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Abstract

The zero bias distribution W ∗ of W , defined though the characterizing equation
EWf(W ) = σ2Ef ′(W ∗) for all smooth functions f , exists for all W with mean zero
and finite variance σ2. For W and W ∗ defined on the same probability space, the L1

distance between F , the distribution function of W with EW = 0 and Var(W ) = 1,
and the cumulative standard normal Φ has the simple upper bound

||F − Φ||1 ≤ 2E|W ∗ −W |.

This inequality is used to provide explicit L1 bounds with moderate-sized constants
for independent sums, projections of cone measure on the sphere S(`p

n), simple random
sampling and combinatorial central limit theorems.

1 Introduction

The zero bias transformation and its use in Stein’s method [21] for normal approximation
was introduced in [10]. There it was shown that for any mean zero random variable W with
finite variance σ2, there exists W ∗ which satisfies

EWf(W ) = σ2Ef ′(W ∗) (1)

for all absolutely continuous f with E|Wf(W )| < ∞. We say that such a W ∗ has the W -
zero biased distribution. Study of the zero bias distribution was motivated by the size bias
transformation and Stein’s characterization of the normal (see e.g., [22]), which shows that
Z ∼ N (0, σ2) if and only if

EZf(Z) = σ2Ef ′(Z) (2)

for all absolutely continuous f with E|Zf(Z)| < ∞.
It is helpful to consider the transformation characterized by (1) as a mapping W → W ∗

whose domain is the collection of all mean zero distributions with variance σ2. From Stein’s
characterization (2), it is immediate that this transformation has as its unique fixed point the
mean zero normal distribution with variance σ2. It seems natural, then, that an approximate
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fixed point of the transformation would be approximately normal and that we can measure
the distance of the distribution of W to the normal by the distance between W and its zero
bias version W ∗.

Here we consider the L1 distance between distribution functions F and G given by

||F −G||1 =

∫ ∞

−∞
|F (t)−G(t)|dt (3)

and known by many names, including Gini’s measure of discrepancy, the Kantarovich metric
(see [19]), as well as the Wasserstein, Dudley, and Fortet-Mourier distance (see e.g., [3]). If
F the distribution function of a mean zero, variance 1, random variable W and F ∗ that of
W ∗ having the W -zero biased distribution, Lemma 2.1 of [8] yields that

||F − Φ||1 ≤ 2||F ∗ − F ||1, (4)

where Φ is the cumulative distribution function of the standard normal. To bound the right
hand side of (4), it can be convenient to use the dual form of the L1 distance (see [19]) given
by

||F −G||1 = inf E|X − Y |, (5)

where the infimum is over all couplings of X and Y on a joint space with marginal distribu-
tions F and G, respectively. Since the dual representation (5) says that ||F ∗−F ||1 is upper
bounded by E|W ∗ −W | for any coupling of W and W ∗, the following result is immediate.

Theorem 1.1 Let W be a mean zero, variance 1 random variable with distribution function
F and let W ∗ have the W -zero biased distribution and be defined on the same space as W .
Then, with Φ the cumulative distribution function of the standard normal,

||F − Φ||1 ≤ 2E|W ∗ −W |.

The goal of this work is apply Theorem 1.1 to obtain L1 bounds to the normal for a variety
of examples and to express the resulting upper bounds as a third-moment-type quantity
multiplied by an explicit, moderate constant; in particular we study sums of independent
variables, projections of cone measure, simple random sampling and combinatorial central
limit theorems.

In Section 2, we begin by considering the case where Y =
∑n

i=1 Yi is the sum of indepen-
dent mean zero random variables with finite variances σ2

i = Var(Yi), not only to illustrate
the method, but also to take advantage of the fact that the particularly simple construction
of Y ∗ in this case allows for the computation of constants in the bound which are explicit
functions of the summand distribution. In particular letting I be an independent random
index with distribution

P (I = i) =
σ2

i∑n
j=1 σ2

j

, (6)

the argument proving part (v) of Lemma 2.1 in [10] shows that removing YI and replacing
it by a variable Y ∗

I having the YI-zero bias distribution, independent of {Yj, j 6= I}, gives a
variable Y ∗ with the Y -zero bias distribution, that is, that

Y ∗ = Y − YI + Y ∗
I (7)
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has the Y -zero biased distribution. We apply this construction and Theorem 1.1 to derive
Theorem 2.1 and Corollary 2.1, which yields, for example, that if F is the distribution
function of W = n−1/2

∑n
i=1 Ui, the sum of n i.i.d. variables with the uniform distribution

standardized to have mean zero and variance 1, then

||F − Φ||1 ≤
E|U1|3

3
√

n
for all n = 1, 2, . . .,

that is, we obtain a Berry-Esseen type bound, using the L1 metric, with a constant of 1/3.
In Section 3 we present two constructions of the zero bias distribution Y ∗ for Y =

∑
i Yi

which can be used in the presence of dependence. Both of these constructions are related to
the one used for size biasing which is reviewed in Section 3.1. The first zero bias construction,
presented in Section 3.2, can be applied to random vectors Y ∈ Rn which are coordinate
symmetric (also called unconditional), that is, vectors for which

(Y1, . . . , Yn) =d (e1Y1, . . . , enYn) for all (e1, . . . , en) ∈ {−1, 1}n. (8)

The second construction of Y ∗, presented in Section 3.3, depends on the existence of an
exchangeable pair (Y ′, Y ′′) as in Stein [23], whose components have marginal distribution
equal to that of Y , and which satisfies the linearity condition

E(Y ′′|Y ′) = (1− λ)Y ′ for some λ ∈ (0, 1). (9)

This construction appeared in [10] and was applied in [9] to obtain supremum norm bounds
in normal approximation.

The zero bias construction given in Section 3.2 is used in Section 4 to obtain bounds for
the normal approximation for one dimensional projections of the form

Y = θ ·X, (10)

where for some p > 0, the vector X ∈ Rn has cone measure Cn
p and θ ∈ Rn is of unit length.

To define Cn
p , let

S(`n
p ) = {x ∈ Rn :

n∑
i=1

|xi|p = 1} and B(`n
p ) = {x ∈ Rn :

n∑
i=1

|xi|p ≤ 1}. (11)

Then with µn Lebesgue measure in Rn, the cone measure of A ⊂ S(`n
p ) is given by

Cn
p (A) =

µn([0, 1]A)

µn(B(`n
p ))

where [0, 1]A = {ta : a ∈ A, 0 ≤ t ≤ 1}. (12)

Theorem 4.1 provides a normal bound for the projection Y in (10) in terms of explicit and
moderate constants and the quantity

∑n
i=1 |θi|3 depending on the projection θ. Cone mea-

sure, for p = 1 and p = 2, respectively, includes the special cases of the uniform distribution
over the simplex

∑n
i=1 |xi| = 1 and the Euclidean sphere

∑n
i=1 x2

i = 1 in Rn. For these
two special cases, and for F the standardized distribution function of the projection (10) ,
Theorem 4.1 specializes to, respectively

||F − Φ||1 ≤
9√
2

n∑
i=1

|θi|3 +
4

n + 2
and ||F − Φ||1 ≤

9√
3

n∑
i=1

|θi|3 +
4

n + 2
; (13)
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for θ = n−1/2(1, . . . , 1), the sums in (13) are replaced by n−1/2.
In Section 5 we turn our attention to simple random sampling of subsets of size n from a

set A of N numerical characteristics, where each subset is selected uniformly, that is, with

probability
(

N
n

)−1
. The zero bias construction in Section 3.3 is applied in Theorem 5.1 to

yield, under some basic non-triviality conditions, the following bound to normality for the
distribution function F of the standardized sum of the characteristics in the sample,

||F − Φ||1 ≤
4a3

σ3

(
n(N − n)

N(N − 1)

)(
1 +

n

N

)2

where a3 =
∑
a∈A

|a− ā|3,

ā is the average of the elements in A, and σ2 is the variance of the sum of the sampled
characteristics, whose explicit form is given in (70).

In Section 6 we study the accuracy of the normal approximation in the combinatorial
central limit theorem. In particular, we apply the zero bias construction in Section 3.3 to
variables of the form

Y =
n∑

i=1

ai,π(i), (14)

for n a positive integer, {ai,j}1≤i,j≤n the elements of a matrix A ∈ Rn×n, and π a uni-
formly chosen random permutation on Sn, the symmetric group. Theorem 6.1 yields, for the
distribution function F of the standardized variable Y in (14),

||F −Φ||1 ≤
a3

(n− 1)σ3

(
16 +

56

(n− 1)
+

8

(n− 1)2

)
, where a3 =

n∑
i,j=1

|aij−ai�−a�j +a��|3,

ai�, a�j and a�� are the averages of aij over j, i and both i and j, respectively, and σ2 is the
variance of Y , whose explicit form is given in (88). When the elements of the population A
or the matrix A behave ‘typically’, the bounds provided by Theorems 5.1 and 6.1 will be of
the best order, n−1/2.

The zero bias transformation was introduced in [10] to provide smooth function bounds of
order 1/n for simple random sampling under a vanishing third moment assumption, and the
coupling given in Section 5 is related to the one used there. In [9] the zero bias transformation
is used to obtain bounds on the supremum, or L∞ distance, between the distribution of the
sum Y in (14) and the normal, in terms of the maximum of aij; the coupling construction
of W to W ∗ here in Section 6 was first given there. Here the L1 distance is used, and the
form of the bounds improved in that they are expressed in terms of third moment type
quantities. Also in [9], supremum norm bounds, again in terms of the maximum of aij, were
computed for Y when π has a distribution constant on cycle type. The bound (4) was first
shown in [8], and applied there to the derive the L1 rate of convergence to the normal for
hierarchical sequences X1, X2, . . . of random variables whose distributions for some k ≥ 1
and f : Rk → R satisfy

Xn+1 = f(Xn,1, . . . , Xn,k), n ≥ 1,

where Xn,1, . . . , Xn,k are i.i.d. with distribution equal to that of Xn.
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2 Independent Variables

In this section we demonstrate the application of Theorem 1.1 and the construction (7) to
produce L1 bounds with small explicit constants for the distance of the distribution of sums
of independent variables to the normal. The utility of Theorem 2.1 below is reflected by the
fact that the L1 distance on the left hand side of (16) requires computation of a convolution,
but is bounded on the right by terms which require only the calculation of integrals of the
form (3) involving marginal distributions.

The proof of Theorem 2.1 requires the following simple proposition. The first claim is
stated in (iii), Section 2.3 of [19]; the second is well known and follows immediately from the
dual form (5) of the L1 distance. For H a distribution function on R let

H−1(u) = sup{x : H(x) < u} for u ∈ (0, 1)

and let U(a, b) denote the uniform distribution on (a, b).

Proposition 2.1 For F and G distribution functions and U ∼ U(0, 1), we have

||F −G||1 = E|F−1(U)−G−1(U)|.

Further, for any a ≥ 0 and b ∈ R, where Fa,b and Ga,b are the distribution functions of
aX + b and aY + b, respectively,

||Fa,b −Ga,b||1 = a||F −G||1.

Note that one consequence of the proposition is that the L1 distance, as the infimum in (5),
can always be achieved. In what follows, we will find it convenient to express relations like
the second claim in Proposition 2.1 in a notation where the random variable replaces its
distribution function, thus, ||aX − aY ||1 = a||X − Y ||1.

Theorem 2.1 Let Xi, i = 1, . . . , n be independent mean zero random variables with vari-
ances σ2

i = Var(Xi) satisfying
∑n

i=1 σ2
i = 1, and

W =
n∑

i=1

Xi.

