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From the United Airlines In Flight Magazine
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What is the next number in the sequence

0, 0, 1, 2, 2, 4, 3, 6, 4, 8, 5 . . . ?
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What is the next number in the sequence

0, 0, 1, 2, 2, 4, 3, 6, 4, 8, 5 . . . ?
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Two Alternating Sequences

0, 0, 1, 2, 2, 4, 3, 6, 4, 8, 5, 10, 6 . . .
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Logistic Model

In cohort R, the failure indicator Di for individual i ∈ R
has distribution

P (Di = 1) =
λ0 exp(β′0Zi)

1 + λ0 exp(β′0Zi)
,

where λ0 is a baseline factor, Zi is a covariate vector, and
β0 an unknown parameter.

Extend to a model for observing the cohort over time.
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Cox Model 1972: Cohort over time

Failure rate for individual i ∈ R at time t is common
baseline hazard function λ0(t) adjusted for covariates Zi(t),
accommodate censoring by time dependent indicator Yi(t):

λi(t) = Yi(t)λ0(t) exp(β′0Zi(t)).

Semi-parametric model: β0 finite dimensional parameter of
interest, λ0 is infinite dimensional ‘nuisance’ parameter.

Still of interest to estimate integrated baseline hazard,

Λ0(t) =
∫ t

0

λ0(s)ds
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Cox Model: Analysis

Define the risk set

R(t) = {i : Yi(t) = 1}.

Cox partial likelihood estimator (MPLE) maximizes the
product of probabilities that failure ij was observed to fail
at time tj , given that there was one failure at that time
from those in the risk set Rj = R(tj),

L(β) =
∏

failure times tj

exp(β′Zij
(tj)∑

k∈Rj
exp(β′Zk(tj))

.

Consistent, asymptotically normal, though not a true
likelihood: dependence, ignore information between failures.
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RISK SETS IN CONTINUOUS TIME

• Failure
At risk
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Sampling Designs

The risk sets R(t) may be too large for the collection of
complete information. Sampling designs specify the
probability

πt(r|i)

of using r as the sampled risk set should i fail at t.

Weights cancel out common factors,

wi(t, r) =
πt(r | i)

n(t)−1
∑

l∈r πt(r | l)
.
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Sampling Estimators: Cox Model

When πt(r|i) selects sampled risk set R̃j to use when ij
fails at time tj , maximize

L(β) =
∏

failure times tj

exp(β′Zij
(tj))πtj

(R̃j |ij)∑
k∈R̃j

exp(β′Zk(tj))πtj (R̃j |k)
.

Estimated integrated baseline hazard

Λ̂0(t) =
∑
tj≤t

1∑
l∈R̃j

exp(β̂
T
Zl(tj))wl(tj , R̃j)

.
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Two Questions

1. For observations over times, what sampling designs
might we consider and what are their asymptotic
properties (e.g. relative efficiency)? (with B.
Langholz and Ø. Borgan)

2. What about sampling for models with no time
dependence ? (B. Langholz, R. Arratia)
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1. Designs, over time

FC, Full Cohort Design: Analyzed by Andersen and Gill,
1982, using Counting Processes and Martingale methods
for time varying covariates and general censoring.

NCCS, Nested Case Control Design, Thomas 1977: Sample
m− 1 controls for the failure at the failure time.

CC, Case Cohort Design, Prentice 1986: Choose subcohort
C̃ from full cohort at time t = 0, let the sampled risk set
for failure ij be C̃ ∪ {ij}.

CM, Counter Matching Design, Langholz and Borgan 1995:
Sample to obtain ml individuals in each strata l ∈ C.
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Specification of Designs

Let πt(r|i) be the probability of choosing r as the sampled
risk set should i fail at time t.

