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Abstract

Motivated by a Finnish case-control study of early onset diabetes in
which diabetic children are matched to sibling controls, we investigate
ascertainment bias of the usual rate ratio estimator from case-control
data under simplex complete ascertainment of families during a fixed
interval of time. Analytic results indicate that the assumptions nec-
essary for valid estimation are that 1) the disease is rare and 2) the
factors under study are exchangeable, essentially that the covariate
distribution does not depend on calendar time or birth order. Fur-
ther, we found that the rare disease assumption could be dropped by
restricting to cases that were diagnosed during the enrollment period
of the study or including all cases but eliminating the proband as a
control for non-enrollment period cases. An important consequence of
this work is that standard family-based case-control studies are sub-
ject to ascertainment bias if exchangeability of the covariates under
investigation does not hold.

Some key words: Case-control studies; Censoring; Diabetes; Epidemiology;
Family studies; Genetics; Partial likelihood; Proband elimination.



1 Introduction

The growing interest in genetic determinants of variable age-of-onset diseases
such as cancer, diabetes, and psychiatric disorders has engendered collabo-
rations between geneticists and epidemiologists. Statisticians are playing a
key role in the emerging field of genetic epidemiology by developing study
designs and appropriate methods of analysis that link the quite different ap-
proaches used by these two fields. It is increasingly common to rely on family
case-control study designs for quantifying gene-disease associations and gene
by environment interactions both to control for common family environment
and potential “population stratification” [Curtis, 1997]. In this design, non-
diseased family members serve as controls for the diseased case(s) in the
family in a standard case-control study fashion.

One aspect of studies that use family controls that needs to be addressed
is the enrollment of families into the study through affected probands. Be-
cause the high risk genotype is likely to be over-represented in families with
a diseased member, a disportionate number of family members will be dis-
covered to be diseased. In classical segregation analysis, this problem of
“ascertainment bias” has long been recognized [Fisher, 1934; Morton, 1959]
and appropriate ways to incorporate the additional familial cases have been
developed. In this paper, we explore this issue in the context of a population
based family study of childhood insulin dependent diabetes mellitus (IDDM)
with the goal of estimating the rate ratio associated with measured HLA
genotypes which we now describe.

The nationwide Childhood Diabetes in Finland (DiMe) Study of early on-
set IDDM coordinated at the Finnish National Public Health Institute has
was created to assess genetic and environmental determinants of the disease
that could explain the extraordinarily high rate of IDDM in Finland. Be-
tween September 1986 and April 1989, (which we will call the “enrollment
period,”) incident cases of IDDM in children up to age 15 (the “probands,”)
were identified through the prospective IDDM registry and their families
were asked to participate in the study [Tuomilehto et al., 1992]. Ninety
five percent of those contacted did participate and, among other data col-
lected, blood samples were taken from the proband’s first degree relatives
and serologically determined HLA haplotypes were inferred from the family
data [Tuomilehto-Wolf et al., 1989]. Since the HLA genotype does not change
with age or the occurrence of diabetes and mortality for this age group is
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very low, HLA information was available for virtually all children in each as-
certained sibship. Further, any additional cases of IDDM in the ascertained
families diagnosed prior to February 1986, the “pre-enrollment period,” or
in the “post-enrollment period” from May 1989 to August 1993 were noted
in the data set. The ascertainment scheme used in the DiMe study is an
example of simplex complete ascertainment [Thompson, 1993] over the en-
rollment period. Simplex refers to the requirement that a single proband is
sufficient to ascertain the family. Complete means that all families who meet
this requirement are included in the study.