Then for F the distribution function of W and Φ that of the standard normal,

||F − Φ||1 ≤ 2E|X∗
I −XI | (15)

where X∗
i is any variable having the Xi-zero biased distribution, independent of {Xj, j 6= i},

i = 1, . . . , n, and I is a random index, independent of {Xi, X
∗
i , i = 1, . . . , n}, with distribution

P (I = i) = σ2
i .

Letting Gi and G∗
i be the distribution functions of Xi and X∗

i , respectively, we have

||F − Φ||1 ≤ 2
n∑

i=1

σ2
i ||G∗

i −Gi||1. (16)
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In particular, when W = n−1/2
∑

Xi for X, X1, . . . , Xn i.i.d. with mean zero, variance 1
and distribution function G,

||F − Φ||1 ≤
2√
n
||G∗ −G||1, (17)

and G∗, the distribution function of X∗, may be given explicitly by

G∗(x) = E[X(X − x)1(X ≤ x)]. (18)

Proof: The coupling (7) yields W ∗ −W = X∗
I −XI , with I having distribution as in (6),

so (15) follows immediately from Theorem 1.1.
Now, let Ui, i = 1, . . . , n, be a collection of i.i.d. U(0, 1) variables and set

(Xi, X
∗
i ) = (G−1

i (Ui), (G
∗
i )
−1(Ui)), i = 1, . . . , n;

by Proposition 2.1, we have
E|X∗

i −Xi| = ||G∗
i −Gi||1.

Averaging the right-hand side of (15) over I then yields (16) by

||F − Φ||1 ≤ 2E|X∗
I −XI | = 2

n∑
i=1

σ2
i E|X∗

i −Xi| = 2
n∑

i=1

σ2
i ||G∗

i −Gi||1.

When the variables are i.i.d., σ2
i = 1/n, and using Proposition 2.1, the bound becomes

2
n∑

i=1

σ2
i ||G∗

i −Gi||1 = 2||G∗
1/
√

n −G1/
√

n||1 =
2√
n
||G∗ −G||1,

proving (17).
It is shown in [10] that for X with mean zero and variance 1, the distribution function

G∗ of X∗ is absolutely continuous with respect to Lebesgue measure with density p∗(x) =
−E[X1(X ≤ x)]. Hence, the distribution function of X∗ is

G∗(x) = −E

(
X

∫ x

−∞
1(X ≤ u)du

)
= −E

(
X

∫ x

X

du 1(X ≤ x)

)
= E[X(X − x)1(X ≤ x)].

Applying (17) and (18) in particular cases leads to the following corollary.

Corollary 2.1 Let B1, . . . , Bn be i.i.d. Bernoulli variables with success probability p ∈
(0, 1), q = 1 − p and Xi = (Bi − p)/

√
pq. Then for the distribution function F of the

sum W = n−1/2
∑n

i=1 Xi, having the standardized binomial B(n, p) distribution, for every
n = 1, 2, . . . ,

||F − Φ||1 ≤
p2 + q2

√
npq

=
E|X1|3√

n

[noting that E|X1|3 = (p2 + q2)/
√

pq].
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For F the distribution function of the sum W = n−1/2
∑n

i=1 Ui of U1, . . . , Un, i.i.d. vari-
ables with the mean zero, variance 1 uniform distribution U [−

√
3,
√

3], for every n = 1, 2, . . .,

||F − Φ||1 ≤
√

3

4
√

n
=

E|X1|3

3
√

n

[noting that E|X1|3 = 3
√

3/4].
If X is any mean zero, variance σ2

1 random variable with distribution function G and Z
has the N (0, σ2

2) distribution and is independent of X, then when σ2
1+σ2

2 = 1, the distribution
function F of the variance 1 sum W = X + Z satisfies

||F − Φ||1 ≤ 2σ2
1||G∗ −G||1.

Proof: For X = (B − p)/
√

pq, by (18), we have

G∗(x) =
pq
√

pq

(
x +

p
√

pq

)
for x ∈ [

−p
√

pq
,

q
√

pq
];

that is, X∗ is equal in distribution to (U−p)/
√

pq, where U ∼ U [0, 1]. Hence, by Proposition
2.1,

||G∗ −G||1 = ||U − p
√

pq
− B − p

√
pq

||1 =
1
√

pq
||U −B||1 =

p2 + q2

2
√

pq
,

and the claim now follows by (17) of Theorem 2.1.
For the uniform distribution U [−

√
3,
√

3], (18) yields

G∗(x) = −
√

3x3

36
+

√
3x

4
+

1

2
for x ∈ [−

√
3,
√

3].

Now applying (3), we obtain

||G∗ −G||1 =

√
3

8
.

The final claim of the Corollary follows from (16) with n = 2 and the fact that the normal
is a fixed point of the zero bias transformation.

Corollary 2.1 yields constants 1 and 1/3 for the standardized Bernoulli, and the Uniform,
respectively. Though it is perhaps of greater interest that such constants can be computed
explicitly as a function of the underlying distribution, the following proposition gives a
bound for the non-identically distributed case in terms of a universal constant c1, which can
be shown to be at most 3. In particular, let

c1 = sup
2E|X∗ −X|

E|X|3
, (19)

where the supremum is taken over all X with EX = 0, EX2 = 1, E|X|3 < ∞ and E|X∗ −
X| = ||X∗ −X||1, that is, with X∗ achieving the minimal L1 coupling to X.

Proposition 2.2 For F the distribution function of any variance 1 sum W =
∑n

i=1 Xi of
independent mean zero variables Xi, i = 1, . . . , n,

||F − Φ||1 ≤ c1

n∑
i=1

E|Xi|3 where c1 ≤ 3.
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Proof: Let X have mean zero, variance 1, and finite absolute third moment, and let X∗

be any variable on the same space as X, having the X-zero bias distribution. Applying (1),
with f(x) = (1/2)x2sgn(x), for which f ′(x) = |x|, yields

E|X∗| = 1

2
E|X|3.

By the triangle inequality and Hölder’s inequality, using EX2 = 1 to bound E|X| by E|X|3,
we have

E|X∗ −X| ≤ E|X∗|+ E|X| ≤ 1

2
E|X|3 + E|X|3 =

3

2
E|X|3,

yielding c1 ≤ 3.
Dropping the requirement that EX2 = 1 in (19), by scaling we have

c1 = sup
2Var(X)E|X∗ −X|

E|X|3
, (20)

where the supremum is taken over all X with EX = 0, 0 < EX2 < ∞, E|X|3 < ∞ and X∗

achieving the minimal L1 coupling to X.
Now with (Xi, X

∗
i ) achieving the minimal L1 coupling for i = 1, . . . , n, (16) and (20)

yield

||F − Φ||1 ≤ 2
n∑

i=1

σ2
i E|X∗

i −Xi| =
n∑

i=1

(
2σ2

i E|X∗
i −Xi|

E|Xi|3

)
E|Xi|3 ≤ c1

n∑
i=1

E|Xi|3.

Finally, we remark that as the supremum in (19) is taken over a class of random variables
determined by two constraints, the content of [13] and [15] suggests that it may be attained
on a three-point distribution.

3 Coupling Constructions

In this section, we present two constructions which may be used to obtain a variable Y ∗

having the Y -zero bias distribution in the presence of dependence. The first applies when
Y is a sum of the components of a coordinate-symmetric vector defined in (8); the second
construction uses the exchangeable pair (Y ′, Y ′′) of Stein satisfying the linearity condition
(9), which first appeared in [10]. We begin by reviewing the construction for size biasing as
presented in [11], as both zero bias constructions below are related to it.

3.1 Size Biasing

The zero bias characterization (1) is similar to, and, indeed, was motivated in [10] by, the
characterization of the size biased distribution Y s for a nonnegative random variable Y with
finite expectation µ,

EY f(Y ) = µEf(Y s), (21)

holding for all functions f for which E|Y f(Y )| < ∞. Under the nontriviality condition
P (Y = 0) < 1, or equivalently the condition µ > 0, the characterization (21) is easily
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seen to be the same as the more common specification of the size bias distribution F s(y)
as the one which is absolutely continuous with respect to the distribution F (y) of Y with
Radon-Nikodym derivative

dF s(y)

dF (y)
=

y

µ
. (22)

For the construction of Y s when Y =
∑

i Yi, the sum of the components of a vector Y
of non-negative dependent variables with finite means µi = EYi, following [11], we note that
for every i = 1, . . . , n there exists a distribution Y(i) such that for all functions f : Rn → R
for which the expectation on the left hand side exists,

EYif(Y) = µiEf(Y(i)); (23)

we say that Y(i) has the Y-size biased distribution in direction i. By specializing (23) to the

case where f depends only on Yi, we recover (21), showing that Y
(i)
i =d Y s

i , that is, that the
ith component of Y(i) has the Yi-size bias distribution.

Without loss of generality, by removing any trivial components of Y for which µi = 0
and lowering the dimension of Y accordingly, we may express (23) in the language of (22):
denoting the distribution of Y as F (y), the distribution F (i)(y) of Y(i) is given by

dF (i)(y) =
yi

µi

dF (y), (24)

that is, Y(i) is absolutely continuous with respect to Y, with Radon- Nikodym derivative
yi/µi. Now, as shown in [11], choosing an independent index I ∈ {1, . . . , n} proportional
to the mean of the components of Y, that is, according to the distribution (6), where σ2

i is
replaced by µi, the variable

Y s =
n∑

j=1

Y
(I)
j (25)

has the Y size biased distribution.
Hence, by randomization over I, a construction of Yi for every i leads to one for Y s.

We may accomplish the former as follows. Write the joint distribution of Y as a product of
the marginal distribution of Yi times the conditional distribution of the remaining variables
given Yi,

dF (y) = dFi(yi)dF (y1, . . . , yi−1, yi+1 . . . , yn|yi), (26)

which gives a factorization of (24) as

dF (i)(y) = dF
(i)
i (yi)dF (y1, . . . , yi−1, yi+1 . . . , yn|yi), where dF

(i)
i (yi) =

yi

µi

dFi(yi). (27)

Comparing the relation in (27) between the marginal distributions F i
i (yi) and Fi(yi) with

(22) provides an alternate way to see that Y
(i)
i =d Y s

i .

The representation (27) says that one may form Y(i) by first generating Y
(i)
i having the Yi-

sized biased distribution, and then the remaining variables from their original distribution,
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conditioned on yi taking on its newly chosen sized biased value. For Y already given, a
coupling between Y and Y s can be generated by constructing Y

(i)
i and then ‘adjusting’ as

necessary the remaining variables Yj, j 6= i so that these have the conditional distribution
given Yi taking on its new value. Typically the goal is to adjust the variables as little
as possible in order to have the resulting bounds to normality small; see [11] and [9] for
examples.

In the case where Yi, i = 1, . . . , n are independent, clearly Y i
j =d Yj for all j 6= i. Hence

the construction given above reduces to simply choosing one summand at random with
probability proportional to its expectation and replacing it with its biased version. We note
that in both zero and size biasing, a finite sum Y =

∑
i Yi of independent variables is biased

by choosing at random and then replacing the randomly chosen variable by a biased version;
in size biasing, the variable is chosen proportional to its expectation and in zero biasing, to
its variance. The zero bias transformation was so named due to its similarity to size biasing
and its application to mean zero random variables.

