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Let X, X1, Xo,... bei.i.d. with distribution G having mean
zero, variance o2 and finite third moment. Then there
exists C such that

CE|X?
ad3\/n

where I}, is the distribution function of
. Z x.
oV i3
where for distribution functions F' and G

1= Glloo = _ sup__|F(z) = G(2)].

—oo<r<

[|1Fr, — Pf|oo < forn € N



Different Metrics

L, type of worse case error:

IF' = Gllo = sup [F(z)—G()|
—oo<r<oo

L', type of average case error:

IF G|, = /_°° |F(z) - G(a)|dx



For p > 1 there exists a constant C' such that
CE|X|?
o3y/n
Let F, be the collection of all distributions with mean zero,

positive variance o2, and finite third moment. The L?
Berry-Esseen constant ¢, is given by

[|[Fr — @], < for n € N. (1)

. Vnad||E, — @,
= — = .
¢, = inf{C e <CneN,GeF,)

Each C in (1) is an upper bound on ¢,,.



Classical case p = oo,

1. 1.88/7.59 (Berry/Esseen, 1941/1942)
2. ...

3. 0.7975 (P. van Beeck, 1972).

4. 0.7655 (1. S. Shiganov in 1986).

o1

. 0.7056 (1.G. Shevtsova in 2006)



Asymptotic Refinements

Let

3
. no’||F, — ®
cpm = inf{C : %ﬁ?)"p <Cn>m,GeF,}
Clearly cp ., decreases in m, so we have existence of the
limit

ey = oo



For G € F, Esseen explicitly calculates the limit

lim n'/?||F, — @[, = A1(G).

n—oo

Zolotarev (1964), using characteristic function techniques,

shows that
O'SAl(G) 1
sup ———== = —,
Ger, EIXP "2

so
1

Cloo = 3
’ 2



A bound on the (non-asymptotic) L; constant can be
obtained by considering the extremum of a Stein functional.

Extrema of Stein functionals are considered by Utev and
Lefévre, 2003, who computed some exact norms of Stein
operators.



Let W be a mean zero random variable with finite positive
variance 02. We say W* has the W zero bias distribution if

E[W f(W)] = a*E[f'(W*)] for all smooth f.

If the distribution F' of W has variance 1 and W and W*
are on the same space with W* having the W zero bias
distribution, then

|IF = ||, < 2E|W* —W|.



If W =X;+---+ X,, independent mean zero variables
with variances 0%, ...,02, and I is an independent index
with distribution

2
- n 27
2j=1;
then

W*=>"X;+X;
J#l
has the W-zero bias distribution, when for each ¢, X" has
the Xj-zero bias distribution independent of X, j # 1.



For X € F, let

_20206(X) — LX)

) B

For R (more generally on any Polish space) valued random
variables, given distributions F' and G, one can construct
X ~ F and Y ~ G such that

EX —Y[=|lF-Glh

In fact, let X = F~1(U),Y = G=Y(U) for U ~ U[0, 1].



Let X1,...,X,, be independent random variables with
distributions G; € F,,,% =1,...,n and let F,, be the
distribution function of W = (X1 + -+ + X,,) /o with

0?2 =0} +---+02. Then with E|X* Xi| = |G; — Gilh,
1 1 < g2
—FB|\X] - X[|=— —EBIX —X;
“EIX; - Xl =2 ) B - X

i=1

E|W* — W]

" 2B\ X} - X
= ElX3
o3 Z E|X;]3 X7

= QL zn: Xi)E|X}.



If X1,...,X, are independent mean zero random variables
with distributions G1, ..., G, having finite variances
0?,...,02 and finite third moments, then the distribution
function F,, of (X1 + -+ X,,)/0 with 02 =0} +--- + 02
obeys

n

|Fn — @1 < Z Gy E|X;[?

where the functional B(G) is given by

20%||G* - G|Ix
EIXP

when X has distribution G € F,.

B(G) =



In the i.i.d. case,

B(G)E|X?|

F,— ||, < ,
|| ||1— \/ﬁgg

and e.g.,

1. B(G) =1 for mean zero two point distributions
2. B(G) = 1/3 for mean zero uniform distributions

3. B(G) = 0 for mean zero normal distributions



Recall that for G € F,

_ 20%)|G* — G|

B(G) BXF

For a collection of distributions F C |- Fo., let

B(F) = ZL;;}B(G)

Then for Xq,..., X, i.i.d. with distribution in F,,

B(Fo)E|X7|

F, — o, < 2B
|| Hl— \/503



Mean zero two point distributions give B(F,) > 1 for all
o>0.

