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Concentration of Measure

Distributional tail bounds can be provided in cases where
exact computation is intractable.

Concentration of measure results can provide exponentially
decaying bounds with explicit constants.
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Azuma Hoeffding Inequality

If Yk , k = 0, 1 . . . , n is a martingale satisfying |Yk − Yk−1| ≤ ck for
k = 1, . . . , n with constants c1, . . . , cn, then

P (|Yn − Y0| ≥ t) ≤ 2 exp

(
− t2

2
∑n

k=1 c
2
k

)

Handles dependence, requires martingale, some boundedness.
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Longest Common Subsequence Problem

Let Lm,n(X1, . . . ,Xm,Xm+1, . . . ,Xn) be the length of the longest
common subsequence between two, say, i.i.d. sequences of length
m and n −m from some discrete alphabet.

Using Yk = E [Lm,n|X1, . . . ,Xk ] is a martingale satisfying
|Yk−1 − Yk | ≤ 1 one attains the two sided tail bound
2 exp

(
−t2/2n

)
.

Though the distribution of Lm,n is intractable (even the constant
c = limm→∞ Lm,m/2m is famously unknown), much can be said
about its tails.
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Talagrand Isoperimetric Inequality

Let L(x1, . . . , xn) be a real valued function for xi ∈ Rd , i = 1, . . . , n
such that there exists weight functions αi (x) such that

L(x1, . . . , xn) ≤ L(y1, . . . , yn) +
n∑

i=1

αi (x)1(xi 6= yi )

and
∑n

i=1 αi (x)2 ≤ c for some constant c . Then for X1, . . . ,Xn,
i.i.d. U([0, 1]d),

P (|L(X1, . . . ,Xn)−Mn| ≥ t) ≤ 4 exp(−t2/4c2)

where Mn is the median of L(X1, . . . ,Xn).
Applications: Steiner Tree, Travelling Salesman Problem.
Need to construct weights αi (x).
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Use of Stein’s Method Couplings

• Stein’s method developed for distributional approximation
(normal, Poisson) through use of characterizing equation.

• Implementation of the method often involves coupling
constructions, with the quality of the resulting bounds
reflecting the closeness of the coupling.

• Such couplings can be thought of as a type of distributional
perturbation that measures dependence.

• Concentration of measure results should hold under similar
sets of favorable conditions.
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Stein’s Method and Concentration Inequalities

• Raič (2007) applies the Stein equation to obtain Cramér type
moderate deviations relative to the normal for some graph
related statistics.

• Chatterjee (2007) derives tail bounds for Hoeffding’s
combinatorial CLT and the net magnetization in the
Curie-Weiss model from statistical physics based on Stein’s
exchangeable pair coupling.
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Size Bias Couplings

For a nonnegative random variable Y with finite nonzero mean µ,
we say that Y s has the Y -size bias distribution if

E [Yg(Y )] = µE [g(Y s)] for all g .

• Size biasing may appear, undesirably, in sampling.

• For sums of independent variables, size biasing a single
summand size biases the sum.

• The closeness of a coupling of a sum Y to Y s is a type of
perturbation that measures the dependence in the summands
of Y .

• If X is a non trivial indicator variable then X s = 1.
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Bounded Coupling implies Concentration Inequality

Let Y be a nonnegative random variable with mean and variance µ
and σ2 respectively, both finite and positive. Suppose there exists
a coupling of Y to a variable Y s having the Y -size bias
distribution that satisfies |Y s − Y | ≤ C for some C > 0 with
probability one. Let A = Cµ/σ2 and B = C/2σ.

a) If Y s ≥ Y with probability one, then

P

(
Y − µ
σ

≤ −t
)
≤ exp

(
− t2

2A

)
for all t > 0.

b) If the moment generating function of Y is finite at 2/C , then

P

(
Y − µ
σ

≥ t

)
≤ exp

(
− t2

2(A + Bt)

)
for all t > 0.
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Outline of Proof
By the convexity of the exponential function, for all x 6= y ,

ey − ex

y − x
=

∫ 1

0
ety+(1−t)xdt ≤

∫ 1

0
(tey + (1− t)ex)dt =

ey + ex

2
.

Hence, when |Y s − Y | ≤ C , we obtain

EeθY
s − EeθY ≤ Cθ

2

(
EeθY

s
+ EeθY

)
.

