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e Convex Geometry
e Compressed sensing

e Gaussian inequalities
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e Convex Geometry: Angular version of the classical Steiner
formula for expansion of compact convex sets.

o Compressed sensing

e Gaussian inequalities
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Ingredients

e Convex Geometry: Angular version of the classical Steiner
formula for expansion of compact convex sets.

e Compressed sensing: Recovery of unknowns under structural
assumptions such as sparsity for vectors, or a low rank
condition for matrices.

e Gaussian inequalities
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Ingredients

e Convex Geometry: Angular version of the classical Steiner
formula for expansion of compact convex sets reveal the
‘intrinsic volume' distributions associated with closed convex
cones.

e Compressed sensing: Recovery of high dimensional unknowns
under structural assumptions such as sparsity for vectors or a
low rank condition, for matrices.

e Gaussian inequalities and Stein’s Method: For providing finite
sample bounds on Gaussian fluctuations.
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Concentration Connection

Subject of this work was motivated by the papers by Amelunxen,
Lotz, McCoy and Tropp [AMLT13] and McCoy and Tropp [MT14],
where the conic intrinsic volume distributions were studied using
Poincaré and log Sobolev inequalities.

In particular it was shown that these distributions exhibit
concentration phenomenon.
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Concentration Connection

Subject of this work was motivated by the papers by Amelunxen,
Lotz, McCoy and Tropp [AMLT13] and McCoy and Tropp [MT14],
where the conic intrinsic volume distributions were studied using
Poincaré and log Sobolev inequalities.

In particular it was shown that these distributions exhibit
concentration phenomenon.

Raises the possibility that one might make use of other Gaussian
inequalities that may be lurking about in the background.
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Concentration of Conic Intrisic Volumes
From: Living on the Edge [ALMT13]

PHASE TRANSITIONS IN RANDOM CONVEX PROGRAMS
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FIGURE 2.2: Concentration of conic intrinsic volumes. This plot displays the conic intrinsic volumes v (C) of
a circular cone C < R'28 with angle /6. The distribution concentrates sharply around the statistical dimension
8(C) =32.5. See Section 3.4 for further discussion of this example.
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Convex Geometry

For any closed convex set K, let

d(x, K) = inf |x —yll.

Classical Steiner formula (1840) for the expansion of a compact
convex set K C RY, with B; the unit ball in R/,

d
Volg{x : d(x,K) < A} = A IVol(By_))V;.
j=0

Intrinsic volumes, Vg is volume, 2V4_1 is surface area ... and V) is
Euler characteristic.



Convex Geometry
oe

Convex Geometry

The set C C R is a cone if 7(x +y) € C for all {x,y} C C and
7> 0.

With S/=1 unit sphere in R/, one has the angular analog, Hergoltz
(1943),

Voly 1 {x € 597 d?(x,C) <A} = ZBJ e

The numbers vy, ..., vy are the conic intrinsic volumes, and are
non negative and sum to 1.

Can associate a distribution £(V) given by P(V = j) = v; to the
cone C, also write V.
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Recovery of Structured Unknowns

Observe (a small number) m of random linear combinations of an
unknown xo € R9 (in high dimension),

z=Axg for A€ R™ known, with i.i.d. N(0,1) entries.

Fin
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Recovery of Structured Unknowns
Observe (a small number) m of random linear combinations of an
unknown xo € R9 (in high dimension),

z=Axg for A€ R™ known, with i.i.d. N(0,1) entries.

Unknown xg lies in the feasible region
F = {x: Ax = z} = Null(A) + xo.

With m < d not possible to recover xg. Say Xq is sparse, has some
small number s of non-zero entries, ||xgl/o = s.
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Recovery of Structured Unknowns
Observe (a small number) m of random linear combinations of an
unknown xo € R9 (in high dimension),

z=Axg for A€ R™ known, with i.i.d. N(0,1) entries.

Unknown xg lies in the feasible region
F = {x: Ax = z} = Null(A) + xo.

With m < d not possible to recover xg. Say Xq is sparse, has some
small number s of non-zero entries, ||xgl/o = s.

Minimizing ||x|lo over x € F is computationally infeasible.
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Convex Program

Determine a convex function f(x) that promotes the known
structure of xg, and

minimize f(x) over x € F.
Chandrasekaran, Recht, Parrilo, and Willsky (2012) show how to
construct f for some given structure.
To promote sparsity let £(x) = [[x||1, the L! norm, i.e. 329 |xil.

Candes, Romberg, Tao (2006) and Donoho (2006), Donoho and
Tanner (2009).

Why does it work?
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Descent Cone

For f(x) = ||x|l1 and xg € R, let

D(f,x0) ={y € R? : 37 > 0, |[xo + 7yl||1 < [|Ix0ll1}-

The set of all directions from which, starting at xg, do not increase

the L norm.

