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Classical Berry Esseen Theorem

Let X,X1, X2, . . . be i.i.d. with distribution G having mean
zero, variance σ2 and finite third moment. Then there
exists C such that

||Fn − Φ||∞ ≤
CE|X|3

σ3
√
n

for n ∈ N

where Fn is the distribution function of

Sn =
1

σ
√
n

n∑
i=1

Xi,

where for distribution functions F and G

||F −G||∞ = sup
−∞<x<∞

|F (x)−G(x)|.
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Different Metrics

L∞, type of worse case error:

||F −G||∞ = sup
−∞<x<∞

|F (x)−G(x)|

L1, type of average case error:

||F −G||1 =

∫ ∞
−∞
|F (x)−G(x)|dx

3



Lp Berry Esseen Theorem

For p ≥ 1 there exists a constant C such that

||Fn − Φ||p ≤
CE|X|3

σ3
√
n

for n ∈ N. (1)

Let Fσ be the collection of all distributions with mean zero,
positive variance σ2, and finite third moment. The Lp

Berry-Esseen constant cp is given by

cp = inf{C :

√
nσ3||Fn − Φ||p

E|X|3
≤ C, n ∈ N, G ∈ Fσ}.

Each C in (1) is an upper bound on cp.
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Upper Bounds in the Classical Case

Classical case p =∞,

1. 1.88/7.59 (Berry/Esseen, 1941/1942)

2. . . .

3. 0.7975 (P. van Beeck, 1972).

4. 0.7655 (I. S. Shiganov in 1986).

5. 0.7056 (I.G. Shevtsova in 2006)
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Asymptotic Refinements

Let

cp,m = inf{C :

√
nσ3||Fn − Φ||p

E|X|3
≤ C, n ≥ m,G ∈ Fσ}

Clearly cp,m decreases in m, so we have existence of the
limit

lim
m→∞

cp,m = cp,∞.
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Asymptotically Correct Constant: p = 1

For G ∈ Fσ Esseen explicitly calculates the limit

lim
n→∞

n1/2||Fn − Φ||1 = A1(G).

Zolotarev (1964), using characteristic function techniques,
shows that

sup
G∈Fσ

σ3A1(G)

E|X|3
=

1

2
,

so

c1,∞ =
1

2
.
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Stein Functional

A bound on the (non-asymptotic) L1 constant can be
obtained by considering the extremum of a Stein functional.

Extrema of Stein functionals are considered by Utev and
Lefévre, 2003, who computed some exact norms of Stein
operators.
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Bound using Zero Bias

Let W be a mean zero random variable with finite positive
variance σ2. We say W ∗ has the W zero bias distribution if

E[Wf(W )] = σ2E[f ′(W ∗)] for all smooth f .

If the distribution F of W has variance 1 and W and W ∗

are on the same space with W ∗ having the W zero bias
distribution, then

||F − Φ||1 ≤ 2E|W ∗ −W |.
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Exchange One Zero Bias Coupling

If W = X1 + · · ·+Xn, independent mean zero variables
with variances σ2

1 , . . . , σ
2
n, and I is an independent index

with distribution

P (I = i) =
σ2
i∑n

j=1 σ
2
j

,

then

W ∗ =
∑
j 6=I

Xj +X∗I

has the W -zero bias distribution, when for each i, X∗i has
the Xi-zero bias distribution independent of Xj , j 6= i.
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Functional B(X)

For X ∈ Fσ let

B(X) =
2σ2||L(X∗)− L(X)||1

E|X3|
.

For R (more generally on any Polish space) valued random
variables, given distributions F and G, one can construct
X ∼ F and Y ∼ G such that

E|X − Y | = ||F −G||1

In fact, let X = F−1(U), Y = G−1(U) for U ∼ U [0, 1].
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Exchange One Zero Bias Coupling

Let X1, . . . , Xn be independent random variables with
distributions Gi ∈ Fσi , i = 1, . . . , n and let Fn be the
distribution function of W = (X1 + · · ·+Xn)/σ with
σ2 = σ2

1 + · · ·+ σ2
n. Then with E|X∗i −Xi| = ||G∗i −Gi||1,

E|W ∗ −W | =
1

σ
E|X∗I −XI | =

1

σ

n∑
i=1

σ2
i

σ2
E|X∗i −Xi|

=
1

σ3

n∑
i=1

σ2
iE|X∗i −Xi|
E|Xi|3

E|X3
i |

=
1

2σ3

n∑
i=1

B(Xi)E|X3
i |.