NCCS: Sample over r 3 i, r ⊂ R(t), |r| = m,n(t) = |R(t)|,

πt(r|i) =
(

n(t)− 1
m− 1

)−1

CM: Sample over r 3 i, r ⊂ R(t), |r ∩Rl(t)| = ml; l ∈ C

πt(r|i) =

[∏
l∈C

(
nl(t)
ml

)]−1
nCi(t)(t)
mCi(t)

.
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Analysis by Martingales

The process Ni(t) counting the number of events for i in
(0, t] has intensity λi(t), and

Mi(t) = Ni(t)−
∫ t

0

λi(s)ds

is a martingale (AG ’82). For sampling, the process Ni,r(t)
counting the number of events for (i, r) in (0, t] has
intensity

λi,r(t) = λi(t)πt(r|i)
and subtracting its integral gives the martingale

Mi,r(t) = Ni,r(t)−
∫ t

0

λi,r(s)ds.
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Likelihood Methods Apply

The score function ∂ log Lt(β)/∂β is given by

Ut(β) =
∫ t

0

∑
i,r

{Zi(u)−Er(β, u)}dNi,r(u)

is a martingale at the true β0 (and hence has mean zero)
even though Lt(β0) is a product of dependent terms.

Derive asymptotic properties of estimators by Lenglart’s
inequality and the Martingale Central Limit Theorem.

Need the covarariate and intensity to be ‘predictable’
processes w.r.t Ft ↑; suffices if they are left continuous and
adapted (cannot use these techniques for CC).
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Asymptotics

The normal limits of

√
n(β̂ − β0)

D→ N (0,Σ−1)

and

W (·) =
√

n
(
Λ̂0(· ; β̂)− Λ0(·)

)
+
√

n
(
β̂ − β0

)T

B(· ;β0)

are asymptotically independent, and have limiting variances
which can be consistently estimated.
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Performance Relative to Full Cohort, β0 = 0.

NCCS: Sampling m− 1 controls for each failure,

ARENCCS = (m− 1)/m,

so
ARENCCS → 1 as m →∞.
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Performance Relative to Full Cohort, β0 = 0.

CM: Consider |C| = 2 strata made up of those surrogate
exposed X = 1, and those surrogate unexposed X = 0.
With sensitivity and specificity of the surrogate X for the
true Z given by

τ = P (X = 1|Z = 1), γ = P (X = 0|Z = 0),

we have
ARECM = τγ + (1− τ)(1− γ).

If τ, γ are close to 1 (or 0 !) then we have close to full
cohort efficiency, e.g. (τ, γ) = (0.95, 0.90) gives

ARECM = 0.86.
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Fixed time Model

Probability for failure of individual i in group
R = {1, . . . , N},

p̃i =
λ0x(Zi,β0)

1 + λ0x(Zi,β0)
, i ∈ R,

where Zi is covariate vector of i and β0 is unknown
parameter, x(0,β) = x(z, 0) = 1,λ0 baseline odds.

Taking x(z,β) = exp(z′β) gives the logistic model.

Set of cases
D = {i : Di = 1}.
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Logisitic Analysis: MLE

With individuals independent and D the set of failures, can
apply likelihood methods (MLE) on

L(β) =
∏
i∈D

λx(Zi,β)
1 + λx(Zi,β)

∏
i 6∈D

1
1 + λx(Zi,β)

= λ|D|xDQR,

where, abbreviating xi = x(Zi,β),

xr =
∏
i∈r

xi and QR =
∏
i∈R

1
1 + λxi

.
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Sampling and Likelihood

Need to sample when N is large. For a given set of cases
D, a sampled risk set E is chosen according to a given
(design) distribution π(E|D) with∑

E⊂R
π(E|D) = 1.

Given a sampled risk set E, the likelihood Pβ(D|E) is

L(β) =
λ|D|xDπ(E|D)∑

w⊂R λ|w|xwπ(E|w)
.
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Frequency Matching

Choose a sampled risk set E uniformly over all sets of some
fixed size which contain the case set D of size η; sampling
probabilities are constant and cancel, yielding the likelihood

LE(β) = Pβ(D|E) =
xD∑

w⊂E,|w|=η xw
.

‘Rejective sampling’ studied by Hájek in 1964,

SE,η(r) =
xr∑

w⊂E,|w|=η xw
.
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Simple Random Sampling as Rejective
Sampling

Generally, sample a set r of size η from E proportional to
the product of weights

xr =
∏
A∈r

xA.

When all weights xA = t are equal, xr = tη and

SE,η(r) =
xr∑

w⊂E,|w|=η xw
=
(
|E|
η

)−1

.
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Analysis of Estimators

For convenience take

x(β, z) = exp(β′z), which gives
∂xA

∂β
= zAxA;

otherwise, define the ‘effective covariate’

zA =
∂xA

∂β
x−1

A .
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Score for β

The score function for β is

U(β) =
∂

∂β
log L(β) =

∂

∂β

(
log

xD∑
w⊂E,|w|=η xw

)
.