3.2 Coordinate Symmetric Variables

Of the two zero bias constructions presented here, the one for coordinate symmetric random
vectors Y ∈ Rn as defined in (8) is closest to the size biasing construction just described. To
begin, note that for all Y such that EY 2 < ∞, by replacing the variable Y on the left hand
side of (21) by Y 2, we can define the square bias distribution Y e of Y by the characterization

EY 2f(Y ) = EY 2Ef(Y e)

for all functions f for which the expectation of the left-hand side exists. Naturally, when Y
has mean zero and variance σ2 this identity becomes

EY 2f(Y ) = σ2Ef(Y e). (28)

To make an extension analogous to the one from (21) to (23) for size biasing, let the
components of Y ∈ Rn have mean zero and finite variances Var(Yi) = σ2

i . For such Y, for
all i = 1, . . . , n, there exists a distribution Yi such that for all functions f : Rn → R for
which the expectation of the left hand side exists,

EY 2
i f(Y) = σ2

i Ef(Yi); (29)

we say that Yi has the Y-square biased distribution in direction i. By specializing (29) to
the case where f depends only on Yi, we recover (28), showing that Y i

i =d Y e
i , that is, that

the ith component of Yi has the Yi square bias distribution.
By removing any component of Y which is constant and lowering the dimension accord-

ingly, we can assume, without any loss of generality, that each component is non-trivial, that
is, that σ2

i > 0 for every i = 1, . . . , n. Parallel to (24) in the case of size biasing, we may
now equivalently specify the Yi distribution as the one which is absolutely continuous with
respect to Y, with

dF i(y) =
y2

i

σ2
i

dF (y). (30)
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Now let Y be coordinate-symmetric as defined in (8). Applying (8) marginally and pair-
wise yields Yi =d −Yi and (Yi, Yj) =d (−Yi, Yj) for all i and distinct i, j, respectively. Hence,
when all components of Y have finite second moments, taking the following expectation
using these distributional equalities yields

EYi = 0 for all i and EYiYj = 0 for all i 6= j. (31)

Proposition 3.1 shows how to construct the zero bias distribution Y ∗ for the sum Y of the
components of a coordinate-symmetric vector in terms of Yi and a random index in a way
that parallels the construction for size biasing given in (25). We let U [a, b] denote the uniform
distribution on [a, b].

Proposition 3.1 Let Y ∈ Rn be a coordinate-symmetric vector as in (8), with Var(Yi) =
σ2

i ∈ (0,∞) for all i = 1, 2, . . . , n and

Y =
n∑

i=1

Yi.

Let Yi, i = 1, . . . , n, have the ‘squared bias’ distribution given in (29), I be a random index
independent of Y and {Yi, i = 1, . . . , n} with distribution

P (I = i) =
σ2

i∑n
j=1 σ2

j

(32)

and U ∼ U [−1, 1] be independent of all other variables. Then

Y ∗ = UY I
I +

∑
j 6=I

Y I
j (33)

has the Y -zero bias distribution.

Proof: Let f be an absolutely continuous function with E|Y f(Y )| < ∞. Averaging over
the index I, integrating out the uniform variable U and then applying (29) and (8) to obtain
the fourth equality and fifth equalities below, respectively, we have

σ2Ef ′(Y ∗) = σ2Ef ′(UY I
I +

∑
j 6=I

Y I
j )

= σ2

n∑
i=1

σ2
i

σ2
Ef ′(UY i

i +
∑
j 6=i

Y i
j )

=
n∑

i=1

σ2
i E

(
f(Y i

i +
∑

j 6=i Y
i
j )− f(−Y i

i +
∑

j 6=i Y
i
j )

2Y i
i

)

=
n∑

i=1

EYi

(
f(Yi +

∑
j 6=i Yj)− f(−Yi +

∑
j 6=i Yj)

2

)
=

n∑
i=1

EYif(Yi +
∑
j 6=i

Yj)

= EY f(Y ).

11



Thus, Y ∗ has the Y -zero bias distribution.
The construction for zero biasing implicit in Proposition 3.1 is parallel to the one given

in Section 3.1 for size biasing. The factorization (26) suggests that we write (30) as

dF i(y) = dF i
i (yi)dF (y1, . . . , yi−1, yi+1 . . . , yn|yi), where dF i

i (yi) =
y2

i dFi(yi)

σ2
i

; (34)

the relation given in (34) between the marginal distributions F i
i (yi) and Fi(yi) provides an

alternate way of seeing that Y i
i =d Y e. As for the size biasing construction in Section 3.1,

given Y, Proposition 3.1 and (34) now give a coupling between Y and Y ∗ where an index
I = i is chosen with weight proportional to the variance σ2

i , the summand Yi is replaced by
Y i

i having that summand’s ‘square bias’ distribution and then multiplied by U , and, finally,
the remaining variables are adjusted according to their original distribution, given that the
ith variable takes on the value Y i

i . This construction will be applied in Section 4.

3.3 Use of the Exchangeable Pair

Let Y be a mean zero random variable with finite, nonzero variance. The following descrip-
tion of a coupling of Y to a Y ∗ having the Y -zero biased distribution appears in [10]; its
simple proof, and some of the consequences below needed for the constructions in Sections
5 and 6 appear in [9].

Proposition 3.2 Let Y ′, Y ′′ be an exchangeable pair with Var(Y ′) = σ2 ∈ (0,∞) and dis-
tribution F (y′, y′′) which satisfies the linearity condition (9). Then

EY ′ = 0 and E(Y ′ − Y ′′)2 = 2λσ2, (35)

and when Y †, Y ‡ have distribution

dF †(y′, y′′) =
(y′ − y′′)2

E(Y ′ − Y ′′)2
dF (y′, y′′), (36)

and U ∼ U [0, 1] is independent of Y †, Y ‡, the variable

Y ∗ = UY † + (1− U)Y ‡ has the Y ′-zero biased distribution.

The following construction of Y †, Y ‡ is in the same spirit as the ones given in Sections
3.1 and 3.2. Given Y ′, first construct Y ′′ close to Y ′, such that (Y ′, Y ′′) is exchangeable
and satisfies (9), and use it to form the difference Y ′ − Y ′′. Then, perhaps independently,
construct the parts of Y †, Y ‡ which depend on the ‘square biased’ term (Y ′−Y ′′)2 . Finally,
construct the remaining parts of Y †, Y ‡ by adjusting the corresponding parts of Y ′, Y ′′ to
have their original joint distribution, given the newly generated variables.

We can describe the constructions used in Sections 5 and 6 in a bit more detail, where
the pair Y ′, Y ′′ is a function of some collection of underlying random variables {ξα, α ∈ X}
and an index I ⊂ X , possibly random but independent of {ξα, α ∈ X}, and the difference
Y ′ − Y ′′ depends only on {ξα, α ∈ I}, that is, for some collection of functions bi(ξα, α ∈ i),

Y ′ − Y ′′ = bI(ξα, α ∈ I). (37)

12



Since one may first generate I, then {ξα, α ∈ I}, and lastly {ξα, α ∈ Ic} conditional on
{ξα, α ∈ I}, we may write the joint distribution of all of the variables as

dF (i, ξα, α ∈ X ) = P (I = i)dFi(ξα, α ∈ i)dFic|i(ξα, α 6∈ i|ξα, α ∈ i). (38)

Now consider the distribution F †, which is F -square biased by (y′ − y′′)2:

dF †(i, ξα, α ∈ X ) =
(y′ − y′′)2

E(Y ′ − Y ′′)2
dF (i, ξα, α ∈ X ). (39)

Using (35) and (37), we obtain

2λσ2 = E(Y ′ − Y ′′)2 = Eb2
I(ξα, α ∈ I) =

∑
i⊂X

P (I = i)Eb2
i (ξα, α ∈ i),

so, in particular, we may define a distribution for an index I† with values in subsets of X by

P (I† = i) =
ri

2λσ2
with ri = P (I = i)Eb2

i (ξα, α ∈ i).

Hence, substituting (37) and (38) into (39),

dF †(i, ξα, α ∈ X ) =
P (I = i)b2

i (ξα, α ∈ i)

2λσ2
dFi(ξα, α ∈ i)dFic|i(ξα, α 6∈ i|ξα, α ∈ i)

=
ri

2λσ2

b2
i (ξα, α ∈ i)

Eb2
i (ξα, α ∈ i)

dFi(ξα, α ∈ i)dFic|i(ξα, α 6∈ i|ξα, α ∈ i)

= P (I† = i)dF †
i (ξα, α ∈ i)dFic|i(ξα, α 6∈ i|ξα, α ∈ i), (40)

where

dF †
i (ξα, α ∈ i) =

b2
i (ξα, α ∈ i)

Eb2
i (ξα, α ∈ i)

dFi(ξα, α ∈ i),

giving a representation of dF †(i, ξα, α ∈ X ) parallel to the one for dF (i, ξα, α ∈ X ) in (38).
This parallel representation gives a parallel construction as well: first generate I†, then
{ξ†α, α ∈ i} according to dF †

i and finally, {ξα, α 6∈ i} according to dFic|i(ξα, α 6∈ i|ξα, α ∈ i).
For the two examples in Sections 5 and 6, the index I is uniform over some range, so by

(40), over that same range, I† and {ξ†α, α ∈ i} are jointly drawn from the distribution with
proportionality

dF †
i,ξ(i, ξα, α ∈ i) ∼ b2

i (ξα, α ∈ i)dFi(ξα, α ∈ i). (41)

With I and {ξα, α ∈ X} given, the coupling proceeds by generating I† and {ξ†α, α ∈ I†}
according to (41), then adjusting the remaining given variables. For making the bounds
small, the goal is to make changes as little as possible, so that the zero biased variable is
close to the original.

In Section 5, this procedure results in S, a function of the variables which can be kept
fixed throughout the construction, and variables T ′, T †, and T ‡ on a joint space such that

Y ′ = S + T ′, Y † = S + T †, and Y ‡ = S + T ‡, (42)
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and hence

|Y ∗ − Y ′| = |UT † + (1− U)T ‡ − T ′|.

Here, the underlying variables {ξα, α ∈ X} are {X ′, X ′′, X2, . . . , Xn} and the difference
Y ′ − Y ′′ = X ′ − X ′′ so that I is nonrandom, that is, it indexes the variables X ′, X ′′ with
probability 1, and b(X ′, X ′′) = X ′ −X ′′.

In Section 6, {π(i), i ∈ {1, . . . , n}} play the role of {ξα, α ∈ X}, I = {I, J} is uniform
over all pair of distinct indices in {1, . . . , n} and the difference Y ′ − Y ′′ is given by

b{i,j}(π(k), k ∈ {i, j}) = (ai,π(i) + aj,π(j))− (ai,π(j) + aj,π(i)). (43)

Note that even when I is uniformly distributed, the index I† need not be; in particular, the
distribution (94) given by (41) with bi = b{i,j} [as in (43)] selects the indices I† = {I†, J†}
jointly with their ‘biased permutation’ images {K†, L†} with probability that preferentially
makes the squared difference large. We return to the exchangeable pair construction in
Sections 5 and 6.

4 Projections of cone measure on the sphere S(`n
p)

In this section, we use the zero biasing construction in Section 3.2 to derive Theorem 4.1,
providing bounds to normality for projections θ ·X, where X ∈ Rn has cone measure Cn

p on
the sphere S(`n

p ), defined in (12) and (11), respectively, and θ ∈ Rn has unit length. The
resulting L1 bound (55) is in terms of explicit small constants [see also (13)] and depends on
θ though the factor

∑
i |θi|3 which yields the best possible rate of n−1/2 when the components

of θ are equal.
In the case p = 2, cone measure is uniform on the surface of the unit Euclidean sphere

in Rn and [7] shows that the k-dimensional projections of X are close to normal in total
variation. The authors of [16] derive normal approximation bounds using Stein’s method for
random vectors with symmetries in general, including coordinate-symmetry, considering the
supremum and total variation norm. Studying here the specific instance of cone measure
allows for the sharpening of general results to this particular case.