In this paper, we investigate the potential biases that can arise when fam-
ilies are ascertained through a proband and the circumstances in which it is
acceptable to extend observation time outside the enrollment period. We
further develop methods to correct for this bias. After describing the DiMe
data as a family stratified cohort study and showing why standard methods
of analysis, which restrict the follow-up to the enrollment period, lead to an
undesirable loss of data, in Section 3 we describe our basic analytic approach
to ascertainment bias. In Section 3.2 we show how using non-enrollment pe-
riod experience results in ascertainment bias (even when disease is rare) in
two-sibling families. The cause of this bias is investigated analytically and
we describe the exchangeability assumption for unbiasedness. These findings
suggest two analysis methods for general family data that, under exchange-
ability, lead to valid estimation. The first is to restrict to contributions from
enrollment period cases only. The second is to additionally include non-
enrollment case contributions but with the proband excluded as a control.
The implications of these results for the DiMe analysis and for family case-
control studies based on just the observed disease status at the end of the
study period, i.e., ignoring time are discussed in Section 4. Mathematical de-
tails and an extensive computer simulation study are described in a Technical
Report [Langholz and Huberman, 1999] available from the authors.

2 Methods of analysis

Figure 1 illustrates the basic data for five hypothetical sibships arising from
the DiMe study. The appropriate time scale for comparing rates of IDDM is
age and the disease experience is viewed from this perspective. Each hori-
zontal line represents one child who may contract IDDM at an age, indicated
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by a •, or be disease-free by the end of the post-enrollment period. The tick
marks (|) indicate the boundaries of enrollment period. Note that a subject
who reaches age 15 disease-free before the end of the post-enrollment period
is censored at age 15. The solid line denotes time that a subject is under
observation during the enrollment period and the dashed line is observation
time that is only available for sibships that are ascertained by the study.

We view these data as a family stratified cohort study. Thus, an appro-
priate hazard model for the rates of disease is of the stratified Cox form

λ(t, Z, f) = λf (t) exp(Zβ0)

where λf (t) is the baseline hazard, specific to family f , as a function of age
t, Z is a vector of covariates that appropriately summarize genotype and/or
environmental information, and β0 are true log rate ratio slope parameters
which are to be estimated. The analysis is based on a partial likelihood
approach in which risk sets are formed consisting of the IDDM case and
sibling controls who attain the age of the case in the course of the study and
are disease free at that age [Cox, 1972]. These are the vertical “•, ◦” sets
in the figure. It is the comparison of HLA genotypes in the case to that of
the sibling controls that is the basis of rate ratio estimation in a “likelihood”
that is the product of contributions from each family of the form

L =
∏
d∈D

exp(β′Zd)∑
j∈Rd

exp(β′Zj)
(1)

where D is the set of case indices, including both proband and familial cases.
The sum in the denominator is over members of the risk set Rd for case d
with Zj the covariate values for family member j. The estimator of β0 is
obtained by maximizing the likelihood over β.

Because a member of each sibship must have become diseased during the
enrollment period, the first four families in Figure 1 are ascertained by the
study and potentially can make contributions to the rate ratio estimation. In
families 1 and 2, the proband’s sibling attains the age of the proband in the
course of the study period and the case-control pair consists of the proband
as case and the sibling as control; these two situations are distinguished by
whether or not the unaffected sibling attains the age of the proband during
the enrollment period. In family 3, the proband has an older sibling who
became diseased at a younger age than the proband’s age of diagnosis. In
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this situation, the proband could serve as the control to the sibling case even
though the proband would not contribute as a case because of the lack of
an age-matched control. Family 4, with four siblings and two cases, could
make two contributions with three siblings as controls for the youngest case
and two siblings as controls for the proband. In family 5, the youngest
and oldest siblings were under observation during the enrollment period but,
since neither of them had contracted the disease during this period, the study
would not detect their sibling who contracted disease prior to the enrollment
period.

