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ABSTRACT. In many epidemiological studies, disease occurrences and their rates are naturally
modelled by counting processes and their intensities, allowing an analysis based on martingale
methods. Applied to the Mantel–Haenszel estimator, these methods lend themselves to the analysis
of general control selection sampling designs and the accommodation of time-varying exposures.
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1. Introduction

Mantel–Haenszel estimators (Mantel & Haenszel, 1959; Breslow & Day, 1980) have long been
used in medical research to quantify the relative risk of disease between two groups. Histori-
cally, the long-standing appeal of the classical Mantel–Haenszel estimators is that they have
a simple closed form formula which does not require the solution of an estimating equa-
tion. Although maximum likelihood estimation has become the dominant approach to the
analysis of epidemiological data, the Mantel–Haenszel estimator continues to be popular. A
medline search of papers in the years 2000–2005 gives a total of 420 references where Mantel–
Haenszel is cited in the abstract as the method applied. An excellent review of the develop-
ment of the Mantel–Haenszel estimator for analysis of epidemiological case-control studies,
as well as the prominent role it has played in epidemiological research generally, is given in
Breslow (1996).

In a cohort R={1, . . ., n} of individuals followed over the time interval [0, �], 0 < � ≤ ∞,
a model with minimal assumptions which relates failure and a binary exposure is that the
failure rate for exposed individuals i ∈R is increased by an unknown factor �0 ∈ (0, ∞) over
the failure rate for those unexposed. Allowing additional flexibility by leaving the common
baseline hazard function �0(t) unspecified, and also letting the binary exposure indicator
variable Zi(t) of individual i depend on time, taking the value 0 or 1 when i is unexposed
or exposed at time t, respectively, results in the rate of observed failure at time t for i of

�i(t)=Yi(t)�0(t)�Zi (t)
0 , (1)

where Yi(t) is the censoring indicator for individual i, taking the value 1 when individual i
is observed at time just prior to t. At any time t, we can divide the collection of individuals
at risk at time t, R(t)={i : Yi(t)=1} of size n(t)= |R(t)|, into the two groups, Rk(t)={i ∈
R(t) : Zi(t)=k} of sizes nk(t)= |Rk(t)|, k =0, 1.

Turning for the moment to the fixed time covariate case, letting t1, j < t2, j < · · · be the collec-
tion of all failure times among individuals having exposure j, with Rjk =∑l≥1 nk(tl, j)/n(tl, j),
the Mantel–Haenszel estimator is given explicitly by
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�̂MH = R10

R01
, (2)

and in particular, there is no need to solve an estimating equation. In this setting, �̂MH is a
consistent and asymptotically normal estimate of �0 (Robins et al., 1986).

In this paper, we consider Mantel–Haenszel estimators for nested case-control studies in
which controls are sampled from risk sets determined by the cohort failure times (see e.g.
Langholz & Goldstein, 1996). In recent work, Zhang et al. (2000) defined generalized
Mantel–Haenszel estimators when controls are a simple random sample from the risk set and
derived the properties of the estimator for right censored cohort data. Further, Zhang (2000)
developed estimators for a number of methods of sampling controls including sampling with
and without replacement and geometric sampling, and showed their consistency.

By placing our models in the counting process framework as detailed in sections 3 and 4.1,
we expand on the work of these authors by providing Mantel–Haenszel estimators for the
entire class of control sampling methods considered by Borgan et al. (1995). The estimators
�̂MH proposed for sampling, generalizing (2), continue to have a ‘closed form’ representation
which does not require solving a nonlinear estimating equation. Although our main focus is
on the use of the Mantel–Haenszel estimator under sampling, our setting also allows us to
extend its scope to accommodate the time-varying intensities (1). In sections 4.2 and 4.3, we
show the consistency and asymptotic normality of the Mantel–Haenszel and baseline
hazard estimator (14) under very general conditions, and in section 5 apply the asymptotic
theory and determine the limiting distributions under random sampling, matching and
counter matching, and make efficiency comparisons against �̂MPL, the maximum partial like-
lihood estimator (MPLE). It is well known that in the full-cohort setting �̂MH performs
asymptotically as well as �̂MPL at the null �0 =1. In section 5, we show that �̂MH con-
tinues to have this feature under sampling.

2. Risk set sampling

2.1. General framework

We consider a cohort with failures driven by the intensity (1), where the binary exposure
status histories are not available for all cohort subjects but can be ascertained for a sample
in a nested case-control study. In particular, if subject i fails at time t, we consider designs
in which the case i is always included in the sample, and controls are chosen from R(t)\{i},
those other individuals in the risk set at time t. Control sampling can be specified by giving
for all t and (i, r) with i ∈ r and r ⊂R a collection of probabilities �t(r |i) for choosing the
individuals in the set r ⊂R(t) to serve as controls should i fail at time t. Exposure status is
then ascertained for the members of the set r so selected, the sampled risk set, made up of
the controls r \{i} along with the failure i. For convenience, we set �t(r |i)=0 when i �∈ r or
Yi(t)=0.

The added flexibility and efficiency gains made possible by the choice of design �t(r |i) is
substantial, opening up the possibility of using sampling designs that can take advantage of
additional structure which may be available in the data. For example, in designs 3 and 4, the
matching and counter-matching designs described below, we assume that for each i ∈R(t) we
have available the value Ci(t) giving the strata membership of i among the possible values in
C, some (small) finite set. For l ∈C we let Cl (t)={i : Yi(t)=1, Ci(t)= l} and cl (t)= |Cl (t)|, the
l th sampling stratum, and its size, at time t.

