Sampling Case-Control Studies Over Time

http: //math.usc.edu/~larry

From the United Airlines In Flight Magazine

5		$\begin{array}{lllll}\text { a) } 2 & \text { b) } 3 & \text { c) } 4 & \text { d) } 40 & \text { c) } 41\end{array}$ 2. What day follows the day before yesterday if two diys from now will be Sunday? 3. Complete the analogy: MUSIC is ro VIOLIN as a) notes is to composer b) sound is to musical instrument c) drawing is to crayon d) furniture is to carpentry tools e) symphony is to piano 4. What is the next number in the following: 00122436485 ... a) 6 b) 8 c) 10 d) 12 e) 14 5. Complete the analogy: GEORGE WASHINGTON is to CHERRY TREE as a) Jonas Salk is to polio vaccine b) Abraham Lincoln is to emancipation c) Thomas Edison is to light bulb e) John Hancock is ? \qquad \qquad 	of the people are blue-cyed many people are in the roend a) 3 b) 17 e) 19 d) 24 8. Suppose you have 312 -h clock where the number re the hour is always the same ber representing the minut clock can only show times 9:09, 10:10, etc. What is it time difference between t a) 101 minutes b) 61 minutes c) 60 minutes d) 49 minutes c) 11 minutes 9. A square $A B C D$ is ins ter circle where B is on t of the circle and D is th circle. What is die leng

What is the next number in the sequence

$$
0,0,1,2,2,4,3,6,4,8,5 \ldots ?
$$

What is the next number in the sequence

$$
0,0,1,2,2,4,3,6,4,8,5 \ldots ?
$$

Two Alternating Sequences

$$
0,0,1,2,2,4,3,6,4,8,5,10,6 \ldots
$$

Logistic Model

In cohort \mathcal{R}, the failure indicator D_{i} for individual $i \in \mathcal{R}$ has distribution

$$
P\left(D_{i}=1\right)=\frac{\lambda_{0} \exp \left(\boldsymbol{\beta}_{0}^{\prime} \mathbf{Z}_{i}\right)}{1+\lambda_{0} \exp \left(\boldsymbol{\beta}_{0}^{\prime} \mathbf{Z}_{i}\right)},
$$

where λ_{0} is a baseline factor, \mathbf{Z}_{i} is a covariate vector, and $\boldsymbol{\beta}_{0}$ an unknown parameter.

Extend to a model for observing the cohort over time.

Cox Model 1972: Cohort over time

Failure rate for individual $i \in \mathcal{R}$ at time t is common baseline hazard function $\lambda_{0}(t)$ adjusted for covariates $\mathbf{Z}_{i}(t)$, accommodate censoring by time dependent indicator $Y_{i}(t)$:

$$
\lambda_{i}(t)=Y_{i}(t) \lambda_{0}(t) \exp \left(\boldsymbol{\beta}_{0}^{\prime} \mathbf{Z}_{i}(t)\right) .
$$

Semi-parametric model: $\boldsymbol{\beta}_{0}$ finite dimensional parameter of interest, λ_{0} is infinite dimensional 'nuisance' parameter.

Still of interest to estimate integrated baseline hazard,

$$
\Lambda_{0}(t)=\int_{0}^{t} \lambda_{0}(s) d s
$$

Cox Model: Analysis

Define the risk set

$$
\mathcal{R}(t)=\left\{i: Y_{i}(t)=1\right\} .
$$

Cox partial likelihood estimator (MPLE) maximizes the product of probabilities that failure i_{j} was observed to fail at time t_{j}, given that there was one failure at that time from those in the risk set $\mathcal{R}_{j}=\mathcal{R}\left(t_{j}\right)$,

$$
\mathcal{L}(\boldsymbol{\beta})=\prod_{\text {failure times } t_{j}} \frac{\exp \left(\boldsymbol{\beta}^{\prime} \mathbf{Z}_{i_{j}}\left(t_{j}\right)\right.}{\sum_{k \in \mathcal{R}_{j}} \exp \left(\boldsymbol{\beta}^{\prime} \mathbf{Z}_{k}\left(t_{j}\right)\right)}
$$

Consistent, asymptotically normal, though not a true likelihood: dependence, ignore information between failures.

