
Exposure stratified case-cohort designs

Ørnulf Borgan ∗ Larry Goldstein † Bryan Langholz ‡ Janice Pogoda§

Sven Ove Samuelsen∗

June 1998

Abstract

A variant of the case-cohort design is proposed for the situation in which a correlate
of the exposure (or prognostic factor) of interest is available for all cohort members,
and exposure information is to be collected for a case-cohort sample. The cohort is
stratified according to the correlate, and the subcohort is selected by stratified random
sampling. A number of possible methods for the analysis of such exposure stratified
case-cohort samples are presented and some of their statistical properties developed. The
bias and efficiency of the methods are compared to each other, and to randomly sampled
case-cohort studies, in a limited computer simulation study. We found that all of the
proposed analysis methods performed reasonably well and were more efficient than a
randomly sampled case-cohort sample. We conclude that these methods are well suited
for the “clinical trials setting” in which subjects enter the study at time zero (at diagnosis
or treatment) and a correlate of an expensive prognostic factor is collected for all study
subjects at the time of entry to the study. In such studies, a correlate stratified subcohort
can be much more cost-efficient for investigation of the expensive prognostic factor than
a randomly sampled subcohort.

Key words: Case-cohort studies; Cox regression; Pseudo-likelihood; Score-unbiasedness;
Stratified sampling; Survival analysis.

1 Introduction

As proposed by Prentice (1986), a case-cohort study for failure time data consists of a random
sample from the cohort, the subcohort, and any additional cases not in the subcohort. Covari-
ate information is collected on this sample, rather than the entire cohort. Using a case-cohort
design can be very cost-efficient in that a sample much smaller than the full cohort generally
results in only a small loss in statistical efficiency. Because the same subcohort may be used
as a control group for multiple outcomes, it is particularly well suited for clinical studies in
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which various clinical outcomes, such as relapse or death, are evaluated with respect to a
fixed set of prognostic factors or treatments.

Recently, “two-stage” designs have been proposed in which exposure-related information,
available on the entire study group, is used to obtain a sample that is more informative
about exposure-related questions than simple random sampling. Here, we are using the term
“exposure” loosely to refer to a factor that is of primary interest in the study. This could
be some agent that is believed to play a role in causing disease or a treatment to be in-
vestigated. Stratified sampling by exposure results in large efficiency gains for unmatched
case-control studies (Breslow and Cain, 1988) and in nested case-control samples using the
counter-matching method (Langholz and Borgan, 1995). The success of these designs mo-
tivated us to explore whether analogous methods would be advantageous for case-cohort
sampling. In such a design the subcohort would consist of subjects randomly sampled within
two or more (exposure-related) strata, typically with some strata disproportionately repre-
sented. For example, PCR analysis is an accurate, but expensive, way to assess the viral load
among HIV infected patients and, thus should be a good predictor of time to AIDS and to
death. There are other less accurate, but much less expensive, assays that measure viral load
such as the level of P-24 antigen. Thus, a natural study design to investigate the prognostic
value of PCR analysis would be to determine P-24 levels in a cohort of HIV infected patients
and select a subcohort which over-samples subjects with high P-24 values.

It is not completely clear how one should analyze an exposure stratified case-cohort study.
In this paper, therefore, we investigate a number of potential strategies for analyzing case-
cohort data where the subcohort is selected by stratified random sampling, and compare
their performance relative to each other and relative to the existing methods for analyzing
case-cohort data with simple random sampling of the subcohort. The estimators we consider
are described Section 2. All of these are based on a pseudo-likelihood in the spirit of Prentice
(1986). In Section 3 we investigate which of the proposed estimators are score-unbiased
in the sense that the expectation of the pseudo-score (i.e. the derivative of the log-pseudo-
likelihood) is exactly equal to zero at the true parameter value. Asymptotic distribution
properties are discussed in Section 4, while the performance of the estimators is compared
in a small simulation study described in Section 5. Some concluding remarks are given in
Section 6.

2 Pseudo-likelihood estimators

We assume throughout that failures in the cohort occur according to Cox’s (1972) propor-
tional hazards model, where the hazard function for a subject with vector of covariates Z(t)
is given by

α(t;Z) = α0(t) exp{β′
0Z(t)}. (1)

Here the baseline hazard α0(t) corresponds to the hazard for an individual with covariate
vector identically equal to zero, while the regression coefficients β0 measure the effect of the
covariates. We denote by t1 < t2 < · · · the times when failures occur and, assuming no tied
failures, we let ij be the index of the failure at time tj .
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The subcohort is selected by stratified random sampling as follows. Based on information
which is available for everyone, the cohort is partitioned into L strata. We then select
by random sampling ml subcohort members without replacement from the nl subjects in
stratum l. The subcohort C̃ consists of the m =

∑
l ml individuals selected from the L strata.

Covariate information is collected for all failing individuals (cases) as well as for the non-
failures in the subcohort. Covariate information for non-failures outside the subcohort is,
however, not collected. In the main body of the paper, we assume that the there are no
delayed entries, and that the stratified sampling is based on information available at time
zero. In Section 6 we briefly discuss the special problems with case-cohort sampling when
this is not the case.

