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Strong Embedding

Let ε, ε1, ε2 . . . be i.i.d, mean zero, variance one, and for 1 ≤ k ≤ n
and t ∈ [0, 1] let

Sk =
k∑

i=1

εi and Xn(t) =
1√
n

[S[nt] + (nt − [nt])ε[nt]+1].

Then Xn(t) converges weakly to Brownian Motion (Bt)t≥0 on
[0, 1] by Donsker.

Find the best (smallest) rate of growth for f (n) that can be
achieved by a coupling

max
0≤k≤n

|Sk − Bk | = Op(f (n)).
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Strong Embedding

We say strong embedding (SE) holds for L(ε) if there exist positive
constants C ,K and λ such that

P

(
max
0≤k≤n

|Sk − Bk | ≥ C log n + x

)
≤ Ke−λx for all x ≥ 0.

Komlós, Major and Tusnády (or KMT) 1975, SE holds for L(ε)
with finite moment generating function in a neighborhood of zero.

Best possible rate, Bártfai 1966.

Numerous applications, see the texts of Shorack and Wellner,
2009, or Csörgő and Révész, 2014.

Coupling constructions used are quite complicated.
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Previous Results using Stein for KMT

Chatterjee 2012 shows SE holds for Rademacher summands.

And a ‘collateral’ new result that for ε1, . . . , εn exchangeable
variables taking values in {−1,+1}, there exist a coupling of

Wk = Sk −
k

n
Sn

and (Bt)t∈[0,1], a standard Brownian Bridge, and positive constants
λ0,C and K such that for all λ ≤ λ0

E exp(λ max
0≤k≤n

|Wk −
√
nBk/n|) ≤ E exp

(
C log n +

Kλ2S2
n

n

)
.

Will extend these results to variables with vanishing third moment
taking values in a finite set A not containing zero.
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Stein Coefficient/Kernel

Modify Stein identity for normal Z ∼ N (0, 1)

E [Zf (Z )] = E [f ′(Z )] to E [Wf (W )] = E [Tf ′(W )]

for W with mean zero and variance 1, some ‘Stein coefficient’ T .
See Cacoullos and Papathanasiou 1992.

Compare to zero bias transformation (G. and Reinert 1997)

E [Wf (W )] = E [f ′(W ∗)] we see E [T |W ] =
dF ∗

dF

As W ∗ always has a density, T cannot exist when the distribution
of W has no absolutely continuous component, e.g. for symmetric
Bernoulli variables. Smoothing required.

Generally such T are valuable, and not so easy to construct.
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T yields Marginal Coupling Bound

Theorem 1.2, Chatterjee 2012

Let W be mean zero with finite second moment and suppose that
T is a Stein coefficient for W with |T | almost surely bounded by a
constant. Then, given any σ2 > 0, we can construct a version of
W and Z ∼ N (0, σ2) on the same probability space such that

E exp(θ|W − Z |) ≤ 2E exp

(
2θ2(T − σ2)2

σ2

)
for all θ ∈ R.

Note bound is tight in that T = σ2 if and only if W ∼ N (0, σ2),
and that σ2 > 0 is arbitrary, which will be important later on.

How does T yield a coupling?
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Sampling a Random Walk
Sample a random walk by generating ε1, . . . , εn independent
variables with L(ε) and summing

Sk =
k∑

i=1

εi , 1 ≤ k ≤ n.

Convoluted, but for our purposes a ‘better’ way to sample:

1. Sample the value S at the terminal time n of the walk.

2. Sample a multiset {ε1, . . . , εn} of independent L(ε) variables
conditional on their sum being S .

3. Now vary about the line connecting (0, 0) to (S , n) by a
discrete Brownian Bridge, that is, by sampling an
independent, uniformly random permutation π, and forming

Wk = Sk −
k

n
S where Sk =

k∑
j=1

επ(j)
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Coupling Overview

1. Couple the marginals (S ,Z ) at the terminal time n of the sum
and the Brownian motion using Theorem 1.2.

2. Given S , sample multiset {ε1, . . . , εn} according to the
conditional probability that i.i.d. variables sum to S .

3. Given {ε1, . . . , εn}, couple

Wk = Sk −
k

n
S , where Sk =

k∑
j=1

επ(j),

to a discrete time Brownian Bridge Z̃1, . . . , Z̃n, i.e. a mean
zero Gaussian vector with covariance (i ∧ j)(n − i ∨ j)/n.