12



Exchange One Zero Bias Coupling

If X1, . . . , Xn are independent mean zero random variables
with distributions G1, . . . , Gn having finite variances
σ2
1 , . . . , σ

2
n and finite third moments, then the distribution

function Fn of (X1 + · · ·+Xn)/σ with σ2 = σ2
1 + · · ·+ σ2

n

obeys

||Fn − Φ||1 ≤
1

σ3

n∑
i=1

B(Gi)E|Xi|3

where the functional B(G) is given by

B(G) =
2σ2||G∗ −G||1

E|X|3

when X has distribution G ∈ Fσ.
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Distribution Specific Constants

In the i.i.d. case,

||Fn − Φ||1 ≤
B(G)E|X3|√

nσ3
,

and e.g.,

1. B(G) = 1 for mean zero two point distributions

2. B(G) = 1/3 for mean zero uniform distributions

3. B(G) = 0 for mean zero normal distributions
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Universal Bound

Recall that for G ∈ Fσ

B(G) =
2σ2||G∗ −G||1

E|X|3
.

For a collection of distributions F ⊂
⋃
σ>0 Fσ, let

B(F) = sup
G∈F

B(G).

Then for X1, . . . , Xn i.i.d. with distribution in Fσ,

||Fn − Φ||1 ≤
B(Fσ)E|X3|√

nσ3
.
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Bounds on B(Fσ)

Mean zero two point distributions give B(Fσ) ≥ 1 for all
σ > 0.

Using essentially only

E|X∗ −X| ≤ E|X∗|+ E|X|

gives B(Fσ) ≤ 3 for all σ > 0.

By coupling X and X∗ together we improve the value of
the constant from 3.
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Value of Supremum

Theorem 1 For all σ ∈ (0,∞),

B(Fσ) = 1.

Hence, when X1, . . . , Xn are independent with distributions
in Fσi , i = 1, . . . , n and

∑n
i=1 σ

2
i = σ2,

||Fn − Φ||1 ≤
1

σ3

n∑
i=1

E|Xi|3,

and when these variables are identically distributed with
variances σ2,

||Fn − Φ||1 ≤
E|Xi|3√
nσ3

.

17



Bounds on the Constant c1

We can also prove the lower bound

c1 ≥ 2
√
π(2Φ(1)− 1)− (

√
π +
√

2) + 2e−1/2
√

2√
π
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Supremum of B(Fσ)

Want to compute

sup
G∈Fσ

B(G) where B(G) =
2σ2||G∗ −G||1

E|X|3
.

Successively reduce, in four steps, the computation of the
supreumum of B(G) on Fσ to computations over smaller
collections of distributions.
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First Reduction: σ = 1

Recall

B(G) =
2σ2||G∗ −G||1

E|X|3
.

By the scaling property

B(aX) = B(X) for all a 6= 0

it suffices to consider F1.
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Second Reduction: compact support

For X ∈ F1, show that there exists Xn, n = 1, 2, . . ., each
in F1 and having compact support, such that
B(Xn)→ B(X).

Hence it suffices to consider the class of distributions
M⊂ F1 with compact support.

21



Third Reduction: finite support

For X ∈M show that there exists Xn, n = 1, 2, . . . in M,
finitely supported, such that B(Xn)→ B(X).

Hence it suffices to consider
⋃
m≥3Dm, where Dm are

mean zero variance one distributions supported on at most
m points.
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Fourth Reduction: three point support

Use a convexity type property of B(G), which depends on
the behavior of the zero bias transformation on a mixture,
to obtain

B(D3) = B(
⋃
m≥3

Dm).

Hence it suffices to consider D3.
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Lastly

Show
B(D3) = 1.
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Finding Extremes of Expectations

Arguments along these lines were first considered by
Hoeffding for the calculation of the extremes of
EK(X1, . . . , Xn) where X1, . . . , Xn are independent.

Though B(G) is not of this form, the reasoning of
Hoeffding applies.

In some cases the final result obtained is not in closed form.
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Reduction to Compact Support and Finite
Support

Continuity of the zero bias transformation: If

Xn ⇒d X, and lim
n→∞

EX2
n = EX2

then
X∗n ⇒d X

∗ as n→∞.