Using essentially only
E|X* - X|<E|X*|+ E|X]

gives B(F,) < 3 for all o > 0.

By coupling X and X* together we improve the value of
the constant from 3.



Theorem 1 For all o € (0,0),

B(F,) =1.
Hence, when X1,..., X, are independent with distributions
in .7:0',”7; - 1,.. N and Z?:la-z? = 0’2’

1 — )
[|[F — @1 < ;ZEIXZ-P,

i=1

and when these variables are identically distributed with

variances o2,

E|X;?
Vnod '’

||Fn - <I)||1 <



Bounds on the Constant ¢

We can also prove the lower bound

o 2VARE() - 1) - (VI + V2) + 271 2V2
- VT

C1



Want to compute

202||G* — G||1
B(G h BG) = ——————~
Gup B(G) where  BIG) =53

Successively reduce, in four steps, the computation of the
supreumum of B(G) on F, to computations over smaller
collections of distributions.



Recall
B 202||G* — G|1

B(G) e

By the scaling property
B(aX)=B(X) foralla#0

it suffices to consider Fj.



For X € Fi, show that there exists X,,,n = 1,2, ..., each
in F1 and having compact support, such that

B(X,) — B(X).

Hence it suffices to consider the class of distributions

M C F; with compact support.



For X € M show that there exists X,,,n =1,2,...in M,
finitely supported, such that B(X,,) — B(X).

Hence it suffices to consider Ung D,,, where D,,, are
mean zero variance one distributions supported on at most

m points.



Use a convexity type property of B(G), which depends on
the behavior of the zero bias transformation on a mixture,

to obtain
B(D3) = B(|J D).

m>3

Hence it suffices to consider Ds.



Lastly

Show
B(D3) = 1.



Arguments along these lines were first considered by
Hoeffding for the calculation of the extremes of
EK(Xy,...,X,) where X;,..., X, are independent.

Though B(G) is not of this form, the reasoning of
Hoeffding applies.

In some cases the final result obtained is not in closed form.



Reduction to Compact Support and Finite
Support

Continuity of the zero bias transformation: If

X, =4 X, and lim EX?=FEX?

n—oo

then
X)=q¢ X" asn— oco.

Leads to continuity of B(G): If
X, =4 X, lim EX2=FEX? and lim E|X} = E|X?
n— 00 n—oo

then
B(X,) = B(X) asn — occ.



If X, be the u mixture of a collection {X,,s € S} of mean
zero, variance 1 random variables satisfying E|X§\ < 00.
Then

B(X,) <sup B(Xj).
ses

In particular, if C is a collection of mean zero, variance 1
random variables with finite absolute third moments and

C D D such that every distribution in C can be represented
as a mixture of distributions in D, then



Theorem 2 Let {m,,s € S} be a collection of mean zero
distributions on R and p a probability measure on S such
that the variance O'Z of the mixture distribution is positive
and finite. Then mz the m,, zero bias distribution exists

and is given by the mixture
d
my, :/m’;dzj where = =75
, : d

In particular, v = yu if and only if % is a constant i1 a.s.



[1£(

Mixture of Constant Variance: v = i

X))

— L(

X)lh

IN

IN

sup |Ef(X,) — Ef(X,)]

sup | | Bf(X])du

feL

sup / EF(X?) — Ef(X.)|dy

feL

sup / 1£(X?) — £(X)|hdp

feL

[ 12X = £C)

- / Ef(X.)du
S



The relation

dr _ E|X?]
du — BE|X3|

defines a probability measure, as E|X 3| = [ E|X2|ds.



Then

IN

2||£(X52) — £(Xu)[h
EXG]
s 201£(X7) — LX)l dp
EIXG
[ BOX)E|X?|dp
E|X]]

/SB(XS)CZT

sup B(Xj)
seSs




The distribution of any X € D,,, is determined by the
values a; < -+ < a,, and probabilities p = (p1,...,pm)’,
all positive. The vector p must satisfy Ap = ¢ where

1 1 ... 1 1
A= a1 as ... am and c¢c=| 0
a? a3 ... a2 1

For m > 3 there exists vector v # 0 satisfying Av = 0.
Hence X € D,, can be represented of a mixture of two
distributions in D,,,_1.



For every m > 3, every G € D,, can be represented as a
finite mixture of distributions in D,,,_1. Hence

B(Ds) = B(|J D)-

m>3

Every distribution D3 with support points, say
x <y <0<z, can be written as

Mo = ami + (1 — a)my,

a mixture of the (unequal variance) mean zero distributions
my and mq supported on {z, z} and {y, z}, respectively.



