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1
Model Selection

In this chapter we consider parametric models, with special emphasis on
multiple regression models. In very general terms, consider a family of
models {Mγ , γ ∈ Γ}. Given data, the goal is to select the best model in
terms of some criterion, such as predictive power of future observations,
or best fit. Sometimes the goal seems to be stated as that of choosing
the “true” model that generated the data. The complexity of real data
suggests that this goal is not a realistic. Even if a true model exists, it will
generally not be on our list of models, and one must settle for a good and
useful approximation to reality. Models are used for inference, prediction
and discrimination, and as tools for understanding the data’s structure
and the relations between variables. Even if one can conceive of a true
full model, in the presence of a data set of given size, selecting a smaller
“parsimonious” model may result in better prediction or inference. Some
of the discussion below is based on Claeskens and Hjort (2008), Burnham
and Anderson (2002), and Konishi and Kitagawa (2007), texts dedicated
to model selection.

As a first example, consider multiple regression with k potential covari-
ates. Let Γ denote the collection of all subsets {1, . . . , k}, and for γ ∈ Γ
let Mγ be the multiple regression model that uses the covariates {Xj} for
j ∈ γ ⊆ {1, . . . , k}.

For a second example consider a density f(x), or a regression function,
r(x) = E(Y | X = x) for x in some interval. Assume that f(x), or r(x),
can be represented in the form f(x) =

∑∞
j=1 βjφj(x), where φ1, φ2, . . . is a

given basis for the class of density or regression functions being considered.
One can estimate the unknown parameters βj ; however, an estimator such
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as f̂(x) =
∑∞
j=1 β̂jφj(x) is usually inefficient due the presence of a large

number of unknown parameters, and one would do better by selecting a
finite subset of basis functions among φ1, φ2, . . ., and estimate only their
corresponding parameters.

Use of models such as regression lead to questions of the connection
between correlation and causality. We discuss it briefly here. Suppose we
observe a sample of (X,Y ) values from a given distribution or population.
We may find that the variables are positively correlated, say. This does not
necessarily mean that a higher X causes a higher Y , and that it advisable to
increase X in order to increase Y if increasing Y is desirable. In this chapter
we discuss prediction, say of Y from X, under the given distribution from
which the sample was taken; causality does not enter.

For a simple example, suppose we study the relation between a certain
health variable Y , and a variable indicating taking a certain vitamin, X.
A person’s health condition and vitamin taking may be related in different
ways and for different reasons, such as their awareness of their own health,
which affects both Y and X, even in situations where the vitamin is useless.
In such a case X is an endogenous variable We may succeed in predicting
Y from X in the given population, but may fail under other distributions,
including the one we create artificially by advising on taking the vitamin,
and thus changing X.

An experiment in which subjects are allocated by the researcher into
groups taking the vitamin or not, rather than their own self-selection, makes
X exogenous if the allocation is independent of health conditions, say by
using random allocation. From such an experiment, if the only difference
between the groups is in taking the vitamin or not, one may be able to
infer causality.

In this section we study prediction or forecasting rather than causal
inference. The goal is to establish criteria and methods for model selection.
Here we discuss some general principles and apply them to some particular
models; further examples will be given in other specialized sections.

1.1 Stepwise selection

In this section we describe two procedures for selecting covariates for multi-
ple linear regression models,both of which are implemented by simple steps.
The procedures described here are known as backward elimination and for-
ward selection. It appears in every statistical package of linear regression,
and is used very often. With some natural adjustments, it is also used for
non-linear models, such as Logistic Regression.

Given a set of potential independent variables from which we want to
extract a subset for use in a forecasting model, the backward elimination
and forward procedures can be described as follows. We either start with
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all potential variables in the model and proceed backwards, eliminating one
variable at a time, or we begin with no variables in the model and proceed
forward, selecing one variable to add. At each step, we perform the fol-
lowing calculations: for each variable currently in the model, compute the
F -statistic described in order to decide if it should stay in the model. The
resulting F -statistics is called “F -to-remove”; for each variable not in the
model, compute the F -statistic to decide whether it should be added, and
reports it as its“F -to-enter” statistic. At the next step, enter the variable
with the highest F -to-enter statistic, or remove the variable with the lowest
F -to-remove statistic, in accordance with certain specified control param-
eters which define how large (small) should the F -to-enter (F -to-remove)
be in order to enter (remove) a variable.