In our analysis of this data, we formed the risk sets for the DiMe data
as in Figure 1 and used all available sets in our analysis [Langholz et al.,
1995]. The “All siblings” column of Table 1 gives the rate ratio estimates
for DR3 and DR4 alleles from the “log-additive” model. This is a standard
log linear model as in (1) with DR3 and DR4 covariates defined as 0, 1, or
2 depending on the number of occurrences of the respective alleles at the
DR locus. We found that this model adequately described the DR3/DR4
effects in the data. Out of the cases who were ascertained by the study, 498
contribute informative risk sets, by which we mean that the case had at least
one control (although some of these were completely exposure concordant
and hence uninformative in that sense). As seen in Table 1, many of the
cases had multiple sibling controls, the maximum being seven.

The problem with this approach is that data is collected in calendar time
but age is the relevant time scale for IDDM incidence. The standard theory
for the analysis of cohort data would require that the observation of the
cohort members be left truncated at the ages corresponding to the beginning,
and right censored at the end, of the enrollment period. This would mean
that additional familial cases that occur outside the enrollment period could
not be used in the analysis. Further, to be eligible as a control for a case that
occurs during the enrollment period, a sibling would need to achieve the age
of the case during the enrollment period. The former restriction is not too
severe as, for rare diseases, the vast majority of cases will be the probands.
(In the DiMe data, there were only 34 informative non-enrollment period
risk sets out of the 498.) However, the latter restriction will result in many
probands essentially being dropped from the study because of the lack of any
sibling who meets the requirement. The consequences of these restrictions
is illustrated in Figure 1 by only including “solid line” observation times in
setting up the risk sets. Only families 1 and 4 would contribute informative
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risk sets, each with a single case-control pair. The results of restricting the
DiMe data in this way are given in the “censored observation period” column
of Table 1. Only 114 cases contribute to the analysis, 110 of which have just
one control. Compared to the all siblings analysis, the resulting DR3 and
DR4 rate ratio estimates are much more unstable, as indicated by the wide
confidence intervals.

Thus, application of standard methodology in this situation results in an
unacceptable loss of data and we chose to treat members of the ascertained
families as if they had been under observation from birth until the end of
the post-enrollment period. The results from this analysis were consistent
with those using a quite different approach, using the possible four possible
genotypes in offspring given the parent’s genotypes [Self et al., 1991], so we
felt reassured about our overall conclusions. Nonetheless, the appropriateness
of our analysis and the potential biases that could arise were open questions.

Another reasonable analysis of these data is to take a “grouped time”
approach, ignoring the failure time structure altogether and modeling the
probability (rather than the rate) of disease. Data would be organized by
family with case-control status determined by disease status at the end of
the study period. The logistic model then would be appropriate, using condi-
tional logistic regression methods to accommodate the family stratification.
For the analysis of cohort data generally, when the disease is rare and censor-
ing does not depend on the covariates, the odds ratio estimates from grouped
time analyses will be quite close to the rate ratio estimates from the corre-
sponding risk set based analyses. In our framework, this approach assumes a
“rare disease” and that non-diseased siblings will remain on study and non-
diseased to the end of the post-enrollment period (e.g., to 15 years old in the
DiMe study). Thus, returning to Figure 1, families 1 and 2 would make same
likelihood contributions as in the risk set approach, while disease concordant
family 3 does not contribute. Family 4 would contribute a single case-control
set with two cases and two controls. Although we will focus on the risk set
approach our findings will apply to the grouped time approximation as well;
we will return to this point in the Discussion.
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3 Analytic study of ascertainment bias

The key to our analytic approach was to derive the expected disease incidence
in ascertained sibships, treating the subjects as if they had been observed
from birth (λ̃), as a function of the expected incidence had all members of the
sibship in fact been followed from birth (λ). As shown in the Appendix, for
subject j in an ascertained sibship this is given by λ̃j(t) = λj(t)wj(t) where
wj(t) is the distortion due ascertainment. This is then used to compute the
expectation of the score from likelihood (1) as a function of β. The solution
to the expected score (equation (5) in the Appendix) set equal to zero is the
“large sample” ascertainment biased parameter estimate. The distortion for
simplex complex ascertainment is explicitly derived in the Technical Report
and we found that 0 ≤ wj(t) ≤ 1 during the pre-enrollment period and
1 ≤ wj(t) during the enrollment period and is one during the post-enrollment
period. This has the intuitive explanation that conditioning on the knowledge
that at least one of the siblings will become diseased during the enrollment
period decreases the chance that any particular sibling will become diseased
during the pre-enrollment period and increases the chance of disease during
the enrollment period, relative to a family picked without that knowledge.
Once the ascertainment event has occurred, there is no additional information
and the disease rates are determined by the undistorted intensity.