Each design �t(r |i) has an associated probability distribution on the subsets of R defined
by
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�t(r)=n(t)−1
∑
i∈r

�t(r |i), (3)

which sums to one by virtue of∑
r⊂R

∑
i∈r

�t(r |i)=
∑
i∈R

∑
r⊂R, r�i

�t(r |i)=
∑
i∈R

Yi(t)=n(t). (4)

In addition, we define the associated weights wi(t, r), set to 0 when i is not at risk, by

wi(t, r)= �t(r |i)
n(t)−1

∑
l∈r �t(r |l) , so that �t(r |i)=�t(r)wi(t, r). (5)

2.2. Some specific designs

The sampling framework accommodates a wide range of designs (e.g. Borgan et al., 1995;
Borgan & Langholz, 1998; Andrieu et al., 2000; Langholz & Goldstein, 2001). Here, we high-
light a few:

Design 1: the full cohort. When information on all subjects is available, we may take �t(r |i)
to be the indicator of the set of those at risk at time t �t(r |i)=1(r =R(t)) and so wi(t, r)=
1(i ∈R(t), r =R(t)).
The framework under which the classical Mantel–Haenszel estimator can be applied is re-
covered under this scheme when the exposures are time fixed.

When the collection of exposure status data on the full cohort is impractical and no addi-
tional information on cohort members is available, the simple random sampling design is a
natural choice:

Design 2: simple random sampling. At each failure time, a simple random sample of m−1
individuals is chosen from those at risk to serve as controls for the failure; for i ∈ r ⊂R(t)
with |r|=m,

�t(r |i)=
(

n(t)−1
m−1

)−1

, (6)

and the probabilities (3) and weights (5) are given by

�t(r)=
(

n(t)
m

)−1

and wi(t, r)= n(t)
m

.

The matching design could be used to control for confounding by stratifying by a potential
confounder.

Design 3: simple random sampling within matching strata, with specification m = (ml )l∈C ,
ml ≥ 1. If subject i fails at time t, then a simple random sample of mCi (t) − 1 controls are
chosen from CCi (t)(t), the failure’s stratum at time t, to serve as controls for the failure. Hence,
the sampling probabilities of this scheme are given by

�t(r|i)=
(

cCi (t)(t)−1
mCi (t) −1

)−1

1(r ⊂CCi (t)(t), r � i, |r|=mCi (t)), (7)

and for r ⊂Cl (t), |r|=ml and i ∈ r, the probabilities (3) and weights (5) are given by

�t(r)= cl (t)
n(t)

(
cl (t)
ml

)−1

and wi(t, r)= n(t)
ml

.
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In section 5, we show that significant efficiency gains over random sampling can be achieved
by the counter-matching design when the strata C are sufficiently correlated to exposure.

Design 4: counter matching, with specification m = (ml )l∈C , ml ≥1. If subject i fails at time
t, then ml controls are randomly sampled without replacement from each Cl (t) except for the
failure’s stratum, from which mCi (t) −1 controls are sampled. Let PC(t) denote the set of all
subsets of R(t) with ml individuals of type l for all l ∈ C. Then for r ∈PC(t) and i ∈ r, the
sampling probabilities of this scheme are given by

�t(r|i)=
[∏

l∈C

(
cl (t)
ml

)]−1
cCi (t)(t)
mCi (t)

, (8)

and the probabilities (3) and weights (5) are given by

�t(r)=
[∏

l∈C

(
cl (t)
ml

)]−1

and wi(t, r)= cCi (t)(t)/mCi (t).

3. Mantel–Haenszel estimators for sampled risk set data

Let Ni, r(t) be the counting process that records the number of times in (0, t] that i fails and
r is chosen as its sampled risk set and define

Nk
r (t)=

∑
i∈Rk (t)

Ni,r(t) and Nr(t)=
∑
i∈r

Ni,r(t), (9)

recording, respectively, the number of times in (0, t] that r was chosen as the sampled risk
set for a failure in Rk(t), that is, one having exposure k, and the total number of times in
(0, t] that r was chosen as the sampled risk.

Now let

Ak
r (t)=

∑
i∈Rk (t)

�t(r |i)=�t(r)
∑

i∈Rk (t)

wi(t, r), k =0, 1 (10)

and Ar(t)=A0
r (t)+A1

r (t). By (3), for sets r with �t(r) �=0 we have Ar(t)=n(t)�t(r) and

Ak
r (t)

Ar(t)
≤1 and

∑
r⊂R, k∈{0, 1}

Ak
r (t)=n(t). (11)

Now for j, k =0, 1 set

Rjk(t)=
∫ t

0

∑
r⊂R

A−1
r (s)Ak

r (s) dNj
r (s) and Rjk =Rjk(�). (12)

The Mantel–Haenszel estimator of �0 in this more general context is then given by

�̂MH = R10

R01
,

i.e. with the definitions of Rjk extended as in (12), the estimator has exactly the same form
(2) as before. We also consider the variance estimator

�̂2 = �̂MH

∫ �
0

∑
r⊂R A−2

r (s)A0
r (s)A1

r (s) dNr(s)(∫ �
0

∑
r⊂R A−1

r (s) A0
r (s)A1

r (s)
A0

r (s)+ �̂MHA1
r (s)

dNr(s)
)2 . (13)

In theorems 1 and 2 we give conditions under which �̂MH is consistent and asymptotically
normal, and show that n�̂2 is consistent for the variance of the asymptotic distribution. We
note that for designs 1 and 2, �̂MH reduces to the ‘classical’ Mantel–Haenszel estimator and
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�̂2 is the previously described ‘conditional variance’ estimator (Breslow, 1981; Robins et al.,
1986).

Where estimates of �0 can be used to assess the magnitude of the effect that exposure has
on failure, estimates of the integrated baseline hazard

�0(t)=
∫ t

0
�0(s) ds

can in turn be used to provide estimates of absolute risk. We consider the integrated baseline
hazard function estimate

�̂n(t, �̂MH)=
∫ t

0

∑
r⊂R

dNr(s)∑
i∈r �̂

Zi (s)
MH wi(s, r)

, (14)

given in terms of the weights defined in (5), where the ratio in the integral is regarded as 0
if there is no one at risk. In theorem 3, we give conditions under which

√
n
(
�̂n(·, �̂MH)−�0(·)

)
converges weakly as n→∞ to a mean-zero Gaussian process, and provide a uniformly con-
sistent estimator for its variance function.