The estimators for β0 considered in this paper, are all based on maximizing a pseudo-
likelihood function of the form

L̃(β) =
∏
tj

 exp{β′Zij (tj)}wij (tj)∑
k∈R̃(tj)

Yk(tj) exp{β′Zk(tj)}wk(tj)

 . (2)

Here R̃(tj) is a “sampled risk set” which may depend on the failure time tj and the case ij ,
Yk(tj) is an at risk indicator for subject k, and wk(tj) is a weight for this individual which
does not depend on β but may depend on tj and R̃(tj). The various estimators differ in
the definitions of wk(tj) and R̃(tj), and we define the estimators in terms of these. For the
special case of no stratification (i.e. L = 1), Prentice’s (1986) original suggestion corresponds
to wk(tj) = 1 and R̃(tj) = C̃ ∪ {ij}, the subcohort augmented with the case when it occurs
outside the subcohort. Self and Prentice (1988), for the purpose of studying large sample
properties, considered the (asymptotically equivalent) modification where R̃(tj) = C̃ only
includes the case when it happens to occur inside the subcohort.

We will consider three different type of estimators for the stratified case-cohort design.
The idea underlying the first two is to simply replace the denominator of the full cohort
partial likelihood by an unbiased estimator computed from the case-cohort sample. We let D
be the set of all cases, and write n0

l and m0
l , respectively, for the total number of non-failures

in stratum l and the number of these which belong to the subcohort. Then, with s(k) the
sampling stratum of individual k, the first two estimators are given by

Estimator I: R̃(tj) = C̃ and wk(tj) = ns(k)/ms(k)

Estimator II: R̃(tj) = C̃ ∪ D and wk(tj) =

{
n0

s(k)/m0
s(k) if k ∈ C̃ \ D

1 if k ∈ D

Estimator I is the natural generalization of Self and Prentice’s (1988) estimator to strati-
fied sampling, and it was considered in an unpublished Ph.D.-thesis by one of the authors
(Samuelsen, 1989). In the spirit of Kalbfleisch and Lawless (1988), Estimator II includes all
at risk cases in the denominator weighted with one to reflect that they are included in R̃(tj)
with probability one. Note that Estimator II can be considered the special case of Estimator I
in which the stratum definitions also depend on outcome, thus making D a stratum on its
own and redefining the strata l = 1, . . . , L by excluding the cases.
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As discussed more closely in Section 3, Prentice’s (1986) estimator is score-unbiased,
while this is only approximately the case for Self and Prentice’s (1988) suggestion and the
Estimators I and II. Further, Prentice’s choice R̃(tj) = C̃ ∪{ij} is score-unbiased for stratified
sampling only if, when the case occurs outside the subcohort, only the subcohort members
in the same sampling stratum as the case are included in the denominator. This is clearly
an inefficient estimation method. It turns out that we can obtain score-unbiasedness as well
as an effective use of the information from the subcohort in the following way. Let Jl be a
randomly selected subject among the subcohort members from stratum l. Then our third
estimator is

Estimator III: wk(tj) = ns(k)/ms(k) and R̃(tj) =

{
C̃ if ij ∈ C̃
C̃ ∪ {ij} \ Js(ij) if ij 6∈ C̃

Note that in this estimator, if the case occurs outside the subcohort, the subcohort member
Js(ij) swaps place with the case so that the case ij is inside the “sampled risk set” R̃(tj) while
the “swapper” Js(ij) is removed from this set.

In all of Estimators I – III, the weights depend on the number of individuals in the
strata and the number of subjects sampled from these at entry to the study, i.e. at t = 0.
However, as time proceeds the number at risk, nl(t), in stratum l will differ from nl, as will
the number at risk, ml(t), in the subcohort from this stratum differ from ml. This suggests
a modification of the above estimators. In Estimator I we replace the weights ns(k)/ms(k) by
the time-dependent ones wk(tj) = ns(k)(tj)/ms(k)(tj). The same modification takes place for
Estimator III, but, when the case occurs outside the subcohort, we also replace Js(ij) by a
time-dependent “swapper” Js(ij)(tj) sampled at random among those at risk in the subcohort
from the case’s stratum. Finally for Estimator II we replace the weights n0

s(k)/m0
s(k) for the

non-failing individuals by wk(tj) = n0
s(k)(tj)/m0

s(k)(tj), where n0
l (t) and m0

l (t) are the total
number at risk at t, respectively, among the non-failures in stratum l and the number of
these which belong to the subcohort. As with counter-matching, if the categoric stratification
variable is the only covariate in the model, each of these time dependent weight variants yields
the full cohort partial likelihood. Thus, in this sense these estimators bring the full cohort
marginal information from the exposure-stratification variable into the sample.