3.1 Twins

We now explore the effect on relative risk estimates of this distortion in
hazard rates due to ascertainment. It is simplest to begin with the case of
completely overlapping enrollment periods, which of course can occur only
if the birth dates are identical, i.e., for twins. Since an unaffected twin is
always a “valid” control for a proband (attains the age of the case during the
enrollment period), this situation focuses exclusively on the question of the
effect of using cases that occur outside the enrollment period. The somewhat
surprising result is that pre-enrollment period cases are not at all informative
for estimation of the rate ratio. This is not because they are more likely to be
exposure concordant since such pairs would not contribute to the estimation
of the rate ratio anyway. Rather, it is because the expected number of case-
exposed and case-unexposed pre-enrollment discordant pairs is equal (for a
rare disease), given that there must also be a case during the enrollment
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period.
Let f0 and f1 be the probabilities of failure in unexposed individuals

during the pre-enrollment and enrollment periods, respectively, and let φ0

be the relative risk. Now consider the contributions from pre-enrollment
exposure discordant pairs. First, consider the probability of a case-exposed
control-unexposed pair. The probability that the exposed sibling is the case
during the pre-enrollment period is approximately f0φ0. In a standard case-
control study, the probability that the unexposed subject did not fail in this
period is simply 1 − f0 but here, the control must have failed during the
enrollment period in order to be the proband, with probability (1 − f0)f1.
Thus, the proportion of such pre-enrollment pairs is f0φ0(1−f0)f1. Similarly,
the proportion of case-unexposed control-exposed pairs is f0(1 − f0φ0)f1φ0.
Now, the usual estimator of the rate ratio converges to the ratio of these two
probabilities which is seen to be, for a rare disease, approximately equal to
one.

For twins, a second case which occurs during the post-enrollment period
is uninformative simply because there is no remaining control. The first cases
(the probands) and their then-unaffected cotwins would still provide a valid
estimator of φ0, unless one restricted the analysis to such disease-concordant
pairs. However, an examination of triplets where post-enrollment cases may
have eligible controls, such additional cases also produce a bias towards the
null, for essentially the same reason as the pre-enrollment cases do [Langholz
and Huberman, 1999].

This example provides the intuition for why inclusion of the risk sets
defined by cases outside the enrollment period will lead to bias toward the
null.

3.2 Two-sibling families with non-overlapping enroll-
ment periods

Because twins are perfectly aligned on calendar time, the previous example
cannot be used to explore the use of a sibling as a control who attains the
age of the case outside the enrollment period. To do this, we now consider
the opposite extreme where the enrollment periods do not overlap at all on
an age scale and begin with the simplest example that illustrates that bias
can arise if non-enrollment period controls are used. Consider a population
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of two-child families in which one child is five years older than the other
and suppose that the probability of disease is f up to age five and is 2f
between ages five and ten. Further, assume that disease is rare so that we
can ignore disease concordant pairs. Suppose we want to assess the effect of
birth order, which we will assume is not associated with disease. Each pair
is, by definition, birth order discordant so each case contributes a birth order
discordant pair. Now if the entire study population were observed over ages
0-9 (this would require 15 years in calendar time), the expected proportion
of first born case pairs is the probability that the first born is diseased over
the 10 years or f + 2f = 3f . Since there is no association with birth order,
there will be the same proportion of second born case pairs so the relative
risk for birth order is one, as it should be.

