# Sampling Case-Control Studies Over Time

http://math.usc.edu/~larry

# From the United Airlines In Flight Magazine



#### What is the next number in the sequence

 $0, 0, 1, 2, 2, 4, 3, 6, 4, 8, 5 \dots$ ?

#### What is the next number in the sequence

 $0, 0, 1, 2, 2, 4, 3, 6, 4, 8, 5 \dots$ ?

# **Two Alternating Sequences**

 $0, 0, 1, 2, 2, 4, 3, 6, 4, 8, 5, 10, 6 \dots$ 

# Logistic Model

In cohort  $\mathcal{R}$ , the failure indicator  $D_i$  for individual  $i \in \mathcal{R}$  has distribution

$$P(D_i = 1) = \frac{\lambda_0 \exp(\boldsymbol{\beta}_0' \mathbf{Z}_i)}{1 + \lambda_0 \exp(\boldsymbol{\beta}_0' \mathbf{Z}_i)},$$

where  $\lambda_0$  is a baseline factor,  $\mathbf{Z}_i$  is a covariate vector, and  $\boldsymbol{\beta}_0$  an unknown parameter.

Extend to a model for observing the cohort over time.

# Cox Model 1972: Cohort over time

Failure rate for individual  $i \in \mathcal{R}$  at time t is common baseline hazard function  $\lambda_0(t)$  adjusted for covariates  $\mathbf{Z}_i(t)$ , accommodate censoring by time dependent indicator  $Y_i(t)$ :

 $\lambda_i(t) = Y_i(t)\lambda_0(t)\exp(\boldsymbol{\beta}_0'\mathbf{Z}_i(t)).$ 

Semi-parametric model:  $\beta_0$  finite dimensional parameter of interest,  $\lambda_0$  is infinite dimensional 'nuisance' parameter.

Still of interest to estimate integrated baseline hazard,

$$\Lambda_0(t) = \int_0^t \lambda_0(s) ds$$

#### Cox Model: Analysis

Define the risk set

$$\mathcal{R}(t) = \{i : Y_i(t) = 1\}.$$

Cox partial likelihood estimator (MPLE) maximizes the product of probabilities that failure  $i_j$  was observed to fail at time  $t_j$ , given that there was one failure at that time from those in the risk set  $\mathcal{R}_j = \mathcal{R}(t_j)$ ,

$$\mathcal{L}(\boldsymbol{\beta}) = \prod_{\text{failure times } t_j} \frac{\exp(\boldsymbol{\beta}' \mathbf{Z}_{i_j}(t_j))}{\sum_{k \in \mathcal{R}_j} \exp(\boldsymbol{\beta}' \mathbf{Z}_k(t_j))}.$$

Consistent, asymptotically normal, though not a true likelihood: dependence, ignore information between failures.

#### RISK SETS IN CONTINUOUS TIME



# **Sampling Designs**

The risk sets  $\mathcal{R}(t)$  may be too large for the collection of complete information. Sampling designs specify the probability

#### $\pi_t(\mathbf{r}|i)$

of using  $\mathbf{r}$  as the sampled risk set should i fail at t. Weights cancel out common factors,

$$w_i(t, \mathbf{r}) = \frac{\pi_t(\mathbf{r} \mid i)}{n(t)^{-1} \sum_{l \in \mathbf{r}} \pi_t(\mathbf{r} \mid l)}.$$

# Sampling Estimators: Cox Model

When  $\pi_t(\mathbf{r}|i)$  selects sampled risk set  $\mathcal{R}_j$  to use when  $i_j$  fails at time  $t_j$ , maximize

$$L(\boldsymbol{\beta}) = \prod_{\text{failure times } t_j} \frac{\exp(\boldsymbol{\beta}' \mathbf{Z}_{i_j}(t_j)) \pi_{t_j}(\tilde{\mathcal{R}}_j|i_j)}{\sum_{k \in \tilde{\mathcal{R}}_j} \exp(\boldsymbol{\beta}' \mathbf{Z}_k(t_j)) \pi_{t_j}(\tilde{\mathcal{R}}_j|k)}.$$

Estimated integrated baseline hazard

$$\hat{\Lambda}_0(t) = \sum_{t_j \le t} \frac{1}{\sum_{l \in \tilde{\mathcal{R}}_j} \exp(\hat{\boldsymbol{\beta}}^{\mathsf{T}} \mathbf{Z}_l(t_j)) w_l(t_j, \tilde{\mathcal{R}}_j)}.$$

# **Two Questions**

- For observations over times, what sampling designs might we consider and what are their asymptotic properties (e.g. relative efficiency)? (with B. Langholz and Ø. Borgan)
- 2. What about sampling for models with no time dependence ? (B. Langholz, R. Arratia)

# 1. Designs, over time

FC, Full Cohort Design: Analyzed by Andersen and Gill, 1982, using Counting Processes and Martingale methods for time varying covariates and general censoring.

