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Please ask questions!
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“Scientific Data Has Become So Complex, We Have to Invent New Math to Deal
With It”
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Need new Math...

Mathematics Driven by Data



Probability at the heart of data science



Example I:
Community detection and stochastic block models



Standard Machine

1 Construct affinity matrix W between samples → weighted graph

Wi,j = exp

(
−
‖xi − xj‖2`2

2σ2

)
.

2 Construct clusters by applying spectral clustering to W



Spectral clustering

Affinity matrix W (N ×N)

Degree matrix D=diag(di)

di =
∑
j

Wij

Normalized graph Laplacian (symmetric form)

L = I −D−1/2WD1/2 (N ×N)

v1 v2 v3

r1 v11 v12 v13

r2 v21 v22 v23

...
...

...
...

rN vN1 vN2 vN3

Dim. reduction: N −→ k

Spectral clustering

(1) Build V ∈ RN×k with first k lowest eigenvectors of L as columns

(2) Interpret ith row of V as new data point ri in Rk representing observation i

(3) Apply k-means clustering to the points {ri}

Fantastic tutorial: U. von Luxburg
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Spectral Clustering: Ideal case

Graph EigVs

rows in R3



Spectral Clustering: non-Ideal case

Graph EigVs

rows in R3



Adjacency matrix of random graphs

Adjacency matrix of Graph

Aij =

{
1 with prob. Pij
0 otherwise

Probability matrix for stochastic block model

k clusters of size n/k 0 ≤ q ≤ p ≤ 1.
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Where’s Waldo?



Where are the clusters?

n = 200, k = 4, p = 0.7, q = 0.3.
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Where are the clusters?

Permuted version

n = 200, k = 4, p = 0.6, q = 0.4.



Will it work?
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Example II:
Learning models from data and uniform concentration results



Learn model from training data

Main abstraction of machine learning: parameter estimation

Data (n samples)

Features: x1,x2, . . . ,xn ∈ Rp.
Response/class: y1, y2, . . . , yn.

Model with
parameter θ

Input

features
Output

Face

Bicycle

Guitar



Mathematical abstraction: Empirical Risk Minimization

If we had infinite input/output data according to a distribution D

θ∗ = arg min
θ∈Θ

L̄(θ) := E(x,y)∼D[`(fθ(x), y)]

Given a data set (xi, yi) ∈ Rd × R find the best function that fits this data

θ̂ = arg min
θ∈Θ

L(θ) :=
1

n

n∑
i=1

`(fθ(xi), yi)

How good is fθ̂? That is a new sample x how well can fθ̂(x) estimate y?
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Uniform concentration

For a fixed θ we know

1

n

n∑
i=1

`(fθ(xi), yi) ≈ E(x,y)∼D[`(fθ(x), y)].

Questions?

Can we guarantee this for all θ ∈ Θ?

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑
i=1

`(fθ(xi), yi)− E(x,y)∼D[`(fθ(x), y)]

∣∣∣∣∣ ≤ δ
much more difficult that proving this for one point asymptotically (law of
large numbers)

How many data samples do we need as a function of Θ, f and δ.
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Course Logistics



Goals

Learn modern techniques in probability

Concentration in high-dimensions

geared towards applications for data sciences, statistics and machine learning



Why is this course needed? Distinctions with other
courses?

Advanced probability courses (while very technical e.g. cover measure theory)
do not cover some of the most useful techniques in modern probability

Discuss analogous results to low-dimensions in high-dimensions (law of large
numbers, concentration, etc.)

Over the past 5-10 years there has been tremendous progress simplifying
many proofs

Focus on the most useful techniques



Background and disclaimer

Prerequisites:

EE 599 enrollees (EE 441 and EE 503)
MATH 605 enrollees (MATH 505a or MATH 507a)

More mathy than EE 441 and EE 503 (but not abstract e.g. don’t care about
measure theory, Hilbert spaces, and Banach spaces)

We cover a lot of material and many applications

Do I need to know these applications? Do I need to know measure theory or
Morse theory? Do I need to be a math graduate student? Do I need to be an
electrical engineering student?

Answer: Absolutely not.
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Logistics

Class: Mon, Wed 10:30-11:50 PM, VKC 256.

Instructor office hours:

Larry: Monday 12-1:30, Wednesday 3:30-5, KAP 406D
Mahdi: Monday and Wednesday 5:30-7 PM EEB 422

Course website: blackboard

Grading

% 10 participation
% 90 Homework

Lowest homework will be dropped

We don’t care where you find the solution just write the proof in your own
language (no plagarism)

Course Policy: Use of sources (people, books, internet, etc.) without citation
results in failing grade.



Logistics

Class: Mon, Wed 10:30-11:50 PM, VKC 256.

Instructor office hours:

Larry: Monday 12-1:30, Wednesday 3:30-5, KAP 406D
Mahdi: Monday and Wednesday 5:30-7 PM EEB 422

Course website: blackboard

Grading

% 10 participation
% 90 Homework

Lowest homework will be dropped

We don’t care where you find the solution just write the proof in your own
language (no plagarism)

Course Policy: Use of sources (people, books, internet, etc.) without citation
results in failing grade.



Logistics

Class: Mon, Wed 10:30-11:50 PM, VKC 256.

Instructor office hours:

Larry: Monday 12-1:30, Wednesday 3:30-5, KAP 406D
Mahdi: Monday and Wednesday 5:30-7 PM EEB 422

Course website: blackboard

Grading

% 10 participation
% 90 Homework

Lowest homework will be dropped

We don’t care where you find the solution just write the proof in your own
language (no plagarism)

Course Policy: Use of sources (people, books, internet, etc.) without citation
results in failing grade.



Textbook

Required textbook

High-Dimensional Probability: An Introduction with Applications in Data
Science. Roman Vershynin.

Additional textbooks

Concentration Inequalities: A Non-asymptotic Theory of Independence.
Stephane Boucheron, Gabor Lugosi, Pascal Massart
The Concentration of measure phenomenon. Michel Ledoux



Why you should not take this class

Probability is not your thing.

Eclectic topics.

This class is rated P ...
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