Now, suppose that this population is observed “in calendar time” for five
years starting at the birth of the younger child. Thus, the younger child
is followed up to age five and the older from age five to ten. Suppose we
estimate the effect of birth order on disease up to age ten in this group by
using the case-sibling control pairs defined in a quite reasonable way, simply
ignoring period of observation and age altogether and estimating the relative
risk from the disease discordant pairs. In our framework, we have included
the pre-enrollment experience (the older sibling control for the younger sib-
ling case) and post-enrollment experience (the younger sibling control for the
older sibling case). Now, in order for the family with a first born diseased
case to be ascertained, the disease must have occurred during ages 5-9. Thus,
the proportion of first born case pairs is (1 − f)2f . Similarly, second born
cases must occur during ages 0-4 so that the proportion of second born case
pairs is simply f . This yields a relative risk of about two, simply reflecting
the difference in age between the first and second born children. This ex-
ample illustrates that the use of non-enrollment period controls can lead to
ascertainment bias, even under a rare disease assumption. We now describe
analytic results which elucidate why bias occurred in this example and the
conditions under which there is no bias.

3.2.1 Follow-up to the end of the enrollment period

We first consider follow-up only to the end of the enrollment period and will
consider post-enrollment follow-up in the next section. Note that if obser-
vation were restricted to just the enrollment period, as standard methods
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would require, families of this type would not contribute to the analysis at
all because of the non-overlapping enrollment periods. Thus, the inclusion
of pre-enrollment experience is necessary in order to obtain any information
from this type of sibship.

The contributing case-control pairs may be classified into four types given
in Figure 2. The enrollment period corresponds to age intervals (a1, a2)
and (a′1, a

′
2) for younger and older siblings, respectively. Type 1 is the only

disease discordant pair, in which the younger sibling is the proband and the
older sibling serves as the control. The remaining three types are disease
concordant and thus much rarer than type 1.

Let Z1, Z2 be time-fixed dichotomous exposure indicators for the older
and younger sibling, respectively, and let pij = pr(Z1 = i, Z2 = j), i, j = 0, 1
be the probability of such an exposure pair in the “uncensored” population.
In particular, Z1 and Z2 are not assumed to be independent or identically
distributed. Then, as shown in the Technical Report, for a rare disease the
maximum likelihood estimator from the standard conditional likelihood given
by (1) exp(β̂) converges to φ∗ = φ0p01/p10. Thus, the key requirement for φ∗

to be unbiased is “exchangeability” in the sense that p01 = p10. Intuitively,
bias will arise if an older sibling has a different marginal probability of expo-
sure than the younger because of, for example, secular trends in exposure, a
birth order effect, or a maternal age effect. The birth order example given
above is a rather extreme example of this since p10 = 1 and p01 = 0. If, in
our example, we only included pre-enrollment experience, then φ∗ = 0 since
only the second born would have a control. For the genetic factors measured
in the DiMe study there is no evidence of a birth order effect, so that Z1 and
Z2 are exchangeable.

Further insight is obtained by examining the expected score function un-
der the exchangeability assumption. Let A0(a1, a2) be the cumulative base-
line hazard, approximately the probability of disease in unexposed, between
age a1 and a2. The expected score function is approximately proportional to

[φ0−φ]A0(a1, a2)+ [1−φ]φ0[A0(a1, a2)A0(0, a1)+O(A0(a1, a2)
2)+A0(a

′
1, a

′
2)A0(0, a1)](2)

with each of these terms corresponding to the contributions from each of the
respective types of contributing pairs in Figure 2. As seen in the first term,
the “discordant pairs” are unbiased in that they estimate φ0. As with twins,
the disease concordant pair contributions (the last three terms) estimate one
regardless of φ0 and thus add a bias towards the null. The weights associated
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with each of these terms are of the order of the probability of the occurrence
of such pairs, so the discordant pairs are the most common.

