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1
Linear Models

In this chapter we assume that the reader is familiar with the basic concepts
of linear algebra as given, for example, in Strang (2003). Acquaintance with
simple linear regression and concepts such as correlations and covariance
matrices, and the multivariate normal distribution is also assumed. Such
background material can be found in many introductory statistics books,
such as Ross (2004).

1.1 The model

Consider the random vector (Y,X) where Y ∈ R and X = (X1, . . . , Xp) ∈
Rp. We model Y as a function of X, perturbed by noise. The goal is to
understand the relation between Y and X, and in particular be able to
predict Y from X. The distribution of X is often not of interest, so we
begin by considering X fixed and later condition on it. When X is fixed we
denote its value by x.

Given x, the general additive model is

Y = r(x) + ε, (1.1)

where r : Rp → R and the error ε satisfies E(ε) = 0. The function r(x)
is called the regression function, Y is called the dependent variable, and
the components of x = (x1, . . . , xp) are called covariates, predictors, inde-
pendent variables or features in the computer science literature. A typical
example considered in the econometrics literature takes Y to be income,
and the components of x to be the number of years of education, years
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of experience, age, and other such factors deemed relevant predictors of
income. In biostatistics, Y could be a health related measurement such as
systolic blood pressure, or the indicator of a disease, and the covariates
could be, for example, various blood test measurements.

The best mean squared error predictor of Y under (1.1) is r(x), that is,

r(x) = arg min
g

E(Y − g(x))2, (1.2)

where the minimization is over all functions g(x), assuming EY 2 exists.
This fact is equivalent to the identity

arg min
a∈R

E(Y − a)2 = EY, (1.3)

see Exercise 1.11.1.
A statistical problem is formulated by assuming the function r(x) in

(1.1) belongs to some known class of functions R. If this class is finite-
dimensional, then we may write R = {r(x,β) : β ∈ Θ}, where Θ ⊆ Rp is
the parameter space. If in addition the distribution of ε is in some finite
dimensional parametric class of distributions such as the normal N (0, σ2),
then the model is said to be parametric. If R is infinite-dimensional and
ε is not restricted to a finite-dimensional parametric family, the model is
considered non-parametric. Otherwise, the model is semiparametric. See
Section ref.

In this chapter we consider the linear model

r(x,β) = β1x1 + · · ·+ βpxp = xβ, (1.4)

where β = (β1, . . . , βp)
T ∈ Rp, a column vector of real parameters.

Linearity refers to the coefficients βi, and r(x) is not restricted to be
linear in x; in (1.4) we can have, for example, a quadratic model like
r(x) = β1 +β2x+β3x

2, by taking x = (x1, x2, x3) with x1 = 1, x2 = x, and
x3 = x2. When the linear model (1.4) contains more than one covariate the
term multiple regression is often used.

We observe n pairs (Yi,xi), i = 1, . . . , n satisfying (1.1) and (1.4), where
xi = (xi1, . . . , xip). Specifically, we have

Yi = xiβ + εi, with E(εi) = 0, i = 1, . . . , n. (1.5)

The main focus is inference on β, and prediction of new Y values given
their corresponding covariate vectors x. When the covariates are properly
scaled, a large component β` of β suggests that the corresponding covariate
x` is strongly related to Y .

Let Y = (Y1, . . . , Yn)T be the column vector consisting of the dependent
variables, let X = [xij ] be the n× p matrix having entries xij , and let εε be
the column vector of errors. The matrix X is known as the design matrix.
We can rewrite the model (1.5) for the whole sample in matrix notation as

Y = Xβ + εε with E(εε) = 0, β ∈ Rp, (1.6)
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or equivalently E(Y) = Xβ. Various additional assumptions on the εi’s will
appear; they may be uncorrelated, have a common variance, be identically
distributed and normally distributed.

Simple linear regression is the special case where X is n × 2, with first
column given by (1, . . . , 1)T, and second column by (x1, . . . , xn)T, so that
(1.6) becomes

Yi = β1 + β2xi + εi, i = 1, . . . , n; (1.7)

thus r(xi) = β1 + β2xi is a function of the single variable xi.
A famous example of regression was the study of the relation between

the heights of 1,078 fathers and their sons by the 19th-century scientist Sir
Francis Galton. He noticed that fathers who were taller or shorter than the
average father tended to have sons who likewise were taller or shorter than
the average son, but to a lesser degree than their fathers. Galton called this
phenomenon regression to the mean.

To provide a formal explanation of this phenomenon, let (Yi, xi) denote
the heights of the son and father in the ith pair. Writing the intercept in
(1.7) as β1 − β2x we obtain the alternate parametrization of the model

Yi = β1 + β2(xi − x) + εi, εi i = 1, . . . , n, (1.8)

where x = n−1
∑n
i=1 xi. In this way we see that β2 expresses the contribu-

tion of a father’s deviation xi − x from the mean, to his son’s height, Yi.
Taking averages in (1.8) we obtain

Yi − Y = β2(xi − x) + (εi − ε).

Hence, the deviation of the son’s height from the average is, apart from a
random, zero mean error, proportional to that of the father. If 0 < β2 <
1 then the son’s deviation from his generation’s mean is expected to be
smaller than his father’s. This phenomenon holds under certain conditions,
see Exercise 1.11.2

For another example of a linear model, let Yi measure a univariate re-
sponse from two treatment groups, one of size m, and another of size n−m.
In this case we may write

Yi = β1 + εi i = 1, . . . ,m, Yi = β2 + εi i = m+ 1, . . . , n, (1.9)

so that βj denotes the mean treatment response in group j = 1, 2. This
model may be written in the form (1.6) by letting the matrix X have rows
xi = (1, 0) for 1 ≤ i ≤ m and xi = (0, 1) for m+1 ≤ i ≤ n. Variables taking
only the values 0 and 1 as above are called dummy or indicator variables.
Analysis of variance models are constructed as linear models with dummy
variables, while analysis of covariance concerns models with both dummy
and continuous covariates.

Analysis of the linear model is made simple by casting it in the language
of linear algebra. In particular, let

C(X) = {Xβ : β ∈ Rp} (1.10)
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denote the range space of the matrix X consisting of all vectors that can
be achieved by multiplying X on the right by β. It is easy to see that C(X)
is the linear subspace spanned by forming all linear combinations of the
columns of X, hence C(X) may also be referred to as the column space of
X. Now the model (1.6) can be simply expressed as E(Y) ∈ C(X).

If the columns of the design matrix X are not linearly independent, that
is, if some columns of X can be expressed as linear combinations of others,
the model is said to exhibit multicollinearity . Letting the null space of X
be given by

N (X) = {b : Xb = 0},

infinitely many vectors yield the same value of Xβ when rank(X) < p, since
for any b ∈ N (X) we have Xβ = X(β+b). In this case different values of β
yield the same value of E(Y) = Xβ, and therefore generate the same distri-
bution on the data. Hence β cannot be estimated, and so is not identifiable,
see Chapter ???. Linear independence of the columns and identifiability of
a parameter vector β can be achieved without changing C(X) by a suitable
deletion of columns from X. Henceforth, in this chapter unless explicitly
stated otherwise, we assume that the columns of X are linearly indepen-
dent, necessitating the condition that n ≥ p, since rank(X) ≤ min{n, p}. In
this case, the columns of X form a basis for C(X).

In many situations in science one has many more variables than obser-
vations. For example, DNA sequencing is often done on a small sample of
n individuals, while the number p of DNA loci that form the covariates is
very large, making p much greater than n. We deal with such situations in
Chapter ref.