3 Unbiasedness considerations

In order to study score-unbiasedness for estimators based on pseudo-likelihoods of the form
(2), we need to define our statistical model more carefully. We first describe the model for the
full cohort assumed to consist of n =

∑
l nl individuals. For that purpose we fix throughout

a time interval [0, τ ], and following the counting process formulation of the Cox model as
given by Andersen and Gill (1982), we let Ni, Yi, and Zi be the counting, censoring, and
covariate processes for the ith subject in the cohort. As is usual, we assume that there is a
non-decreasing family of σ-algebras (Ht)t∈[0,τ ] such that the Ni are (Ht)-adapted and the Yi

and Zi are predictable with respect to (Ht). Thus Ht is the “cohort history” including failure
time, censoring, and covariate information up to time t. The (Ht)-intensity process λi of Ni

is given heuristically by λi(t)dt = pr{dNi(t) = 1 |Ht−}, where dNi(t) is the increment of
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Ni over the small time interval [t, t + dt). Assuming censoring to be independent (Andersen
et al., 1993, Section III.2.2), (1) yields the intensity process

λi(t) = Yi(t)α0(t) exp{β′
0Zi(t)} (3)

for Ni.
Now that a model for the cohort has been given, we describe how the sampling of the

subcohort may be superimposed onto this model. To keep our presentation simple, we restrict
our attention to the situation where the weights do not depend on time, i.e. wk(tj) = wk in
(2), and assume that the stratification and the weights are based on information available
at entry to the study. Thus our formulation covers Estimators I and III, while this is not
the case for Estimator II. At the end of this section, we comment upon why Estimator II is
not covered by our general set-up, and indicate how our results may be modified to cover
the time-dependent modifications of Estimators I and III mentioned in the last paragraph of
Section 2.

We introduce Sl for the subset of the cohort members who belong to stratum l so that
nl = |Sl|. Since stratification is assumed to depend on information available at time zero, the
Sl will be H0-measurable. Further we let P be the power set of {1, 2, . . . , n}, i.e. the set of
all subsets of {1, 2, . . . , n}, and introduce

C = {c ∈ P : |c ∩ Sl| = ml, l = 1, . . . , L}

for the set of possible sampled subcohorts. Finally we let

π(c) = pr(C̃ = c) = 1

/
L∏

l=1

(
nl

ml

)
, (4)

for c ∈ C, be the sampling distribution for the subcohort C̃.
The sampling of the subcohort will induce extra random variation. In order to take care

of this, we will now have to work with the enlarged family of σ-algebras (Ft)t∈[0,τ ] obtained
by augmenting the “cohort history” by the sampling information (at time zero). This may
have the consequence that the intensity processes corresponding to the counting processes Ni

may change, i.e. their (Ft)-intensity processes may differ from their (Ht)-intensity processes
(3). To rule out such possibilities we need to assume that the sampling is independent in the
sense that the additional knowledge of which individuals have been selected to the subcohort
does not alter the failure intensities. Thus pr{dNi(t) = 1 | Ft−} = pr{dNi(t) = 1 |Ht−} so
that the (Ft)-intensity processes of the Ni are also given by (3).

We are then in a position to take a closer look at the pseudo-likelihood (2) and the
corresponding pseudo-score. To this end let R̃i be the “sampled risk set” to be used when/if
individual i fails. Thus for simple random sampling (i.e. L = 1) Prentice (1986) and Self and
Prentice (1988) considered the choices R̃i = C̃ ∪ {i} and R̃i = C̃ , respectively. The latter is
also the one used for Estimator I, while R̃i = C̃ ∪ {i} \ Js(i) for Estimator III. Note that with
this notation R̃(tj) = R̃ij , so that (2) may be reformulated as

L̃(β) =
∏

t∈[0,τ ]

n∏
i=1

 exp{β′Zi(t)}wi(R̃i)∑
k∈R̃i

Yk(t) exp{β′Zk(t)}wk(R̃i)

∆Ni(t)
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where we have written wk = wk(R̃i) for the weights in order to emphasize that these may
depend on the sets R̃i. For simple random sampling Prentice (1986) and Self and Prentice
(1988) both used the weights wk = 1, while in Estimators I and III wk = ns(k)/ms(k). It
should be noted that for all these estimators, the R̃i and the wk = wk(R̃i) are known at time
zero, i.e. they are F0-measurable.

Introduce for r ∈ P the notation

S(0)
r (β, t) =

∑
k∈r

Yk(t) exp{β′Zk(t)}wk(r), (5)

S(1)
r (β, t) =

∑
k∈r

Yk(t)Zk(t) exp{β′Zk(t)}wk(r), (6)

Er(β, t) = S(1)
r (β, t)/S(0)

r (β, t). (7)

Then the pseudo-score becomes

Ũ(β) =
∂

∂β
log L̃(β) =

∫ τ

0

n∑
i=1

{
Zi(t)−ER̃i

(β, t)
}

dNi(t), (8)

and the maximum pseudo-likelihood estimator β̃ is the value of β which maximizes (2) or
solves Ũ(β) = 0. Let us then evaluate the expected value of the pseudo-score at the true
parameter vector β0 and consider conditions for score-unbiasedness. Using (3) and (5) – (8),
it is seen that the pseudo-score at β0 may be written as

