (3). Let:
My2My2 - 2My,

be the order statistics of the C, for the W indices o such that X,=1. In
particular:

M, =max{C,: X, =1}.

In the case g=k, My, corresponds to the length of the lopgest exact matching
word. While Mott et al. (1990) derive heuristic recursion formulas for the
probability of long exact matching words, in the last few years 'there h'as beena
good deal of work that provides computable approximations with error
bounds. See Arratia et al. (1900a) and Arratia et al. (1990b). It is remarkable
that the distribution of all the order statistics can be approximated by these

Poisson methods. . . .
Again, since W is approximately Poisson, we may approximate the above

collection by:

My2My 2 2Mg,
the order statistics of:
{C:j=12,...,2},

where Z, C,, C,, . . . are independent, Z is Poisson /. and G 'have distribgtion
C. By the usual, elementary independent Bernoulli thinning of a Poisson
argument, we have that the sum:

U= i 1{C;>x}

J

is Poisson with parameter AP(C > x). By the equivalence:
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{Mm <x}p={Usgj-1},

we immediately derive:
- e n o GP(C>x))
P(M(j)sx}=e e .‘=Zo _l'ﬁ

In particular, note that when s=1 and g=k we have for x a non-negative

~

integer P(C>x)=p* and therefore M, has an integerized extreme value
distribution. .

We now obtain error bounds. In the notation of the last section, for x <k we
have the equivalence between events:

{Mw<x}={ > Xa..~<j—l}. 23)

eli>x

Hence, setting:

nx=1,( ¥ X) h(Z)=1A( ) Z)

ael,i>x ael,i>x

and arguing as in the proof of Theorem 8 using the process version of Poisson
approximation we obtain the following '

THEOREM 10. The total variation distance between M,;, and M, satisfies:
7|[Mg— M| < (2b, +2b,)+ 22P(C> k),

where b, and b, are given in equation (2) for:

B,={B:|B—a|<2(k—1)+s}.

7. Data Analysis. Even though DNA sequences can be better described by a
second order Markov chain than a sequence of independent letters (Tavaré and
Giddings, 1989), the independence assumption for the purposes of deriving the
distribution of scores fits the data quite well (see Smith et al., 1985, for a study of
DNA sequences from GenBank). Our theoretical results are based on quality
g/k matches with match probability p. DNA sequences often have p=0.25
while protein sequences often have p a little larger than 0.05. Therefore, results
about the number of matches depend on g/k, n, and p, as well as independence.
Not surprisingly then, we find that an approximation to the theoretical
distribution computed under the assumption of independence sufficiently
describes the null distribution for quality g/k matches.
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To test the fit of an approximate theoretical distribution against an empirical
distribution given by matching unrelated protein sequences, we have studied
the distribution of S, the total number of g/k matches on a diagonal. 123
protein sequences from vertebrates were matched against 104 from E. coli,
yielding 12 792 pairwise comparisons. Here ¢ =k =2 was chosen. Only the first
n=200 letters of each sequence were considered in order to make all sequences
the same length so that one could make a comparison with the theoretical
distribution. For the given collection of sequences p=0.0589, only slightly
larger than what would be the matching probability of 1/20 for the uniform
distribution over the 20 amino acids. For the matches of length k=2
considered, equation (11) yields 1=0.6499. Comparison of the two distribu-
tions is given in Fig. 1, and is seen to be quite close. A graph of the difference
between the distribution of the actual data and what is predicted by
equation (21) is plotted in Fig. 2. All differences are well within statistical
fluctuation and the nonrandom error bound given by equation (22) above. For
example, the largest difference of 0.01756 between the two distributions occurs
for the case of no quality g/k matches at all, and has a standard error of 0.004.
Equation (22) yields that differences in probabilities between the true
distribution of S and the distribution 21 in this instance are no more than
0.0710. Tt is clear from Fig. 2 that this bound is conservative and well accounts
for differences between the two distributions for values close to zero.

