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Classical Mantel-Haenszel Estimator

Group j ∈ {0, 1} has nj(t) individuals at time t, exposure
Z = j, failure rate λ0(t)φZ

0 and failure times Tj . Let

Rjk =
∑
t∈Tj

nk(t)
n0(t) + n1(t)

,

the classical Mantel-Haenszel estimator of φ0 is explicitly
given by

φ̂ =
R10

R01
.
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Features

1. Self Evident Model. Baseline is unspecified, and the
exposed group has additional relative risk φ0 ∈ (0,∞)
over those unexposed.

2. Simple Calculation. Estimator φ̂ can be computed
easily, a ‘back of the envelope calculation’.
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Other Features

At the null, the Mantel-Haenszel estimator is as efficient as
the Maximum Partial Likelihood Estimator (MPLE), which
is more complicated to calculate.

Less efficient away from the null.
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For Better or For Worse

1. Medline search of papers in the years 2000-2005 gives
a total of 420 references where Mantel-Haenszel is
cited in the abstract as the method applied.

2. From page 156 of Kahn and Sempos, “when a
method is as simple and free of assumptions as the
Mantel-Haenszel procedure, it deserves a strong
recommendation, and we do not hesitate to give it.”

The estimator is well used; can we contribute something so
that it is better used?
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Using Mantel-Haenszel with Complex Event
History Data and Complex Sampling

Zhang, Fujii, and Yanagawa (2000), and Zhang (2000),
consider some sampling designs for the Mantel-Haenszel
estimator.

Can we generalize enough to accommodate

1. Histories more complex than binary exposure?

2. General framework for complex sampling?

Then we need to look to see if the allowances for all this
additional complexity has made the estimator too complex.
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More Complex Exposure

Consider the case when Z ∈ {α0, . . . , αη} with

α0 < . . . < αη,

and by absorbing a factor into λ0(t) if necessary, without
loss of generality, α0 = 0.

Can make the connection to the exponential relative risk
model for a one-dimensional covariate Z by letting
β0 = log φ0, since then

eβ0Z = φZ
0 .
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Extension of Mantel-Haenszel estimator to
multiple exposure levels

In the classical two level case, view

φ̂ =
R10

R01

as the solution to the (linear! martingale?) estimating
equation

φR01 −R10 = 0,

or as the minimizer of G2
01, where with j < k, we let

Gjk = φαkRjk − φαj Rkj .
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One Proposal, Multiple Exposure Levels

Define the estimator as a value φ̂n which minimizes a
weighted sum of squares of the form

n−1
∑
j<k

cjkG2
jk(φ).

Weights cjk can be chosen to take into account factors
such as varying group sizes, or even, with enough
information (asymptotically), to minimize the variance
among all estimators of this form.

But what about when the full cohort is too large for data
collection, and must be sampled? What are the extensions
(even for the classical two level case)?
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Main Interest: More Complex Sampling

From Borgan, Goldstein, Langholz (1995), consider
sampling designs as particular specifications of

πt(r|i),

the probability of choosing r as the sampled risk set should
i fail at time t.

BGL developed a theory for such designs in general, and
studied particular examples, for the partial likelihood
estimator and the model

λi(t) = Yi(t)λ0(t) exp(β0Zi(t)).
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Simple Random Sampling Design

Take a sampled risk set of size m, including the failure,
from R(t), those at risk at time t, uniformly over all such
sets. So, with n(t) = |R(t)|,

πt(r|i) =
(

n(t)− 1
m− 1

)−1

1(r 3 i, r ⊂ R(t), |r| = m)

12



Matching Design

When R(t) is the disjoint union of strata
⋃

l Cl(t), we take
a specified number of controls from the case’s strata
(controls for confounder).

If Ci(t) is strata of i at time t, ci(t) = |Ci(t)|, and we
specify m = (ml)l∈C , the matching design is given by

πt(r|i) =
(

cCi(t)(t)− 1
mCi(t) − 1

)−1

1(r ⊂ CCi(t)(t), r 3 i, |r| = mCi(t)).
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Counter Matching Design

Want to have the sampled risk set be ‘representative’ in the
strata variables, so take r uniformly over
r 3 i, r ⊂ R(t), |r ∩Rl(t)| = ml; l ∈ C, that is, with
probability

πt(r|i) =

[∏
l∈C

(
nl(t)
ml

)]−1
nCi(t)(t)
mCi(t)

.

. . . and others . . .
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Counting Process Framework

Following the pioneering work of Andersen and Gill (1982),
by placing the problem in a counting process framework, in
particular, by considering

Ni(t) and Ni,r(t),

their intensities, and the associated martingales, BGL was
able to give general conditions under which MPLE was
consistent and asymptotically normal.