Cone measure is uniform on S(`n
p ) only in the cases p = 1 and p = 2, and the authors of

[18] obtain a total variation bound between cone and uniform measure for p ≥ 1. In some
sense, then, the contribution here is related to the central limit problem for convex bodies
which strives to quantify when projections of uniform measure on high-dimensional convex
bodies have some one-dimensional projection close to normal. A large body of work in this
area is generally concerned with the measure of the set of directions on the unit sphere which
give rise to approximately normally distributed projections and do not provide bounds in
terms of specific projections; see, in particular, [1] and [5] for work continuing that of [24]. In
principle, the techniques developed here can be used to shed light on aspects of the central
limit theorem for convex bodies; see the remarks at the end of this section.

Let X ∈ Rn be an exchangeable coordinate-symmetric random vector with components
having finite second moments and let θ ∈ Rn have unit length. Then, by (31), the projection
of X along the direction θ,

Y =
n∑

i=1

θiXi

14



has mean zero and variance σ2 equal to the common variance of the components of X.
To form Y ∗ using the construction outlined in Section 3.2, as seen in (34) in particular,
requires a vector of random variables to be ‘adjusted’ according to their original distribution,
conditional on one coordinate taking on a newly chosen, biased, value. Random vectors which
have the ‘scaling-conditional’ property in Definition 4.1 can easily be so adjusted. Let L(V )
and L(V |X = x) denote the distribution of V , and the conditional distribution of V given
X = x, respectively.

Definition 4.1 Let X = (X1, . . . , Xn) be an exchangeable random vector and D ⊂ R the
support of the distribution of X1. If there exists a function g : D → R such that P (g(X1) =
0) = 0 and

L(X2, . . . , Xn|X1 = a) = L(
g(a)

g(X1)
(X2, . . . , Xn)) for all a ∈ D, (44)

we say that X is scaling g-conditional, or, more simply, scaling-conditional.

Proposition 4.1 is an application of Theorem 1.1 to projections of scaling-conditional
vectors.

Proposition 4.1 Let X ∈ Rn be an exchangeable, coordinate-symmetric and scaling g-
conditional random vector with finite second moments and, with θ ∈ Rn of unit length,
set

Y =
n∑

i=1

θiXi, σ2 = Var(Y ), and F (x) = P (Y/σ ≤ x).

Then any construction of (X, X i
i ) on a joint space for each i = 1, . . . , n with X i

i having the
Xi-square biased distribution provides the upper bound

||F − Φ||1 ≤
2

σ
E

∣∣∣∣∣θI(UXI
I −XI) +

(
g(XI

I )

g(XI)
− 1

)∑
j 6=I

θjXj

∣∣∣∣∣ , (45)

where P (I = i) = θ2
i , U ∼ U [−1, 1] and I and U are independent of each other and of the

remaining variables.

Proof: For all i = 1, . . . , n, since X is scaling g-conditional, given X and X i
i , the vector

Xi = (
g(X i

i )

g(Xi)
X1, . . . ,

g(X i
i )

g(Xi)
Xi−1, X

i
i ,

g(X i
i )

g(Xi)
Xi+1, . . . ,

g(X i
i )

g(Xi)
Xn)

has the X-square bias distribution in direction i as given in (29); in particular, for every h
for which the expectation on the left-hand side below exists,

EX2
i h(X) = EX2

i Eh(Xi). (46)

We now apply Proposition 3.1 to Y = (θ1X1, . . . , θnXn). First, the coordinate symmetry
of Y follows from that of X. Next, we claim

Yi = (θ1X
i
1, . . . , θnX

i
n)
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has the Y-square bias distribution in direction i. Given f , applying (46) with

h(X) = f(θ1X1, . . . , θnXn) = f(Y)

and then multiplying both sides by θ2
i yields

Eθ2
i X

2
i f(Y) = Eθ2

i X
2
i Ef(Yi) or EY 2

i f(Y) = EY 2
i Ef(Yi).

Lastly, since X is exchangeable, the variance of Yi is proportional to θ2
i and the distribution

of I in (32) specializes to the one claimed.
Now, (33) of Proposition 3.1 yields, with Y ∗ having the Y -zero biased distribution,

Y ∗ − Y = UY I
I +

∑
j 6=I

Y I
j −

n∑
i=1

Yi

= UθIX
I
I +

∑
j 6=I

θjX
I
j −

n∑
j=1

θjXj

= θI(UXI
I −XI) +

∑
j 6=I

θj(X
I
j −Xj)

= θI(UXI
I −XI) +

∑
j 6=I

θj

(
g(XI

I )

g(XI)
− 1

)
Xj

= θI(UXI
I −XI) +

(
g(XI

I )

g(XI)
− 1

)∑
j 6=I

θjXj.

The proof is completed by dividing both sides by σ, noting that Y ∗/σ = (Y/σ)∗, and invoking
Theorem 1.1.

Proposition 4.2 shows that Proposition 4.1 can be applied when X has cone measure.
We denote the Gamma and Beta distributions with parameters α, β as Γ(α, β) and B(α, β),
respectively, and the Gamma function at x by Γ(x).

Proposition 4.2 Let Cn
p denote cone measure as given in (12) for some p > 0.

1. Cone measure Cn
p is exchangeable and coordinate-symmetric. For {Gj, εj, j = 1, . . . , n}

independent variables with Gj ∼ Γ(1/p, 1) and εj taking values −1 and +1 with equal
probability,

X =

(
ε1(

G1

G1,n

)1/p, . . . , εn(
Gn

G1,n

)1/p

)
∼ Cn

p , where Ga,b =
b∑

i=a

Gi. (47)

2. The common marginal distribution Xi of cone measure is characterized by

Xi =d −Xi and |Xi|p ∼ B(1/p, (n− 1)/p),

and the variance σ2
n,p = Var(Xi) is given by

σ2
n,p =

Γ(3/p)Γ(n/p)

Γ(1/p)Γ((n + 2)/p)
, satisfying lim

n→∞
n2/pσ2

n,p =
Γ(3/p)

Γ(1/p)
. (48)
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3. The square bias distribution X i
i of Xi is characterized by

X i
i =d −X i

i and |X i
i |p ∼ B(3/p, (n− 1)/p). (49)

In particular, letting {Gj, G
′
j, εj, j = 1, . . . , n} be independent variables with Gj ∼

Γ(1/p, 1), G′
j ∼ Γ(2/p, 1) and εj taking values −1 and +1 with equal probability, for

each i = 1, . . . , n, a construction of (X, X i
i ) on a joint space is given by the represen-

tation of X in (47) along with

X i
i = εi

(
Gi + G′

i

G1,n + G′
i

)1/p

. (50)

The mean mn,p = E|X i
i | for all i = 1, . . . , n is given by

mn,p =
Γ(4/p)Γ((n + 2)/p)

Γ(3/p)Γ((n + 3)/p)
(51)

and satisfies

lim
n→∞

n1/pmn,p =
Γ(4/p)

Γ(3/p)
and mn,p ≤

(
3

n + 2

)1/(p∨1)

. (52)

4. Cone measure Cn
p is scaling (1− |x|p)1/p conditional.

The proof of Proposition 4.2 is deferred to the end of this section. Before proceeding
to Theorem 4.1, we remind the reader of the following known facts about the Gamma and
Beta distributions; see [4], Theorem 1.2.3 for the case n = 2 of the first claim, the extension
to general n and the following claim being straightforward. For γi ∼ Γ(αi, 1), i = 1, . . . , n,
independent and αi > 0,

γ1 + γ2 ∼ Γ(α1 + α2, 1),
γ1

γ1 + γ2

∼ B(α1, α2), (53)

and (
γ1∑n
i=1 γi

, . . . ,
γn∑n
i=1 γi

) and
n∑

i=1

γi are independent;

the Beta distribution B(α, β) has density

pα,β(u) =
Γ(α + β)

Γ(α)Γ(β)
uα−1(1− u)β−11u∈[0,1] and κ > 0 moments

Γ(α + κ)Γ(α + β)

Γ(α + β + κ)Γ(α)
. (54)

Theorem 4.1 Let X have cone measure Cn
p on the sphere S(`n

p ) for some p > 0 and let

Y =
n∑

i=1

θiXi

be the one-dimensional projection of X along the direction θ ∈ Rn with ||θ|| = 1. Then
with σ2

n,p = Var(X1) and mn,p = E|X1
1 | given in (48) and (51), respectively, and F the

distribution function of the normalized sum W = Y/σn,p,

||F − Φ||1 ≤ 3

(
mn,p

σn,p

) n∑
i=1

|θi|3 +

(
1

p
∨ 1

)
4

n + 2
, (55)

where Φ is the cumulative distribution function of the standard normal.
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We note that by the limits in (48) and (52), the constant mn,p/σn,p that multiplies the
sum in the bound (55) is of the order of a constant, with asymptotic value

lim
n→∞

mn,p

σn,p

=
Γ(4/p)

√
Γ(1/p)

Γ(3/p)3/2
.

Since, for θ ∈ Rn with ||θ|| = 1, we have∑
|θi|3 ≥

1√
n

,

the second term in (55) is always of smaller order than the first, so the decay rate of the bound
to zero is determined by

∑
i |θi|3. The minimal rate 1/

√
n is achieved when θi = 1/

√
n.

In the special cases p = 1 and p = 2, Cn
p is uniform on the simplex

∑n
i=1 |xi| = 1 and the

unit Euclidean sphere
∑n

i=1 x2
i = 1, respectively. By (48) and (51) for p = 1,

σ2
n,1 =

2

n(n + 1)
and mn,1 =

3

n + 2
,

and, using also (52) for p = 2,

σ2
n,2 =

1

n
and mn,2 ≤

√
3

n + 2
;

these relations yield

mn,1

σn,1

= 3

√
n(n + 1)

2(n + 2)2
≤ 3√

2
and

mn,2

σn,2

≤
√

3n

n + 2
≤
√

3.