RISK SETS IN CONTINUOUS TIME

- Failure
, At risk

Sampling Designs

The risk sets $\mathcal{R}(t)$ may be too large for the collection of complete information. Sampling designs specify the probability

$$
\pi_{t}(\mathbf{r} \mid i)
$$

of using \mathbf{r} as the sampled risk set should i fail at t.
Weights cancel out common factors,

$$
w_{i}(t, \mathbf{r})=\frac{\pi_{t}(\mathbf{r} \mid i)}{n(t)^{-1} \sum_{l \in \mathbf{r}} \pi_{t}(\mathbf{r} \mid l)}
$$

Sampling Estimators: Cox Model

When $\pi_{t}(\mathbf{r} \mid i)$ selects sampled risk set $\tilde{\mathcal{R}}_{j}$ to use when i_{j} fails at time t_{j}, maximize

$$
L(\boldsymbol{\beta})=\prod_{\text {failure times } t_{j}} \frac{\exp \left(\boldsymbol{\beta}^{\prime} \mathbf{Z}_{i_{j}}\left(t_{j}\right)\right) \pi_{t_{j}}\left(\tilde{\mathcal{R}}_{j} \mid i_{j}\right)}{\sum_{k \in \tilde{\mathcal{R}}_{j}} \exp \left(\boldsymbol{\beta}^{\prime} \mathbf{Z}_{k}\left(t_{j}\right)\right) \pi_{t_{j}}\left(\tilde{\mathcal{R}}_{j} \mid k\right)} .
$$

Estimated integrated baseline hazard

$$
\hat{\Lambda}_{0}(t)=\sum_{t_{j} \leq t} \frac{1}{\sum_{l \in \tilde{\mathcal{R}}_{j}} \exp \left(\hat{\boldsymbol{\beta}}^{\top} \mathbf{Z}_{l}\left(t_{j}\right)\right) w_{l}\left(t_{j}, \tilde{\mathcal{R}}_{j}\right)} .
$$

Two Questions

1. For observations over times, what sampling designs might we consider and what are their asymptotic properties (e.g. relative efficiency)? (with B. Langholz and \emptyset. Borgan)
2. What about sampling for models with no time dependence ? (B. Langholz, R. Arratia)

1. Designs, over time

FC, Full Cohort Design: Analyzed by Andersen and Gill, 1982, using Counting Processes and Martingale methods for time varying covariates and general censoring.

NCCS, Nested Case Control Design, Thomas 1977: Sample $m-1$ controls for the failure at the failure time.

CC, Case Cohort Design, Prentice 1986: Choose subcohort \tilde{C} from full cohort at time $t=0$, let the sampled risk set for failure i_{j} be $\tilde{C} \cup\left\{i_{j}\right\}$.

CM, Counter Matching Design, Langholz and Borgan 1995: Sample to obtain m_{l} individuals in each strata $l \in \mathcal{C}$.

Specification of Designs

Let $\pi_{t}(\mathbf{r} \mid i)$ be the probability of choosing \mathbf{r} as the sampled risk set should i fail at time t.

NCCS: Sample over $\mathbf{r} \ni i, \mathbf{r} \subset \mathcal{R}(t),|\mathbf{r}|=m, n(t)=|\mathcal{R}(t)|$,

$$
\pi_{t}(\mathbf{r} \mid i)=\binom{n(t)-1}{m-1}^{-1}
$$

CM: Sample over $\mathbf{r} \ni i, \mathbf{r} \subset \mathcal{R}(t),\left|\mathbf{r} \cap \mathcal{R}_{l}(t)\right|=m_{l} ; l \in \mathcal{C}$

$$
\pi_{t}(\mathbf{r} \mid i)=\left[\prod_{l \in \mathcal{C}}\binom{n_{l}(t)}{m_{l}}\right]^{-1} \frac{n_{C_{i}(t)}(t)}{m_{C_{i}(t)}} .
$$