NCCS, Nested Case Control Design, Thomas 1977: Sample m-1 controls for the failure at the failure time.

CC, Case Cohort Design, Prentice 1986: Choose subcohort  $\tilde{C}$  from full cohort at time t = 0, let the sampled risk set for failure  $i_j$  be  $\tilde{C} \cup \{i_j\}$ .

CM, Counter Matching Design, Langholz and Borgan 1995: Sample to obtain  $m_l$  individuals in each strata  $l \in C$ .

# **Specification of Designs**

Let  $\pi_t(\mathbf{r}|i)$  be the probability of choosing  $\mathbf{r}$  as the sampled risk set should *i* fail at time *t*.

NCCS: Sample over  $\mathbf{r} \ni i, \mathbf{r} \subset \mathcal{R}(t), |\mathbf{r}| = m, n(t) = |\mathcal{R}(t)|$ ,

$$\pi_t(\mathbf{r}|i) = \binom{n(t)-1}{m-1}^{-1}$$

CM: Sample over  $\mathbf{r} \ni i, \mathbf{r} \subset \mathcal{R}(t), |\mathbf{r} \cap \mathcal{R}_l(t)| = m_l; l \in \mathcal{C}$ 

$$\pi_t(\mathbf{r}|i) = \left[\prod_{l \in \mathcal{C}} \binom{n_l(t)}{m_l}\right]^{-1} \frac{n_{C_i(t)}(t)}{m_{C_i(t)}}.$$

# **Analysis by Martingales**

The process  $N_i(t)$  counting the number of events for i in (0,t] has intensity  $\lambda_i(t)$ , and

$$M_i(t) = N_i(t) - \int_0^t \lambda_i(s) ds$$

is a martingale (AG '82). For sampling, the process  $N_{i,{\bf r}}(t)$  counting the number of events for  $(i,{\bf r})$  in (0,t] has intensity

$$\lambda_{i,\mathbf{r}}(t) = \lambda_i(t)\pi_t(\mathbf{r}|i)$$

and subtracting its integral gives the martingale

$$M_{i,\mathbf{r}}(t) = N_{i,\mathbf{r}}(t) - \int_0^t \lambda_{i,\mathbf{r}}(s) ds.$$

# Likelihood Methods Apply

The score function  $\partial \log L_t(\boldsymbol{\beta}) / \partial \boldsymbol{\beta}$  is given by

$$\mathbf{U}_t(\boldsymbol{\beta}) = \int_0^t \sum_{i,\mathbf{r}} \left\{ \mathbf{Z}_i(u) - \mathbf{E}_{\mathbf{r}}(\boldsymbol{\beta}, u) \right\} dN_{i,\mathbf{r}}(u)$$

is a martingale at the true  $\beta_0$  (and hence has mean zero) even though  $L_t(\beta_0)$  is a product of dependent terms.

Derive asymptotic properties of estimators by Lenglart's inequality and the Martingale Central Limit Theorem.

Need the covarariate and intensity to be 'predictable' processes w.r.t  $\mathcal{F}_t \uparrow$ ; suffices if they are left continuous and adapted (cannot use these techniques for CC).

# Asymptotics

The normal limits of

$$\sqrt{n}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0) \xrightarrow{\mathcal{D}} \mathcal{N}(\mathbf{0}, \boldsymbol{\Sigma}^{-1})$$

and

$$W(\cdot) = \sqrt{n} \left( \hat{\Lambda}_0(\cdot; \hat{\boldsymbol{\beta}}) - \Lambda_0(\cdot) \right) + \sqrt{n} \left( \hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0 \right)^{\mathsf{T}} B(\cdot; \boldsymbol{\beta}_0)$$

are asymptotically independent, and have limiting variances which can be consistently estimated.

Performance Relative to Full Cohort,  $\beta_0 = 0$ .