3.2.2 Post-enrollment period observation

In the DiMe study, ascertained families were followed up long after the enroll-
ment period ended, during which time 16 new cases of IDDM were diagnosed
and many of the subjects attained the age of their diseased siblings without
contracting IDDM, so were eligible to serve as controls. To get an idea of the
effect of including this follow-up on the estimation of the rate ratio, we con-
tinue with our two-sibling family example with follow-up. In this situation,
additional informative pairs arise because younger siblings attain the age
of the older sibling proband without contracting IDDM or contract IDDM
during the post-enrollment period yielding three additional types of pairs
illustrated in Figure 3. Type 5 is disease discordant with the younger sibling
disease free by the age of the proband. There are two disease concordant
types (types 6 and 7) with the younger sibling diagnosed during the post-
enrollment period but prior to the proband’s age of diagnosis. Adding the
contributions from these pairs to the expected score from the last section
yields a biased rate ratio estimate,

φ∗ ≈ φ0
p01A0(a1, a2) + p10A0(a

′
1, a

′
2)

p10A0(a1, a2) + p01A0(a′1, a
′
2)

so that unbiasedness could still be expected if p01 = p10 or A0(a1, a2) =
A0(a

′
1, a

′
2), essentially that the disease rate remains constant over the age

range of the study. Thus, to construct our example of ascertainment bias
arising from the use of non-enrollment period controls in Section 3.2, we
needed a situation in which both exchangeability does not hold (birth order)
and the rates change with age. If exchangeability can be assumed then the
expected score expression (2) is augmented by the addition of terms from
pairs of types 5 to 7

[φ0 − φ]A0(a
′
1, a

′
2) + [1− φ]φ0[A0(a

′
1, a

′
2)A0(a2, a

′
1) + O(A0(a

′
1, a

′
2)

2)].(3)

Again, the contribution from the disease discordant pairs is “unbiased” while
those of the disease concordant pairs are estimating one, regardless of φ0, and
thus produce a bias towards the null.
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3.3 General family structures

The above consideration of two-sibling families suggest that the two key
assumptions needed for valid estimation from an “all siblings” analysis, as
we used in the DiMe study, are the rare disease assumption (in particular
that there are few non-enrollment period cases) and exchangeability of the
covariate values. But, whatever non-enrollment period cases there are in the
study are only creating bias so it is useful to have methods that do not rely
on the rare disease assumption.

One method, the “enrollment period cases” method, suggested imme-
diately from the last section, is to simply restrict to the contributions of
enrollment period cases, but including “non-enrollment period controls.” As
shown in the Technical Report , this approach is unbiased for the two-sibling
situation assuming exchangeability but not rare disease. Thus, returning to
Figure 1, families 1 and 2 would contribute case-control pairs, family 3 would
not be included because the case is pre-enrollment, while only the older case
in family 4, with the two controls would be included.

Another method, starts with the enrollment period case-control set but,
additionally includes pre-and post-enrollment cases with the proband excluded
as a control (see Section 5 of the Technical Report). The theoretical frame-
work we described in Section 3 does not apply for this method because ex-
clusion of the proband as a control is not a predictable process. Thus, our
insights into the assumptions which are required to ensure unbiasedness are
more limited. However, simulation studies, described in the Technical Re-
port, indicate that this method does indeed result in valid estimation under
the fairly wide range of situations we examined. This method has some
intuitive basis from proband elimination ascertainment correction methods
[Eland-Johnson, 1971] in that the remaining siblings are representative of
the source population of familial cases, whereas the proband’s source pop-
ulation is the general population. Applying this approach to the families
in Figure 1, families 1 and 2 each contribute a case-control pair, family 3
would be dropped because the proband cannot serve as a control for the pre-
enrollment case and family 4 contributes two case-control sets, the proband
with two controls and the pre-enrollment case with the two non-proband
controls.