Such procedures often lead to a reasonable choice of a subset of variables,
without having to explore all subsets, a procedure that may be too lengthy.
However, there is no proof or principle the guarantees a good choice is made
by these two procedures, and indeed, they may return different final models.
Multiple testing is performed, which may lead to models that are too large,
and the relation between the significance of single variables as tested, and
the best prediction model, is not clear.

1.2 Mallows’ Cp

Let X be a n×k matrix of covariates and consider the model Y = Xβ+ε
with Var(Y | X) = σ2I. This model is assumed to be correct, or more
realistically, a good approximation. However, for a given sample size, a
model that does not use all available variables may yield better predictions
than the full model. This may be due to the large number of parameters in
the full model, and in particular if the columns of X are nearly dependent,
high variance of the estimators are obtained due to multicollinearity. In
general, models that are too large may overfit the given data, and provide
poor prediction.

We therefore consider using subsets γ ⊆ {1, . . . , k} and models that
consist of the variables with indices in γ, Y = Xγβγ + ε, where Xγ is the
matrix formed by the columns of X with indices in γ, and βγ formed in
the same manner from β. Let

Ŷγ = Xγβ̂γ where β̂γ = (XT
γXγ)−1XT

γY. (1.1)

Suppose we predict new unobserved variables Y ∗i , independent of the ob-
served Yi, but having the same p-vector of covariates Xi (the ith row of X)

using only the variables in γ, Xiγ , that is, using the predictor Ŷiγ = Xiγβ̂γ .
A natural ‘cross-validation’ type measure of the quality of prediction would
be the loss L(γ) =

∑n
i=1(Y ∗i −Ŷiγ)2. Note also that under normality,−L(γ)

is proportional to the log-likelihood of the Y ∗i ’s, so if we minimize L(γ) we



1.2. Mallows’ Cp 5

are maximizing the estimated likelihood of new data from the same distri-
bution. More specifically, assuming that conditioned on the covariate vector
Xi, Yi and Y ∗i ∼ N(µi, σ

2I) independently, the likelihood of the Y ∗i ’s is

L(Y | X) =
1

(2πσ2)n/2
e−||Y

∗−µ||2/2σ2

=
1

(2πσ2)n/2
e−

∑
i(Y

∗
i −µi)

2/2σ2

,

(1.2)
and minimizing the sum of squares L(γ) is equivalent to maximizing the

likelihood L(Y∗ | X) over subsets γ with µi = Xiγβ̂γ .
We do not observe the additional values Y ∗i , so L(γ) is not observed.

Instead we consider the expected prediction risk

R(γ) = E{
n∑
i=1

(Y ∗i − Ŷiγ)2}, (1.3)

where here and below, all expectations are conditioned on X, so that X is
considered fixed. It is natural to select the model with the smallest R(γ).
We next discuss estimation of R(γ). The problem is that R(γ) contains
unobserved quantities, the Y ∗i ’s, and all we observe is the sample {(Yi,Xi) :
i = 1, . . . , n}.

On the basis of the sample {(Yi,Xi) : i = 1, . . . , n} we define the sample
error sum of squares for the subset γ to be

SS(γ) =

n∑
i=1

(Yi − Ŷiγ)2. (1.4)

This statistic, often denoted by SSEγ or SSEp
1 where p = |γ|, the size of γ,

is generally an underestimate of R(γ) since Ŷiγ is obtained by minimizing
this very sum for the given Yi’s for any fixed γ. In order to assess the bias
in estimating R(γ) by SS(γ) one can observe that, using the independence
of {Y ∗i , i = 1, . . . , n} and {Yi, i = 1, . . . , n},

R(γ)− E[SS(γ)] = 2

n∑
i=1

Cov(Yi, Ŷiγ), (1.5)

see Exercise 1.4.1.
We now compute the above covariance; we suppress the subscript γ in the

following calculations. We have Ŷi = Xi(X
TX)−1XTY. Using the formula

Cov(U,aTV) = Cov(U,V)a, where a denote a constant column vector,
U a random variable, and V a random column vector, and noting that
Var(Yi,Y) = (0, . . . , 0, σ2, 0, . . . , 0) = σ2ei, the standard basis vector in
direction i, we obtain

Cov(Yi, ŶiA) = Cov(Yi, Xi(X
TX)−1XTY)

= σ2eiX(XTX)−1XT
i = σ2Xi(X

TX)−1XT
i .