Ũ(β0) =
∫ τ

0

n∑
i=1

{
Zi(t)−ER̃i

(β0, t)
}

dMi(t) (9)

+
∫ τ

0

n∑
i=1

{
Zi(t)−ER̃i

(β0, t)
}

Yi(t) exp{β′
0Zi(t)}α0(t)dt,

where by standard counting process theory (e.g. Andersen et al., 1993, Section II.4.1) the
Mi(t) = Ni(t) −

∫ t
0 λi(u)du are orthogonal local square integrable (Ft)-martingales. Since

Zi(·) and ER̃i
(β0, ·) are (Ft)-predictable processes, the first term on the right hand side

of (9) is a vector valued stochastic integral, and therefore a local square integrable (Ft)-
martingale. In particular, the expected value of this term is zero. (Here and below we tacitly
assume that all expectations considered actually do exist.)

To investigate the expected value of the second term on the right hand side of (9), note
that by taking expectation over the sampling, conditional on the entire cohort history, we
get for each t ∈ [0, τ ]

n∑
i=1

E{ER̃i
(β0, t)|Hτ}Yi(t) exp{β′

0Zi(t)}

=
n∑

i=1

{∑
r∈P

Er(β0, t)pr(R̃i = r)

}
Yi(t) exp{β′

0Zi(t)} (10)

6



=
∑
r∈P

∑
k∈r Yk(t)Zk(t) exp{β′Zk(t)}wk(r)∑

k∈r Yk(t) exp{β′Zk(t)}wk(r)

∑
i∈r

Yi(t) exp{β′
0Zi(t)}pr(R̃i = r)

+
∑
r∈P

∑
k∈r Yk(t)Zk(t) exp{β′Zk(t)}wk(r)∑

k∈r Yk(t) exp{β′Zk(t)}wk(r)

∑
i6∈r

Yi(t) exp{β′
0Zi(t)}pr(R̃i = r).

Here pr(R̃i = r) may be derived from the subcohort distribution (4) and the relation between
the subcohort C̃ and the sets R̃i, cf. below. In general, it does not seem possible to give a
simple expression for (10). However, for an important special case this is possible, namely
when the following two conditions are fulfilled:

For all k and r ⊂ P we have:
A) pr(R̃k = r) = 0 for k 6∈ r.
B) pr(R̃k = r) = const(r)wk(r) for k ∈ r.

Note that Condition A requires the cases to be included in the “sampled risk sets,” while
Condition B assumes the weights wk = wk(R̃i) to be proportional to the probability of
selecting R̃i as the “sampled risk set” had k been the failure.

When Condition A is fulfilled, the second term at the right hand side of (10) vanishes.
Moreover, introducing Pk = {r ∈ P : k ∈ r} and using Condition B, the first term equals∑

r∈P

∑
k∈r

Yk(t)Zk(t) exp{β′Zk(t)}pr(R̃k = r)

=
n∑

k=1

Yk(t)Zk(t) exp{β′Zk(t)}
∑
r∈Pk

pr(R̃k = r)

=
n∑

k=1

Yk(t)Zk(t) exp{β′Zk(t)}

since pr(R̃k = r) is a probability distribution over sets r in Pk. Thus if Conditions A and B
are fulfilled,

n∑
i=1

E{E
R̃i

(β0, t)|Hτ}Yi(t) exp{β′
0Zi(t)} =

n∑
k=1

Yk(t)Zk(t) exp{β′Zk(t)} (11)

so that the expected value over the sampling of the second term at the right hand side of (9)
is zero. Therefore Conditions A and B are sufficient for the pseudo-score to have expected
value zero. We conjecture that they are necessary as well.

Let us then investigated the implications of this result for the estimators mentioned earlier.
Note first that for simple random sampling, i.e. L = 1, Self and Prentice’s estimator does
not include the case in the “sampled risk set” and hence is not score-unbiased. Prentice’s
estimator, however, does include the case, and for r ∈ Pk we find

pr(R̃k = r) = pr(C̃ = r) + pr(C̃ = r \ {k})

=

(
n

m

)−1

I(|r| = m) +

(
n

m

)−1

I(|r| = m + 1).
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Here the first term on the right hand side corresponds to the situation where k is a member
of the subcohort, while the second corresponds to the situation where k is not a member. It
is seen that Prentice’s estimator fulfills Conditions A and B and hence, as noted by Prentice
(1986), is score-unbiased.

Now, consider stratified sampling, where the subcohort C̃ is selected according to the
sampling probability (4). First note that Estimator I does not include the case in the “sampled
risk sets”, so this estimator is not score-unbiased. Next, consider the situation where R̃i =
C̃ ∪ {i}. By a similar reasoning as just given for Prentice’s estimator, we get for r ∈ Pk,

pr(R̃k = r) = π(r) + π(r \ {k}).