Substituting into (55) now gives the claim (13).
Proof of Theorem 4.1: Using Proposition 4.2, we apply Proposition 4.1 for X with
g(x) = (1− |x|p)1/p and the joint construction of (X, X i

i ) given in item 3.
Using the triangle inequality on (45) yields the upper bound

2

σn,p

(
E|θI(UXI

I −XI)|+ E|
(

g(XI
I )

g(XI)
− 1

)∑
j 6=I

θjXj|

)
. (56)

For X with the common marginal of X, we have

E

∣∣∣∣ X

σn,p

∣∣∣∣ ≤
(

E

∣∣∣∣ X

σn,p

∣∣∣∣2
)1/2

= 1 ≤

(
E

∣∣∣∣ X

σn,p

∣∣∣∣3
)1/3

≤

(
E

∣∣∣∣ X

σn,p

∣∣∣∣3
)

which, with X1 having the square bias distribution of X, implies that

E|X| ≤ E|X|3

σ2
n,p

= E|X1|.
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Bounding the first term in (56) by applying the triangle inequality, using the fact that U
is independent of I and XI

I , E|U | = 1/2 and P (I = i) = θ2
i yields

E|θI |
(
|UXI

I |+ |XI |
)

= E|θI |
(

1

2
|XI

I |+ |XI |
)

= E

n∑
i=1

|θi|3
(

1

2
|X i

i |+ |Xi|
)

≤ 3

2

n∑
i=1

|θi|3E|X i
i | =

3

2
mn,p

n∑
i=1

|θi|3. (57)

Now, averaging the second term in (56) over the distribution of I yields

E|
(

g(XI
I )

g(XI)
− 1

)∑
j 6=I

θjXj| =
n∑

i=1

E|
(

g(X i
i )

g(Xi)
− 1

)∑
j 6=i

θjXj|θ2
i . (58)

Using (47), (50) and g(x) = (1− |x|p)1/p, we have

g(X i
i )

g(Xi)
− 1 =

(
G1,n

G1,n + G′
i

)1/p

− 1. (59)

The variable G′
i and, by (53), the sum G1,n are independent of X1, . . . , Xn; hence, the term

(59) is independent of the sum it multiplies in (58) and therefore equals

n∑
i=1

E

∣∣∣∣g(X i
i )

g(Xi)
− 1

∣∣∣∣ E

∣∣∣∣∣∑
j 6=i

θjXj

∣∣∣∣∣ θ2
i . (60)

To bound the first expectation in (60), since G1,n/(G1,n + G′
i) ∼ B(n/p, 2/p), we have

E

∣∣∣∣g(X i
i )

g(Xi)
− 1

∣∣∣∣ = E

(
1−

(
G1,n

G1,n + G′
i

)1/p
)
≤
(

1

p
∨ 1

)
2

n + 2
(61)

since for p ≥ 1, using (54) with κ = 1,

E

(
1−

(
G1,n

G1,n + G′
i

)1/p
)
≤ E

(
1−

(
G1,n

G1,n + G′
i

))
= 1− n/p

(n + 2)/p
=

2

n + 2
,

while for 0 < p < 1, using Jensen’s inequality and the fact that (1 − x)1/p ≥ 1 − x/p for
x ≤ 1,

E

(
1−

(
G1,n

G1,n + G′
i

)1/p
)
≤ 1−

(
E

G1,n

G1,n + G′
i

)1/p

= 1−
(

n

n + 2

)1/p

≤ 2

p(n + 2)
.

We may bound the second expectation in (60) by σn,p since(
E

∣∣∣∣∣∑
j 6=i

θjXj

∣∣∣∣∣
)2

≤ E

(∑
j 6=i

θjXj

)2

= Var

(∑
j 6=i

θjXj

)
= σ2

n,p

∑
j 6=i

θ2
j ≤ σ2

n,p.
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Neither this bound nor the bound (61) depends on i, so substituting them into (60) and
summing over i, again using

∑
i θ

2
i = 1, yields

n∑
i=1

E

∣∣∣∣g(X i
i )

g(Xi)
− 1

∣∣∣∣ E

∣∣∣∣∣∑
j 6=i

θjXj

∣∣∣∣∣ θ2
i ≤ σn,p

(
1

p
∨ 1

)
2

n + 2
. (62)

Adding (57) and (62) and multiplying by 2/σn,p in accordance with (45) yields (55).
Proof of Proposition 4.2.

1. For A ⊂ S(`n
p ), e = (e1, . . . , en) ∈ {−1, 1}n and a permutation π ∈ Sn, let

Ae = {x : (e1x1, . . . , enxn) ∈ A} and Aπ = {x : (xπ(1), . . . , xπ(n)) ∈ A}.

By the properties of Lebsegue measure, µn([0, 1]Ae) = µn([0, 1]Aπ) = µn([0, 1]A), so
by (12), cone measure is coordinate symmetric and exchangeable.

Next, [20], for instance, shows that

(|X1|, . . . , |Xn|) =d

(
(

G1

G1,n

)1/p, . . . , (
Gn

G1,n

)1/p

)
. (63)

Letting C and Ce be the distribution functions of X ∼ Cn
p and (e1X1, . . . , enXn),

respectively, the coordinate symmetry of X implies that

C(x) = Ce(x) for all e ∈ {−1, 1}n,

so averaging yields

C(x) =
1

2n

∑
e∈{−1,1}n

Ce(x).

Therefore, for εi, i = 1, . . . , n, i.i.d. variables taking the values 1 and −1 with probabil-
ity 1/2, we conclude X =d (ε1X1, . . . , εnXn) =d (ε1|X1|, . . . , εn|Xn|). Combining this
fact with (63) yields (47).

2. Applying the coordinate symmetry of X coordinatewise gives Xi =d −Xi and (63)
yields |Xi|p = Gi/G1,n, which has the claimed Beta distribution, by (53). As EXi = 0,
we have

Var(Xi) = EX2
i = E(|Xi|p)2/p (64)

and the variance claim in (48) follows from (54) for α = 1/p, β = (n−1)/p and κ = 2/p.

The limit in (48) follows from the fact that for all n, x > 0,

lim
n→∞

nxΓ(n)

Γ(n + x)
= 1, (65)

which can be shown using Stirling’s formula.
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3. If X is symmetric with variance σ2 and X1 has the X-square bias density, then for all
odd functions f , since −X2f(X) =d X2f(X),

Ef(−X1) =
EX2f(−X)

σ2
=

E(−X2f(X))

σ2
=

E(X2f(X))

σ2
= Ef(X1),

showing X1 is symmetric.

From (54) and a change of variables, X satisfies |X|p ∼ B(α/p, β/p) if and only if the
density p|X|(u) of |X| is

p|X|(u) =
pΓ((α + β)/p)

Γ(α/p)Γ(β/p)
uα−1(1− up)β/p−11u∈[0,1]. (66)

Hence, since |Xi|p ∼ B(1/p, (n− 1)/p) by item 2, the density p|Xi|(u) of |Xi| is

p|Xi|(u) =
pΓ(n/p)

Γ(1/p)Γ((n− 1)/p)
(1− up)(n−1)/p−11u∈[0,1],

Multiplying by u2 and renormalizing produces the |X i
i | density

p|Xi
i |(u) =

u2p|X|(u)

EX2
i

=
pΓ((n + 2)/p)

Γ(3/p)Γ((n− 1)/p)
u2(1− up)(n−1)/p−11u∈[0,1], (67)

and comparing (67) to (66) shows the second claim in (49). The representation (50)
now follows from (53) and the symmetry of X i

i .

As in (64), the moment formula (51) follows from (54) for α = 3/p, β = (n− 1)/p and
κ = 1/p, and the limit in (52) follows by (65). Regarding the last claim in (52), for
p ≥ 1 Hölder’s inequality gives

mn,p = E|X1| ≤
(
E|X1|p

)1/p
=

(
3

n + 2

)1/p

,

while for 0 < p < 1, we have

mn,p = E|X1| = E

(
Gi + G′

i

G1,n + G′
i

)1/p

≤ E

(
Gi + G′

i

G1,n + G′
i

)
=

3

n + 2
.

4. We consider the conditional distribution on the left-hand side of (44), and use the
representation (and notation Ga,b) given in (47). The second equality below follows
from the coordinate-symmetry of X, and the fourth follows since we may replace G1,n

by G2,n/(1 − |a|p) on the conditioning event. Further, using the notation aL(V ) for
the distribution of aV , we have

L (X2, . . . , Xn|X1 = a)

= L
(

ε2(
G2

G1,n

)1/p, . . . , εn(
Gn

G1,n

)1/p|ε1(
G1

G1,n

)1/p = a

)
= L

(
ε2(

G2

G1,n

)1/p, . . . , εn(
Gn

G1,n

)1/p|( G1

G1,n

)1/p = |a|
)
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= L
(

ε2(
G2

G1,n

)1/p, . . . , εn(
Gn

G1,n

)1/p|G2,n

G1,n

= 1− |a|p
)

= (1− |a|p)1/pL(ε2(
G2

G2,n

)1/p, . . . , εn(
Gn

G2,n

)1/p|G2,n

G1,n

= 1− |a|p)

= (1− |a|p)1/pL(ε2(
G2

G2,n

)1/p, . . . , εn(
Gn

G2,n

)1/p| G1

G1,n

= |a|p)

= (1− |a|p)1/pL(ε2(
G2

G2,n

)1/p, . . . , εn(
Gn

G2,n

)1/p)

= g(a)Cn−1
p . (68)

In the penultimate step, we remove the conditioning on G1/G1,n since (53) and the
independence of G1 from all other variables gives that

(
G2

G2,n

, . . . ,
Gn

G2,n

) is independent of (G1, G2,n)

and so, in particular, is independent of G1/(G1 + G2,n) = G1/G1,n.

Regarding the right-hand side of (44), using 1− |X1|p =
∑n

i=2 |Xi|p and the represen-
tation (47), we obtain

g(a)(X2, . . . , Xn)/g(X1) = g(a)

(
(X2, . . . , Xn)

(|X2|p + · · · |Xn|p)1/p

)
= g(a)

(
(ε2(

G2

G1,n
)1/p, . . . , εn( Gn

G1,n
)1/p)

(( G2

G1,n
) + · · · ( Gn

G1,n
))1/p

)

= g(a)

(
(ε2G

1/p
2 , . . . , εnG

1/p
n )

(G2 + · · ·+ Gn)1/p

)

= g(a)

(
ε2(

G2

G2,n

)1/p, . . . , εn(
Gn

G2,n

)1/p

)
=d g(a)Cn−1

p ,

matching the distribution (68).

In principle, Proposition 3.1 can be applied in conjunction with Theorem 1.1 for any
coordinate-symmetric vector where one can construct a coupling between the marginal vari-
ables and their square biased versions, and where conditional distributions such as on the
left-hand side of (44) can be handled. For X having the uniform distribution over a con-
vex body symmetric to the coordinate planes, the conditional distributions of interest are
uniform over the intersection of the body with the hyperplanes Xi = a. The marginal cou-
pling appears to be more elusive, but may be especially tractable when the body has some
particular shapes.

5 Simple Random Sampling

We provide an L1 bound for the error in the normal approximation of the sum

Y =
n∑

i=1

Xi (69)
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of a simple random sample of size n from a set A of N real numbers, not all equal. It is
straightforward to verify that Y has mean µ and variance σ2 given by

µ = nā and σ2 =
n(N − n)

N(N − 1)

∑
a∈A

(a− ā)2, where ā =
1

N

∑
a∈A

a. (70)

The bound below depends also on a3, the third moment type quantity given by

a3 =
∑
a∈A

|a− ā|3.

Theorem 5.1 Let {X1, . . . , Xn} be a simple random sample of size n from a set A of N
real numbers, not all equal, with n and N satisfying

2 < n < N − 1. (71)

Then, with the sum Y given by (69), the distribution function F of the standardized variable
W = (Y − µ)/σ satisfies

||F − Φ||1 ≤
4a3

σ3

(
n(N − n)

N(N − 1)

)(
1 +

n

N

)2

.

Using n/N ≤ 1, we see that the theorem provides the ‘universal’ upper bound 16a3/σ
3,

although if the sampling fraction n/N is close to 1/2, the bound improves substantially, close
to 2.25a3/σ

3.
Since W and a3/σ

3 are invariant upon replacing a by (a − ā)/
√∑

b∈A(b− ā)2, we may
assume below, without loss of generality, that the collection A satisfies∑

a∈A

a = 0 and
∑
a∈A

a2 = 1. (72)

If we consider a sequence AN of collections of N numbers, not all equal, then the bound will
be of (the best) order 1/

√
N as N →∞ if the deviations a− ā, a ∈ AN are comparable and

the sampling fraction n/N is bounded away from zero and 1; in particular, under (72), σ2 will
be of order 1, the deviations of order 1/

√
N and a3 (and therefore the bound) of order 1/

√
N .