1.2 Linear spaces and projections

1.2.1 Least squares

For column vectors u and v define the inner product uTv =
∑
uivi, and

the norm ||u|| = (uTu)1/2. Given an n × p matrix X and a column vector
β ∈ Rp, the squared length ||Y − Xβ||2 of the vector Y − Xβ in Rn is a
measure of how well the parameter β predicts the observed Y though the
given design matrix X. The least squares approach to estimating β in the
model (1.6) consists of finding a value of the parameter β̂ that minimizes
this squared distance, that is,

β̂ = arg min
β
||Y − Xβ||2 = arg min

β

n∑
i=1

(Yi − xiβ)2. (1.11)

If we were to predict the value Yi from its covariates xi, the least squares
approach now provides the estimator xiβ̂. Thus, the least squares approach
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Y

Y−̂Y=Y−Xβ̂

Ŷ=Xβ̂

C(X)

Figure 1.1. The normal equation (1.13) is depicted in this figure, where the gray

xy plane is C(X), Ŷ is the projection of Y on C(X), and Y − Ŷ is orthogonal to
any vector in C(X).

minimizes the sum of the squared deviations of the predictors for the given
data. More generally, when the unknown function r in the model (1.1) is
of the parametric form r(xi,β) for β ∈ Θ, the least squares estimator of β
is

β̂ = arg min
β∈Θ

n∑
i=1

(Yi − r(xi,β))2. (1.12)

We now compute β̂ of (1.11), starting with a geometric explanation,

which we formalize later. As seen in Figure 1.1, the vector Y−Xβ̂ should
be orthogonal to C(X), that is, to every vector in C(X). Writing u ⊥ v to
denote that the column vectors u and v are perpendicular, that is, uTv = 0,
and using (1.10), we thus require

Y − Xβ̂ ⊥ Xβ for all β ∈ Rp;

equivalently,

βTXT
(
Y − Xβ̂

)
= 0 for all β ∈ Rp.

If for some vector u we have βTu = 0 for all β ∈ Rp then u = 0, and hence
we finally obtain the so called normal equation:

XT
(
Y − Xβ̂

)
= 0, or equivalently XTXβ̂ = XTY. (1.13)

Here “normal” is in the sense of orthogonal, rather than bearing any re-
lation to the normal distribution. By Exercise 1.11.3, when X has linearly
independent columns the matrix XTX is invertible, so by the second identity
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in (1.13) we obtain the explicit solution

β̂ = (XTX)−1XTY. (1.14)

Exercise 1.11.4 concerns the computation of β̂ in the analysis of vari-
ance model (1.9). Exercise 1.11.6 shows that when the variations about the
averages in the father and son’s generations are equal, then the estimator

|β̂2| ≤ 1. Exercise 1.11.7 shows that the normal equation (1.13) can be
obtained by differentiation.

The following proposition verifies that the estimator β̂ given by (1.14)
has the least squares property (1.11).

Proposition 1.2.1 The estimator β̂ given by (1.14) is the unique vector
in Rp that minimizes ||Y − Xβ||2.

Proof: For an arbitrary β ∈ Rp, by adding and subtracting we obtain

||Y − Xβ||2 = ||Y − Xβ̂ + X(β̂ − β)||2

= ||Y − Xβ̂||2 + ||X(β̂ − β)||2 + 2(β̂ − β)TXT (Y − Xβ̂)

= ||Y − Xβ̂||2 + ||X(β̂ − β)||2

≥ ||Y − Xβ̂||2.

The cross term in the second line vanishes by (1.13), showing that β̂ min-

imizes ||Y − Xβ||2. That β̂ is the unique minimizer follows from the fact

that the inequality above is equality if and only if X(β̂ − β) = 0, which

implies β̂ = β since X is full rank.
Using β̂ given by (1.14), the vector Ŷ = Xβ̂ is the projection of Y onto

C(X), which can be expressed as PY where

P = X(XTX)−1XT. (1.15)

It is easy to verify that the n× n matrix P satisfies

PT = P and P2 = P. (1.16)

Any matrix P that satisfies (1.16) is called an orthogonal projection matrix,
or simply, a projection matrix . The matrix P in (1.15) is the projection
matrix onto C(X), that is, the matrix satisfying (1.16) having C(P) = C(X).

The following lemma records an important property of P, and its
complementary projection N, defined below.

Lemma 1.2.2 Let X ∈ Rn×p and P = X(XTX)−1XT. Then N := I − P is
a projection matrix, and

tr(P) = p and tr(N) = n− p,

that is, the trace of a projection matrix equals the dimension of the subspace
upon which it projects.
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Proof: It is easily verified that N is symmetric and satisfies N2 = N, and
hence is a projection. Now using the cyclic invariance tr(AB) = tr(BA)
to reorder the matrices inside the trace, tr(P) = tr(X(XTX)−1XT) =
tr(XTX)−1XTX) = tr(I) = p. It follows that tr(N) = n− p.

For uniqueness of P and further properties of projections, see Exercise
1.11.8.

Proposition 1.2.3 below shows that β̂ is an unbiased estimator of β and
provides its variance. The proof is straightforward, see Exercise 1.11.9.

Proposition 1.2.3 Let β̂ be given by (1.14). Then,

1. If E(εε) = 0 then E(β̂) = β.

2. If Var(εε) = σ2I then Var(β̂) = σ2(XTX)−1.

The condition Var(εε) = σ2I means that the errors have equal variances and
are uncorrelated. Equality of variance is known as homoscedasticity .

If the columns of X are linearly dependent, then XTX is singular, and
hence its determinant will be zero. If the columns are nearly linearly de-
pendent, then the matrix XTX will have a small determinant, and hence
Var(β̂) = σ2(XTX)−1 will have large components, indicating that the es-

timation of β will be imprecise. On the other hand, the projection Ŷ,
considered as a prediction of Y, is the same for all design matrices whose
range is C(X).

1.2.2 Generalized least squares

The sum of squares that is minimized in (1.11) assigns equal weights to the
squared deviations (yi − xiβ)2. This case is called ordinary least squares
(OLS). If the errors εi in (1.6) are uncorrelated but have unequal variances,
then intuitively one should assign higher weight to the more ‘reliable’ ob-
servations, that is, those with smaller variance. In fact, will see in (1.20)
that when observations are uncorrelated their weights should be inversely
proportional to their variances.

To take into account correlated errors, consider the model

Y = Xβ + εε with Var(εε) = σ2V, (1.17)

where V is a known n × n positive definite matrix. Note that when the
observations are generated by taking linear combinations or averages of
uncorrelated data values with unknown, constant variance, then their
correlation structure, V, will be known, though σ2 may not be.

As V is positive definite there exists a non-singular symmetric n × n
matrix U such that V = UUT. Multiplying on the left by U−1 in (1.17),
and letting Z = U−1Y, we obtain

Z = Wβ + η where W = U−1X and η = U−1εε, (1.18)
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We now have Var(η) = Var(U−1εε) = σ2U−1VU−T = σ2I, where U−T =
(U−1)T.