With m(θ) = EeθY , the size bias relation yields

m′(θ) = E [YeθY ] = µE [eθY
s
].

Hence m(θ) satisfies the differential inequality

m′(θ) ≤ µ
(

1 + Cθ/2

1− Cθ/2

)
m(θ) for all 0 < θ < 2/C .
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Size Biasing Sum of Exchangeable Indicators

Suppose X is a sum of nontrivial exchangeable indicator variables
X1, . . . ,Xn, and that for i ∈ {1, . . . , n} the variables X i

1, . . . ,X
i
n

have joint distribution

L(X i
1, . . . ,X

i
n) = L(X1, . . . ,Xn|Xi = 1).

Then

X i =
n∑

j=1

X i
j

has the X -size bias distribution X s , as does the mixture X I when I
is a random index with values in {1, . . . , n}, independent of all
other variables.
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Size Bias Exchangeable Indicators

For a given function g

E [Xg(X )] =
n∑

j=1

E [Xjg(X )] =
n∑

j=1

P[Xj = 1]E [g(X )|Xj = 1].

By exchangeability, E [g(X )|Xj = 1] = E [g(X )|Xi = 1] for all
j = 1, . . . , n, so

E [Xg(X )] =

 n∑
j=1

P[Xj = 1]

E [g(X )|Xi = 1] = E [X ]E [g(X i )],

hence X i = X s .
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Size Bias Exchangeable Indicators

Now mixing over an independent random index I , we have

Eg(X I ) =
n∑

i=1

E [g(X I ), I = i ] =
n∑

i=1

E [g(X I )|I = i ]P(I = i)

=
n∑

i=1

Eg(X i )P(I = i) =
n∑

i=1

Eg(X s)P(I = i)

= Eg(X s)
n∑

i=1

P(I = i) = Eg(X s).
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Size Bias Sum of Nonnegative Variables