Proof: By (72),

σ2 =
n(N − n)

N(N − 1)
and a3 =

∑
a∈A

|a|3,

so it suffices to prove that

||F − Φ||1 ≤
4a3

σ

(
1 +

n

N

)2

. (73)

Since distinct labels may be appended to the elements of A, say as a second coordinate
which is neglected when taking sums, we may assume that the members of A are distinct.
In addition, and for convenience only, we consider all samples from A as though drawn
sequentially, that is, obtained with order.
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Inequality (71) is imposed so that various expressions have simpler forms [see, e.g., (84)],
in order to leave at least one unsampled individual with which to form an exchangeable pair,
and also to yield

λ =
N

n(N − n)
∈ (0, 1). (74)

To form an exchangeable pair, let X ′, X ′′, X2, . . . , Xn be a simple random sample of size
n + 1 from A, that is, with distribution

P (X ′ = x′, X ′′ = x′′, X2 = x2, . . . , Xn = xn) = N−1
n+11({x′, x′′, x2, . . . , xn} ⊂ A, distinct),

where Nk = N !/(N − k)!, the falling factorial. The pair

Y ′ = X ′ +
n∑

i=2

Xi and Y ′′ = X ′′ +
n∑

i=2

Xi

is clearly exchangeable with common marginal distribution that of Y in (69). Since

E(X ′|Y ′) =
1

n
Y ′ and E(X ′′|Y ′) = − 1

N − n
Y ′,

with λ as in (74), we have

E(Y ′′|Y ′) = E(Y ′ −X ′ + X ′′|Y ′) = (1− λ)Y ′,

proving that linearity condition (9) is satisfied.
We now follow the construction of the zero bias variable outlined in Section 3.3. Since Y ′−

Y ′′ = X ′ − X ′′, choose X†, X‡, independently of X ′, X ′′, X2, . . . , Xn, and with distribution
proportional to the squared difference (Y ′ − Y ′′)2 = (X ′ − X ′′)2, that is, according to the
distribution

q(a, b) =
(a− b)2

2N
1({a, b} ⊂ A). (75)

Now, the remainder of the sample from which we will construct Y † and Y ‡ must have the
conditional distribution of X2, . . . , Xn given X ′ = X†, X ′′ = X‡, that is, it must be a simple
random sample of size n− 1 from A \ {X†, X‡}.

However, we would like these n− 1 variables to correspond as closely as possible to the
values in {X2, . . . , Xn}. For this reason, consider the difference and intersection

S = {X2, . . . , Xn} \ {X†, X‡} and R′ = {X2, . . . , Xn} ∩ {X†, X‡}.

The difference set S contains the variables in our original sample which can be used in the
sample taken according to the conditional distribution given the inclusion of X† and X‡,
and R′ contains the variables which cannot be common to both samples, that is, variables
which must be replaced by others when forming Y † and Y ‡. In particular, if the intersection
R′ is empty, then {X2, . . . , Xn} serves as the size n − 1 simple random sample from the
complement of {X†, X‡}. Otherwise, R′ is of size 1 or 2 and variables in R′, in the order
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given by their indices, are replaced by those in a set R†, of the same size as R′, obtained by
taking a simple random sample from the values available, that is, from the complement of

Q = {X2, . . . , Xn} ∪ {X†, X‡}.

In each case, the total resulting collection of the n−1 variables thus obtained are uniform
from A \ {X†, X‡}, that is, they have the conditional distribution of X2, . . . , Xn given X ′ =
X†, X ′′ = X‡; hence, (42) holds with

S =
∑
a∈S

a,

T ′ =
∑
a∈R′

a + X ′, T ′′ =
∑
a∈R′

a + X ′′, T † =
∑
a∈R†

a + X†, and T ‡ =
∑
a∈R†

a + X‡.

With U ∼ U [0, 1] independent of all other variables, by Proposition 3.2, a coupling of the
zero biased variable Y ∗ and Y ′ is given by

Y ∗ = UX† + (1− U)X‡ + S +
∑
a∈R†

a and Y ′ = X ′ + S +
∑
a∈R′

a,

and therefore their difference V is given by

V = Y ∗ − Y ′ = UX† + (1− U)X‡ −X ′ +
∑
a∈R†

a−
∑
a∈R′

a.

Now, using X† =d X‡ and the independence of U , we may bound E|V | by

E|V | ≤ E|X†|+ E|X ′|+ E

∣∣∣∣∣∑
a∈R†

a

∣∣∣∣∣+ E

∣∣∣∣∣∑
a∈R′

a

∣∣∣∣∣ . (76)

We bound the four terms of (76) separately.
Since E(X ′)2 = 1/N , we have

E|
√

NX ′| ≤ E(
√

NX ′)2 = 1 ≤ (E|
√

NX ′|3)1/3 ≤ E|
√

NX ′|3,

which gives the following bound on the second term of (76):

1

N

∑
a∈A

|a| = E|X ′| = 1√
N

E|
√

NX ′| ≤ 1√
N

E|
√

NX ′|3 =
∑
a∈A

|a|3 = a3. (77)

From (75), the marginal distribution of X† equals

q1(a) =
1

2
(a2 +

1

N
) for a ∈ A.

Therefore, for the first term in (76), using (77), we have

E|X†| =
∑
a∈A

|a|q1(a) =
1

2

∑
a∈A

|a|3 +
1

2N

∑
a∈A

|a| ≤ a3. (78)
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Moving to the last term in (76), since {X2, . . . , Xn} and X†, X‡ are independent, for any
a ∈ A,

P (a ∈ R′) = P (a ∈ {X2, . . . , Xn} ∩ {X†, X‡}) = P (a ∈ {X2, . . . , Xn})P (a ∈ {X†, X‡})

= 2P (a ∈ {X2, . . . , Xn})P (X† = a) = (
n− 1

N
)(a2 +

1

N
),

which implies that

E

∣∣∣∣∣∑
a∈R′

a

∣∣∣∣∣ ≤ E
∑
a∈R′

|a| =
∑
a∈A

|a|P (a ∈ R′) =
n− 1

N

∑
a∈A

|a|(a2 +
1

N
)

=
n− 1

N

(∑
a∈A

|a|3 +
1

N

∑
a∈A

|a|

)
≤ 2n

N
a3, (79)

using (77).
Beginning in a similar way for the third term in (76), since P (|R†| ∈ {0, 1, 2}) = 1 and

P (a ∈ R†, |R†| = 0) = 0 for all a, we have

E|
∑
a∈R†

a| ≤
∑
a∈R†

|a|P (a ∈ R†)

=
∑
a∈R†

|a|P (a ∈ R†, |R†| = 1) +
∑
a∈R†

|a|P (a ∈ R†, |R†| = 2). (80)

By independence, the joint distribution of (X2, . . . , Xn) and X†, X‡, whose realizations are
denoted χn−1 and u, v, respectively, is given by

p(χn−1, u, v) = (N)−1
n−11({x2, . . . , xn} ⊂ A, distinct)q(u, v), (81)

with q(u, v) as in (75). Without further mention we consider only the event of probability
one where χn−1 is composed of distinct elements and u 6= v. Although χn−1 is ordered, with
a slight abuse of notation, we consider χn−1 as an unordered set in expressions containing
set operations, such as χn−1 ∩ {u, v}. Taking B to be an ordered subset of A of size 1 or 2,
the conditional distribution that R† = B, given χn−1 and u, v, is uniform over all sets the
size of the intersection of χn−1 and u, v, taken from the complement of their union, that is,

p(B|χn−1, u, v) =
1

(N − |χn−1 ∪ {u, v}|)|B|
1(B ∩ (χn−1 ∪ {u, v}) = ∅, |B| = |χn−1 ∩ {u, v}|).

In particular, then, for B of size 1, using (81), we have

P (a ∈ R†, |R†| = 1) =
∑

χn−1,u,v

p(a|χn−1, u, v)p(χn−1, u, v)

= 2
∑

u∈χn−1,v 6∈χn−1

p(a|χn−1, u, v)p(χn−1, u, v)

= 2
∑

u∈χn−1,v 6∈χn−1

{u,v}∪χn−1 63a

1

N − n

1

(N)n−1

q(u, v)
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=

(
2

N − n

)
1

(N)n−1

∑
{u,v}63a

q(u, v)
∑

χn−1∩{v,a}=∅,χn−13u

1

=
2(n− 1)(N − 3)n−2

(N − n)(N)n−1

∑
{u,v}63a

q(u, v) (82)

=
2(n− 1)(N − n + 1)

(N)3

∑
{u,v}63a

q(u, v)

=
2(n− 1)(N − n + 1)

(N)3

(
(1− 1

N
)− a2

)
, (83)

where, in (82), the factor (N − 3)n−2 counts the number of ways that the n − 2 additional
elements required in χn−1 can be taken from the N − 3 available and the n − 1 counts the
number of positions that u could occupy in the ordered set χn−1. In addition, in the last
equality, we have used∑

{u,v}63a

q(u, v) =
1

2N

∑
{u,v}63a

(u− v)2 =
1

2N

∑
{u,v}63a

(u2 − 2uv + v2)

=
1

N

∑
{u,v}63a

(u2 − uv) =
1

N

∑
{u,v}63a

u2 − 1

N

∑
{u,v}63a

uv

=
N − 1

N

∑
u 6=a

u2 +
a

N

∑
u 6=a

u

=
N − 1

N
(1− a2)− a2

N

= (1− 1

N
)− a2.

Dropping the −a2 term in (83) to get an upper bound and using (77) and the fact that
N ≥ n ≥ 3, we have the following upper bound on the first term in (80):∑

a∈A

|a|P (a ∈ R†, |R†| = 1) ≤ 2(n− 1)(N − n + 1)

(N)3

(
1− 1

N

)∑
a∈A

|a|

≤ 2(n− 1)(N − n + 1)

N(N − 2)
a3 ≤

2n

N
a3. (84)

To handle the second term in (80), we have, likewise, for a and b distinct,

P (R† = (a, b)) =
∑

χn−1,u,v

p(a, b|χn−1, u, v)p(χn−1, u, v)

=
∑

|{u,v}∩χn−1|=2

({u,v}∪χn−1)∩{a,b}=∅

1

(N − n + 1)2

1

(N)n−1

q(u, v)

=
1

(N − n + 1)2

1

(N)n−1

∑
{u,v}∩{a,b}=∅

q(u, v)
∑

χn−1⊃{u,v},χn−1∩{a,b}=∅

1

=
(n− 1)2

(N − n + 1)2

(N − 4)n−3

(N)n−1

∑
{u,v}∩{a,b}=∅

q(u, v)
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=
(n− 1)2

(N)2

1

(N − 2)2

∑
{u,v}∩{a,b}=∅

q(u, v)

=
(n− 1)2

(N)2

1

(N − 2)2

1

N

(
(N − 2)(1− a2 − b2)− (a + b)2

)
.

Using symmetry, summing over b 6= a and multiplying by 2 (since a can be chosen as the
first or second variable in the set R† of size 2) yields

P (a ∈ R†, |R†| = 2) =
2(n− 1)2

(N)2

1

(N − 2)2

1

N

(
(N − 1)(N − 3)− (N2 − 3N)a2

)
.