Applying the least squares principle to the model (1.18) we compute β
that minimizes the sum of squares

||Z−Wβ||2 = (Y − Xβ)TV−1(Y − Xβ), (1.19)

which is similar to ||Y − Xβ||2 considered in (1.11), but weighted by the
factor V−1. This approach is known as generalized least squares(GLS). In
the special case that V = diag(σ2

1 , . . . , σ
2
n), the diagonal matrix with the

variances of the observations on its diagonal, (1.19) reduces to

||Z−Wβ||2 =

n∑
i=1

(Yi − xiβ)2/σ2
i , (1.20)

a sum of squares with weights inversely proportional to the variances.
For the model (1.17), calculating the least squares estimator of β , that

is, the vector β̂ that minimizes (1.19), by (1.14), results in

β̂ = (WTW)−1WTZ = (XTV−1X)−1XTV−1Y. (1.21)

Estimators of the form (1.21) are known as generalized least squares esti-
mators. It is easy to see that this estimator is unbiased for β in the model
(1.17).

1.3 The Gauss-Markov Theorem

Linear estimators based on the data Y are of the form CY for some matrix
C that may depend on X. Estimators (1.14) and (1.21) are linear and are
also unbiased for β whenever the error vector εε has mean zero. The Gauss-
Markov Theorem below provides the minimal variance estimator among all
linear estimators of linear combinations of β in the model

Y = Xβ + εε with E(εε) = 0, Var(εε) = σ2I and X ∈ Rn×p. (1.22)

Theorem 1.3.1 (Gauss-Markov) Let model (1.22) hold, and suppose
that for given row vectors a ∈ Rp and c ∈ Rn the linear estimator cY
satisfies E(cY) = aβ. Then Var(cY) ≥ Var(aβ̂).

In words, aβ̂ has the smallest variance among linear unbiased estimators
of aβ.

Proof: We have aβ = E(cY) = cXβ for all β, implying a = cX. Therefore

1

σ2
Var(aβ̂) = a(XTX)−1aT = cX(XTX)−1XTcT

= ||PcT||2 ≤ ||cT||2 =
1

σ2
Var(cY),
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where the third equality uses the fact that P = PTP, and the inequality
follows from Exercise 1.11.8 part 6, which says that projection decreases
length.

This result says that if we use xβ̂ to predict a new observation Y hav-
ing covariate vector x, then our prediction has minimal variance over all
predictors of the form cY that have expectation E(Y ) that is, xβ.

Corollary 1.3.2 For the model of (1.22), Var(β̃)−Var(β̂) is nonnegative

definite for any linear unbiased estimator β̃ of β.

The proof of this corollary is left as Exercise 1.11.10.
A more general result holds. In the model (1.17), the estimator (1.21)

has the minimal variance matrix among linear unbiased estimators. The
proof is left to the reader in Exercise 1.11.11.

1.4 Design matrices with dependent columns

We briefly discuss the case where the matrix X in the model (1.22) is not of
full rank, that is, its columns are not linearly independent. For a situation
where a non full rank design matrix appears naturally, see Exercise 1.11.12.
When X is not of full rank β is not unique and hence not identifiable, and
therefore cannot be estimated. However, the expectation E(Y) or linear
combinations thereof can be estimated. Regardless of whether X is full rank
or not, the model (1.22) can be expressed in the form E(Y) ∈ C(X) and
Var(Y) = σ2I. By deleting suitable columns from X, we can obtain a full
rank matrix W such that C(W) = C(X). The matrix P = W(WTW)−1WT

is the projection matrix onto C(X). The projection of any vector v onto
C(X) is unique since if there were two distinct projections, that is, two vec-
tors in C(X) that minimize the distance from v, then by a straightforward
convexity argument, their linear combination would be closer to v, contra-
dicting the assumption that the two vectors are projections. It follows that
the projection matrix to C(X) is unique since its operation on all vectors is
unique.

The following result considers estimation of linear combinations of E(Y),
and applies even in the case where X is not full rank.

Theorem 1.4.1 Consider model (1.22) with X not necessarily of full rank,

and let a be a row vector in Rn, and Ŷ = PY. Then aŶ is the unbiased
linear estimator of aE(Y) with the smallest variance.

The proof is left to Exercise 1.11.13.
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1.5 Variance estimation

The next result concerns estimation of the variance σ2 in the model (1.22).

Theorem 1.5.1 Under the model (1.22),

S2 :=
1

n− p
||Y − Xβ̂||2 (1.23)

is an unbiased estimator of σ2.

Proof: First note that E(Y) = Xβ = E(Xβ̂). Now, since PY = Ŷ = Xβ̂,
we have

E(||Y − Xβ̂||2) = E{[(I− P)Y]T[(I− P)Y]} = E[YT(I− P)T(I− P)Y].

The latter expression is a real number and hence equal to its trace. Applying
tr(AB) = tr(BA) with A = YT(I−P)T and B = (I−P)Y, and the properties
(1.16) of P, we obtain

E(||Y − Xβ̂||2) = E{tr[(I− P)YYT(I− P)T]} = σ2tr(I− P) = σ2(n− p),

with the final equality holding by Lemma 1.2.2.

1.6 Least squares estimation under linear
constraints

Linear models often are considered with constraints and are of the form

Y = Xβ + εε with Dβ = c (1.24)

for a given matrix D ∈ Rq×p with q independent rows, and a vector c ∈ Rq.
Estimation of β under the constraint (1.24) amounts to estimating r(x) =
xβ subject to knowing the precise value of the function at some given
points, that is r(di) = ci, for i = 1, . . . , q, where d1, . . . ,dq are the rows of
D, and cT = (c1, . . . , cq). Estimating β in the model (1.24) is also needed
for testing whether the linear constraint holds. Exercise 1.11.14 discusses
that case that the rows of D are not independent.

Theorem 1.6.1 provides the least squares estimator for the constrained
linear model (1.24). See Exercise 1.11.15 for an illustration of its use with
c 6= 0. Examples with c = 0 may arise when considering the regression
function E(Y ) = r(x)β =

∑
xjβj , where we wish to estimate β under

constraints like βi = βj for some of the coefficients, that is equality of the
contribution of the corresponding covariates to the response Y , or perhaps
βi = 2βj , reflecting known constraints on their relative contribution.

Linear independence of the rows of D implies q ≤ p. When estimating β
under the constraint Dβ = c, the case q = p is trivial since then (1.24) is
equivalent to β = D−1c, determining β uniquely.



12 1. Linear Models

Assuming EY ∈ C(X), the least squares estimator β̂ of β was defined
in (1.14). The constrained model (1.24) can be expressed as E(Y) ∈ Mc

where Mc = {Xβ : Dβ = c}. We denote the least squares estimator of β

in this model by β̂Mc . The nearest point in Mc to a given Y ∈ Rn exists

and is unique, as Mc is closed and convex. By definition of β̂Mc this point

is Xβ̂Mc , and β̂Mc is unique since X has full rank. We define PMc by the

relation PMcY = Xβ̂Mc , that is, PMc represents the projection onto Mc.
The projection matrix PM0 can be obtained explicitly from the proof of

Theorem 1.6.1. The matrix P will denote the projection onto C(X) as usual.
In the case c 6= 0, PMc is not a projection matrix, and, in fact, is affine, but
not linear, that is, PMcY = AY + d for some matrix A and vector d 6= 0.
More precisely, from (1.25) below we have PMcY = PM0Y + Xb− PM0Xb
which is of the form AY +d with d = Xb−PM0Xb, which vanishes if and
only if Xb ∈ M0, that is, if and only if Db = 0, and hence if and only if
c = 0.

The following theorem formally proves the relation (1.25) which is made
geometrically clear in Figure ref. From (1.25) we then derive the least
squares estimator of the constrained linear model.

