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What is the next number in the sequence

0,0,1,2,2,4,3,6,4,8,5...7



What is the next number in the sequence

0,0,1,2,2,4,3,6,4,8,5...7



Two Alternating Sequences

0,0,1,2,2,4,3,6,4,8,5,10,6. ..



In cohort R, the failure indicator D; for individual i € R
has distribution

P(D;i=1) = o exp(B4Z;)
! 1+ Xoexp(ByZ;)’

where )\q is a baseline factor, Z; is a covariate vector, and
B, an unknown parameter.

Extend to a model for observing the cohort over time.



Failure rate for individual ¢ € R at time ¢ is common
baseline hazard function A\g(t) adjusted for covariates Z;(t),
accommodate censoring by time dependent indicator Y;(¢):

Ai(t) = Yi(t)Ao(t) exp(ByZi(t)).

Semi-parametric model: 3, finite dimensional parameter of
interest, \g is infinite dimensional ‘nuisance’ parameter.

Still of interest to estimate integrated baseline hazard,



Define the risk set
R(t) = {i : Yilt) = 1}.

Cox partial likelihood estimator (MPLE) maximizes the
product of probabilities that failure i; was observed to fail
at time t;, given that there was one failure at that time
from those in the risk set R; = R(¢;),

11 exp(B'Z, (t5)

L(B) = Yker, exp(B'Zi(t;))

failure times t;

Consistent, asymptotically normal, though not a true
likelihood: dependence, ignore information between failures.
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The risk sets R(t) may be too large for the collection of
complete information. Sampling designs specify the
probability

mi(rli)

of using r as the sampled risk set should 7 fail at ¢.

Weights cancel out common factors,

L el
wilb ) = TS w1




When 7,(r|i) selects sampled risk set R; to use when i;
fails at time t;, maximize

II oxp(B'Zi, (), (R i)

L = = .
) Yrer, xP(B'Zi(t;))m; (R;|k)

failure times ¢;
Estimated integrated baseline hazard

o) =Y . .

t<t DR, exp(B' Zu(t;))wi(ty, Ry)




1. For observations over times, what sampling designs
might we consider and what are their asymptotic
properties (e.g. relative efficiency)? (with B.
Langholz and @. Borgan)

2. What about sampling for models with no time
dependence ? (B. Langholz, R. Arratia)



FC, Full Cohort Design: Analyzed by Andersen and Gill,
1982, using Counting Processes and Martingale methods
for time varying covariates and general censoring.

NCCS, Nested Case Control Design, Thomas 1977: Sample
m — 1 controls for the failure at the failure time.

CC, Case Cohort Design, Prentice 1986: Choose subcohort
C from full cohort at time ¢ = 0, let the sampled risk set
for failure i; be C'U {i;}.

CM, Counter Matching Design, Langholz and Borgan 1995:
Sample to obtain m; individuals in each strata [ € C.



Let m¢(r|i) be the probability of choosing r as the sampled
risk set should 7 fail at time ¢.

NCCS: Sample over r 3 i,r C R(t), [r| = m,n(t) = |R(t)

o (x]i) = (”(t) - 1)_1

m—1

1

CM: Sample over r 3 i,r C R(t), [r N R ()| =my; L €C

m(xli) = [H (”WE”)] o)

lec Mme;(t)



The process N;(t) counting the number of events for 4 in
(0,¢] has intensity A;(¢), and

M@=M@—AM@%

is a martingale (AG '82). For sampling, the process N; ,(t)
counting the number of events for (i,r) in (0,¢] has
intensity

Air(t) = Ai(t)m (i)
and subtracting its integral gives the martingale

Min(t) = Nia(t) — /O Ain(s)ds.



The score function dlog Li(3)/93 is given by
t
UB) = [ 30 (i) ~ BB} AN,

is a martingale at the true 3, (and hence has mean zero)
even though Li(3,) is a product of dependent terms.

Derive asymptotic properties of estimators by Lenglart’s
inequality and the Martingale Central Limit Theorem.

Need the covarariate and intensity to be ‘predictable’
processes w.r.t F; T; suffices if they are left continuous and
adapted (cannot use these techniques for CC).



The normal limits of
V(B = By) = N(0,37)
and
. . . T
W) =i (Ao58) = Ao()) + Vi (B=By) B(38y)

are asymptotically independent, and have limiting variances
which can be consistently estimated.



Performance Relative to Full Cohort, 5, = 0.

NCCS: Sampling m — 1 controls for each failure,

ARENCCS =(m—1)/m,

SO
ARENCCS —1 asm — oo.



CM: Consider |C| = 2 strata made up of those surrogate
exposed X = 1, and those surrogate unexposed X = 0.
With sensitivity and specificity of the surrogate X for the
true Z given by

r=P(X=1/Z=1), y=P(X =0/Z=0),

we have
AREcp =77+ (1= 7)(1—1).

If 7,~ are close to 1 (or 0 !) then we have close to full
cohort efficiency, e.g. (7,v) = (0.95,0.90) gives

ARE() = 0.86.



Probability for failure of individual ¢ in group
R=A{1,...,N},

~ /\Ol‘(ziaﬁo) .
g = — ER,
=Ty Moz (Zi, By) !

where Z; is covariate vector of ¢ and 3, is unknown
parameter, (0, 3) = x(z,0) = 1,A\g baseline odds.

Taking x(z,3) = exp(z’'3) gives the logistic model.