Analysis by Martingales

The process $N_{i}(t)$ counting the number of events for i in ($0, t]$ has intensity $\lambda_{i}(t)$, and

$$
M_{i}(t)=N_{i}(t)-\int_{0}^{t} \lambda_{i}(s) d s
$$

is a martingale (AG '82). For sampling, the process $N_{i, \mathbf{r}}(t)$ counting the number of events for (i, \mathbf{r}) in $(0, t]$ has intensity

$$
\lambda_{i, \mathbf{r}}(t)=\lambda_{i}(t) \pi_{t}(\mathbf{r} \mid i)
$$

and subtracting its integral gives the martingale

$$
M_{i, \mathbf{r}}(t)=N_{i, \mathbf{r}}(t)-\int_{0}^{t} \lambda_{i, \mathbf{r}}(s) d s
$$

Likelihood Methods Apply

The score function $\partial \log L_{t}(\boldsymbol{\beta}) / \partial \boldsymbol{\beta}$ is given by

$$
\mathbf{U}_{t}(\boldsymbol{\beta})=\int_{0}^{t} \sum_{i, \mathbf{r}}\left\{\mathbf{Z}_{i}(u)-\mathbf{E}_{\mathbf{r}}(\boldsymbol{\beta}, u)\right\} \mathrm{d} N_{i, \mathbf{r}}(u)
$$

is a martingale at the true $\boldsymbol{\beta}_{0}$ (and hence has mean zero) even though $L_{t}\left(\boldsymbol{\beta}_{0}\right)$ is a product of dependent terms.

Derive asymptotic properties of estimators by Lenglart's inequality and the Martingale Central Limit Theorem.

Need the covarariate and intensity to be 'predictable' processes w.r.t $\mathcal{F}_{t} \uparrow$; suffices if they are left continuous and adapted (cannot use these techniques for CC).

Asymptotics

The normal limits of

$$
\sqrt{n}\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right) \xrightarrow{\mathcal{D}} \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}^{-1}\right)
$$

and

$$
W(\cdot)=\sqrt{n}\left(\hat{\Lambda}_{0}(\cdot ; \hat{\boldsymbol{\beta}})-\Lambda_{0}(\cdot)\right)+\sqrt{n}\left(\hat{\boldsymbol{\beta}}-\boldsymbol{\beta}_{0}\right)^{\top} B\left(\cdot ; \boldsymbol{\beta}_{0}\right)
$$

are asymptotically independent, and have limiting variances which can be consistently estimated.

Performance Relative to Full Cohort, $\beta_{0}=0$.

NCCS: Sampling $m-1$ controls for each failure,

$$
\operatorname{ARE}_{\text {NCCS }}=(m-1) / m,
$$

SO
$\mathrm{ARE}_{\text {NCCS }} \rightarrow 1 \quad$ as $m \rightarrow \infty$.

Performance Relative to Full Cohort, $\beta_{0}=0$.

CM: Consider $|\mathcal{C}|=2$ strata made up of those surrogate exposed $X=1$, and those surrogate unexposed $X=0$. With sensitivity and specificity of the surrogate X for the true Z given by

$$
\tau=P(X=1 \mid Z=1), \gamma=P(X=0 \mid Z=0)
$$

we have

$$
\operatorname{ARE}_{C M}=\tau \gamma+(1-\tau)(1-\gamma)
$$

If τ, γ are close to 1 (or $0!$) then we have close to full cohort efficiency, e.g. $(\tau, \gamma)=(0.95,0.90)$ gives

$$
\mathrm{ARE}_{\mathrm{CM}}=0.86
$$

Fixed time Model

Probability for failure of individual i in group $\mathcal{R}=\{1, \ldots, N\}$,

$$
\tilde{p}_{i}=\frac{\lambda_{0} x\left(\mathbf{Z}_{i}, \boldsymbol{\beta}_{0}\right)}{1+\lambda_{0} x\left(\mathbf{Z}_{i}, \boldsymbol{\beta}_{0}\right)}, \quad i \in \mathcal{R}
$$

where \mathbf{Z}_{i} is covariate vector of i and $\boldsymbol{\beta}_{0}$ is unknown parameter, $x(0, \boldsymbol{\beta})=x(\mathbf{z}, 0)=1, \lambda_{0}$ baseline odds.

Taking $\quad x(\mathbf{z}, \boldsymbol{\beta})=\exp \left(\mathbf{z}^{\prime} \boldsymbol{\beta}\right) \quad$ gives the logistic model.