4. Properties of the Mantel–Haenszel estimators

4.1. The counting process model for sampling

Much of the analysis here follows the work of Borgan et al. (1995) closely, which is hereafter
referred to as BGL. Assume that the censoring and failure information are defined on a prob-
ability space with a standard filtration Ft, and that the censoring indicators Yi(t), exposures
Zi(t), design �t(r |i) and strata variables Ci(t) are left continuous and adapted, and hence pre-
dictable and locally bounded. We make the assumption of independent sampling as in BGL
that the intensity processes with respect to the filtration Ft is the same as that with respect to
this filtration augmented with the sampling information, that is, that selecting an individual
as a control does not influence the likelihood of failure for that individual in the future.

Combining (1) with the design probabilities, into which censoring has already been incor-
porated, we see Ni, r(t) has intensity of the form

�i,r(t)=�Zi (t)
0 �t(r |i)�0(t), (15)

and subtracting the integrated intensity results in

Mi, r(t)=Ni, r(t)−
∫ t

0
�i, r(s) ds,

orthogonal local square integrable martingales with predictable quadratic variation

d〈Mi, r〉t =�i, r(t) dt.

Similarly, with Ak
r (t) given in (10) for k ∈{0, 1}, by linearity the counting processes Nk

r (t)
and Nr(t) defined in (9) give rise to the orthogonal local square integrable martingales

Mk
r (t)=

∑
i∈Rk (t)

Mi, r(t) and Mr(t)=
∑
i∈r

Mi, r(t)

with respective intensities

�k
r (t)=�k

0 Ak
r (t)�0(t) and �r(t)=

(
A0

r (t)+�0A1
r (t)
)
�0(t), (16)

and predictable quadratic variations
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d〈Mk
r 〉t =�k

r (t) dt and d〈Mr〉t =�r(t) dt. (17)

For v a multisubset of {0, 1} of size 2 or 3, e.g. v={0, 1, 1}, define

Hv(t)=
∑
r⊂R

A1−|v|
r (t)

∏
k∈v

Ak
r (t). (18)

Then, for j, k ∈{0, 1}, the processes

Wjk(t)=
∫ t

0

∑
r⊂R

A−1
r (s)Ak

r (s) dMj
r (s) (19)

are local square integrable martingales with predictable quadratic variation

d〈Wjk , Wpq〉t =1(j =p)�
j
0Hjkq(t)�0(t) dt. (20)

Using Mj
r (t)=Nj

r (t)−�j
r(t), (16) and (18), Rjk(t) in (12) may be written

Rjk(t)=�j
0

∫ t

0
Hjk(s)�0(s) ds +Wjk(t). (21)

As H01(t)=H10(t),

G(t)=�0R01(t)−R10(t)=�0W01(t)−W10(t) (22)

is a local square integrable martingale and, by (20), has quadratic variation

d〈G〉t =
(
�2

0H011(t)+�0H100(t)
)

�0(t) dt =�0A−2
r (t)A0

r (t)A1
r (t)�r(t) dt.

4.2. Asymptotics of �̂MH

We prove the consistency and asymptotic normality of �̂MH under some regularity and sta-
bility conditions.

Condition 1. The cumulative hazard on the interval [0, �] is finite: �0(�) <∞.

Condition 2. For all multisubsets v of {0, 1} with |v| ∈ {2, 3}, there exist left continuous
functions hv(t) such that for almost all t in [0, �],

1
n

Hv(t)→p hv(t).

Under conditions 1 and 2 the dominated convergence theorem of Hjort & Pollard (1993)
as in proposition 1 of BGL p. 1762, with dominating functions Dn(t)=D(t)=1 by (11), yields∫ t

0

1
n

Hv(s)�0(s) ds →p Iv(t) where Iv(t)=
∫ t

0
hv(s)�0(s) ds. (23)

Proposition 1
Let conditions 1 and 2 hold. Then for every t ∈ [0, �],

n−1〈Wjk , Wpq〉t →p 1(j =p)�
j
0Ijkq(t) and n−1Rjk(t)→p �j

0Ijk(t). (24)

Proof. The first claim follows by (20) and (23). By (21), we have

1
n

Rjk(t)=�j
0

∫ t

0

1
n

Hjk(s)�0(s) ds + 1
n

Wjk(t).
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By (23) the first term converges to �j
0Ijk(t). The second term converges to zero in probability

by (20) and a standard argument using Lenglart’s inequality (see Andersen et al., 1993), and
the second claim in (24) follows.

We now show the consistency of �̂MH upon additionally adopting

Condition 3. I01(�), given in (23), is strictly positive.

Theorem 1
Under conditions 1–3, the estimate �̂MH defined in (2) is consistent,

�̂MH →p �0 as n→∞.

Proof. Using proposition 1, and that I10 = I01, we have

�̂MH = n−1R10

n−1R01
→p

�0I10

I01
=�0.

Lemma 1
Under conditions 1–3, the processes {n−1/2Wjk(·)} given in (19) converge jointly in D[0, �] to
mean-zero Gaussian processes {wjk(·)} with covariations

d〈wjk , wpq〉t =1(j =p)�
j
0hjkq(t)�0(t) dt,

and hence n−1/2G(t)=n−1/2(�0W01(t) − W10(t)) in (22) converges in D[0, �] to the mean-zero
Gaussian process g(·) with

〈g〉t =
∫ t

0

(
�2

0h011(s)+�0h100(s)
)

�0(s) ds.