1The letters SSR or RSS are also used
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Summing, we obtain

n∑
i=1

Cov(Yi, Ŷiγ) = σ2
n∑
i=1

Xi(X
TX)−1XT

i

= σ2tr(X(XTX)−1XT) = σ2tr(I|γ|) = σ2|γ|, (1.6)

see Exercise 1.4.2, where |γ| is the size of γ, and I|γ| is the identity matrix
of this dimension.

We conclude, using (1.5), that an unbiased estimator of R(γ) is

R̂(γ) = SS(γ) + 2|γ|σ̂2 (1.7)

whenever σ̂2 is an unbiased estimator of σ2 such as S2 computed from the
full model, and SS(γ) is given by (1.4).

With |γ| = p, the expression on the right-hand side of (1.7), sometimes
expressed in other equivalent forms, is called Mallows Cp, and since it is
an estimate of the prediction risk (1.3), from one point of view we should

look for a set γ that minimizes R̂(γ).
A common formulation that leads to the same result is given by writing

Y ∗i = Xiβ + ε∗i with ε∗i independent of the data, and then

R(γ) = E
∑

(Xiβ + ε∗i −Xiγβ̂γ)2 = E
∑

(Xiβ −Xiγβ̂γ)2 + nσ2. (1.8)

If instead of the unobserved R(γ), we adopt as our criterion for prediction
error the expression

E
∑

(E(Y ∗i |X)− Ŷiγ)2 = E
∑

(E(Yi |X)− Ŷiγ)2 = E
∑

(Xiβ−Xiγβ̂γ)2,

we can estimate it using (1.7) and (1.8) by SS(γ) + 2|γ|σ2−nσ2. Dividing
by σ2 and plugging again its estimator S2, we obtain the statistic

Cγ = SS(γ)/S2 − n+ 2|γ|,

see Mallows (1973), and which is equivalent to (1.7), and minimized by the
same γ.

One should expect ESS(γ)/(n− p) ≥ σ2 with near equality if the set γ

provides a good model. Note that for the full model S2 = ||y−Xβ̂||2/(n−k)
is an unbiased estimator of σ2. If the set γ provides a good model then
SS(γ)/(n − p) = ||y − Xβ̂γ ||2/(n − p) will have a numerator close to
that of S2, and larger otherwise due to the non-inclusion of explanatory
covariates, which makes the fit worse. Since n − k < n − p the inequality
follows.

Therefore we should expect to have SS(γ)/S2 ≥ n − p and therefore
Cp ≥ p, with near equality for a good choice of γ. This suggests looking
for a model with Cγ close to |γ|, or slightly larger, rather than minimizing
Cγ , which may sometimes be much smaller than p.

Note that Cγ depends on γ through two terms. The first, SS(γ) measures
lack of fit, and the second, 2|γ|, can be seen as a penalty for the model size.
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The need to balance these two terms is a consequence of the tension between
bias and variance, which is ubiquitous in statistical estimation problems.

1.3 Akaike’s AIC

The Kullback-Leibler Divergence, also called a distance, or a relative
entropy, between two densities f and g is defined as

D(g||f) =

∫
g(y) log

(
g(y)

f(y)

)
dy, (1.9)

with an obvious analog in the discrete case. It is clearly non symmetric in f
and g, and and one can show that it does not satisfy the triangle inequality.
In particular, it is not a metric. However it does measure the discrepancy
between g and f and provides a notion of distance that is relevant in
statistics. This integral may not be finite, but it is always nonnegative, see
Exercise 1.4.3, and is well defined.

To gain some intution about the Kullback-Leibler, or K-L Divergence,
consider g as the ‘true’ density generating a random variable Y , so that we
have

D(g||f) = E

[
log

(
g(Y )

f(Y )

)]
.

As log(x) is a concave function, Jensen’s inequality shows that

logE

(
g(Y )

f(Y )

)
≤ E

[
log

(
g(Y )

f(Y )

)]
. (1.10)

As log(x) is strictly convex, the lower bound is achieved, that is, the K-
L divergence is minimized, if and only if g(Y )/f(Y ) is a constant on the
support of g, which, as f is a density, implies that f(y) = g(y). As we may
write

D(g||f) = E [log g(Y )]− E [log f(Y )] ,

for g any fixed density function, we likewise see that the negative of the
second term,

A(f) =

∫
g(y) log f(y)dy, (1.11)

is maximized when f and g are equal.
Given a parametric family of densities f(y; θ) with θ ∈ Θ, and the data

generated by a “true” unknown density g, maximum likelihood estimation
can be seen as an approximation to the problem of minimizing the K-L
divergence over θ ∈ Θ. First, for the parametric f( · ;θ)), write (1.11) as

A(θ) =

∫
g(y) log f(y; θ)dy. (1.12)
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As (1.11) is maximized at the true density, we would like to choose θ
which maximizes (1.12). However, g is unknown and hence (1.12) cannot
be calculated.