For an application of our methods to related sequences, we consider two
protein sequences, both human leukocyte class II histocompatibility antigens
(HLA), one an SB alphachain precursor of length 261, the other a DR-1
betachain precursor of length 266, with PIR accession numbers A24283 and
A24431, respectively. The dot matrix for matches with g=k=2 is shown in
Fig. 3. For these sequences, p=0.053. We of course look at each of the
diagonals, as is appropriate in biological sequence comparison. Although not
striking visually, one diagonal of length n=259 contains a total of S=11
g=k=2 matches. For the given values of n, p, and k, equation (11) yields
7=0.68; calculating significance according to equations (21) and (18) we
obtain an approximate p-value of 3.2x 1078, This p-value only takes into
account the length n=259 diagonal. When we consider all diagonals, we note
that a diagonal sum of 11 or larger is the union of the events E; that diagonal i
has a sum of 11 or larger. The most elementary Bonferroni inequality is:

P(\T) E) < Z P(E),

and this is our approach to finding a p-value for the two sequence comparisons.
Using the same method for all diagonals i, we obtain the overall significance
estimate ) ,P(E;)~2.5x 10~ §_This does not appear to us to be an optimal way
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Figure 1. Comparison of protein sequence scores with the theoretical distribution

from equation (3). (a) A: histogram for 13 792 vertebrate-E. Coli comparisons. (b)
The values of P($=m) for comparison.

to cpmbine the statistical tests on each diagonal. S=11 on a diagonal of length
20 is a very different result for S=11 on a diagonal of length 259, and this

§hould be taken into account. One way of finding an overall significance level
is:

[15=T1 P(s>s5)

vw{here the product is overall diagonals i, and s, is the observed diagonal sum for
diagonal i. The method of combining p-values implicitly used above is min p,
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Figure 2. The values of data-theory from Fig. 1.

A24431

Figure 3. Dot matrix for the comparison of two human leukocyte class I1
histocompatibility antigens, with g=k=2.

not [ |5;. See Oosterhoff (1969) for a monograph on combination of one-sided
tests.

To apply the results for the case g # k, we consider g =3 and k =4. Recall that
p=0.053 for our two HLA proteins. We must simulate to obtain the value s=2
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that gives the best fit to a Poisson number of clumps where 1~0.1. For g=3,
k=4, s=2 we use equation (9) from Section 3 to obtain:

P(C=m)=y,,.

Then, the convolution formula (16) yields the approximation P($'=m). Finally
the p-values for diagonal sums are arrived at with equation (18). The most
significant diagonal is again the diagonal of length 259 with a total of S=9
matches. The approximate p-value for the diagonal is 5 x 10~ 5,

Next we consider the maximum clump size M, distribution. Since clump
size is not restricted to a diagonal as is diagonal sum, we do not have the
delicate difficulties of combination of one-sided tests discussed above. Instead
we view the problem as having one long diagonal with n=(261)(266), the
product of sequence lengths. The g=k=2 case has maximum clump size
M ;)=4 and 1=185 from equation (11). Also P(C>4)=0.000148. Therefore
the maximum clump p-value is estimated by:

P(My>4)x P(M;,>4)

=1—g *P(C34)

=0.027.

For the g=3, k=4 case we have maximum clump M;,;,=5 and using the
approximation for / given in Section 4.1, 1=27.7. Also P(C> 5)=0.0132 so
that the p-value is estimated by:

P(Mm>5)z1-e-vw>s,
=0.3.

Clearly the maximum clump size of 4 in the g =2 search could be considered
significant, while the value of 5 in the g=3, k=4 search could not. In either
case, the diagonal sums are more significant than the individual clump sizes.

We also compared these two sequences using the more sensitive local
dynamic programming algorithm of Smith and Waterman (1981). For this
algorithm, we weighted gaps of length k by w(k)= 5+ 3k. The weight matrix T
of Taylor (1986) and Waterman and Jones ( 1990) was used for weighting pairs
of amino acids. This matrix counts the number of shared properties between
two amino acids and has entries ranging from 0 to 8. Figure 4a shows the
alignment obtained by using the matrix with (i, j)th entry T, ;—4.5 for
weighting pairs of amino acids. Notice that the alignment contains a 122 amino
acid segment of the diagonal found by our statistical method. Relaxing the
weighting by using a matrix with entries T; ;— 4.0 gives the longer alignment of
Fig. 4b which, although it has three length 1 gaps, is also principally comprised
of the same diagonal.
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’ (a) PMWPKEPVELGQPNTLICHIDIG'}'PPVLNVTWLCNGELVTEGVABSLFLPRTDYSFHKFHYLTPVP SAEDFYDCRV

[ 11 [ 11 [ IR |
xlrl:\&'l'\lrxémopioamwcsvncmcsImmnco:x-:x‘rcws'rcx.mncnmm-wm.zmnscsw-rcov