Analyses of the DiMe data restricting to enrollment period cases and using
all cases with probands eliminated as controls for non-enrollment period cases
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are given in the last two columns of Table 1. In both analyses, the estimated
rate ratios for DR3 and DR4 are a little larger than the all siblings analysis,
as would be predicted by the theory. Using non-enrollment period cases with
proband elimination resulted in an additional 19 informative risk sets over
restricting to enrollment period cases. In particular, in the latter analysis,
only 15 pre-enrollment cases, out of the 498 (3%) total cases, had no controls.
The two analysis methods were validated in extensive computer simulation
studies described in the Technical Report. Each method yielded “unbiased”
estimates of the rate ratio and the inverse information adequately estimated
the variance of the estimates.

4 Discussion

In family studies such as the DiMe study, the restriction to enrollment period
observation time as required by standard analysis methods results in a large
loss of data and relaxation of this restriction is highly desirable. We found
that the most significant way to increase the number of potentially informa-
tive risk sets is to allow any siblings who were known to be disease free at the
age of the case to serve as controls. However, this departure from standard
methods is at the cost of an additional exchangeability assumption, namely
that the distribution of the covariates do not depend on calendar time or
birth order. For genetic factors, this assumption seems quite reasonable but
should be considered quite carefully when investigating environmentally or
behaviorally determined factors. It obviously precludes any study of birth
order or parental age effects.

We also found that the data set could be further augmented by including
the risk sets formed by cases that occurred outside the enrollment period
if the proband is excluded from serving as a control. Proband elimination
is a well known ascertainment bias correction method in classical segrega-
tion analysis methods for single ascertainment. Our application of proband
elimination has precedent in the conditional approach of Ewens and Shute
(1986). In our context, conditioning on the “ascertainment event” results in
dropping the proband from the pool of controls for non-enrollment period
cases, since the proband could not have become diseased at that time. The
main difference from the standard proband elimination method is that we
only need to eliminate part of the proband’s experience, that outside the
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enrollment period. In particular, we retain the most common case-control
contributions, those in which the proband is the case. The difference be-
tween the two settings is that for rate ratio estimation, only the difference in
covariate values between cases and controls must be representative of those
in the population while for absolute risk estimation (needed in segregation
analysis), the number of cases relative to the total subjects in the study must
also be representative of the population.

Although we focused on fixed covariates and simple censoring because
these were appropriate for the DiMe study, the analytic approach we used to
study two-sibling families accommodates more complex situations. Specif-
ically, the simple exchangeability is replaced by a “conditional” exchange-
ability assumption which essentially says that the distribution of covariates
conditional on being under observation does not depend on birth order or
calendar time. Further work is needed to assure that these are the only
conditions necessary for general family structures.

Family studies of disease occurring at older ages or multigenerational
studies could not be expected to be as complete as the DiMe study because
of deaths due to other causes. Examination of the assumptions made in
the theoretical development indicate that valid estimation is possible under
quite general censoring so, in principle, the methods presented here apply.
However, there is the critical issue of missing covariate information since it
may be impossible to obtain blood or tissue samples for analysis of genetic
factors in family members who have died. For these subjects, methods such
as peeling or Gibbs sampling which average over the possible genotypes the
subject could have had, given the known genotypes in the family, would be
appropriate.

Since the grouped time analysis described at the end of Section 2 approx-
imates the risk set approach, we expect that in situations where ignoring
ascertainment results in little bias in rate ratio estimation, there will be lit-
tle (additional) bias using the grouped time approach. However, parallel to
our work, the contributions from families with non-enrollment period cases
would be biased. While further work is needed in this area, the natural ana-
log to our enrollment period cases approach is to form the family case-control
set with enrollment period cases as cases and all other siblings, including the
non-enrollment period cases, as controls. Our method which excludes the
proband as a control for non-enrollment cases does not have an obvious par-
allel for the grouped time data. We note that the grouped time approach

13



is no simpler computationally and introduces additional complications when
there are time-dependent covariates due to the lack of a common “reference
age.” Further, the rare disease assumption is always assumed and, while
this may be true in the entire population, the disease may not be rare for
subgroups of families under study. For these reasons, we prefer the risk set
approach.