Yet, given the sample Y1, . . . , Yn from g, the Law of Large Numbers
implies that A(θ) is the limit of the expectation n−1

∑n
i=1 log f(Yj ; θ). So

as an approximation to maximizing A(θ), we instead maximize the latter
expression, resulting in the MLE. Thus, using data to find the model that
has minimum K-L distance to g, that is, the K-L ‘projection’ of g to the
family of models, that is minimizing the K-L divergence between the true
model and the parametric one, is, in the words of Akaike (1973) “a natural
extension of the classical maximum likelihood principle”. See also Akaike
(1974).

Our goal is to find a measure that allows us to compare different models,
and then to estimate this measure. The Akaike’s Information Criterion,
or AIC, is based on attempting to select the model that is the nearest
to the truth as measured by the K-L divergence. Given models fi(y;θ)

over parameter spaces Θi and θ̂i an estimator of the parameter in the ith
model, the idea discussed in the following sections is to select a model that
maximizes

∫
g(y) log f(y ; θ̂)dy. Besides minimizing the K-L divergence, as

explained in the following section, this criterion is equivalent to choosing
a model on the basis of given data in order to maximize the expected
likelihood of future observations.

1.3.1 Background towards the definition of AIC

Before describing Akaike’s criterion we introduce some definitions and
make other preparations. Let θ0 = arg maxθ∈Θ

∫
g(y) log f(y ;θ)dy, where

{f(y ;θ),θ ∈ Θ} is a given a family of densities, so that f(y ;θ0) is a type
of projection of g to the family. We assume that the maximum θ0 is unique,
and is an interior point of the parameter space Θ, is a d-dimensional subset
of Rd.

In view of the discussion in the previous section, it makes sense to propose
A(θ) of (1.12) as a measure of the quality of a model and propose how to
estimate it. However, since we do not know θ0 it may make more sense to
estimate A(θ) by as best as possible by a suitable θ̂ and consider instead
the measure

B =

∫
g(y) log f(y ; θ̂)dy; (1.13)

in fact
∫
g(y) log g(y)dy − B is the distance between g and the model in

the family that will actually be used. Choosing according to A reflects a
search for the best theoretical model, while B is related to choosing the
best model to be use with estimated parameters. Following most of the
literature we will take this approach, define θ̂ as the MLE, show that it



1.3. Akaike’s AIC 9

approaches θ0, and discuss estimation of B. When comparing models, the
larger B, the better the model.

Some regularity conditions on f(y ;θ) are needed, in the spirit of those
required for maximum likelihood estimation, which we assume are in force.
Given a sample of i.i.d. variables Y1, . . . , Yn from the unknown density g,
let the maximum likelihood estimate be given by

θ̂ = arg max
θ∈Θ

1

n

n∑
k=1

log f(Yk;θ),

By the consistency of the MLE, as n → ∞ we have θ̂
p→ θ0, and by a

uniform law of large numbers 1
n

∑n
k=1 log f(Yk;θ)

p→
∫
g(y) log f(y;θ)dy

so that that as n→∞, A(θ̂)
p→ A(θ0).

Note that if Y ∗1 , . . . , Y
∗
n ∼ g is an independent copy of the original sample

distributed as Y ∗ ∼ g, then

B = E[log f(Y ∗ ; θ̂) | θ̂] = E

[
1

n

n∑
k=1

log f(Y ∗k ; θ̂)

∣∣∣∣ θ̂
]
.

Thus, preferring models having larger values of B amounts to maximizing
the likelihood, or expected likelihood, of new observations from distribution
g, from the model with θ = θ̂, which will be close to θ0 for large samples.
As we cannot calculate B due to g being unknown, we consider estimating
E[B], or equivalently, look for an estimator D for which E[D − B] = 0. If
new independent observations are available then one can use D of the form
either

D =
1

n

n∑
k=1

log f(Y ∗k ; θ̂) or likewise D =
1

n

n∑
k=1

log f(Yk ; θ̂∗), (1.14)

with θ̂∗ being the MLE based on the Y ∗k ’s. However we do not assume that
such observations are given.