Set of cases

$$
D=\left\{i: D_{i}=1\right\} .
$$

Logisitic Analysis: MLE

With individuals independent and D the set of failures, can apply likelihood methods (MLE) on

$$
\begin{aligned}
\mathcal{L}(\boldsymbol{\beta}) & =\prod_{i \in D} \frac{\lambda x\left(\mathbf{Z}_{i}, \boldsymbol{\beta}\right)}{1+\lambda x\left(\mathbf{Z}_{i}, \boldsymbol{\beta}\right)} \prod_{i \notin D} \frac{1}{1+\lambda x\left(\mathbf{Z}_{i}, \boldsymbol{\beta}\right)} \\
& =\lambda^{|D|} x_{D} Q_{\mathcal{R}}
\end{aligned}
$$

where, abbreviating $x_{i}=x\left(\mathbf{Z}_{i}, \boldsymbol{\beta}\right)$,

$$
x_{\mathbf{r}}=\prod_{i \in \mathbf{r}} x_{i} \quad \text { and } \quad Q_{\mathcal{R}}=\prod_{i \in \mathcal{R}} \frac{1}{1+\lambda x_{i}} .
$$

Sampling and Likelihood

Need to sample when N is large. For a given set of cases D, a sampled risk set E is chosen according to a given (design) distribution $\pi(E \mid D)$ with

$$
\sum_{E \subset \mathcal{R}} \pi(E \mid D)=1
$$

Given a sampled risk set E, the likelihood $P_{\boldsymbol{\beta}}(D \mid E)$ is

$$
L(\boldsymbol{\beta})=\frac{\lambda^{|D|} x_{D} \pi(E \mid D)}{\sum_{\mathbf{w} \subset \mathcal{R}} \lambda^{|w|} x_{\mathbf{w}} \pi(E \mid \mathbf{w})} .
$$

Frequency Matching

Choose a sampled risk set E uniformly over all sets of some fixed size which contain the case set D of size η; sampling probabilities are constant and cancel, yielding the likelihood

$$
L_{E}(\boldsymbol{\beta})=P_{\boldsymbol{\beta}}(D \mid E)=\frac{x_{D}}{\sum_{\mathbf{w} \subset E,|\mathbf{w}|=\eta} x_{\mathbf{w}}}
$$

'Rejective sampling' studied by Hájek in 1964,

$$
S_{E, \eta}(r)=\frac{x_{r}}{\sum_{\mathbf{w} \subset E,|\mathbf{w}|=\eta} x_{\mathbf{w}}}
$$

Simple Random Sampling as Rejective Sampling

Generally, sample a set \mathbf{r} of size η from E proportional to the product of weights

$$
x_{\mathbf{r}}=\prod_{A \in \mathbf{r}} x_{A}
$$

When all weights $x_{A}=t$ are equal, $x_{\mathbf{r}}=t^{\eta}$ and

$$
S_{E, \eta}(\mathbf{r})=\frac{x_{\mathbf{r}}}{\sum_{\mathbf{w} \subset E,|\mathbf{w}|=\eta} x_{\mathbf{w}}}=\binom{|E|}{\eta}^{-1} .
$$

Analysis of Estimators

For convenience take

$$
x(\boldsymbol{\beta}, \mathbf{z})=\exp \left(\boldsymbol{\beta}^{\prime} \mathbf{z}\right), \quad \text { which gives } \quad \frac{\partial x_{A}}{\partial \boldsymbol{\beta}}=\mathbf{z}_{A} x_{A}
$$

otherwise, define the 'effective covariate'

$$
\mathbf{z}_{A}=\frac{\partial \mathbf{x}_{A}}{\partial \boldsymbol{\beta}} x_{A}^{-1}
$$

Score for β

The score function for $\boldsymbol{\beta}$ is

$$
\mathcal{U}(\boldsymbol{\beta})=\frac{\partial}{\partial \boldsymbol{\beta}} \log L(\boldsymbol{\beta})=\frac{\partial}{\partial \boldsymbol{\beta}}\left(\log \frac{x_{D}}{\sum_{\mathbf{w} \subset E,|\mathbf{w}|=\eta} x_{\mathbf{w}}}\right) .
$$