Further, for t ∈ [0, �], and any consistent sequence �̂n →p �0, as n→∞,

n−1�̂n

∫ t

0

∑
r⊂R

A−2
r (s) A0

r (s) A1
r (s) dNr(s)→p 〈g〉t. (25)

Proof. We apply the martingale central limit theorem of Rebolledo, as presented in
theorem II.5.1 of Andersen et al. (1993). The processes {n−1/2Wjk} are local square integra-
ble martingales, whose predictable quadratic variation converges by proposition 1 to the con-
tinuous functions given in (24). Regarding the Lindeberg Condition, using (11) for the two
final inequalities,

1
n

∫ �

0

∑
r⊂R

(
Ak

r (t)
Ar(t)

)2

1(n−1/2

∣∣∣∣Ak
r (t)

Ar(t)

∣∣∣∣> ε)�j
r(t) dt

≤ �j
0

ε�n1+�/2

∫ �

0

∑
r⊂R

∣∣∣∣Ak
r (t)

Ar(t)

∣∣∣∣
2+�

Aj
r(t)�0(t) dt

≤ �j
0

ε�n1+�/2

∫ �

0

∑
r⊂R

Aj
r(t)�0(t) dt ≤ �j

0

ε�n�/2
�0(�)→p 0.

For all t∈ [0, �] and i, j, k ∈{0, 1}, by Rebolledo’s theorem as in theorem II.5.1 of Andersen
et al. (1993), the scaled optional variation
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n−1[Wik , Wij ]t = 1
n

∫ t

0

∑
r⊂R

A−2
r (s)Ak

r (s)Aj
r(s) dNi

r (s)

converges to the same limit (24), as that of the scaled predictable variation. The convergence
in (25) now follows.

Theorem 2
Under conditions 1–3, with �̂MH given in (2),

√
n
(
�̂MH −�0

)
→d N (0, �2), (26)

where

�2 =
∫ �

0

(
�2

0h011(t)+�0h100(t)
)

�0(t) dt(∫ �
0 h01(t)�0(t) dt

)2 , (27)

which can be consistently estimated by n�̂2 given in (13).

Proof. As

√
n
(
�̂MH −�0

)
= n−1/2(R10 −�0R01)

n−1R01
=−n−1/2G(�)

n−1R01
,

(26) follows using proposition 1 and lemma 1. The consistency of n�̂2 follows from (25) for
the numerator, and the consistency of �̂MH and (24) for the denominator.

Under the null �0 =1, we note that as h001(t)+h011(t)=h01(t), the asymptotic variance (27)
simplifies to

�2 = 1∫ �
0 h01(t)�0(t) dt

. (28)

4.3. Properties of the baseline hazard estimator

To study the estimate (14) we impose the following additional conditions.

Condition 4.The ratio n(t)/n is uniformly bounded away from zero in probability as n→∞.

Condition 5. There exist functions e and � such that for all t ∈ [0, �] as n→∞,

∑
r⊂R

�t(r)
{

A1
r (t)

A0
r (t)+�0A1

r (t)

}
→p e(�0, t), (29)

and

n
∑
r⊂R

�t(r)2{A0
r (t)+�0A1

r (t)}−1 →p �(�0, t). (30)

Letting t1 < t2 < · · · be the collection of all failure times, and R̃j the sampled risk set at
failure time tj , we rewrite the cumulative baseline hazard estimate (14) as

�̂n(t, �̂MH)=
∑
tj ≤t

1∑
i∈R̃j

�̂
Zi (tj )
MH wi(tj , R̃j)

,

where the weights wi(t, r) are given in (5).
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Theorem 3
Let conditions 1–5 hold, and with e(�0, u) as in (29) set

B(t, �0)=
∫ t

0
e(�0, u)�0(u) du.

Then n1/2(�̂MH −�0) and the process

Xn(·)=n1/2
(
�̂n(·, �̂MH)−�0(·)

)
+n1/2(�̂MH −�0)B(·, �0)

are asymptotically independent. The limiting distribution of Xn(·) is, with �(�0, t) as in (30),
that of a mean-zero Gaussian martingale with variance function

	2(t, �0)=
∫ t

0
�(�0, u)�0(u) du.

In particular, the scaled difference between the estimated and true integrated baseline hazard
√

n
(
�̂n(·, �̂MH)−�0(·)

)
converges weakly as n→∞ to a mean-zero Gaussian process with covariance function

�2
�(s, t)=	2(s ∧ t)+B(s, �0)�2B(t, �0).

The function �2
�(s, t) can be estimated uniformly consistently by n�̂2

�(s, t) where

�̂2
�(s, t)= 	̂2(s ∧ t; �̂MH)+ B̂n(s; �̂MH)�̂2B̂n(t; �̂MH),

	̂2(t;�)=
∑
tj ≤t

1{∑
i∈R̃j

�Zi (tj )wi(tj , R̃j)
}2 and

B̂n(t, �)=
∑
tj ≤t

∑
i∈R̃j

Zi(tj)�
Zi (tj )−1wi(tj , R̃j){∑

i∈R̃j
�Zi (tj )wi(tj , R̃j)

}2 .