Next, one might simply consider estimating E[B] by

C =
1

n

n∑
k=1

log f(Yk ; θ̂).

However, C is a positively biased estimator for E[B], having larger bias for

larger models, since θ̂ is chosen to maximize expression of C. To see that
C is so biased, note that by the defining property of the MLE, assuming
uniqueness here, we have, with positive probality, that

1

n

n∑
i=k

log f(Yk; θ̂) >
1

n

n∑
k=1

log f(Yk; θ̂∗),
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showing that E[C] > E[D],and thus E[C] > E[B]. In the next section we
evaluate the bias

E[C]− E[B] = E

[
1

n

n∑
k=1

log f(Yk ; θ̂)

]
− E

∫
g(y) log f(y ; θ̂)dy, (1.15)

after somewhat lengthy but instructive calculations. As C is computable
from the data we can obtain our criteria, such as Aikaike’s Information
Criteria as in eq:AIC.d.gamma, by attempting to correct for the known
bias.

Akaike’s approach chooses the model that maximizes an unbiased esti-
mator of E[D] for D of (1.14). Since likelihood is random, it is natural to
take expectation, and consider E[D] which coincides with E[B] of (1.13).
This method can also be interpreted in cross-validation terms, since a
good model is one that maximizes the likelihood of new data. Thus, it
is not surprising that the resulting AIC criterion below is closely related to
cross-validation, see, Stone (1977).

1.3.2 Evaluation of the bias

Letting A = A(θ0), As C − B = (C − A) − (B − A), we evaluate the bias
E[C −B] by evaluating E[C −A] (which is of interest of its own due to the
above discussion) and E[B−A], and taking the difference. In the following
we let ∂θ stand for taking the vector of partial derivatives, and likewise
∂2
θ produces a matrix of second partial derivatives. Beginning with C − A

we make a Taylor expansion around the MLE θ̂, with the first derivative
vanishing at the MLE, and obtain

E[C −A] =
1

n

n∑
k=1

log f(Yk ; θ̂)− 1

n

n∑
k=1

log f(Yk ;θ0)

≈ −1

2
(θ0 − θ̂)T

[
1

n

n∑
k=1

∂2
θ log f(Yk ; θ̂)

]
(θ0 − θ̂). (1.16)

Note that the expectation of the left-hand side of (1.16) is exactly E[C−A].
Expanding the integral form as in (1.13), now at θ0, again the first

derivative term vanishes, and we similarly obtain

E[B −A] =

∫
g(y)[log f(y ; θ̂)− log f(y ;θ0)]dy

≈ 1

2

∫
g(y)(θ0 − θ̂)T

[
∂2
θ log f(y ;θ0)

]
(θ0 − θ̂)dy. (1.17)

In order to continue, we study the asymptotic distribution of θ̂ − θ0. The
arguments are similar to those for the MLE except that now the data is not
generated by f(y ;θ0), but rather by the density g. Expanding the gradient
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of the first sum on the left hand side of (1.16) around θ0 we have

0 =
1

n

n∑
k=1

∂θ log f(Yk ; θ̂)

≈ 1

n

n∑
k=1

∂θ log f(Yk ;θ0) +

[
1

n

n∑
k=1

∂2
θ log f(Yk ;θ0)

]
(θ̂ − θ0).

Thus,

√
n(θ̂ − θ0) ≈ −

[
1

n

n∑
k=1

∂2
θ log f(Yk ;θ0)

]−1
1√
n

n∑
k=1

∂θ log f(Yk ;θ0).

(1.18)
Since by definition θ0 maximizes E[log f(Yk ;θ)], the summand on the

right hand side of (1.18) has expectation zero, and variance-covariance
matrix

K = E

{
∂θf(Yk ;θ0)∂θf(Yk ;θ0)T

f2(Yk ;θ0)

}
, (1.19)

where Yk ∼ g.
To handle the first term on the right-hand side of (1.18) we have, see

Exercise 1.4.4,

J = −E
{
∂2
θ log f(Yk ;θ0)

}
= −E

{
∂2
θf(Yk ;θ0)

f(Yk ;θ0)

}
+K, (1.20)

which is obtained by straightforward differentiation under the expecta-
tion sign. When g(y) = f(y ;θ0), the first term on the right-hand side of
(1.20) vanishes, see Exercise 1.4.4, and we obtain the well known Fisher
information identity J = K. This is the case in standard MLE theory.