Fin
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Convex recovery of unknowns
From: Living on the Edge [ALMT13]

PHASE TRANSITIONS IN RANDOM CONVEX PROGRAMS 7

Xo +null(A) xp +null(A)

{x: f(x) = f(x)} {x: f(x) = f(x0)}

X0+ 2(f, %) X0+ D(f,x0)

FIGURE 2.3: The optimality condition for a regularized inverse problem. The condition for the regularized
linear inverse problem (2.4) to succeed requires that the descent cone 2(f,xg) and the null space null(4) do
not share a ray. [left] The regularized linear inverse problem succeeds. [right] The regularized linear inverse
problem fails.
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Convex recovery of sparse unknowns

So, translating by xg, success if and only if
Null(A) N C = {0}

where C is the descent cone of the L norm at xg.

Fin
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Convex recovery of sparse unknowns

So, translating by xg, success if and only if
Null(A) N C = {0}
where C is the descent cone of the L norm at xg.

Pause for an acknowledgment of priority.
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Acknowledgment of priority:
Descent cone of the L! norm at a sparse vector
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Convex recovery of sparse unknowns

Translating by xp, success if and only if
Null(A) n C = {0}
where C is the descent cone of the L1 norm at xg.

We know dim(Null(A)) = d — m. So if the ‘dimension of C' were
d(C), we would want

d—m+46(C)<d so m>4(C).

Statistical Dimension of C is §(C) = E[V(¢]. Recovery success
probability p sandwiched

P(V<m-1)<p<P(V<m).

Concentration would imply sharp transition, threshold
phenomenon.
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Metric Projection

For K any closed convex set, the infimum

d(x. K) = inf x—y.

Normal Fluctuations
00000000

is attained at a unique vector, called the metric projection of x

onto K, denoted by My (x).

Fin
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Gaussian Connection

The cone C is polyhedral if there exists an integer N and vectors
ug,...,uy in R? such that

N
C= m{x €RY: (u;,x) > 0}.
i=1

For g ~ N(0, I4) , the conic intrinsic volumes satisfy
vj = P (Mc(g) lies in the relative interior of a j-dimensional face of C)
Consider the orthant RY.

Cone C is like a subspace of random dimension V/, hence with
‘statistical dimension’ §(C) = E[V(].
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‘Master Steiner Formula’ [MT14]

Implies that with X; independent x? random variables,

Ve
Ne@)l? =0 3 X
=0

Letting G¢c = ||Mc(g)]|?,

Ve

GC_dZX > (Xi—1)+ Ve,
j=0

so recalling ¢ = E[V(] and letting 72 = Var(Vc), we see

E[Gc] =d¢ and Var(Gc) =26c + 7—3.
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Master Steiner Formula [MT14]

Relation

Ve

Ge=a Y _Xi for Gc = ||Nc(g)|?
=0

yields (strange) moment generating function identity

—_

Ee' = Ee%C with & =2 (1-e7?).

2
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Concentration [MT14]

From

Ee'V = Ee%C with &= (1—e %),

N =

and the fact that G = ||N¢(g)]||?, use log Sobolev inequality to
obtain bound on its moment generating function.
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Concentration [MT14]

From

Ee' = Ee%C with & = (1-e %),

N =

and the fact that G = ||N¢(g)]||?, use log Sobolev inequality to
obtain bound on its moment generating function.

Translate into bound on moment generating fucntion for V¢ to
show concentration around d¢, implying phase transition for exact
recovery.
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Normal Fluctuations

Standardizing
Vc
Ge=a Y _(Xi—1)+ Ve =Wc+ V¢
j=0

yields

GCf(SC— (\/2(5(_‘) WC +<7’c> ch5(_‘
gc —d oc \/26C ocC TC ’

Fin
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Normal Fluctuations

Standardizing
GC—dZ —1 4+ Ve = We + Ve

yields

GCf(SC— <\/25(_‘> WC +<7‘c) ch5c
gc —d oc \/2(5C ocC TC ’

Standardized G¢ is asymptotically normal and expressions on the
right hand side are asymptotically independent. Apply Cramér’s
theorem. Can derive lower bounds for 7¢ in terms of ||E[[¢(g)]|,
the ‘statistical center’.
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Toward the 2" order Poincaré Inequality, apply to G¢

1°t: Poincaré Inequality. If W(g) is a smooth real valued function
of g ~ N(0, Iy), then

Var(W(g)) < E[VW(g)|>
e.g.,

o¢ = Var ([[Mc(g)l?) < El2Nc(g)l* = 4éc.
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Poincaré Inequality, proof sketch

Take E[W] = 0, ¢ a smooth function, g an independent copy of g,
and consider

EWep(W)] = E[(W(g) - W(g)) p(W(e))]
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Poincaré Inequality, proof sketch

Take E[W] = 0, ¢ a smooth function, g an independent copy of g,

and let g; = e~ g + V1 — e 2tg

EWep(W)] = E[(W(g) - W(g)) p(W(e))]
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Poincaré Inequality, proof sketch

Take E[W] = 0, ¢ a smooth function, g an independent copy of g,

and let g; = e~ g + V1 — e 2tg

EWe(W)] = E[(W(g0) — W(8x)) ¢(W(go))]
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Poincaré Inequality, proof sketch