Can check that the processes

Si = Wi +
i

n
S and Zi = Z̃i +

i

n
Z

are coupled and have the correct marginals (and mgf bound).
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Brownian Bridge, Induction

Step 3. Couple

Wk = Sk −
k

n
S , where Sk =

k∑
j=1

επ(j),

to a discrete Brownian Bridge Z̃1, . . . , Z̃n.

Induct on n, using Theorem 1.2 to couple Wk and Z̃k at time
k = [n/2].
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Rademacher

In the Rademacher case:

1. Sum Sn = ε1 + · · ·+ εn determines {ε1, . . . , εn}.
2. Smoothing variable Y is known.

3. Hidden ‘variance parameter’ γ2 = n−1
∑n

i=1 ε
2
i is identically

one, and also for all subsets of variables.
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one, and also for all subsets of variables.

Relax assumptions to allow more general distributions.
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Rademacher

In the Rademacher case:

1. Sum Sn = ε1 + · · ·+ εn determines {ε1, . . . , εn}.
Combinatorial accounting

2. Smoothing variable Y is known.

3. Hidden ‘variance parameter’ γ2 = n−1
∑n

i=1 ε
2
i is identically

one, and also for all subsets of variables.

Relax assumptions to allow more general distributions.
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Smoothing

Did not attain more: ‘...we do not know yet how to use Theorem
1.2 to prove the KMT theorem in its full generality, because we do
not know how to generalize the smoothing technique of Example
3.’

Smoothing needed in Step 1 for coupling values at terminal time of
random walk Sn and Brownian motion, and in Step 3 for coupling
values at time k = [n/2] of Wk and Brownian bridge.

Generalizing ‘Example 3’ to the ‘smoothing lemma’ is perhaps not
the largest obstacle.
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Use of Smoothing to obtain T

For X Rademacher, there does not exist T such that

E [Xf (X )] = E [Tf ′(X )].

But one can find an independent ‘smoothing’ Y such that

E [Xf (X + Y )] = E [(1− XY )f ′(X + Y )].
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Smoother for Step 1, terminal time of random walk.

If X1, . . . ,Xn are independent Rademacher, Sn their sum, and

S
(i)
n = Sn − Xi ,

E [Snf (Sn + Y )] =
n∑

i=1

E [Xi f (Xi + Y + S
(i)
n )]

=
n∑

i=1

E [(1− XiY )f ′(Xi + Y + S
(i)
n )] = E [Tf ′(Sn + Y )]

where

T =
n∑

i=1

(1− XiY ).

Only added one variable, Y , to the sum.
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Smoothing Lemma

When X is symmetric {+1,−1}, taking Y to be an independent
U [−1, 1] yields

E [Xf (X + Y )] = E [(1− XY )f ′(X + Y )].

What is Y for general X?
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Smoothing Lemma

For X Rademacher the smoothing Y is U [−1, 1] that yields

E [Xf (X + Y )] = E [(1− XY )f ′(X + Y )].

What is it in general?

Smoothing Lemma: If X has mean zero and finite, non-zero
variance, and Y is independent of X and has the X -zero bias
distribution, then

E [Xf (X + Y )] = E [(X 2 − XY )f ′(X + Y )].

Exercise: use that

Y =d UX� where U ∼ U [0, 1] and
dF�

dF
=

x2

EX 2
.
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Smoothing in Step 3, Bridge at midpoint

The sum

Wk = Sk −
k

n
Sn

may be rewritten as

Wk =
1

n

∑
1≤i≤k<j≤n

(
επ(j) − επ(i)

)
.

Half differences of επ(j) − επ(i) ∈ {−2, 0, 2}, can be smoothed by a
single Y ∼ U [−1, 1] in Rademacher case.
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More General Discrete Variable

When ε takes values in a finite set A ⊂ R, then

επ(j) − επ(i) ∈ D := A−A.