For Xi a non-trivial indicator, recall X s
i = 1. For nonnegative

random variables X1, . . . ,Xn with finite mean and

X =
n∑

i=1

Xi ,

construct X s
i ,

L(X i
1, . . . ,X

i
n) = L(X1, . . . ,Xn|Xi = X s

i ),

and select i independently with probability P(I = i) = EXi/EX .
Then

X s =
n∑

j=1

X I
j .
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Applications

1. The number of local maxima of a random function on a graph

2. The number of lightbulbs switched on at the terminal time in
the lightbulb process of Rao, Rao and Zhang

3. The number of urns containing exactly one ball in the uniform
multinomial urn occupancy model

4. The number of relatively ordered subsequences of a random
permutation

5. Sliding window statistics such as the number of m-runs in a
sequence of independent coin tosses

6. The volume covered by the union of n balls placed uniformly
over a volume n subset of Rd



Concentration Constructions Maxima Lightbulb Occupancy Summary

Applications

1. The number of local maxima of a random function on a graph

2. The number of lightbulbs switched on at the terminal time in
the lightbulb process of Rao, Rao and Zhang

3. The number of urns containing exactly one ball in the uniform
multinomial urn occupancy model

4. The number of relatively ordered subsequences of a random
permutation

5. Sliding window statistics such as the number of m-runs in a
sequence of independent coin tosses

6. The volume covered by the union of n balls placed uniformly
over a volume n subset of Rd



Concentration Constructions Maxima Lightbulb Occupancy Summary

Applications

1. The number of local maxima of a random function on a graph

2. The number of lightbulbs switched on at the terminal time in
the lightbulb process of Rao, Rao and Zhang

3. The number of urns containing exactly one ball in the uniform
multinomial urn occupancy model

4. The number of relatively ordered subsequences of a random
permutation

5. Sliding window statistics such as the number of m-runs in a
sequence of independent coin tosses

6. The volume covered by the union of n balls placed uniformly
over a volume n subset of Rd



Concentration Constructions Maxima Lightbulb Occupancy Summary

Applications

1. The number of local maxima of a random function on a graph

2. The number of lightbulbs switched on at the terminal time in
the lightbulb process of Rao, Rao and Zhang

3. The number of urns containing exactly one ball in the uniform
multinomial urn occupancy model

4. The number of relatively ordered subsequences of a random
permutation

5. Sliding window statistics such as the number of m-runs in a
sequence of independent coin tosses

6. The volume covered by the union of n balls placed uniformly
over a volume n subset of Rd



Concentration Constructions Maxima Lightbulb Occupancy Summary

Applications

1. The number of local maxima of a random function on a graph

2. The number of lightbulbs switched on at the terminal time in
the lightbulb process of Rao, Rao and Zhang

3. The number of urns containing exactly one ball in the uniform
multinomial urn occupancy model

4. The number of relatively ordered subsequences of a random
permutation

5. Sliding window statistics such as the number of m-runs in a
sequence of independent coin tosses

6. The volume covered by the union of n balls placed uniformly
over a volume n subset of Rd



Concentration Constructions Maxima Lightbulb Occupancy Summary

Applications

1. The number of local maxima of a random function on a graph

2. The number of lightbulbs switched on at the terminal time in
the lightbulb process of Rao, Rao and Zhang

3. The number of urns containing exactly one ball in the uniform
multinomial urn occupancy model

4. The number of relatively ordered subsequences of a random
permutation

5. Sliding window statistics such as the number of m-runs in a
sequence of independent coin tosses

6. The volume covered by the union of n balls placed uniformly
over a volume n subset of Rd



Concentration Constructions Maxima Lightbulb Occupancy Summary

Local Maxima on Graphs

Let G = (V, E) be a given graph, and for every v ∈ V let Vv ⊂ V
be the neighbors of v , with v ∈ V. Let {Cg , g ∈ V} be a collection
of independent and identically distributed continuous random
variables, and let Xv be the indicator that vertex v corresponds to a
local maximum value with respect to the neighborhood Vv , that is

Xv (Cw ,w ∈ Vv ) = 1(Cv > Cw ,w ∈ Vv \ {v}), v ∈ V.

The sum

Y =
∑
v∈V

Xv

is the number of local maxima on G.
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Size Biasing {Xv , v ∈ V}

If Xv = 1, that is, if v is already a local maxima, let Xv = X.
Otherwise, interchange the value Cv at v with the value Cw at the
vertex w that achieves the maximum Cu for u ∈ Vv , and let Xv be
the indicators of local maxima on this new configuration. Then
Y s , the number of local maxima on XI , where I is chosen
proportional to EXv , has the Y -size bias distribution.

When I = v , the values Xu for u ∈ Vv , and for u ∈ Vw may
change, and we have

|Y s − Y | ≤ |Vv (2)|

where Vv (2) are the neighbors, and the neighbors of neighbors of v .
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Example: Local Maxima, Zp mod n

For p ∈ {1, 2, . . .} and n ≥ 5 let V = {1, . . . , n}p modulo n in Zp

and set E = {{v ,w} :
∑p

i=1 |vi − wi | = 1}. Then

|Y s − Y | ≤ 2p2 + 2p + 1,

and Y has mean and variance, respectively,

µ =
n

2p + 1
and σ2 = n

(
4p2 − p − 1

(2p + 1)2(4p + 1)

)
.

Right tail concentration inequality holds with

A =
(2p + 1)(4p + 1)(2p2 + 2p + 1)

4p2 − p − 1
and B =

2p2 + 2p + 1

2σ
.
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The Lightbulb Process

The ‘lightbulb process’ of Rao, Rao and Zhang arises in a
pharmaceutical study of dermal patches. Consider n lightbulbs,
each operated by a toggle switch. At day zero, all the bulbs are
off. At day r for r = 1, . . . , n, the position of r of the n switches
are selected uniformly to be changed, independent of the past.
One is interested in studying the distribution of Y , the number of
lightbulbs on at the terminal time n.



Concentration Constructions Maxima Lightbulb Occupancy Summary

The Lightbulb Process

For r = 1, . . . , n, let Yr = {Yrk , k = 1, . . . , n} have distribution

P(Yr1 = e1, . . . ,Yrn = en) =

(
n

r

)−1
ek ∈ {0, 1},

∑n
k=1 ek = r ,

and let Y1, . . . ,Yn be independent. The ‘switch variable’ Yrk

indicates whether or not on day r bulb k has its status changed.
Hence

Yk =

(
n∑

r=1

Yrk

)
mod 2 and Y =

n∑
k=1

Yk

indicate the status of bulb k at time n, and the total number of
bulbs switched on at the terminal time, respectively.
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Lightbulb Coupling to achieve Yi : n even

If Yi = 1, that is, if bulb i is on, let Yi = Y. Otherwise, with J i

uniform over {j : Yn/2,j = 1− Yn/2,i}, let

Y i
rk =


Yrk r 6= n/2

Yn/2,k r = n/2, k 6∈ {i , J i}
Yn/2,J i r = n/2, k = i

Yn/2,i r = n/2, k = J i .