Using

∂xA

∂β
= zAxA so that

∂ log xA

∂β
= zA,

and letting pA = E(IA|E) (rejective), score simplifies to

U(β) =
∑
A∈D

ZA −
∑
A∈E

ZApA.
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Information for β

With pA = E(IA|E), and pAB = E(IAIB |E) the second
derivative of the score (information) I(β) is,∑

A∈E

ZAZ′ApAqA +
∑

A,B∈E,A 6=B

ZAZ′B(pAB − pApB).

Note presence of the rejective sampling correlation

Corr(A,B) = pAB − pApB .
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Asymptotics: Consistency

We want

|E|−1I(β0)
p−→ Σ,

that is

1
|E|

∑
A∈E

ZAZ′ApAqA+
1
|E|

∑
A,B∈E,A 6=B

ZAZ′B(pAB−pApB),

to converge. So need second order correlation

pAB − pApB = O(|E|−1) = O(|E|−(2+2mod2)/2).
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Higher Order Correlations

Corr(H) = EI

(∏
A∈H

(IA − pA)

)
.
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Asymptotics: Consistency

We want third derivative (remainder term)

|E|−1Rem = Op(1).

But |E|−1 Rem term has

1
|E|

∑
A,B,C

Products of covariates × third order correlation,

need

Corr(A,B,C) = O(|E|−2) = O(|E|−(3+3mod2)/2).

Follows if for rejective sampling we have

Corr(H) = O(|E|−(|H|+|H|mod2)/2).
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Simple Random Sampling

Sample η out of set E, all
(|E|

η

)
subsets equally likely. For

H = {A,B} ⊂ E, inclusion indicators IA, IB ;
pA = pB = η/|E|, covariance

EI (IA − pA)(IB − pB) =
−1
|E|

η(|E| − η)
|E|(|E| − 1)

so when η/|E| → d,

|E|EI (IA − pA)(IB − pB) → d(d− 1).
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Corr(|H|) = O(|E|−(|H|+|H|mod2)/2)

|E|1Corr(2) → d(d− 1)
|E|2Corr(3) → 2d(d− 1)(2d− 1)
|E|2Corr(4) → 3d2(d− 1)2

|E|3Corr(5) → 20d2(d− 1)2(2d− 1)
|E|3Corr(6) → 15d3(d− 1)3

|E|4Corr(7) → 210d3(d− 1)3(2d− 1)
|E|4Corr(8) → 105d4(d− 1)4

|E|5Corr(9) → 2520d4(d− 1)4(2d− 1)
. . .
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What is the next number in the sequence

1, 2, 3, 20, 15, 210, 105, 2520, . . . ?
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Two alternating sequences

1, 2, 3, 20, 15, 210, 105, 2520, . . . ?

1, 3, 15, 105, . . . ,

2, 20, 210, 2520, . . . ,

Generating functions, induction, difference equations, or....
another of our most sophisticated techniques:
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The On-Line Encyclopedia of Integer Sequences 
Enter a  sequence,  word, or  sequence number: 

  

      Clear | Hints | Advanced look-up  

OEIS in other languages: Chinese, Chinese (simplified), Czech, Finnish, French, German, 
Hindi, Hungarian, Italian, Portuguese, Russian, Serbian, Spanish, Swedish.  

For information about the Encyclopedia see the Welcome page.  

Lookup | Welcome | Francais | Demos | Index | Browse | More | WebCam 
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics 

More pages | Superseeker | Maintained by N. J. A. Sloane (njas@research.att.com) 

[Last modified Sun Sep 22 22:30:28 EDT 2002. Contains 75236 sequences.]  

home | people | projects | research areas | resources |  

  

nmlkji nmlkj nmlkj

2,20,210,2520

Search Restore example

Page 1 of 1On-Line Encyclopedia of Integer Sequences (Look-Up)

9/23/2002http://www.research.att.com/~njas/sequences/
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Greetings from the On-Line Encyclopedia of Integer Sequences! 