To see the implications of Conditions A and B, let i correspond to the case so that r ∈
Pi. If then r ∈ C, i.e. the case occurs within the subcohort, pr(R̃k = r) = π(r) and
Conditions A and B are fulfilled for the weights wk = 1. However, if r 6∈ C, i.e. the case
occurs outside the subcohort, pr(R̃k = r) = π(r \ {k}) which is zero except when i and k
belong to the same stratum. Thus score-unbiasedness can only be obtained if all non-zero
weights are just one, but, if the case is not in the subcohort, only subcohort members in
the same sampling stratum as the case are included in the denominator. It is seen that the
reason why score-unbiasedness leads to this clearly inefficient estimator when R̃i = C̃ ∪{i}, is
that the structure of the sampled risk sets gives too much information about the case when
it occurs outside the subcohort (Pogoda, 1993).

This motivated the construction of our Estimator III, which may be given as follows.
Conditional on the chosen subcohort C̃, we select at random (in principle, at time zero), for
each i 6∈ C̃, a “swapper” Ji ∈ C̃ from individual i’s stratum s(i). Thus pr(Ji = j | C̃ = c) =
1/ms(i) for each i 6∈ c and j ∈ c ∩ Ss(i). Then, for r ∈ C ∩ Pk,

pr(R̃k = r) = pr(C̃ = r) +
∑
j

pr(C̃ = r ∪ {j} \ {k}, Jk = j),

where the sum is over all j 6∈ r with s(j) = s(k). Now for all such j

pr(C̃ = r ∪ {j} \ {k}, Jk = j) = π(r ∪ {j} \ {k})/ms(k) = π(r)/ms(k),

with π(r) given by (4). Since the sum over j has ns(k) −ms(k) terms this gives

pr(R̃k = r) = π(r)
ns(k)

ms(k)
.

Thus we have proved that Conditions A and B hold for the “swapper approach,” so Estima-
tor III is score-unbiased.

To simplify the presentation, we have in this section assumed the weights not to depend
on time. The results extend immediately, however, to the modifications of Estimators I and
III mentioned in the last paragraph of Section 2. There are two reasons for this. Firstly, the
time-dependent weights of Estimators I and III are predictable, so that the leading term on
the right hand side of (9) has expected value zero also for the modified estimators. Secondly,
conditional on the cohort history, those at risk in the subcohort at a given time constitute
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a stratified random sample from everyone at risk, so the unbiasedness arguments based on
Conditions A and B also continue to hold for the modified Estimators I and III. Hence the
version of Estimator III using time-dependent weights is score-unbiased, while this is not the
case for the modified Estimator I.

As mentioned earlier, Estimator II is not covered by the framework considered above.
The main reason for this is that the stratification and the weights used for this estimator
depend on the complete cohort history Hτ , making the integrand in the leading term on the
right hand side of (9) non-predictable. Thus this term no longer has expected value zero and,
as a consequence, Estimator II is not score-unbiased.

4 Asymptotic distribution and variance estimation

In their study of the asymptotic properties of the case-cohort estimator for simple random
sampling, Self and Prentice (1988) concentrated on the situation where the subcohort C̃
is used as the “sampled risk sets” in (2) for all tj . Since stratified random sampling is
simple random sampling independently between strata, the asymptotic properties of the
corresponding Estimator I may be derived as a simple extension of their results. Following
Samuelsen (1989, 1997), we will here sketch the main steps in this derivation. At the end of
the section we discuss the extent to which similar results hold for the asymptotic distribution
of the other estimators considered in this paper.

So for the time being, we restrict our attention to Estimator I with time fixed weights
wk = ns(k)/ms(k). We assume that nl/n → νl > 0 and ml/nl → pl > 0 as n →∞, and that,
within each stratum, the regularity conditions of Self and Prentice (1988) hold when simplified
to the situation with exponential relative risk function r(x) = exp(x). Write C̃l = C̃ ∩ Sl for
the subset of the subcohort that belongs to stratum l, and introduce, for γ = 0, 1 (later we
avoid boldfacing for γ = 0),

S(γ)

C̃l

(β, t) =
∑
k∈C̃l

Yk(t)Zk(t)γ exp{β′Zk(t)}(nl/ml), (12)

as well as the corresponding cohort quantities S(γ)
(l) (β, t) obtained from (12) by omitting the

weights and summing over k ∈ Sl instead of k ∈ C̃l. Then, in particular, we assume that
1/nl times (12) and n−1

l S(γ)
(l) (β, t) both converge (uniformly over β and t) in probability to

the same limit as n →∞. Further, for γ = 0, 1, introduce

S(γ)(β, t) =
n∑

k=1

Yk(t)Zk(t)γ exp{β′Zk(t)} =
L∑

l=1

S(γ)
(l) (β, t)

and

S(γ)

C̃
(β, t) =

L∑
l=1

S(γ)

C̃l

(β, t),

and from these define E(β, t) and EC̃(β, t) as in (7).
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We are then in position to take a look at the pseudo-score for Estimator I. To this end
we introduce U(β), the score for the full cohort, obtained by replacing ER̃i