NCCS: Sampling m-1 controls for each failure,

$$ARE_{NCCS} = (m-1)/m,$$

SO

$$\mathsf{ARE}_{\mathsf{NCCS}} \to 1 \quad \text{as } m \to \infty.$$

# Performance Relative to Full Cohort, $\beta_0 = 0$ .

CM: Consider  $|\mathcal{C}| = 2$  strata made up of those surrogate exposed X = 1, and those surrogate unexposed X = 0. With sensitivity and specificity of the surrogate X for the true Z given by

$$\tau = P(X = 1 | Z = 1), \ \gamma = P(X = 0 | Z = 0),$$

we have

$$\mathsf{ARE}_{\mathsf{CM}} = \tau \gamma + (1 - \tau)(1 - \gamma).$$

If  $\tau,\gamma$  are close to 1 (or 0 !) then we have close to full cohort efficiency, e.g.  $(\tau,\gamma)=(0.95,0.90)$  gives

$$\mathsf{ARE}_{\mathsf{CM}} = 0.86.$$

# Fixed time Model

Probability for failure of individual i in group  $\mathcal{R} = \{1, \ldots, N\},$ 

$$\tilde{p}_i = \frac{\lambda_0 x(\mathbf{Z}_i, \boldsymbol{\beta}_0)}{1 + \lambda_0 x(\mathbf{Z}_i, \boldsymbol{\beta}_0)}, \quad i \in \mathcal{R},$$

where  $\mathbf{Z}_i$  is covariate vector of i and  $\boldsymbol{\beta}_0$  is unknown parameter,  $x(0,\boldsymbol{\beta}) = x(\mathbf{z},0) = 1, \lambda_0$  baseline odds.

Taking  $x(\mathbf{z}, \boldsymbol{\beta}) = \exp(\mathbf{z}' \boldsymbol{\beta})$  gives the logistic model.

Set of cases

$$D = \{i : D_i = 1\}.$$

# Logisitic Analysis: MLE

With individuals independent and D the set of failures, can apply likelihood methods (MLE) on

$$\mathcal{L}(\boldsymbol{\beta}) = \prod_{i \in D} \frac{\lambda x(\mathbf{Z}_i, \boldsymbol{\beta})}{1 + \lambda x(\mathbf{Z}_i, \boldsymbol{\beta})} \prod_{i \notin D} \frac{1}{1 + \lambda x(\mathbf{Z}_i, \boldsymbol{\beta})}$$
$$= \lambda^{|D|} x_D Q_{\mathcal{R}},$$

where, abbreviating  $x_i = x(\mathbf{Z}_i, \boldsymbol{\beta})$ ,

$$x_{\mathbf{r}} = \prod_{i \in \mathbf{r}} x_i$$
 and  $Q_{\mathcal{R}} = \prod_{i \in \mathcal{R}} \frac{1}{1 + \lambda x_i}$ .

# Sampling and Likelihood

Need to sample when N is large. For a given set of cases D, a sampled risk set E is chosen according to a given (design) distribution  $\pi(E|D)$  with

$$\sum_{E \subset \mathcal{R}} \pi(E|D) = 1.$$

Given a sampled risk set E, the likelihood  $P_{\pmb{\beta}}(D|E)$  is

$$L(\boldsymbol{\beta}) = \frac{\lambda^{|D|} x_D \pi(E|D)}{\sum_{\mathbf{w} \subset \mathcal{R}} \lambda^{|w|} x_{\mathbf{w}} \pi(E|\mathbf{w})}.$$

# **Frequency Matching**

Choose a sampled risk set E uniformly over all sets of some fixed size which contain the case set D of size  $\eta$ ; sampling probabilities are constant and cancel, yielding the likelihood

$$L_E(\boldsymbol{\beta}) = P_{\boldsymbol{\beta}}(D|E) = \frac{x_D}{\sum_{\mathbf{w} \in E, |\mathbf{w}| = \eta} x_{\mathbf{w}}}$$

'Rejective sampling' studied by Hájek in 1964,

$$S_{E,\eta}(r) = \frac{x_r}{\sum_{\mathbf{w} \in E, |\mathbf{w}| = \eta} x_{\mathbf{w}}}$$

# Simple Random Sampling as Rejective Sampling

Generally, sample a set  ${\bf r}$  of size  $\eta$  from E proportional to the product of weights

$$x_{\mathbf{r}} = \prod_{A \in \mathbf{r}} x_A.$$

When all weights  $x_A = t$  are equal,  $x_{\mathbf{r}} = t^{\eta}$  and

$$S_{E,\eta}(\mathbf{r}) = \frac{x_{\mathbf{r}}}{\sum_{\mathbf{w} \in E, |\mathbf{w}| = \eta} x_{\mathbf{w}}} = \binom{|E|}{\eta}^{-1}.$$