Take E[W] = 0, ¢ a smooth function, g an independent copy of g,

and let g = e 'g + V1 — e ?ig
EWe(W)] = E[(W(E) ~ W(En)) o(W(E))
- - | SEWEA W@



Normal Fluctuations
00e00000

Poincaré Inequality, proof sketch

Take E[W] = 0, ¢ a smooth function, g an independent copy of g,

and let g; = e 'g + V1 — e~ ?tg
EWe(W)] = E[(W(E) ~ W(En)) o(W(E))
— - [ SEWE(W @)
0
= = ETY (W)

T [ e vwig). BT W)t
0

Take p(x) = x, obtain Var(W) = E[T], use Cauchy Schwarz.
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Stein’s Method

Stein's method is based on an equation characterizing the target
distribution.
Stein’s lemma: Z ~ AN(0,1) if and only if

E[Zp(2)] = E[¢'(2)]

for all absolutely continuous functions for which these expectations
exist.
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Stein’s Method

Stein's method is based on an equation characterizing the target
distribution.
Stein’s lemma: Z ~ AN(0,1) if and only if

E[Zp(2)] = E[¢'(2)]

for all absolutely continuous functions for which these expectations
exist.
For test function h, solve the Stein equation

¢'(w) = we(w) = h(w) — Eh(Z)

for ¢, evaluate at W, variable whose distribution is to be
approximated, and bound expectation

En(W) — Eh(Z) = E[¢'(W) — Wp(W)]
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Stein's Method
Stein’s lemma: Z ~ AN/(0,1) if and only if
E[Ze(2)] = E[¢'(2)].

Suppose for mean zero, variance one variable W one can find T
such that

E[Wp(W)] = E[T¢ (W)], and note E[T] =1.

For a continuous test function h: R — [0, 1], solution of the Stein
equation ¢,

|ER(W) — ER(Z)| = |E[¢"(W) = Wp(W)]| = [E[¢'(W)(1 = T)]|

< |¢||E|T — 1] < 24/Var(T).
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Stein's Method
Stein’s lemma: Z ~ AN/(0,1) if and only if
E[Ze(2)] = E[¢'(2)].

Suppose for mean zero, variance one variable W one can find T
such that

E[Wp(W)] = E[T¢ (W)], and note E[T] =1.

For a continuous test function h: R — [0, 1], solution of the Stein
equation ¢,

|ER(W) — ER(Z)| = |E[¢"(W) = Wp(W)]| = [E[¢'(W)(1 = T)]|

< |¢||E|T — 1] < 24/Var(T).

Taking sup over all such h, obtain bound in total variation.
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2" order Poincaré inequality

Recall from proof of Poincaré inequality, where E[W] =0 and
W= W(g),

E[Wo(W)] = E[T¢'(W)] with T = /OOO e H(VW(g), E(VW(@t)))dt.

Chatterjee (2009), for this T and Var(W) =1 we have

dTv(W, Z) < 2\/ Var( T)

Variance might be difficult to evaluate directly, so
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2" order Poincaré inequality

Recall from proof of Poincaré inequality, where E[W] =0 and
W= W(g),

E[Wo(W)] = E[T¢'(W)] with T = /OOO e H(VW(g), E(VW(@t)))dt.

Chatterjee (2009), for this T and Var(W) =1 we have

dTv(W, Z) < 2\/ Var( T)

Variance might be difficult to evaluate directly, so use the Poincaré
inequality.
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Gaussian Projections on Convex Cones

Want to obtain limiting normal law, with bounds, for
Gc = ||Nc(g)|[? in order to infer same for V.

VIMe()|? = 2Me(x)  hence 724/0 et (Nc(g), ENc(g:)) dt

Use the Poincaré inequality to bound Var(T), and that
0% = 25c + 72, to obtain

16,/5(C) _ 8
drv(Ge, Z) < o < 50
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Concentration Normal Fluctuations

Berry-Esseen bound for conic intrinsic volumes

If C is a closed convex cone with ¢ = E[V(] and
& = Var(Vc) > 0, then with a = 72 /§¢, for ¢ > 8

sup |P [Vc_éc < ] P[Z < u]| < h(d¢c) + 18
u€R Tc \/alog (av/26¢)
where

1 (logs 5/2
logaoc
C

Fin
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Berry-Esseen bound for conic intrinsic volumes

If C is a closed convex cone with ¢ = E[V(] and
& = Var(Vc) > 0, then with a = 72 /§¢, for ¢ > 8

48
\/a log™ oz\féc)

sup < h(éc

ueR

P[VCT_C&_ ] PIZ < 4]

where
1 (1ogoc )
_ - [ 8¢

For m about d¢ + t7¢, obtain bound on

1 2
sup | P {xq is recovered} — / e "/2du
teR { J V2T J o
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Ingredients

e Convex Geometry
e Compressed sensing
e Gaussian inequalities and Stein's Method

e Poincaré inequality — bound a variance by an expectation.

e Log Sobolev inequality
e 2" order Poincaré inequality — bound a total variation by a

variance, which is bounded by an expectation.
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