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Ingredients

• Convex Geometry: Angular version of the classical Steiner
formula for expansion of compact convex sets reveal the
‘intrinsic volume’ distributions associated with closed convex
cones.

• Compressed sensing: Recovery of high dimensional unknowns
under structural assumptions such as sparsity for vectors or a
low rank condition, for matrices.

• Gaussian inequalities and Stein’s Method: For providing finite
sample bounds on Gaussian fluctuations.
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Concentration Connection

Subject of this work was motivated by the papers by Amelunxen,
Lotz, McCoy and Tropp [AMLT13] and McCoy and Tropp [MT14],
where the conic intrinsic volume distributions were studied using
Poincaré and log Sobolev inequalities.

In particular it was shown that these distributions exhibit
concentration phenomenon.

Raises the possibility that one might make use of other Gaussian
inequalities that may be lurking about in the background.
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Concentration of Conic Intrisic Volumes
From: Living on the Edge [ALMT13]
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FIGURE 2.2: Concentration of conic intrinsic volumes. This plot displays the conic intrinsic volumes vk (C ) of
a circular cone C ⊂R128 with angle π/6. The distribution concentrates sharply around the statistical dimension
δ(C ) ≈ 32.5. See Section 3.4 for further discussion of this example.

Figure 2.2 displays the distribution of intrinsic volumes for a particular cone; you can see that the sequence
has a sharp peak at its mean value. Our work establishes a remarkable new fact about conic geometry:

For every closed convex cone, the distribution of conic intrinsic volumes concentrates sharply
around its mean value.

This result is our main technical achievement; Theorem 6.1 contains a precise statement.
Because of the concentration phenomenon, the mean value of the distribution of conic intrinsic volumes

serves as a summary for the entire distribution. This insight leads to the central definition of the paper.

Definition 2.2 (Statistical dimension: Intrinsic characterization). Let C be a closed convex cone in Rd . The
statistical dimension δ(C ) of the cone is defined as

δ(C ) :=
d∑

k=0
k vk (C ).

The statistical dimension of a general convex cone is the statistical dimension of its closure.

As the name suggests, the statistical dimension reflects the dimensionality of a convex cone. Here are some
properties that support this interpretation. First, the statistical dimension increases with the size of a cone.
Indeed, for nested convex cones C ⊂ K ⊂ Rd , we have the inequalities 0 ≤ δ(C ) ≤ δ(K ) ≤ d . Second, the
statistical dimension of a linear subspace L always satisfies

δ(L) = dim(L). (2.1)

In fact, the statistical dimension is a canonical extension of the dimension of a linear subspace to the class
of convex cones! Section 5.6 provides technical justification for the latter point, while Sections 3, 4, and 5
establish various properties of the statistical dimension.

2.3. The approximate kinematic formula. We can simplify the conic kinematic formula, Fact 2.1, by
exploiting the concentration of intrinsic volumes.

Theorem I (Approximate kinematic formula). Fix a tolerance η ∈ (0,1). Let C and K be convex cones in Rd , and
draw a random orthogonal basis Q ∈Rd×d . Then

δ(C )+δ(K ) ≤ d −aη
p

d =⇒ P
{
C ∩QK 6= {0}

}≤ η;

δ(C )+δ(K ) ≥ d +aη
p

d =⇒ P
{
C ∩QK 6= {0}

}≥ 1−η.

The quantity aη :=√
8log(4/η). For example, a0.01 < 7 and a0.001 < 9.
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Convex Geometry

For any closed convex set K , let

d(x,K ) = inf
y∈K
||x− y||.

Classical Steiner formula (1840) for the expansion of a compact
convex set K ⊂ Rd , with Bj the unit ball in Rj ,

Vold{x : d(x,K ) ≤ λ} =
d∑

j=0

λd−jVol(Bd−j)Vj .

Intrinsic volumes, Vd is volume, 2Vd−1 is surface area . . . and V0 is
Euler characteristic.
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Convex Geometry

The set C ⊂ Rd is a cone if τ(x + y) ∈ C for all {x, y} ⊂ C and
τ > 0.
With S j−1 unit sphere in Rj , one has the angular analog, Hergoltz
(1943),

Vold−1

{
x ∈ Sd−1 : d2(x,C ) ≤ λ

}
=

d∑
j=0

βj ,d(λ)vj

The numbers v0, . . . , vd are the conic intrinsic volumes, and are
non negative and sum to 1.