# **Analysis of Estimators**

For convenience take

$$x(\boldsymbol{\beta}, \mathbf{z}) = \exp(\boldsymbol{\beta}' \mathbf{z}), \text{ which gives } \frac{\partial x_A}{\partial \boldsymbol{\beta}} = \mathbf{z}_A x_A;$$

otherwise, define the 'effective covariate'

$$\mathbf{z}_A = \frac{\partial \mathbf{x}_A}{\partial \boldsymbol{\beta}} x_A^{-1}.$$

## Score for $\beta$

The score function for  $\boldsymbol{\beta}$  is

$$\mathcal{U}(\boldsymbol{\beta}) = \frac{\partial}{\partial \boldsymbol{\beta}} \log L(\boldsymbol{\beta}) = \frac{\partial}{\partial \boldsymbol{\beta}} \left( \log \frac{x_D}{\sum_{\mathbf{w} \in E, |\mathbf{w}| = \eta} x_{\mathbf{w}}} \right).$$

#### Using

$$rac{\partial x_A}{\partial oldsymbol{eta}} = \mathbf{z}_A x_A \quad ext{so that} \quad rac{\partial \log x_A}{\partial oldsymbol{eta}} = \mathbf{z}_A,$$

and letting  $p_A = \mathbf{E}(I_A | E)$  (rejective), score simplifies to

$$\mathcal{U}(\boldsymbol{\beta}) = \sum_{A \in D} \mathbf{Z}_A - \sum_{A \in E} \mathbf{Z}_A p_A.$$

# Information for $\beta$

With  $p_A = \mathbf{E}(I_A|E)$ , and  $p_{AB} = \mathbf{E}(I_A I_B|E)$  the second derivative of the score (information)  $\mathcal{I}(\beta)$  is,

$$\sum_{A \in E} \mathbf{Z}_A \mathbf{Z}'_A p_A q_A + \sum_{A, B \in E, A \neq B} \mathbf{Z}_A \mathbf{Z}'_B (p_{AB} - p_A p_B).$$

Note presence of the rejective sampling correlation

 $\mathsf{Corr}(A,B) = p_{AB} - p_A p_B.$ 

## **Asymptotics: Consistency**

We want

$$|E|^{-1}\mathcal{I}(\boldsymbol{\beta}_0) \xrightarrow{p} \Sigma,$$

that is

$$\frac{1}{|E|} \sum_{A \in E} \mathbf{Z}_A \mathbf{Z}'_A p_A q_A + \frac{1}{|E|} \sum_{A,B \in E, A \neq B} \mathbf{Z}_A \mathbf{Z}'_B (p_{AB} - p_A p_B),$$

to converge. So need second order correlation

$$p_{AB} - p_A p_B = O(|E|^{-1}) = O(|E|^{-(2+2\mathsf{mod}_2)/2}).$$

# **Higher Order Correlations**

$$\operatorname{Corr}(H) = \mathbb{E}\left(\prod_{A \in H} (I_A - p_A)\right).$$

# Asymptotics: Consistency

We want third derivative (remainder term)

$$|E|^{-1}\mathsf{Rem} = O_p(1).$$

But  $|E|^{-1}$  Rem term has

 $\frac{1}{|E|} \sum_{A,B,C} \text{Products of covariates} \times \text{third order correlation,}$ 

need

$$\operatorname{Corr}(A, B, C) = O(|E|^{-2}) = O(|E|^{-(3+3\operatorname{\mathsf{mod}}_2)/2}).$$

Follows if for rejective sampling we have

$$Corr(H) = O(|E|^{-(|H|+|H|mod_2)/2})$$

# Simple Random Sampling

Sample  $\eta$  out of set E, all  $\binom{|E|}{\eta}$  subsets equally likely. For  $H = \{A, B\} \subset E$ , inclusion indicators  $I_A, I_B$ ;  $p_A = p_B = \eta/|E|$ , covariance

$$\mathbf{E}(I_A - p_A)(I_B - p_B) = \frac{-1}{|E|} \frac{\eta(|E| - \eta)}{|E|(|E| - 1)}$$