Theorem 1.6.1 Let Y = Xβ + εε where X ∈ Rn×p with p < n, having p
independent columns, and let E(εε) = 0. Let D ∈ Rq×p have q independent
rows, and b be any solution to Db = c. Then

P(Y − Xb)− PM0(Y − Xb) = PY − PMcY. (1.25)

and the constrained least squares estimator of β,

β̂Mc := arg min
β : Dβ=c

||Y − Xβ||2,

is given by

β̂Mc = β̂ + (XTX)−1DT
[
D(XTX)−1DT

]−1
(c− Dβ̂). (1.26)

Proof: First consider the case c = 0. Recall that M0 = {Xβ : Dβ = 0}
and set W = C(X) ∩M⊥0 , where M⊥0 denotes the orthogonal complement
of M0. Forming M0 by imposing q linear constraints on C(X), a subspace
of dimension p, leaves M0 with dimension p − q. The subspace W has
dimension q, being the orthogonal complement of M0 in C(X).

We claim that W = C(G), where G = X(XTX)−1DT. First, note that a
vector u ∈ C(G) satisfies u = Gα for some α ∈ Rq. Such a vector is clearly
in C(X) since G has the matrix X on its left side. In order to conclude that
C(G) ⊆W it remains to show that u ∈M⊥0 , which is equivalent to showing
that uTXβ = 0 provided Dβ = 0. We have

uTXβ = αTGTXβ = αT[D(XTX)−1XT]Xβ = αTDβ = 0.

To show that C(G) = W we note that

q ≥ r(G) ≥ r(X ′G) = r(D) = q,
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where the first equality follows from C(G) ⊆W . Since C(G) has dimension
q, the same dimension as W , the two subspaces must be equal.

As in (1.15), it follows that the projection matrix onto W is PW =
G(GTG)−1GT, that is,

PW := X(XTX)−1DT
[
D(XTX)−1DT

]−1 D(XTX)−1XT. (1.27)

As W and M0 are orthogonal complements in C(X), we have P = PW+PM0 ,
where P = X(XTX)−1XT, the projection onto C(X) given by (1.15), and PM0

the projection to M0.

Xβ̂M0 = PM0Y = (P− PW )Y = PY − PWY

= Xβ̂ − X(XTX)−1DT
[
D(XTX)−1DT

]−1 Dβ̂. (1.28)

As X has full rank, Xu = Xv implies u = v, yielding (1.26) for the case
c = 0. Alternatively, one may multiply the equality above on the left by
(XTX)−1XT.

For the case where c 6= 0, let b be any solution to the equation Db = c.
We have

β̂Mc = arg min
β : Dβ=c

||Y − Xβ||2 = arg min
β : Dβ=c

||Y − Xb− X(β − b)||2

= arg min
γ : Dγ=0

||Y − Xb− Xγ||2 + b = γ̂ + b, (1.29)

where γ̂ = arg minγ : Dγ=0 ||Y − Xb− Xγ||, and where we have made the
change of variable γ = β−b in the third equality, which shifts the argmin
by b. By definition Xγ̂ = PM0(Y−Xb), and now by multiplying (1.29) on
the left by X we obtain

PMcY = PM0(Y − Xb) + Xb. (1.30)

We obtain identity (1.25) by simply adding PY on both sides of the
equation and using PXb = Xb. Using PM0 = P − PW we obtain from
(1.30)

Xβ̂Mc = (P− PW )(Y − Xb) + Xb. (1.31)

Again using PXb = Xb, we obtain

Xβ̂Mc = PY − PWY + PWXb. (1.32)

Now Db = c implies PWXb = X(XTX)−1DT
[
D(XTX)−1DT

]−1
c, and to-

gether with the last equality in (1.28), (1.32) becomes (1.26) multiplied
by X on the left. Since X has full rank, (1.26) follows by arguing as after
(1.28).
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W

M0

Xβ : Dβ = 0

PM0(Y − Xb)

Y − Xb

C(X)

P(Y − Xb)

W

M0 Mc

Xβ̂Mc

Y

Xβ̂

C(X)

Figure 1.2. The quantities in the discussion of constrained estimation are de-
picted. Relations such as (1.25), (1.30), and (1.40) below can easily be seen from
the diagram.

1.7 Normal errors

In previous sections only first and second moment assumptions are required,
and in particular, no distributional form for the error vector εε was assumed.
In order to provide distributional results for testing and estimation we now
add assumptions on the distribution of the observations. More specifically,
we will assume that εε ∼ N (0, σ2I), or equivalently that εi ∼ N (0, σ2) and
are independent, i = 1, . . . , n.

1.7.1 Why normal?

To quantify the precision of estimates, or to test hypotheses with a given
level of significance, one must make assumptions on the distribution of the
data or resort to asymptotic results. Typically normality is assumed for
a variety of reasons. One justification is that errors that arise, approxi-
mately, from an accumulation of many independent small errors, will be
approximately normal by the Central Limit Theorem. Secondly, the normal
assumption is mathematically convenient. Indeed, when choosing a model
for data analysis, it is sometime better to choose a useful model, rather
than a model that is perhaps more realistic, but too complicated.

Suppose the assumption of normal errors is invoked and used when it
does not in fact hold. Subject to various conditions, such as those given
in Section 1.9.2 below that the row vectors of the design matrix are i.i.d.,
it will be shown that the asymptotic distribution of estimators and test
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statistics for linear models with non-normal error distributions have the
same asymptotic distribution as that obtained under the assumption of
normality. We will briefly discuss ways to test normality in Section 1.10.

1.7.2 Maximum likelihood estimators and their distribution

In order to provide distributional results for testing and estimation, we
consider the following model:

Y = Xβ + εε where εε ∼ N (0, σ2I). (1.33)

The likelihood function at y ∈ Rn is given by the density

f(y) =
1

(2πσ2)n/2
e−||y−Xβ||

2/2σ2

. (1.34)

It is easy to that (β̂, ‖Y − Xβ̂‖2/n) is the maximum likelihood estimator

(MLE) of (β, σ2), where β̂ is the least squares estimator given by (1.14),
see Exercise 1.11.16. The fact that the least squares estimator of β coin-
cides with the maximum likelihood estimator (MLE), adds justification to
the least squares approach. Hence, in addition to the optimality properties
of least squares estimators given by the Gauss-Markov Theorem in Section
1.3, β̂ also has further properties derived from the theory of maximum like-
lihood estimation. Replacing Xβ in (1.34) by a general regression function
r(x,β), in view of (1.12), we find maximum likelihood and least squares es-
timators coincide for any parametric regression function r(x,β), including
non linear functions of x and β such as β1x/(β2 + x).

Proposition 1.7.1 Let model (1.33) hold and let β̂ and S2 be given by
(1.14) and (1.23), respectively. Then

β̂ ∼ N (β, σ2(XTX)−1) and
(n− p)S2

σ2
∼ χ2

n−p,

and the estimators β̂ and S2 are independent.

Proof: To compute the distribution of S2, we first note

||Y − Xβ̂||2 = ||(I − P)Y||2 = ||NY||2 = ||Nεε||2,

where in the second equality we used the notation N = I− P, and in final
equality applied (1.15) to obtain PX = X, and therefore NX = (I−P)X = O,
where O is a matrix of zeros, and

NY = NXβ + Nεε = Nεε. (1.35)

As N is symmetric we may diagonalize it as N = TTΛ∧ T, where T is
orthogonal, that is, TTT = TTT = I and Λ∧ is a diagonal matrix having the
eigenvalues λi of N along its diagonal. By Exercise 1.11.18, since N2 = N,
all the eigenvalues Λ∧ of N satisfy λ2 = λ, and hence take on only the values
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zero and one. As tr(N) is the sum of the eigevalues of N, in this case it is
also the number of eigenvalues equal to 1. By Lemma 1.2.2, tr(N) = n− p,
so ΛΛ has n − p ones and p zeros along its diagonal. Since εε ∼ N (0, σ2I)
implies Tεε ∼ N (0, σ2TTT) = N (0, σ2I), we obtain Tεε d

= εε, yielding

||Nεε||2 = εTNTNεε = εεTN2εε = εεTNεε = εεTTTΛ∧ Tεε d
= εεTΛ∧ εε.