(β, t) by E(β, t)
in (8). The pseudo-score for Estimator I, evaluated at β0, may be decomposed as

Ũ(β0) = U(β0) +
n∑

k=1

{1− (ns(k)/ms(k))Ik}Xk (13)

where Ik = I(k ∈ C̃), and

Xk =
∫ τ

0
{Zk(t)−E(β0, t)}Yk(t) exp{β′

0Zk(t)}S
(0)

C̃
(β0, t)

−1dN·(t)

with N· =
∑n

i=1 Ni. By approximating S
(0)

C̃
(β0, t) with S(0)(β0, t), it then follows that the

normalized pseudo-score n−1/2Ũ(β0) is asymptotically equivalent to

n−1/2U(β0) + n−1/2
n∑

k=1

{1− (ns(k)/ms(k))Ik}X0
k (14)

with
X0

k =
∫ τ

0
{Zk(t)−E(β0, t)}Yk(t) exp{β′

0Zk(t)}S(0)(β0, t)
−1dN·(t). (15)

The leading term of (14) is the normalized score for the full cohort, and it is known to
converge weakly to a mean zero multivariate normal variate with covariance matrix Σ, say
(Andersen and Gill, 1982; see also Andersen et al., 1993, Section VII.2). For the second term,
we may, conditional on the complete cohort history, apply the finite population large-sample
result of Lehmann (1975, pp. 39-40) separately within each stratum. Combining the results
over the L strata, we then get that, conditional on Hτ , the second term of (14) converges
weakly to a mean zero multivariate normal variate with covariance matrix

∆ =
L∑

l=1

νl
1− pl

pl
∆l. (16)

Here ∆l is the limit in probability of the finite-population covariance matrix of the X0
k

within stratum l (which exists by our Self-Prentice type conditions). Then, by (3.9) in
Samuelsen (1997), it follows that the two terms in (14) are asymptotically independent, and
that the unconditional asymptotic distribution of the latter is the same as the conditional
one just mentioned. Finally, let Ĩ(β) be the observed pseudo-information for Estimator I.
Then n−1Ĩ(β∗) converges in probability to the asymptotic cohort information matrix Σ for
any β∗ which is consistent for β0. The usual Taylor series expansions argument gives that√

n(β̃ − β0) converges weakly to a mean zero multivariate normal variate with covariance
matrix Σ−1 + Σ−1∆Σ−1 as n →∞.

The asymptotic covariance matrix of
√

n(β̃ − β0) may be estimated consistently by n
times Σ̃−1 + Σ̃−1∆̃Σ̃−1. Here Σ̃ = Ĩ(β̃) is the observed pseudo-information, while

∆̃ =
L∑

l=1

nl(nl −ml)
ml

∆̃l (17)
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with ∆̃l the empirical covariance matrix of the

X̃k =
∫ τ

0

{
Zk(t)−EC̃(β̃, t)

}
Yk(t) exp{β̃′

Zk(t)}S
(0)

C̃
(β̃, t)−1dN·(t) (18)

based on the sample from stratum l. Thus

∆̃l =
1
ml

∑
k∈C̃l

(
X̃k − X̃(l)

) (
X̃k − X̃(l)

)′
(19)

with X̃(l) = m−1
l

∑
k∈C̃l

X̃k.
The only difference between the time-fixed weights versions of Estimators I and III is that,

when the case occurs outside the subcohort, Estimator III swaps it with an individual in the
subcohort from the same stratum. This difference is asymptotically negligible as the cohort
and subcohort sizes increase, so the two estimators have the same asymptotic distribution.
Estimator II is not asymptotically distributed as the other two. Under suitable regularity
conditions, however, the above arguments go through with only small modifications. In
particular, for variance estimation, one should replace nl, ml, C̃ and C̃l by, respectively, n0

l ,
m0

l , C̃ ∪ D and C̃l \ D in (17) - (19).
When the weights depend on time, as described in the last paragraph of Section 2, the

score for Estimator I can no longer be decomposed as in (13). We have not been able
to derive the asymptotic distribution of the time-dependent weights version of any of our
estimators. But by inspecting the simple case where a dichotomous stratification variable
is the only covariate in the model, it can be shown that the difference between the two
versions of Estimator I is not asymptotically negligible. (The time-dependent version is fully
efficient in this situation, but (16) does not vanish for the time-fixed version.) Thus one may
expect to get an efficiency gain by using time-dependent weights. However, the study of the
asymptotic distribution of the versions of the estimators with time-dependent weights is a
topic for further research.

5 A simulation study

To get some understanding for the potentials of stratification in case-cohort studies and the
behavior of our estimators, we performed a small simulation study for model (1). To mimic
an instance where stratification may be useful, we considered a situation where a dichotomous
surrogate measure Z̃ is available for everyone, and is used to partition the cohort into two
strata. The surrogate measure is related to the covariate of interest Z in such a way that
surrogate positive individuals (Z̃ = 1) are more likely to have a high value of Z than surrogate
negative individuals (Z̃ = 0). Note that in an actual case-cohort study, the value of Z will
only be obtained for the failures and the subjects in the subcohort.