Leads to continuity of B(G): If

Xn ⇒d X, lim
n→∞

EX2
n = EX2 and lim

n→∞
E|X3

n| = E|X3|

then
B(Xn)→ B(X) as n→∞.
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From
⋃
m≥3Dm to D3

If Xµ be the µ mixture of a collection {Xs, s ∈ S} of mean
zero, variance 1 random variables satisfying E|X3

µ| <∞.
Then

B(Xµ) ≤ sup
s∈S

B(Xs).

In particular, if C is a collection of mean zero, variance 1
random variables with finite absolute third moments and
C ⊃ D such that every distribution in C can be represented
as a mixture of distributions in D, then

B(C) = B(D).
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Zero Biasing a Mixture

Theorem 2 Let {ms, s ∈ S} be a collection of mean zero
distributions on R and µ a probability measure on S such
that the variance σ2

µ of the mixture distribution is positive
and finite. Then m∗µ, the mµ zero bias distribution exists
and is given by the mixture

m∗µ =

∫
m∗sdν where

dν

dµ
=
σ2
s

σ2
µ

.

In particular, ν = µ if and only if σ2
s is a constant µ a.s.
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Mixture of Constant Variance: ν = µ

||L(X∗µ)− L(Xµ)||1 = sup
f∈L
|Ef(X∗µ)− Ef(Xµ)|

= sup
f∈L
|
∫
S

Ef(X∗s )dµ−
∫
S

Ef(Xs)dµ|

≤ sup
f∈L

∫
S

|Ef(X∗s )− Ef(Xs)| dµ

≤ sup
f∈L

∫
S

||L(X∗s )− L(Xs)||1dµ

=

∫
S

||L(X∗s )− L(Xs)||1dµ.
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B(Xµ) ≤ supsB(Xs)

The relation

dτ

dµ
=
E|X3

s |
E|X3

µ|
. (2)

defines a probability measure, as E|X3
µ| =

∫
E|X3

s |ds.
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B(Xµ) ≤ supsB(Xs)

Then

B(Xµ) =
2||L(X∗µ)− L(Xµ)||1

E|X3
µ|

≤
∫
S

2||L(X∗s )− L(Xs)||1dµ
E|X3

µ|

=

∫
S
B(Xs)E|X3

s |dµ
E|X3

µ|

=

∫
S

B(Xs)dτ

≤ sup
s∈S

B(Xs)
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Reduction of Dm,m > 3

The distribution of any X ∈ Dm is determined by the
values a1 < · · · < am and probabilities p = (p1, . . . , pm)′,
all positive. The vector p must satisfy Ap = c where

A =

 1 1 . . . 1
a1 a2 . . . am
a21 a22 . . . a2m

 and c =

 1
0
1

 .
For m > 3 there exists vector v 6= 0 satisfying Av = 0.
Hence X ∈ Dm can be represented of a mixture of two
distributions in Dm−1.
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Reduction to D3

For every m > 3, every G ∈ Dm can be represented as a
finite mixture of distributions in Dm−1. Hence

B(D3) = B(
⋃
m≥3

Dm).

Every distribution D3 with support points, say
x < y < 0 < z, can be written as

mα = αm1 + (1− α)m0,

a mixture of the (unequal variance) mean zero distributions
m1 and m0 supported on {x, z} and {y, z}, respectively.
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Mixture with Unequal Variance

For α ∈ [0, 1], with

mα = αm1 + (1− α)m0

we have

m∗α = βm∗1 + (1− β)m∗0 where β =
αx

αx+ (1− α)y
.

Since x < y < 0,

β

1− β
=

α

1− α
x

y
>

α

1− α
and therefore β > α.
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Calculating G(D3)

Write m ∈ D3 as

mα = αm1 + (1− α)m0

where m1 and m0 are mean zero two point distributions on
{x, z} and {y, z}, respectively, x < y < 0 < z.

Need to bound

||m∗α −mα||1. (3)

Any coupling of variables Y ∗α and Yα with distributions m∗α
and mα, respectively, gives an upper bound to (3). Let
F0, F1, F

∗
0 , F

∗
1 be the distribution functions of m0,m1,m

∗
0

and m∗1, respectively.
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Bound by Coupling

Set (Y1, Y0, Y
∗
1 , Y

∗
0 ) equal to

(F−11 (U), F−10 (U), (F ∗1 )−1(U), (F ∗0 )−1(U))

and let L(Yα, Y
∗
α ) be

αL(Y1, Y
∗
1 ) + (1− β)L(Y0, Y

∗
0 ) + (β − α)L(Y0, Y

∗
1 ).