In particular, as Λ∧ is diagonal with n− p ones and p zeros on its diagonal,

(n− p)S2

σ2

d
=
εεTΛ∧ εε
σ2

=

n∑
i=1

λi

(εi
σ

)2 d
=

n−p∑
i=1

(εi
σ

)2

∼ χ2
n−p,

as claimed.
To show that β̂ and S2 are independent we note that

Cov(β̂,NY) = Cov((XTX)−1XTY,NY) = σ2(XTX)−1XTNT = OT,

since XTNT = (NX)T = OT, as above (1.35). Since (β̂,NY) is a linear
transformation of Y it has a multivariate normal distribution, and since the
two components have covariance zero, they are independent. In particular
β̂ is independent of any function of NY, such as S2.

Using again that a linear transformation of a multivariate normal is again
multivariate normal, to complete the distirbutional claim on β̂ we only need
to compute its mean and variance, for which we refer to Proposition 1.2.3.

Here is a geometric explanation of the above result. First assume that
C(X) = H, where H = Rp × {0}n−p, that is, the subspace of all vectors
whose last n − p coordinates are zero. In particular, as the final n − p
coordinates of Xβ are zero, Yi = εi for i = p + 1, . . . , n, and furthermore
the projection P of Y onto C(X) simply sets the final n− p coordinates of

Y to zero, that is, Xβ̂ = Ŷ = (Y1, . . . , Yp, 0, . . . , 0)T. Hence ||Y − Xβ̂||2 =

||Y − Ŷ|| =
∑n
i=p+1 Y

2
i =

∑n
i=p+1 ε

2
i , implying (n−p)S2

σ2 ∼ χ2
n−p as well as

independence of S2 and β̂ or equivalently Ŷ.
When C(X) is an arbitrary p-dimensional space, it can always be rotated

to coincide with H. Formally, the required rotation can be accomplished
by an orthogonal matrix T that transforms the columns of X to a basis for
H, that is, by a matrix T such that C(TX) = H.

In order to construct such a matrix recall that the row space of X has
dimension p. Hence the null space {t ∈ Rn : tX = 0} has dimension n− p,
and for any (n − p) × n matrix V whose rows form an orthonormal basis
to this space we must have VX = O. Now let T be the n × n matrix
whose last n − p rows are those of V, and whose first p rows are vectors
ti ∈ Rn, i = 1, . . . , p which complete the rows of V to an orthonormal basis
of Rn. As T is full rank, the space C(TX) has dimension p. But now the
relation VX = O, saying that the last n−p coordinates of vectors in C(TX)
are zero, implies C(TX) = H.
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Rotating the whole n-dimensional space by such an orthogonal transfor-
mation T yields a new linear model with Y,X and εε replaced by TY,TX
and Tεε. Since εε

d
= Tεε, this case now reduces to the previous.

1.7.3 Consistency

If we are considering our model as one in a sequence of models of the form
Y(n) = X(n)β + ε(n), with Y(n), and εε(n) ∈ Rn and where X(n) is n × p,
all with a common parameter vector β ∈ Rp, we may ask also about the
asymptotic properties of the estimator β̂(n) in (1.14) with X and Y replaced
by X(n) and Y(n) respectively, as n→∞.

Since β̂(n) is an unbiased estimator of β by Part 1 of Proposition 1.2.3,
Chebyshev’s inequality yields

P (|β̂(n) i − βi| > ε) ≤
Var(β̂(n) i)

ε2
=
σ2(XT

(n)X(n))
−1
ii

ε2
,

by Part 2 of Proposition 1.2.3, where Aii is the ith diagonal element of
the matrix A. Hence, if (XT

(n)X(n))
−1
ii converges to zero as n → ∞, then

β̂(n) i
p→ βi. If such convergence holds for all i = 1, . . . , p, then β̂(n)

p→ β,

that is, β̂(n) is a consistent sequence of estimators of β. The consistency of

the sequence β̂(n) can hold for many choices of sequences of design matrices
X(n).

1.7.4 Wald statistics and confidence sets

We derive some statistics related to estimation of functions of β. These
statistics can be used for testing hypotheses and forming confidence
intervals and sets as in Chapter ref.

We consider the model (1.6): Y = Xβ + εε, where εε ∼ N(0, σ2I). The
hypothesis H0 : βi = βi 0 for some fixed βi 0 and 1 ≤ i ≤ p can be tested by
means of the statistic

T =
(β̂i − βi 0)√
S2((XTX)−1)ii

.

By Proposition 1.7.1, Var(β̂i) = σ2((XTX)−1)ii, and it now follows that
under H0 the statistic T has the tn−p distribution. Confidence intervals
and tests for βi may now be constructed as shown in Chapter ref.

We may construct confidence sets for the entire vector β under the same
assumptions. Proposition 1.7.1 implies that under H0 : β = β0

(β̂ − β0)Tσ−2(XTX)(β̂ − β0) ∼ χ2
p,
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and replacing σ2 by the consistent estimator S2, we can base our inference
on the statistic

W = (β̂ − β0)TS−2(XTX)(β̂ − β0). (1.36)

Proposition 1.7.1 implies that W/p ∼ Fp,n−p, hence the ellipsoid centered

at β̂, defined by

{β : W ≤ pFp,n−p,1−α}

is a 1−α confidence set for β, where Fp,n−p,1−α is the 1−α quantile of the

Fp,n−p distribution. It is easy to verify that W
d→ χ2

p as n→∞. We will see
in Section 1.9.2 that this convergence also holds without the assumption of
normality under certain condtions.

1.8 Likelihood ratio tests

In this section our goal is to test the null hypothesis Hc that β satisfies
the constraint Dβ = c of (1.24) against the alternative that β is any
other vector in Rp,; in other words, the null is equivalent to E(Y) ∈ Mc

where Mc = {Xβ : Dβ = c}. The latter space is an affine subspace of
Rp, which is a linear subspace when c = 0. Hypotheses about equality
between some of the components of β, that is, that βi = βj for some i and
j, or equality between linear combinations of β, can be expressed in (1.24)
with c = 0. We continue to assume model (1.33) as in Section 1.7, that is,
that Y ∼ N (Xβ, σ2I), or equivalently E(Y) ∈ C(X), with errors satisfying
εε ∼ N (0, σ2I).

Given any subset C ⊂ Rn set ŶC = arg minµ∈C ||Y − µ||2, and

Ŷ = ŶC(X). A direct calculation, akin to computing maximum likelihood
estimators for normal errors, as in Exercise 1.11.16, shows that

max
µ∈C,σ2∈R+

{
1

(2πσ2)n/2
e−||Y−µ||

2/2σ2

}
=

1

(2π||Y − ŶC ||2/n)n/2
e−n/2.