so when  $\eta/|E| \to d$ ,

$$|E|\mathbf{E}(I_A - p_A)(I_B - p_B) \to d(d-1).$$

$$Corr(|H|) = O(|E|^{-(|H|+|H|mod2)/2})$$

$$\begin{split} |E|^{1} \text{Corr}(2) & \to d(d-1) \\ |E|^{2} \text{Corr}(3) & \to 2d(d-1)(2d-1) \\ |E|^{2} \text{Corr}(4) & \to 3d^{2}(d-1)^{2} \\ |E|^{3} \text{Corr}(5) & \to 20d^{2}(d-1)^{2}(2d-1) \\ |E|^{3} \text{Corr}(6) & \to 15d^{3}(d-1)^{3} \\ |E|^{4} \text{Corr}(7) & \to 210d^{3}(d-1)^{3}(2d-1) \\ |E|^{4} \text{Corr}(8) & \to 105d^{4}(d-1)^{4} \\ |E|^{5} \text{Corr}(9) & \to 2520d^{4}(d-1)^{4}(2d-1) \end{split}$$

. . .

#### What is the next number in the sequence

 $1, 2, 3, 20, 15, 210, 105, 2520, \ldots$ ?

# Two alternating sequences

```
1, 2, 3, 20, 15, 210, 105, 2520, \ldots?
```

 $1, 3, 15, 105, \ldots,$ 

## $2, 20, 210, 2520, \ldots,$

Generating functions, induction, difference equations, or.... another of our most sophisticated techniques: On-Line Encyclopedia of Integer Sequences (Look-Up)

Page 1 of 1

Int lategor Seprences RESEARCH

#### The On-Line Encyclopedia of Integer Sequences

Enter a # sequence, C word, or C sequence number:

2 20 210 2520

Search Restore example Clear | Hints | Advanced look-pr

OEIS in other languages: Chinese, Chinese (simplified); Ceech, Finnish, French, German, Hindi, Hanzarian, Italian, Porturnese, Ressian, Serbian, Sourish, Swedish,

For information about the Encyclopedia see the Welcome page.

Lookup | Welcome | Erancais | Dennes | Index | Browse | More | WebCam Contribute new seq, or comment | Fermat | Transforms | Puzzles | Het | Classics More parse | Supersector | Maintained by N.L.A. Shore (njew?ersecto.att.com)

[Last modified Sun Sep 22 22:30:28 EDT 2002. Contains 75236 sequences.]

home | people | projects | measurch areas | resources |

<u>Copyright</u> 0 2002 ATRY All rights reserved Need to <u>AVV Freezved</u> Seed commonts about these web pages to <u>WeinseterDressaroh.att.com</u> Reply from On-Line Encyclopedia

Page 1 of 1



#### Greetings from the On-Line Encyclopedia of Integer Sequences!

Lookup | Index | Browse | Format | Contribute | EIS | NJAS

#### Matches (up to a limit of 30) found for 2 20 210 2520 :

[It will take a few minutes to search the table (the second and later lookaps are faster)]

| ID Number:<br>Sequence:                      | A000906 (Formerly M2124 and M0841)<br>2,20,210,2520,34650,540540,9459450,183783600,3928374450, |
|----------------------------------------------|------------------------------------------------------------------------------------------------|
|                                              | 91662070500,2319050383650,63246828645000,1849969737866250<br>Exmansion of 2(1+3x)/(1+2x)*7/2   |
| References                                   | L. Contet, Advanced Combinatorics, Reidel, 1974, p. 256.                                       |
|                                              | F. N. David and D. R. Barton, Combinatorial Chance. Hafner, NY, 1962, p.<br>104                |
|                                              | Charles Jordan, On Stirling's Numbers, Tohsku Math. J., 27 (1923),<br>254-278.                 |
|                                              | C. Jordan, Calculus of Pinite Differences. Rudapest, 1939, p. 152.                             |
| Teo Algo:                                    | Equals 2 Mileser.                                                                              |
| offset:                                      | 0                                                                                              |
| Author(s):                                   | njas                                                                                           |
| show internal format for above sequence? Yes |                                                                                                |

Lookag | Welcong | Erancais | Donos | Index | Broms | More | WebCam Contribute new seq. or comment | Fermat | Transforms | Purdes | Bet | Classics More pages | Supersector | Maintained by N.J. A. Shome (nies# research all.com)

home | people | projects | manarch areas | manarces |

Cupyright 0 2002 ATBT All rights reserved Read the <u>ATMT Primer Policy</u> Eed comments shoul these wh pages to <u>TehnseterStreegarch.stituous</u>

# **Rewriting Generating Function**

Odd  $k^{th}$  order coefficient is

$$\frac{1}{3}(k-1)EZ^{k+1} \quad \text{for } Z \sim \mathcal{N}(0,1).$$

Even  $k^{th}$  order coefficient is

$$EZ^{2k} = 1 \cdot 3 \cdot (2k-3)(2k-1) \quad \text{for} \quad Z \sim \mathcal{N}(0,1).$$

The Normal Distribution is Here But where is a sum of independent variables?

