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The Urn

Pólya-Eggenberger urn at time 0 contains α red and β blue balls,
and at every positive integer time a ball is chosen uniformly from
the urn and replaced along with one additional ball of the same
color.
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Pólya’s Urn and Limiting Beta Asymptotic
Fundamentals of Stein’s Method
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Asymptotic behavior

If Sn is the number of additional red balls added to the urn by time
n = 0, 1, 2, . . . then as n→∞

L(Wn)→d B(α, β) where Wn =
Sn
n

where α > 0, β > 0 and B(α, β) is the Beta distribution having
density

p(x ;α, β) =
xα−1(1− x)β−1

B(α, β)
1{x∈[0,1]},

where B(α, β) is the Beta function, B(α, β) = Γ(α)Γ(β)/Γ(α+ β).
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Model for

I Opinion formation

I Contagious disease

I Learning

I Signalling games (Argiento, Pemantle, Skyrms, Volkov 2009)

Question: How good is the Beta approximation for a given n?
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Stein (1972, 1986)

The random variable Z ∼ N (µ, σ2) if and only if for all smooth
functions f ,

σ2Ef ′(Z ) = E(Z − µ)f (Z ).

If a random variable W with EW = µ,VarW = σ2 satisfies

σ2Ef ′(W )− E(W − µ)f (W ) ≈ 0

for many functions f , then W ≈ Z in distribution.

5 / 30
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Stein Equation

Given a test function h, let Nh = Eh((Z − µ)/σ), and solve for f
in the Stein equation

σ2f ′(w)− (w − µ)f (w) = h((w − µ)/σ)− Nh

Replace w by W and evaluate the expectation on the right side,
involving two distributions, by taking expectation on the left hand
side, involving one distribution.

Bounding the expectation will eventually require bounds on the
solution f and its derivatives.
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Pólya’s Urn and Limiting Beta Asymptotic
Fundamentals of Stein’s Method
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Simplest Example

Let X ,X1, . . . ,Xn be i.i.d. EX = 0,VarX = 1/n and
W =

∑n
i=1 Xi , and Wi = W − Xi =

∑
j 6=i Xj . Then

EWf (W ) =
∑
i

EXi f (W )

=
∑
i

EXi f (Wi ) +
∑
i

EX 2
i f
′(Wi ) + R

=
1

n

∑
i

Ef ′(Wi ) + R

So

E(f ′(W )−Wf (W )) =
1

n

n∑
i=1

E(f ′(W )− f ′(Wi )) + R
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Advantages

I Yields explicit bounds for finite n, often with computable
constants.

I Can be applied in many dependent situations, often using
coupling methods.

I The idea can be made to work for other distributions.
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Pólya’s Urn, and Stein
Results

Final remarks

Ingredients for Stein’s method

Given a target distribution µ and random variable W :

1. Characterization: An operator A such that X ∼ µ if and only
if EAf (X ) = 0 for all smooth functions f .

2. Stein Equation: For h in a class of test functions find solution
f = fh of

h(x)−
∫

hdµ = Af (x)

3. Bounds: Compute left hand side by manipulating right hand
side of

Eh(W )−
∫

hdµ = EAf (W )

Usually need bounds of f , f ′ or ∆f , etc., in terms of h.

We will consider smooth test functions; techniques for nonsmooth
functions, yielding Kolmogorov bounds, exist and are more
complex. 9 / 30
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Stein characterizations: the density approach

For a smooth density function p(x) on (a, b), if

ψ(x) =
p′(x)

p(x)

then Z has density p if and only if, for all functions f ∈ F(p)

E(f ′(Z ) + ψ(Z )f (Z )) = f (b−)p(b−)− f (a+)p(a+).

For N (0, 1) on (−∞,∞) we have ψ(x) = −x , yielding the
standard Stein equation.
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Pólya’s Urn, and Stein
Results

Final remarks

Beta characterization

The Beta distribution, density

p(x ;α, β) =
xα−1(1− x)β−1

B(α, β)
1{x∈[0,1]}

gives, for {α, β} ⊂ (1,∞),

p′(x ;α, β) =
1

B(α, β)
xα−2(1−x)β−2 {(α− 1)(1− x)− (β − 1)x} ,

so that

ψ(x) =
(α− 1)

x
− (β − 1)

1− x
.