(1.37)
The generalized likelihood ratio test statistic for testing

Hc : E(Y) ∈Mc versus Ha
c : E(Y) ∈M c

c ∩ C(X)

is therefore

Λ :=
maxµ∈C(X),σ2∈R+

{
1

(2πσ2)n/2 e
−||Y−µ||2/2σ2

}
maxµ∈Mc,σ2∈R+

{
1

(2πσ2)n/2 e−||Y−µ||
2/2σ2

} =
||Y − ŶMc ||n

||Y − Ŷ||n
.

(1.38)
The quantities in the denominator and numerator of (1.38) measure the
lack of fit of the unconstrained model E(Y) ∈ C(X), and the null model
E(Y) ∈ Mc, respectively. The null hypothesis that E(Y) ∈ Mc is rejected
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when Λ is large, indicating that the lack of fit for the model restricted to
have its mean vector in the null parameter space is large relative to that of
the model which requires only that E(Y) ∈ C(X).

In order to construct a test, we need to determine the distribution of Λ.
By Proposition 1.2.3, 1

σ2 ||Y − Ŷ||2 ∼ χ2
n−p. Furthermore,

Y − ŶMc = Y − Ŷ + Ŷ − ŶMc = (I− P)Y + (P− PMc)Y, (1.39)

where PMc is an affine operator projection onto Mc given by (1.30). We
readily see that the two terms on the right-hand side of (1.39) are orthog-
onal since I − P projects to C(X)⊥, and P and PMc both map to C(X). In
particular, we obtain the Pythagorean identity

||Y − ŶMc ||2 = ||Y − Ŷ||2 + ||Ŷ − ŶMc ||2. (1.40)

This equation and other identities and orthogonality relations appearing
in this discussion can be seen and understood from figure 1.2. The orthog-
onality of the two summands on the right-hand side of (1.39), which are
jointly normally distributed, being an affine transformation of a multivari-
ate normal vector, implies their independence. Since the decision whether
to reject Hc or not depends on whether the likelihood ratio statistic Λ is
larger than some critical value or not, in view of (1.40), it suffices to study
the distribution of the monotone function of Λ given by

F :=
||Ŷ − ŶMc ||2/q
||Y − Ŷ||2/(n− p)

. (1.41)

For the case c = 0, arguments identical to those of Proposition 1.7.1
show that 1

σ2 ||Ŷ− ŶM0 ||2 ∼ χ2
q under H0. Also by 1.7.1, ||Y− Ŷ||2/σ2 =

(n− p)S2/σ2 ∼ χ2
n−p, and the independence of the two terms on the right

hand side of (1.40), it follows by definition of the F distribution that

F ∼ Fq,n−p. (1.42)

Hence, a level-α likelihood ratio test rejects H0 when F > k, where k is
the 1− α percentile of the Fq,n−p distribution.

In order to consider the case c 6= 0 we use (1.25) which yields, for any b
satisfying Db = c,

||Ŷ − ŶMc ||2 = ||P(Y − Xb)− PM0(Y − Xb)||2. (1.43)

The hypothesis Hc : E(Y) ∈Mc is equivalent to H0 : E(Y)−Xb ∈M0. It
follows that under Hc the right-hand side of (1.43) has a χ2

q distribution
and that the statistic F defined in (1.41) is again distributed as Fq,n−p.

Finally in order to provide a useful expression for the likelihood
ratio test we compute Ŷ − ŶMc explicitly. First, write this expres-

sion as Xβ̂ − Xβ̂Mc . Note that from (1.26) we have Xβ̂Mc − Xβ̂ =

X(XTX)−1DT
[
D(XTX)−1DT

]−1
(c − Dβ̂). It then follows by a straightfor-
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ward calculation that

||Ŷ − ŶMc ||2 = (Dβ̂ − c)T
[
D(XTX)−1DT

]−1
(Dβ̂ − c).

We summarize these results the following

Proposition 1.8.1 1. If Y ∼ N (Xβ, σ2I) and in particular E(Y) ∈ C(X),

then ||Y − Ŷ||2 and ||Ŷ − ŶMc ||2 are statistically independent.

2. If in addition we have E(Y) ∈Mc, then ||Ŷ − ŶMc ||2/σ2 ∼ χ2
q.

3. The likelihood ratio test statistic F of (1.41) can be written as

F =
(Dβ̂ − c)T

[
D(XTX)−1DT

]−1
(Dβ̂ − c)

qS2
, (1.44)

with S2 defined in (1.23). Under the hypothesis Hc : E(Y) ∈ Mc we have
F ∼ Fq,n−p.

1.9 Random design matrices

1.9.1 Conditioning on a random X
In some applications the design matrix, that is, the covariates, are deter-
mined by the designer of the experiment, e.g., a chemist who chooses the
inputs in an experiment. However, in most cases X is random, often with
some assumptions. If we are interested only in the relation between Y and
its covariate vector x and in predicting Y from x, and not in the distribu-
tion of the covariates, we may condition on X, which in this case becomes
ancillary , see Section ref.

We now assume

Y = Xβ + εε, E(εε | X) = 0 and Var(εε | X) = σ2I. (1.45)

Under (1.45), all previous results up to and including Section 1.6 that
hold assuming only first and second moment conditions on the errors for
a fixed design matrix now hold conditionally given a full rank random
X. The results assuming normal errors also hold conditionally under the
assumption that the conditional distribution of εε given X is normal.

For example, from Proposition 1.2.3 E(β̂|X) = β, Var(β̂|X) =
σ2(XTX)−1, and as in Theorem 1.5.1 E(S2|X) = σ2. Furthermore, the
Gauss-Markov Theorem holds with variances replaced by conditional
variances.

1.9.2 Independent covariate vectors

In Section 1.7.3 we considered a sequence of non-random design matrices
X(n) and, under certain conditions, proved consistency of the sequence β̂(n)

of least squares estimators. We now consider consistency and asymptotic



1.9. Random design matrices 21

normality when the design matrices are allowed to be random. Sequences
of random design matrices with independent and identically distributed
rows arise naturally when assuming the covariate vectors are drawn in-
dependently having the distribution of some random vector X. To show
consistency we also assume Q = E[XXT] exists and is invertible. Also
taking the error distribution into consideration, we moreover assume that
(εi,Xi), or equivalently (Yi,Xi), are i.i.d. for i = 1, . . . , n. As our argument
for consistency depends on an application of the Law of Large Numbers,
these assumptions can be relaxed somewhat. Further, we assume that (1.45)
is satisfies with X(n) replacing X.

Under the stated conditions n−1XT
(n)X(n) = n−1

∑n
i=1 X

T
i Xi converges

in probability, by the Law of Large Numbers, to Q, and n(XT
(n)X(n))

−1

likewise converges to Q−1. To show the consistency of β̂(n), write

β̂(n) = (XT
(n)X(n))

−1XT
(n)Y = (XT

(n)X(n))
−1XT

(n)(X(n)β + εε)

= β + n(XT
(n)X(n))

−1XT
(n)εε/n. (1.46)

The jth component of XT
(n)εε/n is equal to

∑n
i=1Xijεj/n, where Xij , j =

1, . . . , p are i.i.d. having the distribution of the jth component of X. Since
(1.45) gives that the errors have mean zero and finite variance, we have
E(Xijεj) = 0, see Exercise 1.11.20. Now the Law of Large Numbers yields∑n
i=1Xijεj/n

p→ 0. Together with the fact that n(XT
(n)X(n))

−1 converges

to Q−1, consistency follows from (1.46).
We next show that under the same conditions, the sequence of estimators

β̂(n) is asymptotically normal. Rewriting (1.14) using some straightforward
manipulations, see Exercise 1.11.21, shows that

√
n(β̂(n) − β) =

(
1

n

n∑
i=1

XT
i Xi

)−1(
1√
n

n∑
i=1

XT
i εi

)
. (1.47)

As above we have that n−1
∑n
i=1 X

T
i Xi

p→ Q, and setting Ω = Var(XT
i εi)

the Central Limit Theorem and Slutsky’s Lemma, see Section ref, yield
√
n(β̂(n) − β)

D→ N(0, Q−1ΩQ−1).