Using

$$
\frac{\partial x_{A}}{\partial \boldsymbol{\beta}}=\mathbf{z}_{A} x_{A} \quad \text { so that } \quad \frac{\partial \log x_{A}}{\partial \boldsymbol{\beta}}=\mathbf{z}_{A}
$$

and letting $p_{A}=\mathbf{E}\left(I_{A} \mid E\right)$ (rejective), score simplifies to

$$
\mathcal{U}(\boldsymbol{\beta})=\sum_{A \in D} \mathbf{Z}_{A}-\sum_{A \in E} \mathbf{Z}_{A} p_{A} .
$$

Information for β

With $p_{A}=\mathbf{E}\left(I_{A} \mid E\right)$, and $p_{A B}=\mathbf{E}\left(I_{A} I_{B} \mid E\right)$ the second derivative of the score (information) $\mathcal{I}(\boldsymbol{\beta})$ is,

$$
\sum_{A \in E} \mathbf{Z}_{A} \mathbf{Z}_{A}^{\prime} p_{A} q_{A}+\sum_{A, B \in E, A \neq B} \mathbf{Z}_{A} \mathbf{Z}_{B}^{\prime}\left(p_{A B}-p_{A} p_{B}\right)
$$

Note presence of the rejective sampling correlation

$$
\operatorname{Corr}(A, B)=p_{A B}-p_{A} p_{B} .
$$

Asymptotics: Consistency

We want

$$
|E|^{-1} \mathcal{I}\left(\boldsymbol{\beta}_{0}\right) \xrightarrow{p} \Sigma,
$$

that is

$$
\frac{1}{|E|} \sum_{A \in E} \mathbf{Z}_{A} \mathbf{Z}_{A}^{\prime} p_{A} q_{A}+\frac{1}{|E|} \sum_{A, B \in E, A \neq B} \mathbf{Z}_{A} \mathbf{Z}_{B}^{\prime}\left(p_{A B}-p_{A} p_{B}\right)
$$

to converge. So need second order correlation

$$
p_{A B}-p_{A} p_{B}=O\left(|E|^{-1}\right)=O\left(|E|^{-(2+2 \bmod 2) / 2}\right)
$$

Higher Order Correlations

$$
\operatorname{Corr}(H)=\mathbb{E}\left(\prod_{A \in H}\left(I_{A}-p_{A}\right)\right)
$$

Asymptotics: Consistency

We want third derivative (remainder term)

$$
|E|^{-1} \operatorname{Rem}=O_{p}(1)
$$

But $|E|^{-1}$ Rem term has
$\frac{1}{|E|} \sum_{A, B, C}$ Products of covariates \times third order correlation,
need

$$
\operatorname{Corr}(A, B, C)=O\left(|E|^{-2}\right)=O\left(|E|^{-(3+3 \bmod 2) / 2}\right)
$$

Follows if for rejective sampling we have

$$
\operatorname{Corr}(H)=O\left(|E|^{-(|H|+|H| \bmod 2) / 2}\right)
$$

Simple Random Sampling

Sample η out of set E, all $\binom{|E|}{\eta}$ subsets equally likely. For $H=\{A, B\} \subset E$, inclusion indicators I_{A}, I_{B}; $p_{A}=p_{B}=\eta /|E|$, covariance

$$
\mathbf{E}\left(I_{A}-p_{A}\right)\left(I_{B}-p_{B}\right)=\frac{-1}{|E|} \frac{\eta(|E|-\eta)}{|E|(|E|-1)}
$$

so when $\eta /|E| \rightarrow d$,

$$
|E| \mathbf{E}\left(I_{A}-p_{A}\right)\left(I_{B}-p_{B}\right) \rightarrow d(d-1) .
$$