Can associate a distribution L(V ) given by P(V = j) = vj to the
cone C , also write VC .
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Recovery of Structured Unknowns

Observe (a small number) m of random linear combinations of an
unknown x0 ∈ Rd (in high dimension),

z = Ax0 for A ∈ Rm×d known, with i.i.d. N (0, 1) entries.

Unknown x0 lies in the feasible region

F = {x : Ax = z} = Null(A) + x0.

With m < d not possible to recover x0. Say x0 is sparse, has some
small number s of non-zero entries, ‖x0‖0 = s.

Minimizing ‖x‖0 over x ∈ F is computationally infeasible.
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Convex Program

Determine a convex function f (x) that promotes the known
structure of x0, and

minimize f (x) over x ∈ F .

Chandrasekaran, Recht, Parrilo, and Willsky (2012) show how to
construct f for some given structure.

To promote sparsity let f (x) = ‖x‖1, the L1 norm, i.e.
∑d

i=1 |xi |.
Candès, Romberg, Tao (2006) and Donoho (2006), Donoho and
Tanner (2009).

Why does it work?
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Descent Cone

For f (x) = ‖x‖1 and x0 ∈ Rd , let

D(f , x0) = {y ∈ Rd : ∃τ > 0, ‖x0 + τy‖1 ≤ ‖x0‖1}.

The set of all directions from which, starting at x0, do not increase
the L1 norm.
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Convex recovery of unknowns
From: Living on the Edge [ALMT13]
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FIGURE 2.3: The optimality condition for a regularized inverse problem. The condition for the regularized
linear inverse problem (2.4) to succeed requires that the descent cone D( f , x0) and the null space null(A) do
not share a ray. [left] The regularized linear inverse problem succeeds. [right] The regularized linear inverse
problem fails.

The function f is called a regularizer, and the formulation (2.4) is called a regularized linear inverse problem.
To illustrate the kinds of regularizers that arise in practice, we highlight two familiar examples.

Example 2.5 (Sparse vectors). When the vector x0 is known to be sparse, we can minimize the `1 norm to
look for a sparse solution to the inverse problem. Repeating (1.2), we have the optimization

minimize ‖x‖1 subject to z0 = Ax . (2.5)

This approach was proposed by Chen et al. [CDS01], motivated by work in geophysics [CM73, SS86].

Example 2.6 (Low-rank matrices). Suppose that X0 is a low-rank matrix, and we have acquired a vector of
measurements of the form z0 =A (X0), where A is a linear operator. This process is equivalent with (2.3).
We can look for low-rank solutions to the linear inverse problem by minimizing the Schatten 1-norm:

minimize ‖X ‖S1 subject to z0 =A (X ). (2.6)

This method was proposed in [RFP10], based on ideas from control [MP97] and optimization [Faz02].

We say that the regularized linear inverse problem (2.4) succeeds at solving (2.3) when the convex program
has a unique minimizer x̂ that coincides with the true unknown; that is, x̂ = x0. To develop conditions for
success, we introduce a convex cone associated with the regularizer f and the unknown x0.

Definition 2.7 (Descent cone). The descent cone D( f , x) of a proper convex function f : Rd → R at a point
x ∈Rd is the conic hull of the perturbations that do not increase f near x.

D( f , x) := ⋃
τ>0

{
y ∈Rd : f (x +τy) ≤ f (x)

}
.

The descent cones of a proper convex function are always convex, but they may not be closed. The descent
cones of a smooth convex function are always halfspaces, so this concept inspires the most interest when the
function is nonsmooth.

To characterize when the optimization problem (2.4) succeeds, we write the primal optimality condition in
terms of the descent cone; cf. [RV08, Sec. 4] and [CRPW12, Prop. 2.1].

Fact 2.8 (Optimality condition for linear inverse problems). Let f be a proper convex function. The vector x0 is
the unique optimal point of the convex program (2.4) if and only if D( f , x0)∩null(A) = {0}.