More precisely, we simulate the censored survival times for the individuals in the cohort
as follows. First we generate a Bernoulli variable Z̃ with success probability p = 0.10,
corresponding to a situation with 10% surrogate positive individuals. Then the covariate Z
is selected from the standard normal distribution when Z̃ = 0, and from a normal distribution
with mean µ and standard deviation σ when Z̃ = 1. Conditional on Z = z, the failure time
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Table 1: Average estimate of β (“aver”) with empirical standard deviation (“sd”) based on repeated
sampling of 1000 cohorts each with 1000 individuals a. For the case-cohort studies, the subcohort size
is m = 100 subjects in the first four panels and m = 30 in the latter. For the case-control designs,
one control is selected per case. The number of cases are approximately equal to the size of the
subcohorts b.

m = 100 m = 100 m = 100 m = 100 m = 30
µ = 2, σ = 1 µ = 4, σ = 1 µ = 4, σ = 4 µ = 4, σ = 4 µ = 4, σ = 4

β = 0.30 β = 0.20 β = 0.20 β = 0.30 β = 0.30

Method aver sd aver sd aver sd aver sd aver sd

Full cohort 0.298 0.088 0.196 0.060 0.196 0.052 0.299 0.044 0.294 0.069

Self & Prentice 0.314 0.148 0.210 0.105 0.221 0.114 0.337 0.133 0.557 0.691
Est II unstratified 0.311 0.140 0.206 0.097 0.212 0.092 0.314 0.085 0.377 0.182
Prentice 0.309 0.143 0.205 0.101 0.213 0.103 0.320 0.109 0.374 0.229

Est I time-fixed 0.302 0.124 0.196 0.071 0.197 0.062 0.302 0.053 0.306 0.131
Est I time varying 0.302 0.123 0.196 0.070 0.198 0.061 0.302 0.052 0.309 0.125
Est II time-fixed 0.301 0.122 0.195 0.070 0.197 0.061 0.300 0.051 0.300 0.111
Est II time varying 0.301 0.121 0.196 0.069 0.197 0.060 0.301 0.050 0.304 0.106
Est III time-fixed 0.298 0.123 0.195 0.071 0.197 0.062 0.301 0.053 0.302 0.109
Est III time varying 0.299 0.121 0.195 0.069 0.197 0.060 0.301 0.052 0.301 0.102

Nested case-control 0.309 0.144 0.204 0.102 0.208 0.096 0.311 0.091 0.328 0.174
Counter-matched 0.286 0.124 0.193 0.067 0.196 0.058 0.299 0.050 0.295 0.080

a) In the first four panels α = 0.10 and c = 3, in the latter α = 0.05 and c = 1.25.

b) The average number of failures are 89 - 91 for the first three panels, 101 for the fourth and 39 for the last.

T is generated from the exponential distribution with parameter αeβz. The censored survival
time is T̃ = min(T,U), where the censoring variable U = min(1, V ) with V independent of
T and uniformly distributed over [0, c]. Various choices of the parameters µ, σ and β were
used to illustrate situations with different covariate distributions and effects of the covariate,
while the parameters α and c were adjusted to obtain the desired number of failures and
censorings before time t = 1.

For all simulated data sets we compute the full cohort estimator as well as estimators based
on simple and stratified case-cohort sampling. The simple and counter-matched nested case-
control designs are also included for comparison (cf. below). For the unstratified case-cohort
study, we consider Self and Prentice’s estimator, Estimator II specialized to the situation with
only one stratum, and Prentice’s original estimator. For the stratified design, Estimators I-
III are considered both with time-fixed and time-varying weights. All results are based on
repeated sampling of 1000 cohorts, each with censored survival times for 1000 individuals
(the same for all estimators). For the stratified design, an equal number of individuals are
selected to the subcohort among those with Z̃ = 0 and Z̃ = 1.

The first four panels of Table 1 give results for a situation where more than half of the
cohort subjects are still at risk at the end of the study (i.e. at t = 1), and where the number
of cases is approximately the same as the subcohort size of 100 individuals. In the last panel,
the subcohort consists of 30 individuals, the number of failures are about the same, while only
a fifth of the individuals are still at risk at the end of the study. The choices of µ, σ and β in
the three first panels correspond to situations where an increase in the value of the covariate
equal to four standard deviations of the (unconditional) distribution of Z, corresponds to
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a relative risk of 3.5 - 4. For the fourth and fifth panel, a similar increase corresponds to
a relative risk which is about twice as large. The main conclusion from Table 1, is that a
substantial improvement of a case-cohort study may be achieved using a stratified design. Not
surprisingly, the gain increases with the difference between the distribution of the covariate
among surrogate negative and surrogate positive individuals.