Difficulty when α or β is 1, such as for the uniform.
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Transformation using fixed function

If EAf (X ) = 0 for all smooth f then for a ‘good’ function c(x) we
have EAc(X )g(X ) = 0 for all smooth g . Choosing
c(x) = x(1− x) in the Beta characterization we obtain the Stein
equation

x(1− x)f ′(x) + [α(1− x)− βx ]f (x) = h(w)− Bh,

which holds when α or β, or both, equal 1.
The Beta distribution is the unique stationary distribution of the
Fisher Wright model in genetics that models genetic drift in a
population, having generator given by the left hand side above
with f ′ replacing f .
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Solution of the Beta Stein equation

For any {α, β} ⊂ (0,∞) and real valued function h on [0, 1] such
that Bh <∞, the solution of the Stein equation is

f (x) =
1

xα(1− x)β

∫ x

0
uα−1(1− u)β−1(h(u)− Bh)du.

For α, β ≥ 1 we can bound the solution and its first derivative in
terms of the first derivative of h.

13 / 30
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Pólya’s Urn, exact distribution

The number Sn of red balls in the urn at time n with α and β the
number of red and blue balls, respectively, in the urn at time 0, has
distribution supported on {0, . . . , n} with

pk = pk;α,β =

(
n

k

)
(α)k(β)n−k

(α + β)n
,

where (α)k = α(α + 1) · · · (α + k − 1). The mean is α/(α + β).
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Coupling Methods and Exact Distributions

Typically Stein’s method employs coupling methods to bound the
expectation on the right hand side of the Stein equation. Recall
the simplest example presented for the normal:
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Simplest Example Revisited

Let X ,X1, . . . ,Xn be i.i.d. EX = 0,VarX = 1/n and
W =

∑n
i=1 Xi , and Wi = W − Xi =

∑
j 6=i Xj . Then

EWf (W ) =
∑
i

EXi f (W )

=
∑
i

EXi f (Wi ) +
∑
i

EX 2
i f
′(Wi ) + R

=
1

n

∑
i

Ef ′(Wi ) + R

So

E(f ′(W )−Wf (W )) =
1

n

n∑
i=1

E(f ′(W )− f ′(Wi )) + R

This calculation is making use of the ‘Leave One Out’ coupling.
16 / 30
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Comparison of Generators, Holmes and Reinert

When we have explicit forms for both the approximating and the
approximand distribution, we can use the comparison of generators
approach.
Let X and Xn be characterized by A and An, respectively,

EAf (X ) = 0 and EAnf (Xn) = 0,

and let f be the solution of the Stein equation for X . Then

Eh(Xn)− Eh(X ) = EAf (Xn) = E (A−An) f (Xn).
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Stein discrete density characterization: Ley and Swan

Theorem: Let p be a mass function having support the integer
interval I = [a, b] ∩ Z, and set

F(p) = {f : f (x)p(x) bounded, f (a) = 0}.

Then X has mass function p if and only if

E(∆f (X − 1) + ψ(X )f (X )) = 0

for all f ∈ F(p), where ∆g(x) = g(x + 1)− g(x) and
ψ(x) = ∆p(x)/p(x).
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Pólya’s Urn, and Stein
Results

Final remarks

Pólya urn characterization

For the Pólya urn we have

ψ(k) =
(n − k)(α + k)− (k + 1)(β + n − k − 1)

(k + 1)(β + n − k − 1)

for k = 0, . . . , n − 1 and ψ(n) = −1. Here

E(∆f (X − 1) + ψ(X )f (X )) = 0,

not very appealing.
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Transformation using fixed function

Let p be a mass function with integer interval support
I = [a, b] ∩ Z and let c : I → R+.
Then X ∼ p if and only if for all functions f ∈ F(p)

E [c(X − 1)∆f (X − 1)

+[c(X )ψ(X ) + c(X )− c(X − 1)]f (X )] = 0.
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Pólya urn characterization, c function

Let

c(k) = (k + 1)(β + n − k − 1) for k = 0, . . . , n − 1,

and c(n) = β(n + 1). Then a random variable Sn has distribution
p, the number of additional red balls drawn from the Pólya’s urn
at time n with initial state α ≥ 1 red and β ≥ 1 blue balls, if and
only if for all functions f ∈ F(p)

E [Sn(β + n − Sn)∆f (Sn − 1)

+ {(n − Sn)(α + Sn)− Sn(β + n − Sn)} f (Sn)] = 0.
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Pólya urn characterization, c function