Returning to (1.18), the average inside the inverse in the first term
converges in probability to its expectation J . Invoking the Central Limit
Theorem to the second term and applying Slutsky’s Lemma yields

√
n(θ̂ − θ0)

D→ N(0, J−1KJ−1). (1.21)

If g(y) = f(y ;θ0), the above asymptotic distribution is the usual
N(0,K−1).

We now return to (1.16). Using that θ̂ converges to θ0 and a uniform
law of large numbers, the sum converges to J , so under suitable conditions

E(C −A) ≈ 1

2n
E{n(θ0 − θ̂)TJ(θ0 − θ̂)} =

1

2n
trE{n(θ0 − θ̂)(θ0 − θ̂)TJ}

=
1

2n
tr(J−1KJ−1J) =

1

2n
tr(J−1K). (1.22)
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Turning to (1.17) it is easy to see, Exercise 1.4.5, that the same
approximation yields the same result,

E[B −A] ≈ − 1

2n
tr(J−1K). (1.23)

Putting all these results together we finally end our calculations with the
desired approximation of the bias

E[C −B] ≈ 1

n
tr(J−1K). (1.24)

If the family {f(y ;θ)} contains g, then we must have g(y) = f(y ;θ0) and
J = K, yielding tr(J−1K) = d. Hence d may be a good approximation for
tr(J−1K) for models that include densities not too far from g. Most users
of the AIC follow Akaike, and use d as the approximate bias rather than
tr(J−1K). The application of (1.24) with or without this approximation is
discussed in the next section.

1.3.3 Selecting a model by the AIC

Now with Γ some at most countable index set, consider a class of data
generating models Mγ given by densities fγ(y ; θ), θ ∈ Θγ , γ ∈ Γ where
Θγ denotes the parameter space for the model, Mγ , having dimension dγ .
We can parameterize the family with a single parameter, say, η = (γ,θ).
Again, we observe a sample Y1, . . . , Yn, generated by the true model with
density g, which may, or may not belong to the above class of densities.

Our goal is to choose an (γ,θ) so that the model fγ(y;θ) provides a
good approximation to g in the sense of minimizing the K-L divergence, or
equivalently, maximizing

∫
g(y) log fγ(y ; θ̂γ)dy where θ̂γ = arg max

θ∈Θγ

1

n

n∑
k=1

log fγ(Yk;θ), (1.25)

the MLE under the model Mγ .
Adjusting for the bias as given (1.24) we obtain we see we prefer the

model that would maximize
n∑
k=1

log fγ(Yk ; θ̂)− tr(J−1
γ Kγ) (1.26)

where Kγ and Jγ are as in (1.19) and (1.20), applied to the model Mγ ,
with parameter space of dimension dγ . When the sample estimates

K̂γ =
1

n

n∑
k=1

∂θ log fγ(Yk ; θ̂γ)∂θ log fγ(Yk ; θ̂γ)T ,

Ĵγ =
1

n

n∑
k=1

∂2
θ log fγ(Yk ; θ̂γ)
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are plugged into (1.25) we obtain the TIC, Takeuchi (1976).
With the approximation dγ for tr(J−1

γ Kγ), the criterion becomes choos-
ing γ which maximizes Akaike’s Information Criterion, which is given
by

AIC =

n∑
k=1

log fγ(Yk ; θ̂γ)− dγ . (1.27)

There is a tradition of multiplying the above quantity by −2, perhaps in
connection with Wilks’ Theorem, and minimizing over γ. It is clear from
the form (1.27) how larger models, those that may overfit, are penalized.

1.4 Exercises

Exercise 1.4.1 Prove (1.5). Note that from the first term, R(γ), one ob-
tains the product of expectations part of the covariance using independence
of Y ∗i and Yi, whereas the expectation of the product is obtained from EL(γ).
Other expressions in R(γ)− EL(γ) cancel.

Exercise 1.4.2 Prove (1.6). For the penultimate equality use the formula
tr(AB) = tr(BA).

Exercise 1.4.3 Prove that the Kullback-Liebler divergence given by (1.9)
is non-negative for any two densities f and g Hint: Use (1.10).

Exercise 1.4.4 Prove (1.20) and show that the first term on its right-hand
side vanishes.

Exercise 1.4.5 Show that (1.23) follows from an argument similar to the
one for (1.22).
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