By (71), N > 3, over which range the factor −(N2 − 3N) multiplying a2 is negative;
discarding it yields the upper bound

P (a ∈ R†, |R†| = 2) ≤ 2(n− 1)2

(N)2

(N − 1)(N − 3)

(N − 2)2

1

N
=

2(n− 1)2

N2(N − 2)
,

so, by (77), ∑
a∈A

|a|P (a ∈ R†, |R†| = 2) ≤ 2(n− 1)2

N(N − 2)
a3 ≤ 2

( n

N

)2

a3. (85)

Inequalities (80), (84) and (85) yield the upper bound on the third term in (76),

E|
∑
a∈R†

a| ≤ 2

(
n

N
+
( n

N

)2
)

a3. (86)

Combining the bounds on the four terms of (76) given in (77), (78), (79) and (86) gives

E|V | ≤ 2
(
1 +

n

N

)2

a3.

By (72), EY = 0, so W = Y/σ and since W ∗ = (Y/σ)∗ = Y ∗/σ, Theorem 1.1 gives

||F − Φ||1 ≤ 2E|W ∗ −W | = 2E|V |
σ

≤ 4a3

σ

(
1 +

n

N

)2

,

which is (73).

6 Combinatorial Central Limit Theorem

We now use Theorem 1.1 to derive L1 bounds for random variables Y of the form

Y =
n∑

i=1

ai,π(i), (87)

where π is a permutation distributed uniformly over the symmetric group Sn and {aij}1≤i,j≤n

are the components of a matrix A ∈ Rn×n. Letting

a�� =
1

n2

n∑
i,j=1

aij, ai� =
1

n

n∑
j=1

aij and a�j =
1

n

n∑
i=1

aij,
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straightforward calculations show that the mean µ and variance σ2 of Y are given by

µ = na�� and σ2 =
1

n− 1

∑
i,j

(
a2

ij − a2
i� − a2

�j + a2
��

)
; (88)

the fact that (94) below is a probability distribution yields an equivalent representation for
σ2,

σ2 =
1

4n2(n− 1)

∑
i,j,k,l

[(aik + ajl)− (ail + ajk)]
2 . (89)

In what follows we assume for the sake of non-triviality that σ2 > 0. By (89), σ2 = 0 if and
only if ail − ai� does not depend on i, that is, if and only if the difference between any two
rows of A is some constant row vector.

Motivated by deriving approximating null distributions for permutation test statistics,
Wald and Wolfowitz [25] proved the central limit theorem as n → ∞ for the case where
the factorization aij = bicj holds. This was later generalized by Hoeffding [12] to arrays
{aij}1≤i,j≤n in general. Motoo [17] gave Lindeberg-type sufficient conditions for the normal
limit to hold.

In the supremum norm, von Bahr [2] and Ho and Chen [14] obtained Berry-Esseen
bounds when the matrix A is random, which yield the correct rate O(n−1/2) only under
some boundedness conditions. Bolthausen [6] obtained a bound of the correct order in terms
of third-moment type quantities, but with an unspecified constant. Goldstein [9] gave bounds
of the correct order under boundedness but with an explicit constant, for the cases where the
random permutation π is uniformly distributed and also when its distribution is constant on
cycle type.

For each n, Theorem 6.1 provides an L1 bound between the standardized variable Y
given in (87) and the normal, with an explicit constant depending on the third-moment-type
quantity

a3 =
n∑

i,j=1

|aij − ai� − a�j + a��|3. (90)

When the elements of A are all of comparable order, σ2 is of order n and a3 of order n2,
making the bound below of order n−1/2.

Theorem 6.1 For n ≥ 3, let {aij}n
i,j=1 be the components of a matrix A ∈ Rn×n, let π be a

random permutation uniformly distributed over Sn, and let Y be given by (87). Then, with
µ, σ2 and a3 given in (88) and (90), F the distribution function of W = (Y − µ)/σ and Φ
that of the standard normal,

||F − Φ||1 ≤
a3

(n− 1)σ3

(
16 +

56

(n− 1)
+

8

(n− 1)2

)
.

Proof: Since

Y − µ =
n∑

i=1

(
ai,π(i) − ai� − a�π(i) + a��

)
,
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without loss of generality we may replace aij by aij − ai� − a�j + a��, in which case

n∑
i=1

aij =
n∑

j=1

aij = 0 (91)

and (90) becomes a3 =
∑

ij |aij|3. We will write Y and π interchangeably for Y ′ and π′.

Construction of Y †, Y ‡: We follow the construction outlined in Section 3.3; see also [9].
For 1 ≤ i, j ≤ n, let τij be the permutation which transposes i and j. Given π′, take (I, J)
independent of π′, uniformly over all pairs 1 ≤ I 6= J ≤ n, that is, with distribution

p1(i, j) =
1

(n)2

1(i 6= j). (92)

Now set π′′ = π′τI,J and let Y ′′ be given by (87) with π′′ replacing π. In particular, π′′(i) =
π′(i) for i 6∈ {I, J}, so

Y ′ − Y ′′ = (aI,π′(I) + aJ,π′(J))− (aI,π′(J) + aJ,π′(I)). (93)

We note that the difference depends only on I, J, π′(I), π′(J) having distribution p1(i, j)p1(k, l),
where k and l are the realizations of π′(I) and π′(J), respectively. It can easily be shown
(see [9]) that the pair Y ′, Y ′′ is exchangeable and satisfies the linearity condition (9) with
λ = 2/(n− 1).

To construct (Y †, Y ‡) with distribution (y′ − y′′)2dP (y′, y′′)/E(Y ′ − Y ′′)2 of (36), note
first, using (93) and then (35) for the second equality, that

E(Y ′ − Y ′′)2 =
1

n2(n− 1)2

∑
i,j,k,l

[(aik + ajl)− (ail + ajk)]
2 = 2λσ2 =

4σ2

n− 1
,

noting that the summand is zero if i = j or k = l. Still following the outline given in
Section 3.3, to begin the construction of Y † and Y ‡, choose I†,J†,K†,L† independently of
the remaining variables, according to their original distribution biased by the difference (93)
squared, that is, with distribution

p2(i, j, k, l) =
[(aik + ajl)− (ail + ajk)]

2

E(Y ′ − Y ′′)2
p1(i, j)p1(k, l) =

[(aik + ajl)− (ail + ajk)]
2

4n2(n− 1)σ2
; (94)

in particular P (I† = J†) = P (K† = L†) = 0. Now set

π† =


πτπ−1(K†),J† , if L† = π(I†), K† 6= π(J†)
πτπ−1(L†),I† , if L† 6= π(I†), K† = π(J†),
πτπ−1(K†),I†τπ−1(L†),J† , otherwise,

and π‡ = π†τI†,J† . Note that {π†(I†), π†(J†)} = {π‡(I†), π‡(J†)} = {K†, L†}. As the condi-
tional distribution of π, given that it takes particular values on some collection of indices, is
uniform over all permutations restricted to take those values, the variables Y † and Y ‡ given
by (87) with π replaced by π† and π‡ respectively, have joint distribution (36).
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Calculation of E|Y ∗ − Y ′|: By Proposition 3.2,

Y ∗ − Y ′ = UY † + (1− U)Y ‡ − Y ′ = U

n∑
i=1

ai,π†(i) + (1− U)
n∑

i=1

ai,π‡(i) −
n∑

i=1

ai,π(i).

With

I = {I†, J†}
⋃
{π−1(K†), π−1(L†)},

we see that if i, j 6∈ I, then π(i) = π†(j) = π‡(j).
Hence, setting V = Y ∗ − Y ′, we have

V =
∑
i∈I

(Uai,π†(i) + (1− U)ai,π‡(i) − ai,π(i)). (95)

Further, letting
R = |{π(I†), π(J†)} ∩ {K†, L†}|

and 1k = 1(R = k), since P (R ≤ 2) = 1, we have

V = V 12 + V 11 + V 10 and therefore E|V | ≤ E|V |12 + E|V |11 + E|V |10. (96)

The three terms on the right hand side of (96) give rise to the three components of the bound
in the theorem.

For notational simplicity, the following summations in this section are performed over
all indices which appear, whether in the summands or in a (possibly empty) collection of
restrictions. In what follows, we will have equalities and bounds such as∑

|ail|[(aik + ajl)− (ail + ajk)]
2 =

∑
|ail|(a2

ik + a2
jl + a2

il + a2
jk) ≤ 4n2a3. (97)

Due to the form of the square on the left-hand side, if the factors in a cross term agree in
their first index, they will have differing second indices, and likewise if their second indices
agree. This gives cross terms which are zero by virtue of (91), since they will have at least
one unpaired index outside the absolute value over which to sum, for instance, the index k
in the term

∑
|ail|aikail. Hence the equality. The inequality follows from the fact that for

any choices ι1, ι2, κ1, κ2 ∈ {i, j, k, l} with ι1 6= κ1 and ι2 6= κ2, perhaps by relabelling the
indices appearing after the inequality,

∑
i,j,k,l

|aι1,κ1 |a2
ι2,κ2

≤

(∑
k,l

|aij|3
)1/3(∑

i,j

|akl|3
)2/3

= n2a3. (98)

Generally, the power of n in such an inequality, in this case 2, will be 2 less than the number
of indices of summation, in this case 4.

Decomposition on R = 2: On 12, I = {I†, J†}. As the intersection which gives R = 2
can occur in two different ways, we make the further decomposition

V 12 = V 12,1 + V 12,2,
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where

12,1 = 1(π(I†) = K†, π(J†) = L†) and 12,2 = 1(π(I†) = L†, π(J†) = K†).

Since π† = π on 12,1, by (95),

V 12,1 =
∑

i∈{I†,J†}

(
Uai,π†(i) + (1− U)ai,π‡(i) − ai,π(i)

)
12,1

= [U(aI†,π†(I†) + aJ†,π†(J†)) + (1− U)(aI†,π‡(I†) + aJ†,π‡(J†))− (aI†,π(I†) + aJ†,π(J†))]12,1

= [U(aI†,π(I†) + aJ†,π(J†)) + (1− U)(aI†,π(J†) + aJ†,π(I†))− (aI†,π(I†) + aJ†,π(J†))]12,1

= (1− U)
(
aI†,π(J†) + aJ†,π(I†) − aI†,π(I†) − aJ†,π(J†)

)
12,1

= (1− U)
(
aI†,L† + aJ†,K† − aI†,K† − aJ†,L†

)
12,1. (99)

Due to the presence of the indicator 12,1, taking the expectation of (99) requires a joint
distribution which includes the values taken on by π at I† and J†, say s and t, respectively.
Since s and t can be any two distinct values and are independent of I†, J†, K† and L†, we
have, with p1 and p2 given in (92) and (94), respectively,

p3(i, j, k, l, s, t) = P ((I†, J†, K†, L†, π(I†), π(J†)) = (i, j, k, l, s, t))

= p2(i, j, k, l)p1(s, t) =
[(aik + ajl)− (ail + ajk)]

2

4n3(n− 1)2σ2
1(s 6= t). (100)

Now, bounding the absolute value of the first term in (99) using (97),

E|(1− U)aI†,L†|12,1 =
1

2

∑
|ail|1(s = k, t = l)p3(i, j, k, l, s, t)

=
1

2

∑
|ail|p3(i, j, k, l, k, l)

=
1

8n3(n− 1)2σ2

∑
|ail|[(aik + ajl)− (ail + ajk)]

2

≤ a3

2n(n− 1)2σ2
.