In other words, when bulb i is off, select a bulb whose switch
variable on day n/2 is opposite to that of the switch variable of i
on that day, and interchange them.
Achieves a bounded, monotone coupling:

Y s − Y = 21{YI=0,Y
JI
=0}
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In other words, when bulb i is off, select a bulb whose switch
variable on day n/2 is opposite to that of the switch variable of i
on that day, and interchange them.
Achieves a bounded, monotone coupling:

Y s − Y = 21{YI=0,Y
JI
=0}
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Concentration for Lightbulb: n even

For Y the number of bulbs on at the terminal time n of the
lightbulb process

EY = n/2 and Var(Y ) = (n/4)(1 + O(e−n).

Then using 0 ≤ Y s − Y ≤ 2, with A = n/σ2 = 4(1 + O(e−n) and
B = 1/σ = O(n−1/2), we obtain for all t > 0,

P

(
Y − µ
σ

≤ −t
)
≤ exp

(
− t2

2A

)
and

P

(
Y − µ
σ

≥ t

)
≤ exp

(
− t2

2(A + Bt)

)
.
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Concentration for Lightbulb: n odd

• Similar results hold for the odd case, though the argument is a
bit trickier.

• Using randomization in the ‘two middle’ stages, one first
couples Y to a more symmetric variable V .

• When selected bulb I is off, V is coupled to V s by
randomizing between flipping a middle stage bit, when
possible, and interchanging bits as in the even case
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Number of Non-Isolated Balls under Uniform Allocation

• Say n balls are thrown independently into one of m equally
likely urns. For d ∈ {0, 1, . . .} consider the number of urns
containing d balls; d = 0 is a particularly well studied special
case. The case d = 1 corresponds to the number of isolated
balls. We equivalently study the number Y of non-isolated
balls.

• Easy to construct an unbounded size bias coupling – import or
export balls from a uniformly chosen urn so that it has the
desired occupancy.

• A construction of Penrose and Goldstein yields a coupling of
Y to Y s satisfying |Y s − Y | ≤ 2.
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Non-Isolated Balls, Coupling

Let Xi be the location of ball i = 1, . . . , n. Select a balls I 6= J,
uniformly from {1, 2, . . . , n}, and independently of X1, . . . ,Xn.
With Mi the number of balls in the urn containing ball i , and
N ∼ Bin(1/m, n − 1), import ball J into the urn containing ball I
with probability πMI

, where

πk =

{
P(N>k|N>0)−P(N>k)
P(N=k)(1−k/(n−1)) if 0 ≤ k ≤ n − 2

0 if k = n − 1.

We have |Y s − Y | ≤ 2, as at most the occupancy of two urns can
affected by the movement of a single ball. Can check also that
π0 = 1, so if ball I is isolated we always move ball J to urn XI .
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Non-Isolated Balls, Concentration

For positive functions f and h depending on n write f � h when
limn→∞ f /h = 1.

If m and n both go to infinity such that n/m→ α ∈ (0,∞), then
with g(α)2 = e−α − e−2α(α2 − α+ 1) > 0, the mean and variance
of Y satisfy

µ � n(1− e−α) and σ2 � ng(α)2.

Hence, in this asymptotic Y satisfies the right tail concentration
inequality with constants A and B satisfying

A � 2(1− e−α)

e−α − e−2α(α2 − α + 1)
and B � 1√

ng(α)
.
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Summary

Concentration of measure results can provide exponential tail
bounds on complicated distributions.

Most concentration of measure results require independence.

Size bias couplings, or perturbations, measure departures from
independence. Close, in particular bounded couplings imply
concentration of measure, and central limit behavior.

Unbounded couplings can also be handled but seemingly yet
only on a case by case basis – e.g., the number of isolated
vertices in the Erdös-Rényi random graph (Ghosh, Goldstein
and Raič).
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