Proof. The form of �̂n is the same as in BGL, and noting in particular that Condition 4 in
BGL can be satisfied by letting Xr(t)=1 and D(t) a constant, we have that Xn(·) is asymp-
totically equivalent to the local square integrable martingale,

Yn(·)=n1/2
∫ ·

0

∑
r⊂R

dMr(u)∑
i∈r �

Zi (u)
0 wi(u, r)

,

and the proof of the claims made of the asymptotic distribution of Xn now follow as there.
Regarding the asymptotic independence, for any locally bounded predictable processes Hr,

it is straightforward to verify

〈�0W01 −W10,
∫ ·

0
Hr dMr〉t =0.

Hence, by the asymptotic joint normality provided by Rebolledo’s theorem II.5.1 in Ander-
sen et al. (1993), functions of the collections {∫ ·

0 Hr dMr}r and �0W01 − W10, in particular√
n(�̂MH −�0) and Xn(·), are asymptotically independent.
The claim that �2

�(s, t) can be estimated uniformly consistent by n�̂2
�(s, t) follows as in

BGL, based on the fact that n	̂2(t, �0) is the optional variation process of the local square
integrable martingale Yn(·), which by Rebolledo’s theorem as cited above, converges uni-
formly in probability to its predictable variation 	2(t, �0); the uniform convergence of
B̂n(·, �̂n) to B(·, �0) is as in BGL, proposition 2.
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5. Applications

In this section, we first show that for any design that meets the conditions in section 4.2, the
Mantel–Haenszel estimator and the MPLE have the same asymptotic variance at the null,
and away from the null that the MPL estimator is at least as efficient as the Mantel–Haenszel
estimator. We then apply our results to the designs discussed in section 2.2. Although our
asymptotic results hold under the weaker stability conditions of sections 4.2 and 4.3, here
we assume that the censoring, covariate and strata variables are independent and identically
distributed copies of Y (t), Z(t), and C(t), respectively, left continuous and adapted processes
having right hand limits. The strata variable required for designs 3 and 4 gives the ‘type’ of
individual among the possible values in a (small) finite set C; the strata variable may be used
to model any additional information, a surrogate of exposure in particular.

5.1. Relative efficiency of the Mantel–Haenszel estimator to the MPLE

We now show that at the null �0 =1, �MH and �MPL have equal efficiency. For r ⊂R let

S(0)
r (�, t)=A0

r (t)+�A1
r (t), S(1)

r (�, t)=A1
r (t) and Er(�, t)= S(1)

r (�, t)

S(0)
r (�, t)

. (31)

Referring now to (3.4) of BGL (where 
=0 there corresponds to �=1 here), we see
S(2)

r (1, t)=A1
r (t) as Z2 =Z when Z ∈{0, 1}. In the null case, using (3.10) of BGL, the inverse

variance of the MPLE is the integral of the baseline hazard against the limit of

1
n

∑
r⊂R

⎛
⎝S(2)

r (1, t)

S(0)
r (1, t)

−
(

S(1)
r (1, t)

S(0)
r (1, t)

)2
⎞
⎠S(0)

r (t)

= 1
n

∑
r⊂R

(
A1

r (t)
A0

r (t)+A1
r (t)

−
(

A1
r (t)

A0
r (t)+A1

r (t)

)2
)

[A0
r (t)+A1

r (t)]

= 1
n

∑
r⊂R

(
A1

r (t)[A0
r (t)+A1

r (t)]
A0

r (t)+A1
r (t)

− A1
r (t)2

A0
r (t)+A1

r (t)

)

= 1
n

∑
r⊂R

A1
r (t)A0

r (t)
A0

r (t)+A1
r (t)

=hn, 01(t)→p h01(t),

yielding agreement with (28). Hence, the asymptotic variances of the MPLE and of the
Mantel–Haenszel estimator, at the null, are equal for sampling in general.

To characterize the relative efficiency away from the null (� �=1), Anderson & Bernstein
(1985) showed that in the full-cohort situation �̂MH is one Newton step away from �=1. It
is easily shown that this result holds for �̂MH under risk set sampling. Although estimators
which are one Newton step away from an

√
n-consistent estimator can be asymptotically effi-

cient (see e.g. theorem 4.3 of Lehmann & Casella, 1998), we expect away from the null that
�̂MH, one step away from the inconsistent estimator �=1, will generally be less efficient than
�̂MPL.

5.2. Relative efficiency for specific designs

For each of the designs 1–4, we verify that conditions 1–5 are satisfied and determine the
standardized asymptotic distributions of �̂MH and �̂n. We assume that �<∞; as �0 is already
assumed bounded away from infinity, the finite interval Condition 1 holds. For designs 1 and
2, to satisfy condition 3, we assume that
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fk(t)=P(Z(t)=k |Y (t)=1) for k =0, 1,

are bounded away from 0 over some non-trivial interval of time [a, b]⊂ [0, �].
For design 3, to satisfy condition 3, letting for k =0, 1 and l ∈C,

ql (t)=P(C(t)= l |Y (t)=1) and fk, l (t)=P(Z(t)=k |C(t)= l, Y (t)=1),

we assume there exists l ∈C with ml ≥2 such that over some non-trivial interval [a, b]⊂ [0, �]
the functions ql (t) and fk, l (t) are bounded away from zero. That is, there is some strata in
which a comparison of individuals can be made, and in that strata, the covariate value is not
a constant.

For design 4, to satisfy condition 3 we assume that either: (i) the assumption for design
3 holds, or (ii) there exists an unequal pair l1, l2 ∈C with ql1 (t), ql2 (t), fj, l1 (t), fk, l2 (t) bounded
away from zero. That is, we need to assume either that a meaningful comparison can be
drawn: (i) within a strata or (ii) between two different strata.

Condition 4 is satisfied when �<∞ assuming that

inf
t∈[0, �]

p(t) > 0, where p(t)=P(Y (t)=1);

one needs only to invoke the strong law of large numbers in D[0, 1] of Rao (1963) (after
reversing the time axis), similar to BGL. In summary, in each of the examples which follow,
we need to verify only conditions 2, 3 and 5. Throughout we continue to let n(t)= |R(t) |,
and define �n(t)=n(t)/n.