EHWGLDQPLLKHWEAQEPIQMPETTETVLCALGLVLGLVGII

1o [ 11
EHPSLTSPLTVEWRARSESAQSKMLSGVGGFVLGLLF LGAGL

(b) AVl LRALSLAFLLSLRGAGAIKADHVSTYAAFVQT HRPTGEFHFEFDEDEHFYVDLDKKET\IIWHI;EEF-GQA!‘ SFEAQG
1 | 1 |
TLMVLSSPLALAGDTRPRFLEQVKHEC HPFNGTERVRFLDRYP!BQEEYVRFDSDVGEYRAVTELGRPDABYWNSQKDL

GLANIAILNN'NLN-TLIQRSNHTQATNDPPEVTVFPKEPVELGQPNTLICHIDK!;‘FP;PVI.N\{TPITLCT?ELVTE(_I;\IIAESL
| | Pl | Vol
LEQRRMVDTYCRHNYGWESFTVORRVYPEVTVYPAK’!‘QPIQHHNLLVCSVNGFYPGSIEVRWFRNGQEEKTGWSTG

FLPRTDYSFHKFHYLTFVPSAEDFYDCRVEHWGLDQP LLKEWEAQEP IQMPETTETVLCALGLVLGLVGIIVGTVLI Ill(

| A et 1 { [
LIQNGDWTFQTLVHLETVPRSGEVYTCQVEHPSLTSPLTVENRARSESAQSKHLSGVGGWLGLLFLGAGLFIYPRNQK

SLRSGHDPRAQGT

G-HSGLQPTGFLS

Figure 4. Best local alignments of two human leukocyte class IT hi.stocompatibility
antigens with gap penalty function w(k)= 5+ 3k. (a) Alignment with (T;;—4.5). (b}
Alignment with (7},-—4.0).

8. Discussion: Open Problems. In this paper we have given compptable,
closed form approximations to random variables of interest for comparing two
independent sequences by studying quality g/k k-word matghes ona dlagpnal.
The proofs of our results would not be as manageable without the ngson
approximation, Theorems 1 and 2. There are of course a number of extensions

and problems that remain unsolved. Next we discuss several groups of such 3

open problems.

8.1. All diagonals. When we perform sequence comparison, we do not
study a diagonal in isolation. Of course the dependence between dxggonals
greatly complicates the analysis. In Arratia et al. (1986) and Arratia et al.
(1990b), related quite technical analyses are carried out for the longest match
with k mismatches and the longest quality a match. Their results indicate that
the correct approximation in our case for the largest clump could be obtained
by replacing the diagonal length n by the product of sequence lgngths
(n,—t+1)(n,—t+1), where ¢ is the test matching length. That is, the
comparison is treated as if there is one long diagonal of length (n, —t+1) (n, —
t+1). Of course the error bounds will be different, and the proof much harder.
When extremal properties of diagonals, such as the diagonal sum S, are
studied, the simple Bonferroni approach of Section 7 can be used, but more
work on combination of statistical tests would be valuable.

8.2. Unequal sequence lengths and distributions. All sequences are not
created equal, usually they are not of identical length nor have identical
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distributions. Still the conjectures described in Section 8.1 should hold when
the differences are not too great. In Arratia et al. (1986), the effective diagonal
length is shown to be n;n, if 1>log(n,)/log(n;)-»1>0. A more general
sufficient condition is given in Arratia et al. (1990a).

8.3. Non-independence. DNA and protein sequences are not well modeled
by independent letters. However, we have described in Section 7 an example
where the scores from biological data are well approximated by independence.
There may well be deep reasons for these observations (Haiman, 1987).
Nonetheless it is of interest to study these problems when the sequences are
Markov or m-dependent.

8.4. Insertions and deletions. Of course real biological sequence evolution
often involves insertion or deletion of sequence letters. This greatly increases
the difficulty. The only general results are those of Waterman et al. (1987)
where some results on growth rates of Smith—~Waterman scores are derived.

8.5. Relative error. The Poisson approximation theorems we use give error
bounds in terms of total variation distance. It would be useful and informative
to have results for relative error. If p is the correct tail probability, such as
p=P(S>m), and pis the probability from our formula, | p— p|/pis the errorin p
relative to p. This is another area for future research.

The authors are grateful to Tim Hunkapillar for suggesting the HLA protein
sequences for comparison. They also wish to thank Mark Eggert; his help on
this project was especially critical.
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