If εi and Xi are independent, using the conditional variance formula in
(1.45) to see that Var(εε) = σ2I, we obtain Ω = σ2Q, and further that

√
n(β̂(n) − β)

D→ N(0, σ2Q−1), (1.48)

which should be compared to the claim on the distribution of β̂ for a fixed
design matrix, in Proposition 1.7.1. As in the case for fixed design matrices,
these results may be used for testing hypotheses and forming confidence
regions for β.

Under the assumptions leading to (1.48) we can construct a confidence
interval for a function g(β) ∈ R of the regression parameters using Theorem
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?? to see that the statistic

(g(β̂(n)))− g(β))TS−2ġ(β)(XT
(n)X(n))ġ(β)T(β̂ − β), (1.49)

which is a more general case of the Wald statistic, has asymptotically the
χ2

1 distribution. Here ġ(β) = ( ∂
∂β1

g(β), . . . , ∂
∂βp

g(β)). Replacing the above

function g by g : Rp → Rp in (1.49), the resulting Wald statistic has the
χ2
p asymptotic distribution.
Similar results hold without assuming normality of εε. Under the

conditions leading to (1.48), the latter implies

n(β̂ − β0)TS−2Q(β̂ − β0)

is asymptotically χ2
p under H0. Replacing Q by its consistent estimator

1
nX

TX does not affect its asymptotic χ2 distribution, and we obtain the
statistic (1.36), which is a special case of the Wald statistic , see Chapter
ref.

1.9.3 Multiple correlations

In this section we assume that the first column of the design matrix X
consists of ones, corresponding to linear regression with an intercept. In
this case, the normal equation (1.13) implies that 1T(Y−Ŷ) = 0, where 1T

is a row consisting of n ones. It follows that the average of the components
of Y and the average of the components of Ŷ coincide, both being equal
to Y =

∑
i Yi/n. Let Y ∈ Rn be the vector having all coordinates equal to

Y . The quantity R2 defined by

R2 =
||Ŷ −Y||2

||Y −Y||2
=

∑n
i=1(Ŷi − Y )2∑n
i=1(Yi − Y )2

, (1.50)

is known as the multiple correlation coefficient , and is also sometimes
called the coefficient of determination. The notation R2

Y X is often used
in order to express the dependence of R2 on the set of covariates. This
quantity measures the part of the total variance

∑n
i=1(Yi − Y )2 of the Y ’s

which is explained by the regression model. In Figure 1.3 we see that that
R2 = cos(θ), where θ is the angle between the vectors Y −Y and Ŷ −Y.
It is not hard to see that for a single covariate X one has R2

Y X = r(Y,X)2,
the sample correlation for (Xi, Yi), see Exercise 1.11.22. In general, R2 is

the square of the sample correlation for the pairs (Yi, Ŷi).
To see this fact note that

r(Y, Ŷ )2 =

(
(Y −Y)T(Ŷ −Y)

||Y −Y|| ||Ŷ −Y||

)2

,

and that this latter expression is equal to R2 of (1.50) by virtue of the
identity

(Y −Y)T(Ŷ −Y) = (Y − Ŷ + Ŷ −Y)T(Ŷ −Y) = ||Ŷ −Y||2
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Y
θ

Y

Y−Ŷ=Y−Xβ̂

C(X)

Ŷ=Xβ̂

Y−Y

Figure 1.3. The figure demonstrates the Pythagorean identity
||Y −Y||2 = ||Y − Ŷ||2 + ||Ŷ −Y||2, and R2 = cos(θ).

by the orthogonality of (Y − Ŷ) and (Ŷ −Y).
Suppose we partition the design matrix X as X = (U,V) where U is n×q

and V is n× (p− q), and in Figure 1.3 we replace the space spanned by the
vector Y by a space spanned by the columns of V, replacing also the vector
Y by ŶC(V), the projection of Y into CV. Now set θ to be the angle between

the vectors Y − ŶC(V) and Ŷ − ŶC(V), where as usual, Ŷ = ŶC(X). Then
cos(θ) is denoted by R2

Y U|V, the multiple partial correlation that measures
the relation between the dependent variable Y and the covariates in U given
those in V. Formally, we have

R2
Y U|V =

||ŶC(X) − ŶC(V)||2

||Y − ŶC(V)||2
.

The multiple correlation R2 is sometimes used as a measure of the quality
of a model, a high R2 suggesting a better predictive power. It is easy to
see that if the covariates in one model include all those of another model
together with some additional ones, then the model with more covariates
will have a larger value of R2. This fact follows from the observation that
||Y − Ŷ||2 decreases if the space C(X) is replaced by a larger space, and

therefore ||Ŷ−Y||2 must increase, by the Pythagorean identity ||Y−Y||2 =

||Y − Ŷ||2 + ||Ŷ −Y||2. For this reason one should be careful in using R2

for model selection, as doing do may lead to large models that overfit the
data. This phenomenon is discussed in more detail in Chapter ref.
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1.10 Residual analysis

In previous sections various assumptions on the errors εi in the model (1.6)
appear. For instance, the errors may be assumed to have equal variances,
that is, Var(εi) = σ2 for i = 1, . . . , n, a property known as homoscedac-
ticity, or be independent and normally distributed. As the errors εi are
not observed, in order to determine if such assumptions are reasonable we
instead consider the vector of residuals given by ε̂ε = Y − Xβ̂. One may
use formal or descriptive tests on ε̂i, such as plotting histograms to assess
normality, see Section ref.

Note that by (1.13) XTε̂ε = 0. In particular, in the common case that the
first column of X consists of 1’s, we always have 1

n

∑n
i=1 ε̂i = 0. Therefore

the latter identity cannot be considered evidence that E(εi) = 0, which is
part of our assumptions.

For testing normality of the residuals, and the assumption of equal vari-
ances, a qqplots elsewhere, but we should have F−1(U), order stats - which
we have etc. ...used, which graphs the points (Φ−1((i−1/2)/n), ε̂(i)), where
Φ is the standard normal distribution function, and ε̂(i) are the residuals
in increasing order.

This plot is motivated as follows: given a sample U1, . . . , Un, where
Ui ∼ U [0, 1], the order statistics of the sample satisfy U(i) ∼ Beta(i, n+1−i)
and therefore E(U(i)) = i/(n + 1). Hence, we expect that a plot of
(i/(n + 1), U(i)), the order statistics of the uniform sample against their
expectations, would be nearly linear and close to the main diagonal. Ap-
plying the same monotone transformation to both coordinates of these
points we again expect a nearly diagonal linear plot. In particular, apply-
ing the transformation Φ−1, the points (Φ−1(i/(n+ 1)),Φ−1(U(i))) should
lie on the diagonal, and as Φ−1(U) ∼ N (0, 1), we can expect this same
pattern in the plot (Φ−1(i/(n+ 1)), ε̂(i)) if the residuals come from a stan-
dard normal distribution. If the residuals are not standard, but all have
the same normal distribution, the plot would still be nearly linear, with a
slope depending on the standard deviation of ε̂i, see Exercise 1.11.23. A
continuity-type correction leads to the definition of the normal probability
plot above, with the factor 1/2.