Mixture with Unequal Variance

For o € [0,1], with
me = amy + (1 — a)my

we have

ax

i, = Omi o+ (1= Bmi where 5= G

Since x < y < 0,

8 a x e
= = >
1-8 l1l—-ay 11—«

and therefore (3 > a.



Write m € D3 as
me = amy + (1 — a)my

where m1 and mg are mean zero two point distributions on
{z,z} and {y, 2}, respectively, x < y < 0 < z.

Need to bound
|lmg —mall1- (3)

Any coupling of variables Y and Y,, with distributions mJ,
and m,,, respectively, gives an upper bound to (3). Let
Ey, Fy, F§, FY be the distribution functions of mg, mq, m§
and mj, respectively.



Set (Y1, Y0, Yy, Y() equal to

(F (), B3 (U), (7)1 (U), (Fg) 71 (U))
and let £(Y,,Y.) be
al(Yy, Y1) + (1= B)L(Yo, Yy') + (B — ) L(Yo, Y7).

Then (Y,,Y}) has marginals Y, =4 X, and Y} =4 X,

) o

and therefore ||m}, — mg||1 is upper bounded by

alfmy —ma|ly + (1 = B)lfmg — mollr + (5 — @)[Im7 — mol|1.



Goal is to have ||m, —mZ%||1, or its upper bound
aflmi —mallr + (1 = B)[lmg — mollr + (8 — a)|lm1 — moll1,
bounded by
E|X3|/(2EXZ) = Bllmi —ma|l + (1 = B)|lmg — mo|r.
Hence it suffices to show

[Imi —moll1 < [[m] —mall1.
‘Reduces’ to computation of L' distances between uniform

distribution on [z, z] and two point distributions on {y, z}
and {z, z}.



mo on {y, z}, my on {z,z} with z <y < 0 < z. Right
hand side is
22 + 22

* A N
||m1 m1H1 2(2—5E>

Left hand side, under case where F;(y) < Fy(y), is

2(z —z)(z —y)?*] 7" (2" — 2y2° + 222% — 22%y2

+5y%2% + 32%y? — day® + dzyr — dwy2® + 2yt — 4y°2) .



Taking the difference, after much cancelation
[|lm3 — mall1 — ||m} — mgl|1 is seen to equal

—49%2% — 2222 + day® — dayPz + doyz® — 2t + 4yt 2
2(z —z)(z — y)? ’

which factors as

—y(y — 2)(y% + 222 — y(z + 22))
(z —2)(2 — y)?

and is positive, due to being in case F;(y) < Fy(y).



Bound over Dj;

Since ||m} — mol|1 < ||m} — mq]|1 we have
[Ima —milh < EIX3|/(2EXZ),

and therefore B(D3) < 1.



Since ||m} — mol|1 < ||m]

— mgql|1 we have

Ima —mi|lr < BIX3]/(2EXZ),

and therefore B(D3) < 1

Hence

1> B(Ds) = UD

m>3



G € F; is normal if and only if B(G) = 0; small B(G)
close to normal.

G, a mean zero two point distribution on x < 0 <y
achieves supgc 7, B(G), the worst case for B(G), so
‘anti-normal’.



For L(X) =G € Fy,

ClE|X3‘

[|E, — @1 < for all n € N,

and in particular for n =1

[ =2 _ |G =[x
E|X3 E|X3

1 Z



For B ~ B(p) for p € (0,1) let G, be the distribution
function of X = (B —p)/\/pq. Then ||G), — ®||, equals

/_;O ‘q’q)(:c)der/\/gp |D(x) —q|dx+/;|<1>(x) — 1|dz,

and letting

vlp) = 221G, ally forpe (0.1)

™ — 1) —(vym e 1/2
w(l/z)zzf@cbu) 1) (\\/[;+\/§)+2 \/5.



Classical case p = oo,

1. 1.88/7.59 (Berry/Esseen, 1941/1942)
2. ...

3. 0.7975 (P. van Beeck, 1972).

4. 0.7655 (1. S. Shiganov in 1986).

o1

(
(

. 0.7056 (1.G. Shevtsova in 2006)
(

()}

. 0.4785 (I. Tyurin in 2010)



Letting Hy(z) be the k" Hermite Polynomial, if the
moments of X match those of the standard normal up to
order 2k, then there exists X (%) such that

EH(X)f(X) = Bf®(x®).
Can one compute extreme values of the natural
generalizations of B(G) such as

o2 X® - X||y
Bi(G) = E|X |21

which might be the values of like constants when higher
moments match the normal.