For a subcohort size of 100 subjects, i.e. the first four panels of Table 1, all the stratified
estimators give similar results, and the differences observed are of little practical importance.
Nevertheless, it is worth noting, that for all three methods, the version with time-dependent
weights performs slightly better than the version where the weights are time-fixed. Further
Method III performs consistently better than Method I, while Methods II and III give almost
identical results. For the three unstratified methods, the Self-Prentice estimator has the poor-
est performance. It is biased upwards and has consistently the largest standard deviation.
Among the other two, Prentice’s estimator tends to have slightly smaller bias than Estima-
tor II, while the latter has the smallest standard deviation. These qualitative conclusions for
a subcohort size of one hundred, are confirmed by additional simulations (not shown) with
more censorings and/or less failures. A tendency is observed, however, of slightly improved
performance of the Prentice estimator relative to Estimator II as the number of failures are
reduced. Subcohorts as small as 30 individuals are not used in practice, but may mimic
situations where a time-dependent effect of a covariate is to be estimated from data in the
latter part of a case-cohort study. As illustrated in the last panel of Table 1, somewhat larger
differences between the methods can show up in such extreme situations.

The two last lines of Table 1 give the results for the simple and counter-matched case-
control designs with one control selected per case. The results are not directly compara-
ble, however, since the number of distinct subjects used are not exactly the same for the
case-cohort and the case-control designs. The case-control designs require information from
somewhat fewer subjects for the situations considered in the first three panels of Table1,
and from slightly more for the latter two. Although this caveat makes it difficult to make
precise statements about the comparative efficiency, the results indicate that the case-control
designs have a performance which is approximately comparable to that of the corresponding
case-cohort studies.

6 Discussion

Our simulation results show that if a correlate of exposure is available for all cohort members,
it can be advantageous to stratify the sampling of the subcohort to over-represent more
highly exposed subjects. We indicated why the natural generalization of Prentice’s (1986)
pseudo-likelihood for simple random sampling is clearly inefficient for estimation of rate ratio
parameters. Estimator III solves this problem while retaining score-unbiasedness. We found
little bias, however, in the other stratified estimators in our simulations. Based on the
observation that the time-dependent weight variants of the estimators bring the full cohort
marginal information about the stratification variable into the sample, we conjectured that
these estimators would be superior to the corresponding time-fixed weight versions. In fact,
our simulations showed a slight improvement in efficiency using time-dependent weights.

13



Further simulation studies of more complex situations and analyses of real data sets are
needed before definitive conclusions can be drawn on the importance of score-unbiasedness
and whether the use of time-dependent weights warrants the additional complexity in the
analysis. When comparing the three stratified estimators, it is also important to note that
the data requirements are not the same for all three. Estimator II requires the full covariate
histories for the cases, while Estimators I and III only need the cases’ covariate values at
their failure times.

One rather strong assumption we have made in our development, is that the stratified
sampling of the subcohort depends only on exposure information known at time zero. This
poses no difficulties with time-fixed covariates and for clinical trial type situations such as the
HIV study example mentioned in Section 1 in which the P-24 levels used in the sampling would
be collected at entry to the study. Further research is needed to assess the magnitude of the
bias that may occur in other situations, such as in occupational cohort settings. Such studies
would often require stratifying the subcohort based on a time-varying covariate evaluated
at a time other than zero or on a covariate at the time of entry when there is late entry
into the cohort. This cautionary note only applies to the sampling of the subcohort. If
the assumption holds, then estimation of parameters associated with time-dependent factors
included appropriately in the model will be valid.

We have discussed variance estimation for the stratified case-cohort estimators with time-
fixed weights in Section 4. For simple random sampling, the X̃k given by (18) sum to zero, and
it can be shown that our variance estimator (17) equals the one given by Self and Prentice
(1988, p. 74) when simplified to the situation with exponential relative risk function. A
similar reformulation of the Self-Prentice covariance estimator is given by Therneau and Li
(1998), who show how their version of the estimator can be easily computed using standard
computer packages like Splus and SAS. For the unstratified case, Lin and Ying (1993) and
Barlow (1994) suggested an alternative to the Self-Prentice covariance estimator. We have
not investigated how their approach may be adopted to stratified sampling, and whether it
may be modified to handle the situation with time-varying weights.

Important design questions for stratified case-cohort studies are (i) how one should divide
the cohort into strata, and (ii) how many subjects one should choose from each stratum. In
principle, once one has split the cohort into strata, question (ii) has a precise answer. If the
covariate Z1 is the one of main interest, it is optimal to chose the ml proportional to nlδ11l,
where ∆l = {δjkl} is the matrix defined just below (16). Thus one should sample more than
the proportional share from strata where there is a large variation among the X0

k ; cf. (15).
A strict implementation of this allocation rule is problematic, however, since it depends on
the covariate and censoring distributions, none of which are known at the design stage. But,
as intuition would predict, the rule indicates that one should over-sample high risk strata
where the variation of the exposure tends to be large. Design question (i) is a difficult one.
To answer this, one may, for example, have to decide on the number of strata and how to
categorize a continuous variable used for creating strata. Further research is needed to get a
better understanding of such problems.
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