The relatively small change in the rate ratio estimates in the DiMe anal-
ysis and in the simulation studies even when ascertainment is ignored alto-
gether is a function of the simplex complete ascertainment method. More
complex ascertainment, such as requiring two affected siblings, can result
in severe bias if ignored. The bias under other ascertainment schemes and
methods of bias correction are the topics of Ziogas (1996).
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Appendix: An analytic framework for investigating as-
certainment bias

Let Nj(t) be the usual counting process which indicates whether family mem-
ber j has disease by age t and let Ft− be the disease, censoring, and co-
variate “history” for all family members up to but not including time t.
With dNj(t) = 1 denoting the event that subject j becomes diseased at
time t, the intensity process associated with Nj is then, loosely, given by
λj(t)dt = E[dNj(t)|Ft−] which will generally depend on subject specific co-
variates. The time scale t is taken to be age, since this is the relevant time
scale for comparing rates of disease in most chronic diseases, in particular,
IDDM.

For family case-control studies ascertained through an affected proband,
we do not observe Nj but rather Ñj which is Nj for members of ascertained
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families and is zero if the family is not ascertained. Let A be an indicator for
the event that the family is ascertained into the study. The intensity process
associated with Ñj is that of Nj conditional on A:

λ̃j(t)dt = pr[dNj(t) = 1|Ft−, A)]

= A
pr[dNj(t) = 1, A = 1|Ft−]

pr[A = 1|Ft−]

= A
pr[A = 1|dNj(t) = 1,Ft−] pr[dNj(t) = 1|Ft−]

pr[A = 1|Ft−]

= λj(t) A
pr[A = 1|dNj(t) = 1,Ft−]

pr[A = 1|Ft−]
dt

= λj(t) A wj(t)dt. (4)

Consistent with the definition of Ñj, the inclusion of A in (4) assures that the
intensity is zero for those families who are not ascertained. For ascertained
families, the unconditional intensity λj(t) is multiplied by a “distortion” due
to ascertainment. Applying the standard martingale argument, the expecta-
tion of the score from (1) as a function of β is

E[U(β, t)] =

E

{∫ t

0

n∑
i=1

[
Zi(s)−

∑
j Yj(s)Zj(s) exp(βZj(s))∑

j Yj(s) exp(βZj(s))

]
Yi(s)λf (s) exp(β0Zi(s)) A wi(s)ds

}
(5)

where the expectation is over the covariates Zj, censoring processes Yj, and,
in general, dates of birth and family size n. The derivation of an expression
for the distortion under simplex complete ascertainment, and other analytic
details, are given in the Technical Report.
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Table 1: Characteristics of the analysis data sets and estimates of DR3 and
DR4 rate ratios in a log-additive model (95% confidence intervals) for differ-
ent approaches and restrictions to the risk sets.

All siblings Censored ob-
servation
period

Enrollment
period cases

Proband
excluded as a
control

Rate ratios:
DR3 4.6 (2.9-7.4) 16.0 (3.3-78.9) 5.0 (3.0-8.3) 4.9 (3.0-8.1)
DR4 8.1 (5.3-12.4) 7.5 (2.9-19.8) 8.2 (5.3-12.5) 8.4 (5.5-12.9)

Risk sets:
Total informative1 498 114 464 483
Enrollment period case 464 114 464 464
Non-enrollment period case 34 0 0 19

Controls per risk set:
1 control 345 110 307 326
2 controls 122 4 102 115
> 2 controls 31 0 20 23

1Risk sets with at least one control.



Figure Legends

Figure 1. DiMe study as viewed on the age time scale.
Figure 2. Two-sibling family with non-overlapping enrollment periods: The
four types of case-control pairs that can arise.
Figure 3. Two-sibling family with non-overlapping enrollment periods: The
three additional types of case-control pairs that can arise when there is post-
enrollment period follow-up.
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