Lookup | Index | Browse | Format | Contribute | EIS | NJAS  

Matches (up to a limit of 30) found for       2 20 210 2520 :  
[It will take a few minutes to search the table (the second and later lookups are faster)] 

 
 
ID Number: A000906 (Formerly M2124 and N0841) 
Sequence:  2,20,210,2520,34650,540540,9459450,183783600,3928374450, 
           91662070500,2319050383650,63246828645000,1849969737866250 
Name:      Expansion of 2(1+3x)/(1-2x)^7/2. 
References L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 256. 
           F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 
              296. 
           Charles Jordan, On Stirling's Numbers, Tohoku Math. J., 37 (1933), 
              254-278. 
           C. Jordan, Calculus of Finite Differences. Budapest, 1939, p. 152. 
See also:  Equals 2*A000457. 
Keywords:  nonn 
Offset:    0 
Author(s): njas 

Show internal format for above sequence?  
 

Lookup | Welcome | Francais | Demos | Index | Browse | More | WebCam 
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics 

More pages | Superseeker | Maintained by N. J. A. Sloane (njas@research.att.com)  

home | people | projects | research areas | resources |  

  

Yes

Page 1 of 1Reply from On-Line Encyclopedia

9/23/2002http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eismum.cgi
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Rewriting Generating Function

Odd kth order coefficient is

1
3
(k − 1)EZk+1 for Z ∼ N (0, 1).

Even kth order coefficient is

EZ2k = 1 · 3 · (2k − 3)(2k − 1) for Z ∼ N (0, 1).

The Normal Distribution is Here
But where is a sum of independent variables?
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Conditioning

With Tθ the (Bernoulli sampling) measure under which
IA, A ∈ E are independent with success probability

p̃A = θxA/(1 + θxA),

then for all θ > 0,

SE,η(r) = Tθ({A ∈ E : IA = 1} = r|
∑
A∈E

IA = η).

To make p̃A and pA close, choose θ so that

EI

(∑
A∈E

IA

)
= η.

38



Local Central Limit Theorem

For Xn the sum I1, I2, . . . of independent indicators with
pj = EI Ij , when ∃ ε > 0, nε so that

∑n
j=1 pjqj ≥ εn for all

n ≥ nε, with EI exp(itXn) = φn(t), let

mν(s) =
s∑

j=0

(−iν)j

j!
In,j ,

where

In,j =
1
2π

∫
|t|≤π

tjφn(t)dt.

Then for given κ and even s, for all |ν| ≤ κ with
EI Xn + ν ∈ N

P (Xn = EI Xn + ν) = mν(s) + Θε,κ,s

(
n−(s+3)/2

)
.
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Conditioning + LCLT

Relate pA and p̃A by conditioning Bernoulli sample T ,

pA =
P (A ∈ T, |T | = η)

P (A ∈ T, |T | = η) + P (A 6∈ T, |T | = η)

=
p̃AP (|T \A| = η − 1)

p̃AP (|T \A| = η − 1) + q̃AP (|T \A| = η)
.

Applying LCLT expansion gives rates (and a more careful
analysis for simple random sampling, 34650).
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Frequency matching under the Null

Probability of failure is d. Full cohort has Information

d(1− d)Var(Z).

Frequency matching m− 1 controls for each failure has
Information

(m− 1)d
m

Var(Z).

AREFM =
m− 1

m(1− d)
.

E.g. d = .1,m = 5, Matching/Full = 0.8/0.9 = 89%.
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Counter Matching

Binary covariate Z, binary surrogate X. With 1:1 counter
matching, so the sampled cohort has same number of
surrogate exposed as unexposed,

πij = P (X = i, Z = j) and

τ = P (X = 1|Z = 1), γ = P (X = 0|Z = 0),

relative efficiency to Full Cohort is

{τγ + (1− τ)(1− γ)}

− d
π.1π.0

π0.π1.
(τγ − (1− τ)(1− γ))2.
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Further Questions

1. Analysis of counter matching design away from the
null, asymptotics.

2. Other designs in logistic type models.

3. Group time models.

4. And . . . ??
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Further Questions

1. Analysis of counter matching design away from the
null, asymptotics.

2. Other designs in logistic type models.

3. Group time models.

4. Other problems from the in flight magazine.
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