Figure 2.3 illustrates the geometry of this optimality condition. Despite its simplicity, this result forges a
crucial link between the convex optimization problem (2.4) and the theory of conic integral geometry.
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Convex recovery of sparse unknowns

So, translating by x0, success if and only if

Null(A) ∩ C = {0}

where C is the descent cone of the L1 norm at x0.

Pause for an acknowledgment of priority.
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Acknowledgment of priority:
Descent cone of the L1 norm at a sparse vector
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Convex recovery of sparse unknowns
Translating by x0, success if and only if

Null(A) ∩ C = {0}

where C is the descent cone of the L1 norm at x0.

We know dim(Null(A)) = d −m. So if the ‘dimension of C ’ were
δ(C ), we would want

d −m + δ(C ) ≤ d so m ≥ δ(C ).

Statistical Dimension of C is δ(C ) = E [VC ]. Recovery success
probability p sandwiched

P(V ≤ m − 1) ≤ p ≤ P(V ≤ m).

Concentration would imply sharp transition, threshold
phenomenon.
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Metric Projection

For K any closed convex set, the infimum

d(x,K ) = inf
y∈K
‖x− y‖,

is attained at a unique vector, called the metric projection of x
onto K , denoted by ΠK (x).
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Gaussian Connection

The cone C is polyhedral if there exists an integer N and vectors
u1, . . . ,uN in Rd such that

C =
N⋂
i=1

{x ∈ Rd : 〈ui , x〉 ≥ 0}.

For g ∼ N (0, Id) , the conic intrinsic volumes satisfy

vj = P (ΠC (g) lies in the relative interior of a j-dimensional face of C )

Consider the orthant Rd
+.

Cone C is like a subspace of random dimension V , hence with
‘statistical dimension’ δ(C ) = E [VC ].
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‘Master Steiner Formula’ [MT14]

Implies that with Xi independent χ2
1 random variables,

‖ΠC (g)‖2 =d

VC∑
j=0

Xi .

Letting GC = ‖ΠC (g)‖2,

GC =d

VC∑
j=0

Xi =

VC∑
j=0

(Xi − 1) + VC ,

so recalling δC = E [VC ] and letting τ2C = Var(VC ), we see

E [GC ] = δC and Var(GC ) = 2δC + τ2C



Introduction Convex Geometry Unknowns in Rd Concentration Normal Fluctuations Fin

Master Steiner Formula [MT14]

Relation

GC =d

VC∑
j=0

Xi for GC = ‖ΠC (g)‖2

yields (strange) moment generating function identity

EetV = EeξtG with ξt =
1

2

(
1− e−2t

)
.
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Concentration [MT14]

From

EetV = EeξtG with ξt =
1

2

(
1− e−2t

)
,

and the fact that G = ‖ΠC (g)‖2, use log Sobolev inequality to
obtain bound on its moment generating function.

Translate into bound on moment generating fucntion for VC to
show concentration around δC , implying phase transition for exact
recovery.
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Normal Fluctuations

Standardizing

GC =d

VC∑
j=0

(Xi − 1) + VC = WC + VC

yields

GC − δC
σC

=d

(√
2δC
σC

)
WC√
2δC

+

(
τC
σC

)
VC − δC
τC

.

Standardized GC is asymptotically normal and expressions on the
right hand side are asymptotically independent. Apply Cramér’s
theorem. Can derive lower bounds for τC in terms of ‖E [ΠC (g)‖,
the ‘statistical center’.
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Toward the 2nd order Poincaré Inequality, apply to GC

1st : Poincaré Inequality. If W (g) is a smooth real valued function
of g ∼ N (0, Id), then

Var(W (g)) ≤ E‖∇W (g)‖2.

e.g.,

σ2C = Var
(
‖ΠC (g)‖2

)
≤ E‖2ΠC (g)‖2 = 4δC .
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Poincaré Inequality, proof sketch

Take E [W ] = 0, ϕ a smooth function, ĝ an independent copy of g,
and consider

E [Wϕ(W )] = E [(W (g)−W (ĝ))ϕ(W (g))]
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Poincaré Inequality, proof sketch