Using the triangle inequality in (99) and applying the same reasoning to the remaining three
terms shows that E|V |12,1 ≤ 2a3/(n(n− 1)2σ2); since, by symmetry, the term V 12,2 can be
bounded in this same way, we obtain

E|V |12 ≤
4a3

n(n− 1)2σ2
≤ 4a3

(n− 1)3σ2
. (101)

Decomposition on R = 1: As the event R = 1 can occur in four different ways, depending
on which element of {π(I†), π(J†)} equals an element of {K†, L†}, we decompose 11 to yield

V 11 = V 11,1 + V 11,2 + V 11,3 + V 11,4, (102)

where 11,1 = 1(π(I†) = K† and π(J†) 6= L†), on which I = {I†, J†, π−1(L†)}, specifying the
remaining three indicators in (102) similarly. Now, using (95), and that on 11,1, we have
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π† = πτπ−1(L†),J† and π‡ = πτπ−1(L†),J†τJ†,I† , so that π†(π−1(L)) = π‡(π−1(L)) = π(J) it
follows that

V 11,1 =
∑

i∈{I†,J†,π−1(L†)}

(
Uai,π†(i) + (1− U)ai,π‡(i) − ai,π(i)

)
11,1

= [U(aI†,π†(I†) + aJ†,π†(J†) + aπ−1(L†),π†(π−1(L†))) + (1− U)(aI†,π‡(I†) + aJ†,π‡(J†) + aπ−1(L†),π‡(π−1(L†)))

− (aI†,π(I†) + aJ†,π(J†) + aπ−1(L†),π(π−1(L†)))]11,1

= [U(aI†,K† + aJ†,L† + aπ−1(L†),π(J†)) + (1− U)(aI†,L† + aJ†,K† + aπ−1(L†),π(J†))

− (aI†,K† + aJ†,π(J†) + aπ−1(L†),L†)]11,1

= [UaJ†,L† + (1− U)(aI†,L† + aJ†,K† − aI†,K†)− aJ†,π(J†) − aπ−1(L†),L† + aπ−1(L†),π(J†)]11,1. (103)

For the first term in (103), dropping the restriction t 6= l and summing over t to obtain
the first inequality and then applying (97) with |ail| replaced by |ajl|, we obtain

EU |aJ†,L†|11,1 =
1

2

∑
|ajl|1(s = k, t 6= l)p3(i, j, k, l, s, t)

≤ 1

8n2(n− 1)2σ2

∑
|ajl| [(aik + ajl)− (ail + ajk)]

2 (104)

≤ a3

2(n− 1)2σ2
.

The second, third and fourth terms in (103) result in the bound (104), with |ajl| replaced
by |ail|, |ajk| and |aik|, respectively, and applying corresponding forms of (97) on each gives

E|UaJ†,L† + (1− U)(aI†,L† + aJ†,K† − aI†,K†)|11,1 ≤
2a3

(n− 1)2σ2
. (105)

For the fifth term in (103), involving aJ†,π(J†) without a uniform variable factor, we obtain

E|aJ†,π(J†)|11,1 =
∑

|ajt|1(s = k, t 6= l)p3(i, j, k, l, s, t)

≤ 1

4n3(n− 1)2σ2

∑
|ajt|[(aik + ajl)− (ail + ajk)]

2

≤ a3

(n− 1)2σ2
. (106)

Note that for the final inequality, though the sum being bounded is not of the form (97), hav-
ing the index t, the same reasoning applies and that, moreover, the five indices of summation
require that n2 be replaced by n3 in (98).

To handle the sixth term in (103), involving aπ−1(L†),L† , we need the joint distribution

p4(i, j, k, l, s, t, u) = P ((I†, J†, K†, L†, π(I†), π(J†), π−1(L†)) = (i, j, k, l, s, t, u)),

accounting for the value u taken on by π−1(L†). If l equals s or t, then u is already fixed at
i or j, respectively; otherwise, π−1(L†) is free to take any of the remaining available n − 2
values, with equal probability. Hence, with p3 given by (100), we deduce that

p4(i, j, k, l, s, t, u) =


p3(i, j, k, l, s, t), if (l, u) ∈ {(s, i), (t, j)},
p3(i, j, k, l, s, t) 1

n−2
, if l 6∈ {s, t} and u 6∈ {i, j},

0, otherwise.
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Note, for example, that on 11,1, where π(I†) = K† and π(J†) 6= L†, the value u of π−1(L†) is
neither I† nor J†, so the second case above is the relevant one and the vanishing of the first
sum on the third line of the following display is to be expected.

Now, calculating using the density p4, for the sixth term in (103), we have

E|aπ−1(L†),L†|11,1 =
∑

|aul|1(s = k, t 6= l)p4(i, j, k, l, s, t, u)

=
∑
t6=l

|aul|p4(i, j, k, l, k, t, u)

=
∑

|aik|p3(i, j, k, k, k, t) +
1

n− 2

∑
l 6∈{k,t},u 6∈{i,j}

|aul|p3(i, j, k, l, k, t)

=
1

n− 2

∑
l 6=t,u 6∈{i,j}

|aul|p2(i, j, k, l)p1(k, t)

=
1

(n)3

∑
t6∈{l,k},u 6∈{i,j}

|aul|p2(i, j, k, l) (107)

=
1

(n)2

∑
u 6∈{i,j}

|aul|p2(i, j, k, l)

≤ 1

4n3(n− 1)2σ2

∑
|aul| [(aik + ajl)− (ail + ajk)]

2

≤ a3

(n− 1)2σ2
, (108)

where the final inequality is achieved using (97) in the same way as for (106).
The computation for the seventh term in (103) begins as that for the sixth, yielding (107)

with aut replacing aul, so that

E|aπ−1(L†),π(J†)|11,1 =
1

(n)3

∑
t6∈{l,k},u 6∈{i,j}

|aut|p2(i, j, k, l)

≤ 1

4(n)3n2(n− 1)σ2

∑
|aut| [(aik + ajl)− (ail + ajk)]

2

≤ n2a3

(n)3(n− 1)σ2

≤ 3a3

(n− 1)2σ2
, (109)

where we have applied reasoning as in (97) and replaced n2 by n4 in (98) due to the sum
over six indices.

Returning to (103) and adding the contribution (105) from the first four terms to-
gether wih (106), (108) and (109) from the fifth, sixth and seventh, respectively, we obtain
E|V |11,1 ≤ 7a3/((n − 1)2σ2). Since, by symmetry, all four terms on the right-hand side of
(102) can be handled in the same way as the first, we obtain the following bound on the
event R = 1:

E|V |11 ≤
28a3

(n− 1)2σ2
. (110)
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Decomposition on R = 0: We have

10 = 1(π(I†) 6∈ {K†, L†}, π(J†) 6∈ {K†, L†}), I = {I†, J†, π−1(K†), π−1(L†)},

and, from (95),

V 10 =
∑

i∈{I†,J†,π−1(K†),π−1(L†)}

(
Uai,π†(i) + (1− U)ai,π‡(i) − ai,π(i)

)
10

= [U(aI†,K† + aJ†,L†) + (1− U)(aI†,L† + aJ†,K†) + aπ−1(K†),π(I†) + aπ−1(L†),π(J†) (111)

− (aI†,π(I†) + aJ†,π(J†) + aπ−1(K†),K† + aπ−1(L†),L†)]10.

Since the first four terms in (111) have the same distribution, we bound their contribution
to E|V |10, using (97), by

4EU |aI†,K†|10 ≤ 4EU |aI†,K†| = 2
∑

|aik|p2(i, j, k, l)

=
1

2n2(n− 1)σ2

∑
|aik| [(aik + ajl)− (ail + ajk)]

2

≤ 2a3

(n− 1)σ2
. (112)

The sum of the contributions from the fifth and sixth terms of (111) can be bounded as

2E|aπ−1(L†),π(J†)|10 = 2
∑

s 6∈{k,l},t6∈{k,l}

|aut|p4(i, j, k, l, s, t, u)

=
2

n− 2

∑
s 6∈{k,l},t6∈{k,l},u 6∈{i,j},s 6=t

|aut|p3(i, j, k, l, s, t)

≤ n− 3

2(n− 2)n3(n− 1)2σ2

∑
|aut| [(aik + ajl)− (ail + ajk)]

2 (113)

≤ 2n(n− 3)a3

(n− 2)(n− 1)2σ2

≤ 2a3

(n− 1)σ2
, (114)

where inequality (113) is obtained by summing over the n− 3 choices of s and dropping the
remaining restrictions, and the next by following the reasoning of (97).

For the sum of the contributions from the seventh and eighth terms of (111), summing
over the n − 3 choices of t and then dropping the remaining restrictions to obtain the first
inequality, we have

2E|aI†,π(I†)|10 = 2
∑

s 6∈{k,l},t6∈{k,l}

|ais|p3(i, j, k, l, s, t)

=
1

2n3(n− 1)2σ2

∑
s 6∈{k,l},t6∈{k,l},s 6=t

|ais| [(aik + ajl)− (ail + ajk)]
2
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≤ n− 3

2n3(n− 1)2σ2

∑
|ais| [(aik + ajl)− (ail + ajk)]

2

≤ 2(n− 3)a3

(n− 1)2σ2

≤ 2a3

(n− 1)σ2
. (115)

The total contribution of the ninth and tenth terms together can be bounded like the
sum of the fifth and sixth, yielding (113) with |aul| replacing |aut|, then summing over the n
choices of t gives

2E|aπ−1(L†),L†|10 ≤ n− 3

2(n− 2)n2(n− 1)2σ2

∑
|aul| [(aik + ajl)− (ail + ajk)]

2

≤ 2n(n− 3)a3

(n− 2)(n− 1)2σ2

≤ 2a3

(n− 1)σ2
. (116)

Adding up the bounds for the first four terms (112), the fifth and sixth terms (114), the
seventh and eighth terms (115) and the ninth through tenth terms (116) yields

E|V |10 ≤
8a3

(n− 1)σ2
. (117)

Since W ∗ = (Y/σ)∗ = Y ∗/σ, we have E|W ∗−W | = E|V |/σ. Hence, summing the R = 2,
R = 1 and R = 0 contributions to E|V | given in (101), (110) and (117), respectively, the
proof of the theorem is completed by applying Theorem 1.1.

7 Remarks

In Section 3.2, a new method of constructing zero bias couplings is presented which closely
parallels the construction for size bias couplings. Applying also an existing construction, the
zero bias method for computing L1 bounds to the normal is illustrated in four situations.

The zero bias transformation for normal approximation is not restricted to the L1 norm.
The supremum norm is considered in [9] through the use of smoothing inequalities, though
useful bounds there are only obtained when |Y ∗ − Y | can be almost surely bounded by a
quantity small relative to Var(Y ). This restriction at present prevents the application of
the zero bias method from computing supremum norm bounds in various examples, cone
measure being one. It is hoped that this restriction may be relaxed in future work.

The Stein equation also presents the possibility for deriving total variation bounds in a
way similar to the manner in which the L1 bounds used here were derived in [8]. Letting a
random variable denote its own distribution, recall that the total variation distance between
the distributions of X and Y can be defined in terms of differences in expectations over
bounded measurable test functions h:

||X − Y ||TV =
1

2
sup
|h|≤1

|Eh(X)− Eh(Y )|. (118)
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Now consider the Stein equation, with σ2 = 1, say, for such an h,

f ′(x)− xf(x) = h(x)− Eh(Z),

where Z is a standard normal variable. Stein [23] shows that if |h| ≤ 1, then f is differentiable
with |f ′| ≤ 2 and hence, for a mean zero variance 1 random variable W ,

|Eh(W )− Eh(Z)| = |Ef ′(W )− EWf(W )| = |Ef ′(W )− Ef ′(W ∗)| ≤ 4||W −W ∗||TV.

Dividing by 2 and taking supremum over h as indicated in (118) yields

||W − Z||TV ≤ 2||W −W ∗||TV,

a total variation bound parallel to the L1 bound in Theorem 1.1.
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