Set of cases



With individuals independent and D the set of failures, can
apply likelihood methods (MLE) on

£®) = ll 1+ Az (Zi, B) 11;) 1+ Az(Zi, B)

= )\‘DlxDQR7

where, abbreviating x; = z(Z;, 8),

erHCUi and QR:H1_|_1/\$,'

i€Er iER




Need to sample when N is large. For a given set of cases
D, a sampled risk set E is chosen according to a given
(design) distribution w(E|D) with

> #(E|D) = 1.
ECR
Given a sampled risk set E, the likelihood P,B(D|E) is
NPlypr(E|D)
Ywer AVlwr(Elw)

L) =



Choose a sampled risk set F uniformly over all sets of some
fixed size which contain the case set D of size n; sampling
probabilities are constant and cancel, yielding the likelihood

Ly(8) = P3(D|E) = e

2 owCE Jwl=y Tw

‘Rejective sampling' studied by Hajek in 1964,
Ty

Sgn(r .
,77( ) EwCE"w|:r] T



Simple Random Sampling as Rejective
Sampling

Generally, sample a set r of size ) from E proportional to
the product of weights

Ty = H TA.
A€er
When all weights x4 =t are equal, x, = t" and

Splr) = T <|E|> _1.

ZWCE,‘W':?’] Tw n



For convenience take
/ . . axA
x(B,z) = exp(B'z), which gives 8 = ZATA;

otherwise, define the ‘effective covariate’

zZ ——8XA:B71
A — 8,6 A -



The score function for 3 is

UPB) = 8?6’ log L(B) = % <log Exwa> :

WCEa|W\:7I
Using
0 o0l
% =zsT4 so that ((;%xA =Z4,

and letting po = E(I4|E) (rejective), score simplifies to

= Z Z,— Z Zypa.

AeD AcE



With pa = E(I4|FE), and pap = E(I4Ig|FE) the second
derivative of the score (information) Z(3) is,

> ZaZipaqa+ Y. ZaZi(pas — paps).
ACE A,BEE,A+B

Note presence of the rejective sampling correlation

Corr(A,B) = paB — papB-



We want
|E|7'Z(8,) = %,

that is

VAV VAVA —

|E\ Z A APAQA+‘E| Z AZg(paB—papB),
ACE A,BEE,A#B

to converge. So need second order correlation

pap —papp = O(|E|™") = 0(‘E|—(2+2mod2)/2).



Higher Order Correlations

Corr(H) =E (H (Ia —pA)>.

AeH



We want third derivative (remainder term)
|E|"'Rem = O,(1).

But |E|~! Rem term has

1 . . .
Va0l Z Products of covariates x third order correlation,
Bl e
need

Corr(A, B,C) = O(|E|~2) = O(|B|~(3+3mod2)/2y
Follows if for rejective sampling we have

Corr(H) = O(‘E|f(\HI+IH\mod2)/2).



Sample 7 out of set E, all (‘5') subsets equally likely. For
H = {A, B} C E, inclusion indicators I 4, Ip;
pa = pp = n/|FE|, covariance

E(Is —pa)p —pB) = ;m

so when n/|E| — d,

|E[E(Ia — pa)(Ip — pB) — d(d —1).



Lol

d(d—1)

2d(d —1)(2d — 1)
3d*(d —1)?

20d?(d — 1)*(2d — 1)
15d3(d — 1)3

210d%(d — 1)*(2d — 1)
105d*(d — 1)*
2520d*(d — 1)*(2d — 1)



What is the next number in the sequence

1,2,3,20, 15,210, 105, 2520, . .. ?



Two alternating sequences

1,2,3,20,15,210, 105, 2520, ... ?

1,3,15,105,. ..

2,20, 210, 2520, . ..

Generating functions, induction, difference equations, or....
another of our most sophisticated techniques:
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Odd k" order coefficient is

%(k —1)EZFY for Z ~ N(0,1).

Even k! order coefficient is

EZ* =1.3-(2k—-3)(2k —1) for Z~N(0,1).

The Normal Distribution is Here
But where is a sum of independent variables?



With T} the (Bernoulli sampling) measure under which
I4,A € FE are independent with success probability

ﬁA = tng/(l + 9.’1?A),

then for all 8 > 0,
Spa(r)=Ty({A€ E:14=1} =r]| Z Iy =n).
AcE
To make p4 and py close, choose 6 so that

B (21A> .

A€E



For X,, the sum Iy, I5,... of independent indicators with
p; = EI;, when 3 € > 0,n, so that E?lejqj > en for all
n > ne, with E exp(itX,,) = ¢,(t), let

my(s) = Z (_;!V)] Lo,

where )
Toj=— Iy, (t)dt.
T2 Jjyen
Then for given  and even s, for all [v| < k with

EX,+veN
PX,=EX, +v)=m,(s) + Ocrs (n_(5+3)/2).



Relate p4 and p4 by conditioning Bernoulli sample T,

PAeT,|T|=n)
PAET,|T|=n)+P(AZT,|T|=n)

PaP(T\Al=n—-1)
PaP(T\ Al =n—1)+qaP(IT\ Al =n)

pa =

Applying LCLT expansion gives rates (and a more careful
analysis for simple random sampling, 34650).



Probability of failure is d. Full cohort has Information
d(1 — d)Var(Z).

Frequency matching m — 1 controls for each failure has

Information

MVar(Z).

m—1

E.g. d =.1,m =5, Matching/Full = 0.8/0.9 = 89%.



Binary covariate Z, binary surrogate X. With 1:1 counter
matching, so the sampled cohort has same number of
surrogate exposed as unexposed,

WZJZP(X:Z,ZZJ) and
r=P(X=1Z=1), y=P(X =0Z =0),
relative efficiency to Full Cohort is

i + A-7)-7)}
- A ey - (1)1 =)

T00.701.



. Analysis of counter matching design away from the
null, asymptotics.

. Other designs in logistic type models.
. Group time models.

. And ... 77
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