# Conditioning

With  $T_{\theta}$  the (Bernoulli sampling) measure under which  $I_A, A \in E$  are independent with success probability

$$\tilde{p}_A = \theta x_A / (1 + \theta x_A),$$

then for all  $\theta > 0$ ,

$$S_{E,\eta}(\mathbf{r}) = T_{\theta}(\{A \in E : I_A = 1\} = \mathbf{r} | \sum_{A \in E} I_A = \eta).$$

To make  $\tilde{p}_A$  and  $p_A$  close, choose  $\theta$  so that

$$\mathbf{\mathbb{E}}\left(\sum_{A\in E}I_A\right) = \eta.$$

## Local Central Limit Theorem

For  $X_n$  the sum  $I_1, I_2, \ldots$  of independent indicators with  $p_j = \mathbb{E} I_j$ , when  $\exists \epsilon > 0, n_{\epsilon}$  so that  $\sum_{j=1}^n p_j q_j \ge \epsilon n$  for all  $n \ge n_{\epsilon}$ , with  $\mathbb{E} \exp(itX_n) = \phi_n(t)$ , let

$$m_{\nu}(s) = \sum_{j=0}^{s} \frac{(-i\nu)^j}{j!} \mathcal{I}_{n,j},$$

where

$$\mathcal{I}_{n,j} = \frac{1}{2\pi} \int_{|t| \le \pi} t^j \phi_n(t) dt.$$

Then for given  $\kappa$  and even s, for all  $|\nu| \leq \kappa$  with  $\mathop{\mathrm{I\!E}} X_n + \nu \in {\mathbf N}$ 

$$P(X_n = \mathbb{E} X_n + \nu) = m_{\nu}(s) + \Theta_{\epsilon,\kappa,s} \left( n^{-(s+3)/2} \right)$$

# Conditioning + LCLT

Relate  $p_A$  and  $\tilde{p}_A$  by conditioning Bernoulli sample T ,

$$p_A = \frac{P(A \in T, |T| = \eta)}{P(A \in T, |T| = \eta) + P(A \notin T, |T| = \eta)}$$
$$= \frac{\tilde{p}_A P(|T \setminus A| = \eta - 1)}{\tilde{p}_A P(|T \setminus A| = \eta - 1) + \tilde{q}_A P(|T \setminus A| = \eta)}.$$

Applying LCLT expansion gives rates (and a more careful analysis for simple random sampling, 34650).

# Frequency matching under the Null

Probability of failure is d. Full cohort has Information

$$d(1-d)\mathsf{Var}(Z).$$

Frequency matching m-1 controls for each failure has Information

$$\frac{(m-1)d}{m}\mathsf{Var}(Z).$$

$$\mathsf{ARE}_{\mathsf{FM}} = \frac{m-1}{m(1-d)}.$$

E.g. d = .1, m = 5, Matching/Full = 0.8/0.9 = 89%.

# **Counter Matching**

Binary covariate Z, binary surrogate X. With 1:1 counter matching, so the sampled cohort has same number of surrogate exposed as unexposed,

$$\pi_{ij} = P(X = i, Z = j) \quad \text{and} \quad$$

$$\tau = P(X = 1 | Z = 1), \ \gamma = P(X = 0 | Z = 0),$$

relative efficiency to Full Cohort is

$$\{ \tau \gamma + (1-\tau)(1-\gamma) \} - d \frac{\pi_{.1}\pi_{.0}}{\pi_{0.}\pi_{1.}} (\tau \gamma - (1-\tau)(1-\gamma))^2.$$

# **Further Questions**

- 1. Analysis of counter matching design away from the null, asymptotics.
- 2. Other designs in logistic type models.
- 3. Group time models.
- 4. And ... ??

# **Further Questions**

- 1. Analysis of counter matching design away from the null, asymptotics.
- 2. Other designs in logistic type models.
- 3. Group time models.
- 4. Other problems from the in flight magazine.