In homoscedastic models with normal errors, the residuals should look
like i.i.d. normal variables. However, in some regression data sets, it may
be the case that a certain natural ordering of these errors will reveal a
deviation from the i.i.d. property. A run test on ε̂i in the suspected order
can be used to detect such a deviation.

Residual plots are scatter plots of the residuals in some given order. For
example, suppose the data arise from experiments performed sequentially
in time. A plot of the residuals ordered by time, that is, a scatter plot
of the points (ti, ε̂i), or the points (i, ε̂t(i)) where ti is the time of the ith

experiment and t(i) are their order statistics, may reveal a pattern of devi-
ation from independence, or may show a departure from homoscedasticity
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by having, for example, residuals whose variability increases in time. As an
example, consider a chemical experiment, where the input covariates con-
sist of reagents that deteriorate in time, resulting in lower response values
Y . A plot of the residuals against time will tend to have initially positive
residuals, and then negative ones, indicating a violation of the i.i.d. as-
sumption on the errors. If reagents’ deterioration also leads to an increase
in the variance of the response values, then again the same plot should
reveal this deviation from homoscedasticity by showing an increase in the
dispersion of the residuals as a function of time.

Often, the ordering of the residuals is determined with respect to a covari-
ate, say x, which need not be in the model. In this case, various anomalies
may show up in a scatter plot of the points (xi, ε̂i). For example, if the
covariate x appears linearly in the model, but its true relation to the re-
sponse Y is, say, quadratic, then we may see a quadratic pattern in the
residual plot.

1.11 Exercises

Exercise 1.11.1 Verify identities (1.2) and (1.3).

Exercise 1.11.2 Consider the model

Y = β1 + β2X + ε,

where X and ε are independent random variables with finite variance, and
Var(Y ) = Var(X). In terms of Galton’s regression of the heights of fa-
thers and sons, this condition means that the variability doesn’t change
between generations. The condition can also be achieved by standardizing
the variables. Show that |β2| ≤ 1.

Exercise 1.11.3 With p ≤ n, show that a matrix X ∈ Rn×p has
independent columns if and only if XTX is invertible.

Exercise 1.11.4 The model in this exercise is the same as that of (1.9),
with different notation. Consider Yi = β1xi + β2ui + εi for i = 1, . . . , n,
where for i = 1, . . . ,m < n we have xi = 1 and ui = 0, and for for
i = m + 1, . . . , n we have xi = 0, and ui = 1. Write these relation in the
form Y = Xβ + ε; write X explicitly, and compute β̂.

In this exercise you can think of two groups, the first group consists of
the first m, and the remaining n −m subjects, all members of each group
having the same mean. In this case x and u are called dummy variables.

Exercise 1.11.5 For each of the model (1.7) and (1.8) of simple linear

regression, write down the matrix X and the estimator β̂ explicitly using
(1.14). Note that the calculation is simpler for (1.8). Compare the results.
Obtain these estimators also by differentiation. Show that the line Y =
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β̂1 + β̂2x passes through the point (x̄, Ȳ ), where x̄ = 1
n

∑n
i=1 xi and Ȳ =

1
n

∑n
i=1 Yi.

Exercise 1.11.6 Continuing Exercise 1.11.2 consider the model (1.7).

Compute β̂2, and show if
∑
i(xi − x̄)2 =

∑
i(Yi − Ȳ )2 then |β̂2| ≤ 1.

Exercise 1.11.7 Show that the normal equation (1.13) is equivalent to
∂
∂β ||Y − Xβ||2 = 0, so the least squares estimator (1.14) can be obtained
also by straightforward differentiation.

Exercise 1.11.8 1. Show that two n × p matrices X and U satisfy
C(X) = C(U) if and only if there exists a nonsingular p× p matrix A,
such that U = XA.

2. Show that the projection matrix defined in (1.15) based on X is equal
to that based on U. In other words, the projection matrix to a given
subspace is unique.

3. Prove that if P satisfies (1.16) so does N = I− P.

4. Prove that if P satisfies (1.16) then for every column vector v ∈ Rn
we have (I − P)v ⊥ Pv. Therefore the equation v = Pv + (I − P)v
decomposes v into a sum of two orthogonal projections.

5. Prove that Pv = v for any vector v ∈ C(X) , and that PX = X.

6. Prove that any v ∈ Rn satisfies ||v|| ≥ ||Pv||.

Exercise 1.11.9 Prove Proposition 1.2.3 and its analog for the weighted
least squares estimator (1.21) associated with the model Y = Xβ+ε, where

Var(ε) = σ2V . In particular show that again β̂ is an unbiased estimator of
β.

Exercise 1.11.10 Prove Corollary 1.3.2 by using Theorem 1.3.1 and that
Var(β̃)− Var(β̂) is nonnegative definite if and only if Var(aβ̃) ≥ Var(aβ̂)
for all row vectors a ∈ Rp. In particular the latter relation implies
Var(β̃j) ≥ Var(β̂j) for j = 1, . . . , p.

Exercise 1.11.11 Prove the Gauss-Markov Theorem for a general vari-
ance matrix: if Var(εε) = σ2V, then the estimator of (1.21) has the minimal
variance matrix among linear unbiased estimators.

Exercise 1.11.12 The model (1.9) is often expressed in the form

Yi = µ+ α1 + εi i = 1, . . . ,m, Yi = µ+ α2 + εi i = m+ 1, . . . , n.

This model arises naturally, for example, when we study reactions Yi to one
of two treatments. Then µ is thought of as the mean reaction level without
treatment, and αj are the treatment effects, so that µ + αj are the mean
levels under treatments j = 1, 2. Express this model in the form of (1.6),
with βT = (µ, α1, α2) and an n× 3 design matrix X. Show that X is not of
full rank.
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Exercise 1.11.13 Prove Theorem 1.4.1 by using Theorem 1.3.1 with W
replacing X in the model (1.22).

Exercise 1.11.14 Consider the model (1.24), and assume that for a given
c there exists a solution β to the equation Dβ = c, but suppose D does
not have independent columns. Show that it is possible to delete a number
of rows from D and the same number of elements from c so that D will
independent rows, and obtain an equivalent model.

Exercise 1.11.15 Suppose for i = 1, 2, 3 that ni independent, unbiased
measurements are taken on the three angles of a triangle. Apply Theorem
1.6.1 to find the least squares estimators of the three angles.

Exercise 1.11.16 Show that if Y ∼ N(Xβ, σ2I) then the MLE of (β, σ2)

is (β̂, 1
n ||Y − Xβ̂||2).

Exercise 1.11.17 In the model (1.17) show that β̂ of (1.21) is the MLE
of β, and find the MLE of σ2.

Exercise 1.11.18 Prove that if a square matrix A satisfies A2 = A then
its eigenvalues are all zero or one.

Exercise 1.11.19 Prove (1.37) and (1.38).

Exercise 1.11.20 Prove that under the model (1.45) we have E(Xijεj) =
0.

Exercise 1.11.21 Prove (1.47).

Exercise 1.11.22 Show that for a single covariate X we have R2
Y ·X =

Corr(Y,X)2, where Corr(Y,X) is the sample correlation between Y and
X.

Exercise 1.11.23 Given a sample X1, . . . , Xn, its normal probability plot
is a scatter plot of the points (Φ−1((i − 0.5)/n,X(i)), where X(i)) are the
order statistics of the sample. If Xi ∼ N (µ, σ2), how do you expect µ and
σ to appear in the plot?
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