Design 1: full cohort. Sampling all individuals who are at risk at the time of failure gives
�t(r |i)=1(r =R(t)), and with nk(t)= |Rk(t) |,

Ak
r (t)=

∑
i∈Rk (t)

�t(r |i)=nk(t)1(r =R(t)),

and AR(t)(t)=n(t). Using (18),

1
n

Hv(t)= 1
n

∑
r⊂R

A|v|−1
r (t)

∏
k∈v

Ak
r (t)=�n(t)

∏
k∈v

nk(t)
n(t)

→p p(t)
∏
k∈v

fk(t)=hv(t);

hence condition 2 is satisfied. Using that �0 is bounded away from zero, Condition 3 is
satisfied as f0(t) and f1(t) are assumed bounded away from zero over some interval. By (27)
the variance of the limiting normal is

�2 =
∫ �

0

(
�2

0f1(t)+�0f0(t)
)

f0(t)f1(t)p(t)�0(t) dt(∫ �
0 f0(t)f1(t)p(t)�0(t) dt

)2 .

Condition 5 can be seen to be satisfied by

e(�0, t)= f1(t)
f0(t)+�0f1(t)

and �(�0, t)= 1
f0(t)+�0f1(t)

.

Specializing further to the null case �0 =1,

�2 = 1∫ �
0 p(t)f0(t)f1(t)�0(t) dt

, e(�0, t)= f1(t) and �(�0, t)=1. (32)

Design 2: simple random sampling. Letting rk(t)={i ∈ r, Zi(t)=k} and rk(t)= |rk(t)|, the
sampling probabilities (6) yield that for r ⊂R(t) with |r|=m,

�t(r)=
(

n(t)
m

)−1

, Ak
r (t)= rk(t)

(
n(t)−1
m−1

)−1

, Ar(t)= 1
m

(
n(t)−1
m−1

)

and so
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hn,v(t)= 1
n

∑
r⊂R

a|v|−1
v (t)

∏
k∈v

Ak
r (t)= 1

nm|v|−1

(
n(t)−1
m−1

)−1 ∑
|r|=m, r⊂R(t)

∏
k∈v

rk(t)

= n(t)
nm|v|

(
n(t)
m

)−1 ∑
|r|=m, r⊂R(t)

∏
k∈v

rk(t)= �n(t)
m|v| E

∏
k∈v

Xk(t),

where

(X0(t), X1(t))∼H((n0(t), n1(t)), m), (33)

the (hypergeometric) number of type 0 and 1 items in a simple random sample of m items
from a population with n0(t) and n1(t) items of type 0 and 1 respectively. Taking limits for
j, k distinct for |v|=2

hjk(t)=
(

m−1
m

)
p(t)fj(t)fk(t),

while for |v|=3,

hjjk(t)= p(t)
m3

(
(m)2fj(t)fk(t)+(m)3f 2

j (t)fk(t)
)
,

satisfying Condition 2. Condition 3 is verified here as it was for design 1.
By (27), the variance of the asymptotic distribution is

�2 = �0

∫ �
0 p(t)f0(t)f1(t)

[
(1+�0)+(f0(t)+�0f1(t))(m−2)

]
�0(t) dt

(m−1)
(∫ �

0 p(t)f0(t)f1(t)�0(t) dt
)2 , (34)

and condition 5 is satisfied with

e(�0, t)=
∑

x0 +x1 =m

x1

x0 +�0x1

(
m

x0, x1

)
f x0
0 (t)f x1

1 (t) and

�(�0, t)= m
p(t)

∑
x0 +x1 =m

1
x0 +�0x1

(
m

x0, x1

)
f x0
0 (t)f x1

1 (t).

Under the null �0 =1, expression (34) simplifies to

�2 =
(

m
m−1

)
1∫ �

0 p(t)f0(t)f1(t)�0(t) dt
,

giving an asymptotic relative efficiency of (m−1)/m with respect to the full-cohort variance
(32), the same relative efficiency as �̂MPL, as expected by the computation at the end of
section 4.2. Lastly, in the null case e(�0, t)= f1(t) and �(�0, t)=p(t)−1.

Previous efficiency work used a recursive representation of the factorial moments of the
extended hypergeometric distribution (Harkness, 1965) to derive an asymptotic variance
expression for ‘small strata’ case-control data (Breslow, 1981; Hauck & Donner, 1988). The
expressions derived in these papers when there is a single case per set correspond to (34), a
simplification that has not been previously described.

Figure 1 shows efficiency curves relative to �̂MPL as a function of log � by m when
f1(t) ≡ 0.2. As noted previously in Breslow (1981), the Mantel–Haenszel estimator has high
efficiency relative to �̂MPL over a fairly large region around the null.

For the next two designs, define for r ⊂R(t)

rk, l (t)= r ∩Rk(t)∩Cl (t), rk, l (t)= |rk, l (t) |, nk, l (t)= |Rk(t)∩Cl (t) |,
and let
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Xl (t)∼H((n0, l (t), n1, l (t)), ml ), for l ∈C (35)

be independent multivariate hypergeometric vectors, as in (33).
Design 3: matching. Recalling the sampling probabilities (7) for the matching design, for

r ⊂Cl (t) with |r|=ml , we have

Ak
r (t)=

(
cl (t)
ml

)−1 cl (t)
ml

rk, l (t) and Ar(t)= 1
cl (t)

(
cl (t)
ml

)
.

Hence,

hn,v(t)= 1
n

∑
r⊂R

a|v|−1
r (t)

∏
k∈v

Ak
r (t)= 1

n

∑
l∈C

∑
r⊂Cl (t), |r|=ml

a|v|−1
r (t)

∏
k∈v

Ak
r (t)

= n(t)
n

∑
l∈C

cl (t)
n(t)

(
cl (t)
ml

)−1 ∑
r⊂Cl (t), |r|=ml

∏
k∈v

m−1
l rk, l (t)

=�n(t)
∑
l∈C

cl (t)
n(t)

E
∏
k∈v

m−1
l Xk, l (t)

with Xl (t) as in (35). For j �=k distinct, taking limits we find

hjk(t)=p(t)
∑
l∈C

(
ml −1

ml

)
ql (t)fj, l (t)fk, l (t), (36)

while for |v|=3,

hjjk(t)=p(t)
∑
l∈C

ql (t)
(

ml −1
m2

l

fj, l (t)fk, l (t)+ (ml −1)2

m2
l

f 2
j, l (t)fk, l (t)

)

and condition 2 is satisfied. Condition 3 is satisfied in a manner similarly as for design 2,
with the additional assumption that ml ≥2, ensuring that (ml −1)/ml in (36) is positive.