For y > 0 set ∆y f (x) = f (x + y)− f (x) and Wn = Sn/n.
Replacing f (z) by f (z/n) and dividing by n in the Polya Stein
equation yields the characterization operator (expectation zero iff)

Wn

(
1

n
β + 1−Wn

)
n∆1/nf

(
Wn −

1

n

)
+ (α(1−Wn)− βWn) f (Wn)
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Pólya’s Urn and Limiting Beta Asymptotic
Fundamentals of Stein’s Method
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Comparing distributions via their Stein characterizations

Polya Urn characterization

Wn

(
1

n
β + 1−Wn

)
n∆1/nf

(
Wn −

1

n

)
+ (α(1−Wn)− βWn) f (Wn)

Beta characterization

x(1− x)f ′(x) + [α(1− x)− βx ]f (x)
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Applying Polya urn characterization in the Beta Stein
equation

Eh(Wn)− Bh
= E

(
Wn(1−Wn)f ′(Wn) + [α(1−Wn)− βWn]f (Wn)

)
= E

(
Wn(1−Wn)f ′(Wn)

−Wn

(
1

n
β + 1−Wn

)
n∆1/nf

(
Wn −

1

n

))
≈ E

(
Wn(1−Wn)f ′(Wn)−Wn (1−Wn) n∆1/nf

(
Wn −

1

n

))
.

Bound in terms of derivative in f , hence in terms of the derivatives
of the original test function h.
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Wasserstein distance

Let X ,Y be random variables, L(X ) = P,L(Y ) = Q and let L be
the set of Lipschitz-1-functions on the real line,

L = {f : |f (x)− f (y)| ≤ |x − y |}.

Define the Wasserstein distance

dW (P,Q) = sup
f ∈L
|Ef (Y )− Ef (X )|

Also,

dW (P,Q) =

∫ ∞
−∞
|P(X ≤ z)− P(Y ≤ z)|dz
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Wasserstein Bounds

Let α ≥ 1 and β ≥ 1, let Z ∼ Beta(α, β), and Wn = Sn/n, put

a1 = (α + β − 2)/(α ∧ β − 1) and a2 = a21(2(α ∧ β)− 1).

1. If neither α nor β take the value 1,

dW (Wn,Z ) ≤ 1

n
(1 + 2a1(α + β) + 3(a1 + 2a2)(1 + α ∨ β)) .

2. If α = 1 and β > 1 then

dW (Wn,Z ) ≤ 1

n

(
5 + 14β + 8β2

)
,

and if α > 1 and β = 1 then replace β by α.
3. If α = β = 1,

dW (Wn,Z ) ≤ 27

n
.
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Order cannot be improved

Take h(x) = x(1− x) for x ∈ [0, 1], then

E(h(Wn))− Eh(W ) =

(
[n]2
n2
− 1

)
E (W (1−W ))

= −1

n

αβ

(α + β)2
.

Thus, for all α ≥ 1, β ≥ 1,

dW (Wn,Z ) ≥ 1

n

αβ

(α + β)2
.
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Arcsine law, B(1/2, 1/2)

Asymptotic distribution of the last return time L2n to zero

L2n = sup{m ≤ 2n : Tm = 0}

of a simple symmetric random walk Tn = X1 + · · ·Xn, where
X1, . . . ,Xn are independent symmetric Bernoulli.

The number U2n of segments of the walk that lie above the x axis,
and R2n, the first time the walk visits the terminal point S2n, are
both equal in distribution to L2n.
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Stein and the Arcsine law

Finding the characterizing equation for L2n and applying the
methods above yield the following result (see also Dobler):

Theorem
Let L2n be the last return time to zero of a simple symmetric
random walk of length of length 2n and let Z have the Arcsine
distribution. Then

dW

(
L2n
2n

,Z

)
≤ 27

2n
+

8

n2
.

The same bound holds with L2n replaced by U2n or R2n. The
O(1/n) rate of the bound cannot be improved.
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Pólya’s Urn, and Stein
Results

Final remarks

Remarks

I The idea of comparing distributions via Stein characterizations
is due to Holmes 2004, Eichelsbacher and Reinert 2008.

I Drinane (2008) gives an O(n−1/2) bound in Kolmogorov
distance.

I Stein’s method has been applied to many other distributions,
and also in multivariate settings.
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