Add independent smoothers Yd ∼ U [−d/2, d/2], one for each
d ∈ D ∩ (0,∞).

Only finitely many soothers as n→∞.

Excludes A infinite and continuous variables.

Can one smooth in such cases using a finite number of smoothers
as n tends to infinity?
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Variance Parameter, Bridge

Rademacher case, KMT follows from a bound on

E [exp(λ max
1≤i≤n

|Wi −
√
nBi/n|)]
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Variance Parameter, Bridge

In general, KMT follows from a bound on

E [exp(λ max
1≤i≤n

|Wi − γ
√
nBi/n|)]

where γ2 = 1
n

∑n
i=1 ε

2
i .
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E [exp(λ max
1≤i≤n

|Wi − γ
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For Rademacher, γ2 = 1, and also for segments of the path
standardized by their length.
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Variance Parameter, Bridge

In general, KMT follows from a bound on

E [exp(λ max
1≤i≤n

|Wi − γ
√
nBi/n|)]

where γ2 = 1
n

∑n
i=1 ε

2
i .

For Rademacher, γ2 = 1, and also for segments of the path
standardized by their length.

Problem: In the induction step the variance parameters γ1,γ2 for
the left and right segments of the path will not in general equal γ.
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Effect of Variance Parameter

Rademacher variable bound on Laplace transform for λ ≤ λ0 of

max
0≤i≤n

|Wi −
√
nBi/n| of the form exp(C log n)E exp

(
Kλ2S2

n

n

)
,

where Sn =
∑n

i=1 εi .
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Effect of Variance Parameter

Rademacher variable bound on Laplace transform for λ ≤ λ0 of

max
0≤i≤n

|Wi −
√
nBi/n| of the form exp(C log n)E exp

(
Kλ2S2

n

n

)
,

where Sn =
∑n

i=1 εi , becomes bound on

max
0≤i≤n

|Wi −
√
nηBi/n|,

of the form

exp(C log n)E exp

(
K1λ

2S2
n

n
+K2λ

2n(γ2 − η2)2
)
.

Recall σ2 > 0 in Theorem 1.2 is arbitrary.
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Effect of Variance Parameter

Variance parameter γ21 for first half of path has expectation η2,
parameter for entire path, yields term in induction

E exp
(
θ2k(γ21 − η2)2

)
= E exp

θ2k−1( k∑
i=1

(ε2π(i) − η
2)

)2
 .

Expression is identically zero in the Rademacher case. Control in
general using summand variables are negatively associated.
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T yields marginal coupling

For T : Rn → Rn×n p.s.d, uniformly bounded over x ∈ Rn, for
ε > 0 and a measure µ let Tεµ be the measure

(1− ε)X +
√

2εT (X )Z for X ∼ µ and Z ∼ N (0, I ) independent.

Transformation Tεµ has fixed point µε, take ε→ 0 obtain measure
for a random vector X that satisfies

E [X · ∇f (X )] = E [Tr
{
T (X )D2f (X )

}
].

So, given ‘nice’ T (x), have random vector X for which T (x) is the
‘Stein matrix.’
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Existence of marginal coupling

For such T and X , use the Stein matrix identity to obtain moment
bounds

E (Xi − Xj)
2k ≤ (2k − 1)kEvij(X )k

where vij(x) = tii (x) + tjj(x)− 2tij(x), and thus

E exp(θ|Xi − Xj |) ≤ 2E exp(2θ2vij(X )).

With h(x1) Stein coefficient of W , apply in R2 with

T (x) =

(
h(x1) σ

√
h(x1)

σ
√
h(x1) σ2

)
,

for which v12(x) = h(x1) + σ2 − 2σ
√
h(x1) = (

√
h(x1)− σ)2.
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Multivariate approach, Stein Matrix, Dependence

Marginal argument appears ‘uncooperative’ and ‘brittle’.

Can avoid induction, relax conditions and handle dependence with
multivariate version of Theorem 1.2 if given X ∈ Rn one could
produce Stein matrix T such that

E [X · ∇f (X )] = E [tr(T (X )D2f (X ))].
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