Fig. 1. Asymptotic efficiency by exposure rate ratio � of Mantel–Haenszel relative to the par-
tial likelihood estimator for simple random sampling of m − 1 controls. Probability of exposure
P(Z(t)=1 |Y (t)=1)=0.2.
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In particular, from (27) the variance of the limiting normal is

�2 =
�0

∫ �
0 p(t)

∑
l∈C
(

ml −1
m2

l

)
ql (t)f0, l (t)f1, l (t)[(1+�0)+(f0, l (t)+�0f1, l (t))(ml −2)]�0(t) dt(∫ �

0 p(t)
∑

l∈C
(

ml −1
ml

)
ql (t)f0, l (t)f1, l (t)�0(t) dt

)2 ,

and condition 5 is satisfied with

e(�0, t)=
∑
l∈C

ql (t)
∑

x0, l +x1, l =ml

(
x1, l

x0, l +�0x1, l

)(
ml

x0, l , x1, l

)
f

x0, l
0, l (t)f

x1, l
1, l (t)

and

�(�0, t)=p(t)−1
∑
l∈C

ql (t)ml

∑
x0, l +x1, l =ml

(
1

x0, l +�0x1, l

)(
ml

x0, l , x1, l

)
f

x0, l
0, l (t)f

x1, l
1, l (t).

Specializing further, under the null �0 =1,

�2 = 1(∫ �
0 p(t)

∑
l∈C
(

ml −1
ml

)
ql (t)f0, l (t)f1, l (t)�0(t) dt

) ,

e(�0, t)=
∑
l∈C

ql (t)f1, l (t) and �(�0, t)=p(t)−1.

Design 4: counter matching. Recalling the sampling probabilities (8) for the counter-
matching design, where C is a set of types, PC(t) ⊂ R(t) the collection of sets r with ml

subjects of type l at time t, cl (t) is the number of type l subjects in R(t), and Ci(t) the type
of subject i at time t. By (3) for r ∈PC(t),

�t(r)=
[∏

l∈C

(
cl (t)
ml

)]−1

,

and letting rk, l (t)={i ∈ r : Zi(t)=k, Ci(t)= l}, and rk, l (t)= |rk, l (t)|,

Ak
r (t)=

∑
i∈Rk (t)

�t(r |i)=
[∏

l∈C

(
cl (t)
ml

)]−1(∑
l∈C

rk, l (t)
cl (t)
ml

)
,

and Ar(t)= 1
n(t)

[∏
l∈C

(
cl (t)
ml

)]
.

As for design 3, we can write hn,v(t) as an expectation

hn,v(t)=�n(t)E

(∏
k∈v

∑
l∈C

Xk, l (t)cl (t)
mln(t)

)
=�n(t)E

⎛
⎝ ∑

lp∈C, p=1, ..., |v|

∏
k∈v

Xk, lp (t)clp (t)

mlp n(t)

⎞
⎠,

and for |v|=2 with j �=k distinct, taking limits we find hjk(t) is p(t) times

∑
l∈C

(
ml −1

ml

)
fj, l (t)fk, l (t)q2

l (t)+
∑
l1 �= l2

fj, l1 (t)fk, l2 (t)ql1 (t)ql2 (t), (37)

which can be further simplified to yield
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hjk(t)=p(t)

(
fj(t)fk(t)−

∑
l∈C

(
1

ml

)
fj, l (t)fk, l (t)q2

l (t)

)
. (38)

Applying the assumptions made at the beginning of this section in version (i) on the first
sum in (37) or in version (ii) on the second sum in (37), condition 3 is satisfied. Similar cal-
culations yield

hjkk(t)=p(t)
{

fj(t)f 2
k (t)+

(∑
l∈C

(
1

ml

)
fj, l (t)f1, k(t)q2

l (t)

)(∑
l∈C

(1−3fk, l (t))ql (t)

)

−
∑
l∈C

(
1

m2
l

)
fj, l (t)fk, l (t)(1−2fk, l (t))q3

l (t)
}
.

Hence, condition 2 is satisfied, and �2 can now be calculated by (27).
For the parameters in the limiting distribution for the baseline hazard estimator, we have

e(�0, t)=
∑

x0, � +x1, � =m� , �∈C

( ∑
l∈C x1, l

ql (t)
ml∑

l∈C(x0, l +�0x1, l )
ql (t)
ml

)∏
�∈C

(
m�

x0, �, x1, �

)
f x0
� (t)f x1

� (t),

and

�(�0, t)=p(t)−1
∑

x0, � +x1, � =m� , �∈C

(
1∑

l∈C(x0, l +�0x1, l )
ql (t)
ml

)∏
�∈C

(
m�

x0, �, x1, �

)
f x0
� (t)f x1

� (t).