Take E [W ] = 0, ϕ a smooth function, ĝ an independent copy of g,
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Poincaré Inequality, proof sketch

Take E [W ] = 0, ϕ a smooth function, ĝ an independent copy of g,
and let ĝt = e−tg +

√
1− e−2t ĝ

E [Wϕ(W )] = E [(W (ĝ0)−W (ĝ∞))ϕ(W (ĝ0))]

= −
∫ ∞
0

d

dt
E[W (ĝt)ϕ(W (ĝ0))]dt

= · · · = E [Tϕ′(W (g))],

T =

∫ ∞
0

e−t〈∇W (g), Ê (∇W (ĝt))〉dt.

Take ϕ(x) = x , obtain Var(W ) = E [T ], use Cauchy Schwarz.
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Stein’s Method

Stein’s method is based on an equation characterizing the target
distribution.
Stein’s lemma: Z ∼ N (0, 1) if and only if

E [Zϕ(Z )] = E [ϕ′(Z )]

for all absolutely continuous functions for which these expectations
exist.
For test function h, solve the Stein equation

ϕ′(w)− wϕ(w) = h(w)− Eh(Z )

for ϕ, evaluate at W , variable whose distribution is to be
approximated, and bound expectation

Eh(W )− Eh(Z ) = E [ϕ′(W )−Wϕ(W )]
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Stein’s Method

Stein’s lemma: Z ∼ N (0, 1) if and only if

E [Zϕ(Z )] = E [ϕ′(Z )].

Suppose for mean zero, variance one variable W one can find T
such that

E [Wϕ(W )] = E [Tϕ′(W )], and note E [T ] = 1.

For a continuous test function h : R→ [0, 1], solution of the Stein
equation ϕ,

|Eh(W )− Eh(Z )| = |E [ϕ′(W )−Wϕ(W )]| = |E [ϕ′(W )(1− T )]|
≤ ‖ϕ′‖E |T − 1| ≤ 2

√
Var(T ).

Taking sup over all such h, obtain bound in total variation.
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2nd order Poincaré inequality

Recall from proof of Poincaré inequality, where E [W ] = 0 and
W = W (g),

E [Wϕ(W )] = E [Tϕ′(W )] with T =

∫ ∞
0

e−t〈∇W (g), Ê (∇W (ĝt))〉dt.

Chatterjee (2009), for this T and Var(W ) = 1 we have

dTV(W ,Z ) ≤ 2
√
Var(T ).

Variance might be difficult to evaluate directly, so use the Poincaré
inequality.
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Gaussian Projections on Convex Cones

Want to obtain limiting normal law, with bounds, for
GC = ‖ΠC (g)||2 in order to infer same for VC .

∇‖ΠC (x)‖2 = 2ΠC (x) hence T = 4

∫ ∞
0

e−t〈ΠC (g), ÊΠC (ĝt)〉dt

Use the Poincaré inequality to bound Var(T ), and that
σ2C = 2δC + τ2C , to obtain

dTV(GC ,Z ) ≤
16
√
δ(C )

σ2C
≤ 8√

δ(C )
.
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Berry-Esseen bound for conic intrinsic volumes

If C is a closed convex cone with δC = E [VC ] and
τ2C = Var(VC ) > 0, then with α = τ2C/δC , for δC ≥ 8

sup
u∈R

∣∣∣∣P [VC − δC
τC

≤ u

]
− P[Z ≤ u]

∣∣∣∣ ≤ h(δC ) +
48√

α log+
(
α
√

2δC
)

where

h(δC ) =
1

72

(
log δC

δ
3/16
C

)5/2

For m about δC + tτC , obtain bound on

sup
t∈R

∣∣∣∣P {x0 is recovered} − 1√
2π

∫ t

−∞
e−u

2/2du

∣∣∣∣
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Ingredients

• Convex Geometry

• Compressed sensing

• Gaussian inequalities and Stein’s Method

• Poincaré inequality – bound a variance by an expectation.
• Log Sobolev inequality
• 2nd order Poincaré inequality – bound a total variation by a

variance, which is bounded by an expectation.
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