Then (Yα, Y
∗
α ) has marginals Yα =d Xα and Y ∗α =d X

∗
α,

and therefore ||m∗α −mα||1 is upper bounded by

α||m∗1 −m1||1 + (1− β)||m∗0 −m0||1 + (β − α)||m∗1 −m0||1.
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Bound on D3

Goal is to have ||mα −m∗α||1, or its upper bound

α||m∗1 −m1||1 + (1− β)||m∗0 −m0||1 + (β − α)||m∗1 −m0||1,

bounded by

E|X3
α|/(2EX2

α) = β||m∗1 −m1||1 + (1− β)||m∗0 −m0||1.

Hence it suffices to show

||m∗1 −m0||1 ≤ ||m∗1 −m1||1.

‘Reduces’ to computation of L1 distances between uniform
distribution on [x, z] and two point distributions on {y, z}
and {x, z}.
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||m∗
1 −m0||1 ≤ ||m∗

1 −m1||1

m0 on {y, z}, m1 on {x, z} with x < y < 0 < z. Right
hand side is

||m∗1 −m1||1 =
z2 + x2

2(z − x)
.

Left hand side, under case where F ∗1 (y) ≤ F0(y), is

[2(z − x)(z − y)2]−1
(
z4 − 2yz3 + x2z2 − 2x2yz

+5y2z2 + 3x2y2 − 4xy3 + 4xy2z − 4xyz2 + 2y4 − 4y3z
)
.
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Using Mathematica

Taking the difference, after much cancelation
||m∗1 −m1||1 − ||m∗1 −m0||1 is seen to equal

−4y2z2 − 2x2y2 + 4xy3 − 4xy2z + 4xyz2 − 2y4 + 4y3z

2(z − x)(z − y)2
,

which factors as

−y(y − x)(y2 + 2z2 − y(x+ 2z))

(z − x)(z − y)2

and is positive, due to being in case F ∗1 (y) ≤ F0(y).

39



Bound over D3

Since ||m∗1 −m0||1 ≤ ||m∗1 −m1||1 we have

||mα −m∗α||1 ≤ E|X3
α|/(2EX2

α),

and therefore B(D3) ≤ 1.
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Bound over D3

Since ||m∗1 −m0||1 ≤ ||m∗1 −m1||1 we have

||mα −m∗α||1 ≤ E|X3
α|/(2EX2

α),

and therefore B(D3) ≤ 1.

Hence

1 ≥ B(D3) = B(
⋃
m≥3

Dm) = B(M) = B(F1) ≥ 1.
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The Anti-Normal Distributions

G ∈ F1 is normal if and only if B(G) = 0; small B(G)
close to normal.

G, a mean zero two point distribution on x < 0 < y
achieves supG∈F1

B(G), the worst case for B(G), so
‘anti-normal’.
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Lower Bound

For L(X) = G ∈ F1,

||Fn − Φ||1 ≤
c1E|X3|√

n
for all n ∈ N,

and in particular for n = 1

c1 ≥
||F1 − Φ||1
E|X3|

=
||G− Φ||1
E|X3|

.
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Lower Bound: 0.535377 . . .

For B ∼ B(p) for p ∈ (0, 1) let Gp be the distribution
function of X = (B − p)/√pq. Then ||Gp − Φ||1 equals∫ −√ p

q

−∞
Φ(x)dx+

∫ √ q
p

−
√

p
q

|Φ(x)− q|dx+

∫ ∞
√

q
p

|Φ(x)− 1|dx,

and letting

ψ(p) =

√
pq

p2 + q2
||Gp − Φ||1 for p ∈ (0, 1)

ψ(1/2) =
2
√
π(2Φ(1)− 1)− (

√
π +
√

2) + 2e−1/2
√

2√
π

.
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Upper Bounds in the Classical Case

Classical case p =∞,

1. 1.88/7.59 (Berry/Esseen, 1941/1942)

2. . . .

3. 0.7975 (P. van Beeck, 1972).

4. 0.7655 (I. S. Shiganov in 1986).

5. 0.7056 (I.G. Shevtsova in 2006)

6. 0.4785 (I. Tyurin in 2010)
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Higher Order Hermite Functionals

Letting Hk(x) be the kth Hermite Polynomial, if the
moments of X match those of the standard normal up to
order 2k, then there exists X(k) such that

EHk(X)f(X) = Ef (k)(X(k)).

Can one compute extreme values of the natural
generalizations of B(G) such as

Bk(G) =
σ2k||X(k) −X||1

E|X|2k+1

which might be the values of like constants when higher
moments match the normal.
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