$\operatorname{Corr}(|H|)=O\left(|E|^{-(|H|+|H| \bmod 2) / 2}\right)$
$|E|^{1} \operatorname{Corr}(2) \quad \rightarrow \quad d(d-1)$
$|E|^{2} \operatorname{Corr}(3) \quad \rightarrow \quad 2 d(d-1)(2 d-1)$
$|E|^{2} \operatorname{Corr}(4) \quad \rightarrow \quad 3 d^{2}(d-1)^{2}$
$|E|^{3} \operatorname{Corr}(5) \rightarrow 20 d^{2}(d-1)^{2}(2 d-1)$
$|E|^{3} \operatorname{Corr}(6) \rightarrow 15 d^{3}(d-1)^{3}$
$|E|^{4} \operatorname{Corr}(7) \quad \rightarrow \quad 210 d^{3}(d-1)^{3}(2 d-1)$
$|E|^{4} \operatorname{Corr}(8) \rightarrow 105 d^{4}(d-1)^{4}$
$|E|^{5} \operatorname{Corr}(9) \quad \rightarrow \quad 2520 d^{4}(d-1)^{4}(2 d-1)$

What is the next number in the sequence

$$
1,2,3,20,15,210,105,2520, \ldots ?
$$

Two alternating sequences

$$
1,2,3,20,15,210,105,2520, \ldots ?
$$

$$
\begin{gathered}
1,3,15,105, \ldots, \\
2,20,210,2520, \ldots,
\end{gathered}
$$

Generating functions, induction, difference equations, or.... another of our most sophisticated techniques:

```
#anor linteger Sequences mEsEARCM
```


The On-Line Encyclopedia of Integer Sequences

Enter a * sequence, \upharpoonright word, or \subset sequence number:
$\longdiv { 2 , 2 0 , 2 1 0 , 2 5 2 0 }$

Search Restore exsmple Clear | Hints \| Advanced look-up

 OEIS in other languages Chinese, Chinese (simplified), Czech, Fimnish, French, German Hindi, Hungarian Halian Portuguese Russian Serbian Spansh SwedishFor information about the Encyclopedia see the Welcome page.
Lookup | Welcome \mid Francais \mid Demos \mid Index \mid Browse \mid More \mid WehCam Contribute new seq. or comment Format Tramsforma Puzzlex Hot Classics More puges Supersecker Maintained by N. J. A. Sloane (njaser research.att.com)
[Last modified Sun Sep 22 22:30:28 EDT 2002 . Contains 75236 sequences.]
homel poople | proiscts | research areas | resouroes)
hagyright o 2002 NTVR
All Fighte reservech
word tor

\#nor Integer Sequences RESGEARCM

Greetings from the On-Line Encyclopedia of Integer Sequences!

Lookup | Index \mid Bronse \mid Format | Contribute \mid EIS \mid NJIS

Matches (up to a limit of 30) found for 2202102520 :
It will take a few minutes to search the table (the second and later lookups are fasser)]

ID Wunber: A000S06 (roznom1y N2124 and N0841)
Suquance: $2,20,210,2520,14650,540540,9459450,183783600,3928374450$,
Tane: $91662070560,2319050383650,63246329645000,1845969737866250$
Nander- Expansion of $2\langle 1+3 \mathrm{x}) /(1-2 \mathrm{x}\}+3 / 2$.
Refarencean L. Coartet, Advancud Corbinatorica, Maidinl, 1574, P. 256.
Y. K. David and D. K. Barton, Coabinatorial Chance.

Charlma Jordan, On Stitling'x murkera, Tohoku Math. S., 37 (1993).
. Jordin, Calculue of Finite Differmncen. Budapuat, 1939, p-152.
see alno: Kquale $2 * 3000457$
koywords: nom
offent:
huthor (y) : njan
show internal format for above sequancen Ye

Lookup \mid Welcome \mid Francais \mid Dennos \mid Index \mid Browse \mid More \mid WehCam Contribute new seq. or comment More pages \mid Superseeker $/$ Maintained by N. J. A. Sloane (nias

home | poople | projocts | research aroas | resources !
Popucisht 02002 ATMT
All fighte reserve
mose tha

Rewriting Generating Function

Odd $k^{\text {th }}$ order coefficient is

$$
\frac{1}{3}(k-1) E Z^{k+1} \quad \text { for } Z \sim \mathcal{N}(0,1)
$$

Even $k^{t h}$ order coefficient is

$$
E Z^{2 k}=1 \cdot 3 \cdot(2 k-3)(2 k-1) \quad \text { for } \quad Z \sim \mathcal{N}(0,1) .
$$

The Normal Distribution is Here
But where is a sum of independent variables?