We specialize further to the case where there are two strata, |C|=2, and the binary strata
variable C(t) ∈ {0, 1} is a (perhaps easily available) surrogate for the true binary exposure
Z(t)∈{0, 1}. Recalling

fk, l (t)=P(Z(t)=k |C(t)= l, Y (t)=1) k, l ∈{0, 1},

we have

fk, l (t)ql (t)=P(Z(t)=k |C(t)= l, Y (t)=1)P(C(t)= l |Y (t)=1)

=P(Z(t)=k, C(t)= l |Y (t)=1)=�k, l (t)

say, and

�(t)=P(C(t)=1 |Z(t)=1, Y (t)=1) and (t)=P(C(t)=0 |Z(t)=0, Y (t)=1),

the sensitivity and specificity of Z(t) for C(t). As

�11(t)=�(t)f1(t), �10(t)= (1−�(t))f1(t)
�01(t)= (1− (t))f0(t), �00(t)= (t)f0(t),

and (38) gives h01(t) for, say m0 =m1 =1, as p(t) times

f0(t)f1(t)− (f0, 1(t)f1, 1(t)q2
1(t)+ f0, 0(t)f1, 0(t)q2

0(t))

= f0(t)f1(t)− (�0, 1(t)�1, 1(t)+�0, 0(t)�1, 0(t))

= f0(t)f1(t)− ((1− (t))f0(t)�(t)f1(t)+ (t)f0(t)(1−�(t))f1(t))

= f0(t)f1(t)((1−�(t))(1− (t))+ (t)�(t)). (39)

In a similar way, h011(t) and h001(t) can be expressed in terms of the sensitivity, specificity
and probability of exposure integrated against the baseline hazard. Using (26) and the partial
likelihood variance given in (A3) from Langholz & Borgan (1995), asymptotic efficiencies for
�̂MH relative to �̂MPL can be computed.

Figure 2 shows the asymptotic relative efficiencies by log(�) with P(Z(t)=1 |Y (t)=1)=0.2
for m0, m1 ∈{1, 2} when the conditional distribution of (Z(t), C(t)) given Y (t)=1 does not
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depend on t, which holds, approximately, for rare outcomes when censoring does not depend
on (Z(t), C(t)). Although there is some difference in the relative efficiencies by choice of m0

and m1 and the sensitivity and specificity of C for Z, �̂MH has fairly high efficiency in a wide
range of situations.

Under the null �0 =1 (27) simplifies to yield

�2 = 1∫ �
0 p(t)

(
f0(t)f1(t)−∑l (

1
ml

)f0, l (t)f1, l (t)q2
l (t)
)

�0(t)
, (40)

and using x0, l +x1, l =ml and EXk, l =mlfk, l (t), we have

e(�0, t)=
∑
l∈C

f1, l (t)ql (t) and �(�0, t)=p(t)−1.

When (m0, m1)= (1, 1), so that the design matches one control with ‘surrogate exposure’
C(t) value opposite to the exposure Z(t) of the case, substituting (39) into (40) yields

�2 =
(∫ �

0
p(t)f0(t)f1(t)((1−�(t))(1− (t))+ (t)�(t))�0(t) dt

)−1

,

which is the equal to the asymptotic variance for the 1:1 counter-matching design when using
the �̂MPL (Langholz & Clayton, 1994), as anticipated by the argument at the end of
section 4.2. We note that, as in Langholz & Clayton (1994), when the sensitivity and speci-
ficity are close to 1 (or 0), the counter-matching design has efficiency close to that of the full
cohort.

Fig. 2. Asymptotic efficiency by exposure rate ratio � of Mantel–Haenszel relative to the partial like-
lihood estimator for counter matching by sensitivity (�=P(Z(t)=1 |C(t)=1, Y (t)=1)) and specificity
(=P(Z(t)=0 |C(t)=0, Y (t)=1)). Probability of exposure P(Z(t)=1 |Y (t)=1)=0.2.
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6. Discussion

We have described the Mantel–Haenszel estimator for the rate ratio in a proportional hazards
model, and associated baseline hazard estimator, for a large class of case-control sampling
designs within the context of risk set sampling from cohort data. We have further demon-
strated necessary conditions for consistency and asymptotic normality as well as provided
efficiency calculations for a number of designs. Our results generalize the work of Zhang
et al. (2000) and Zhang (2000) by allowing for quite general censoring and sampling, recur-
rent events, and time-dependent exposure variable. Although, in general, �̂MH is less efficient
than �̂MPL, we showed that for general sampling, when �0 =1, �̂MH has efficiency equal to
�̂MPL. Further, for the specific sampling designs we studied, we found that the efficiency loss
for �̂MH was not large within a range of �0 of practical interest. Like other Mantel–Haenszel
estimators and unlike �̂MPL, �̂MH under sampling has a simple closed form.

We have described and analysed a number of extensions to the Mantel–Haenszel esti-
mator in Goldstein and Langholz (2006) including handling multilevel exposure, estimators
based on

Rjk(t)=
∫ t

0

∑
r⊂R

a(A0
r (s), A1

r (s)) Ak
r (s) dNj

r (s),

where a(u, v) is a positive symmetric function along the lines of Zhang et al. (2000) and Zhang
(2000), and robust variance estimators based on the optional variation parallel to the esti-
mator described by Liang (1985).

An important generalization relevant to the matching design is to the stratified propor-
tional hazards model with �i(t)=Yi(t)�Ci (t)(t)�

Zi (t)
0 , where �c(t) is the baseline hazard func-

tion for matching stratum c (e.g. Andersen et al., 1993). Even in this extended model, it re-
mains true that R10(t)−�0R01(t) is a local square integrable martingale. We can guarantee the
consistency of �̂MH in this situation by letting condition 1 hold with �l (t) replacing �0(t), and
condition 2 hold with

Hv, l (t)=
∑

r⊂Cl (t)

a|v|−1
r (t)

∏
k∈v

Ak
r (t)

and its scaled limit hv, l (t), replacing Hv(t) and hv(t), respectively, for each l ∈C. Now lemma 1
holds for each l ∈C, and summing over all l in (the finite set) C gives the asymptotic normality
of �̂MH for the matching design with strata-specific baseline hazard �l (t), with variance

�2 =
∫ �

0

∑
l∈C(�2

0h011, l (t)+�0h100, l (t))�l (t) dt

(
∫ �

0

∑
l∈C h01, l (t)�l (t) dt)2

.
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