And the same for an estimate of the integrated baseline
hazard.
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Mantel-Haenszel Estimator

Can we do the same for the Mantel-Haenszel estimator?

We first need to see if we can support the Mantel-Haenszel
calculations on the same solid foundation.
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Yes, the calculations can rest on the theory
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Mantel-Haenszel in Counting Process
Framework

Exposure groups Rk(t), k = 0, . . . , η at time t, sampling
scheme πt(r|i). Define

Ak
r (t) =

∑
i∈Rk(t)

πt(r|i) k = 0, . . . , η,

and for a given continuous function a : Rη+1 → [0,∞),
define

ar(t) = a(A0
r(t), . . . , A

η
r(t));

the choice which extends the classical case is

a(u0, . . . , uη) = (u0 + · · ·+ uη)−1.
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General (in terms of both exposure and
sampling) Estimator

With

Rjk(t) =
∫ t

0

∑
r⊂R

ar(s)Ak
r (s)dN j

r (s),

generalization of classical estimator is one which minimizes
the magnitude (e.g. sum of squares) at t = τ of the local
square integrable martingales

Gjk(t) = φαkRjk(t)− φαj Rkj(t).

By resting on existing theory, can estimate integrated
baseline hazard as in BGL.
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Analysis and Results

For v a multi-subset of {0, . . . , η}, e.g. v = {0, 0, 1}, let

Hv(t) =
∑
r⊂R

a|v|−1
r (t)

∏
k∈v

Ak
r (t).

Assume

1
n

Hv(t) → hv(t), and let

Iv(t) =
∫ t

0

hv(s)λ0(s)ds and βjk = (αk − αj)φ
αk+αj−1
0 Ijk(τ).

All are consistently estimable
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Asymptotic

Theorem 1

√
n

(
φ̂n − φ0

)
→d N (0, σ2) where σ2 = v2/γ2,

with

v2 =
∑

j<k,p<q

cjkβjk < gjk, gpq >τ βpqcpq,

and
γ =

∑
j<k

cjkβ2
jk,

and gjk(t) are scaled limits of Gjk(t).
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Optimization

B with diagonal entries βjk, Γ with entries < gjk, gpq >τ

positive definite, and BΓB = M ′M .

Proposition 1 Let 1 be the vector all of whose entries are
1 and

X = (M−1)′B211′B2M−1.

Then taking

c = M−1d

where d is any eigenvector corresponding to the largest
eigenvalue λ of X minimizes the asymptotic variance at the
value σ2 = λ−1.
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In accommodating this much complexity, the estimator is
now a bit more complex.

What about the two exposure group setting?
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Two Exposure Groups, General Complex
Sampling

Even under complex sampling, the estimator, so
generalized, retains its simple form,

φ̂n =
R10

R01
=

n−1R10

n−1R01
→p φ0, and

√
n

(
φ̂n − φ0

)
→d N (0, σ2) as n →∞,

where

σ2 =

∫ τ

0

(
φ2

0h011(t) + φ0h100(t)
)
λ0(t)dt(∫ τ

0
h01(t)λ0(t)dt

)2 .
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Consequences

The Mantel-Haenszel Estimator is expressed as before in a
simple closed form, even for complex sampling, in the
classical case of two exposure groups.

Confine ourselves to this case henceforth.

Efficiencies for the various designs?
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Simple Random Sampling

Under the null, we have

σ2 =
(

m

m− 1

)
1∫ τ

0
p(t)f0(t)f1(t)λ0(t)dt

,

giving an asymptotic relative efficiency of (m− 1)/m with
respect to the full cohort variance, same as the partial
likelihood.
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Counter Matching

When the design matches one control with binary
‘surrogate exposure’ C(t) of the binary exposure Z(t) to
the value opposite that of the case, the asymptotic variance
is equal to that for this same counter matching design
when using the maximum partial likelihood estimator.

What about away from the null?
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ARE relative to MPLE

Sensitivity δ = P (Z(t) = 1|C(t) = 1, Y (t) = 1)

Specificity γ = P (Z(t) = 0|C(t) = 0, Y (t) = 1)
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Conclusion

The Mantel-Haenszel estimator can be generalized, both in
terms of exposure variable, and to accommodate general
sampling schemes. In the classical case of two exposure
variables, it has the same efficiency, under complex
sampling, as the MPLE at the null, and nearly so around
the null.
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Conclusion

Due to its simplicity, the Mantel-Haenszel estimator will, in
all ‘likelihood’, continue to be used. We hope this
contribution allows the use of this estimator to be used in
conjunction with sampling schemes that can help produce
more accurate estimates than it would have otherwise.

The calculation remains simple, but we have added some
power to its use:
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The Mantel-Haenszel Estimator with greater
power
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