Conditioning

With T_{θ} the (Bernoulli sampling) measure under which $I_{A}, A \in E$ are independent with success probability

$$
\tilde{p}_{A}=\theta x_{A} /\left(1+\theta x_{A}\right)
$$

then for all $\theta>0$,

$$
S_{E, \eta}(\mathbf{r})=T_{\theta}\left(\left\{A \in E: I_{A}=1\right\}=\mathbf{r} \mid \sum_{A \in E} I_{A}=\eta\right)
$$

To make \tilde{p}_{A} and p_{A} close, choose θ so that

$$
\mathbb{E}\left(\sum_{A \in E} I_{A}\right)=\eta
$$

Local Central Limit Theorem

For X_{n} the sum I_{1}, I_{2}, \ldots of independent indicators with $p_{j}=\mathbb{E} I_{j}$, when $\exists \epsilon>0, n_{\epsilon}$ so that $\sum_{j=1}^{n} p_{j} q_{j} \geq \epsilon n$ for all $n \geq n_{\epsilon}$, with $\mathbf{E} \exp \left(i t X_{n}\right)=\phi_{n}(t)$, let

$$
m_{\nu}(s)=\sum_{j=0}^{s} \frac{(-i \nu)^{j}}{j!} \mathcal{I}_{n, j}
$$

where

$$
\mathcal{I}_{n, j}=\frac{1}{2 \pi} \int_{|t| \leq \pi} t^{j} \phi_{n}(t) d t
$$

Then for given κ and even s, for all $|\nu| \leq \kappa$ with $\mathbb{E} X_{n}+\nu \in \mathbf{N}$

$$
P\left(X_{n}=\mathbb{E} X_{n}+\nu\right)=m_{\nu}(s)+\Theta_{\epsilon, \kappa, s}\left(n^{-(s+3) / 2}\right) .
$$

Conditioning + LCLT

Relate p_{A} and \tilde{p}_{A} by conditioning Bernoulli sample T,

$$
\begin{aligned}
p_{A} & =\frac{P(A \in T,|T|=\eta)}{P(A \in T,|T|=\eta)+P(A \notin T,|T|=\eta)} \\
& =\frac{\tilde{p}_{A} P(|T \backslash A|=\eta-1)}{\tilde{p}_{A} P(|T \backslash A|=\eta-1)+\tilde{q}_{A} P(|T \backslash A|=\eta)} .
\end{aligned}
$$

Applying LCLT expansion gives rates (and a more careful analysis for simple random sampling, 34650).

Frequency matching under the Null

Probability of failure is d. Full cohort has Information

$$
d(1-d) \operatorname{Var}(Z)
$$

Frequency matching $m-1$ controls for each failure has Information

$$
\begin{gathered}
\frac{(m-1) d}{m} \operatorname{Var}(Z) \\
\text { ARE }_{\mathrm{FM}}=\frac{m-1}{m(1-d)}
\end{gathered}
$$

E.g. $d=.1, m=5$, Matching/Full $=0.8 / 0.9=89 \%$.

Counter Matching

Binary covariate Z, binary surrogate X. With 1:1 counter matching, so the sampled cohort has same number of surrogate exposed as unexposed,

$$
\begin{gathered}
\pi_{i j}=P(X=i, Z=j) \text { and } \\
\tau=P(X=1 \mid Z=1), \gamma=P(X=0 \mid Z=0)
\end{gathered}
$$

relative efficiency to Full Cohort is

$$
\begin{aligned}
\{\tau \gamma & +(1-\tau)(1-\gamma)\} \\
& -d \frac{\pi_{.1} \pi_{.0}}{\pi_{0 .} \pi_{1 .}}(\tau \gamma-(1-\tau)(1-\gamma))^{2}
\end{aligned}
$$

Further Questions

1. Analysis of counter matching design away from the null, asymptotics.
2. Other designs in logistic type models.
3. Group time models.
4. And ... ??

Further Questions

1. Analysis of counter matching design away from the null, asymptotics.
2. Other designs in logistic type models.
3. Group time models.
4. Other problems from the in flight magazine.
