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11
The Information Inequality

11.1 The Score Function and Information

Now, for a model X ∼ p(X; θ), θ ∈ Θ for the random vector X, define the
score function,

U(X, θ) =
∂ log p(X; θ)

∂θ
=

(
∂p(X, θ)

∂θ

)
/p(X, θ). (11.1)

Note that this is a function over Θ, only one of which will correspond to
the true parameter value. We illustrate the use of the score function when
the model is a family of density functions; the same holds for a family of
mass functions.

For example, for the normal N (µ, σ2) family, assuming for the moment
that σ2 is known, we have

p(x;µ) =
1√
2πσ

e−
1

2σ2
(x−µ)2

so

log p(x;µ) = − log
√

2πσ − 1

2σ2
(x− µ)2

and therefore

U(X;µ) =
1

σ2
(X − µ).
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Note that

Eµ

(
1

σ2
(X − µ)

)
= 0,

that is, the score has mean zero, when evaluated at the parameter which
generated the data.

This mean zero property holds under smoothness in general, as the fol-
lowing argument shows, as long as we can differentiate under the integral
as follows.

EθU(X, θ) =

∫
U(x, θ)p(x, θ)

=

∫
∂ log p(x; θ)

∂θ
p(x, θ)

=

∫
p′(x, θ)

p(x, θ)
p(x, θ)

=

∫
p′(x, θ)dx

=
d

dθ

∫
p(x, θ)dx

=
d

dθ
1 = 0.

Next, define the information as the variance of the score function as
follows,

I(θ) = Varθ (U(X, θ)) .

As the score function has mean zero, its variance equals its second moment,
and hence we may also write, using (11.1),

I(θ) = Eθ (U(X, θ))
2

=

∫ (
∂p(x, θ)

∂θ

)2

/p(x, θ)dx. (11.2)

If we have some additional smoothness, usually assumed, and which are
known to hold for members of the exponential family, we have an alternative
form of the information,

I(θ) = −Eθ
(
∂2 log p(X, θ)

∂θ2

)
. (11.3)

In particular, letting p′ denote the partial of p with respect to θ,

∂2 log p(x, θ)

∂θ2
=

∂

∂θ

p′(x, θ)

p(x, θ)
=
p′′(x, θ)p(x, θ)− p′(x, θ)2

p(x, θ)2
.

Upon taking expectation, when multiplying by p(x, θ) the first term be-
comes simply the integral of p′′(x, θ), and again by differentiating under
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the integral as before, we have

0 =

∫
∂2p(x, θ)

∂θ2
.

Note now that integrating the second term leads to the negative of (11.2),
verifying (11.3).

Returning to the normal example, since the score function is

U(X,µ) =
1

σ2
(X − µ)

the information is given by

IX(µ) = Var

(
1

σ2
(X − µ)

)
=

1

σ2
.

Note this expression makes good sense, since the smaller the variance, the
more information there is in the single observation. We verify now that
using the second derivative formula we get the same result. In particular,
taking another derivative we obtain

∂U(X,µ)

∂µ
= − 1

σ2
,

which, now taking an unnecessary expectation, is indeed the negative
information.

Lets consider now some properties of the score. Let X1, . . . , Xn be in-
dependent, not necessarily identically distributed, and Ui(Xi, θ) the score
function for pi(xi; θ), the density of Xi. Then, since

p(X, θ) =

n∏
i=1

pi(Xi; θ) and hence log p(X, θ) =

n∑
i=1

log pi(Xi; θ),

taking partial with respect to θ we have

U(X, θ) =

n∑
i=1

Ui(Xi, θ).

In other words, the score function for a collection of independent variables,
whose distribution depends on a common θ, is the sum of the score functions
for the independent variables.

As a consequence, the information is additive. Since the X1, . . . , Xn

independent imply that U(X1; θ), . . . , U(Xn; θ) are independent, and the
variance of the sum of independent variables is the sum of their variances,
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we obtain

IX(θ) = Varθ(U(X; θ))

= Varθ

(
n∑
i=1

U(Xi; θ)

)

=

n∑
i=1

Varθ (U(Xi; θ))

=

n∑
i=1

IXi(θ).

In particular, in the case where X1, . . . , Xn are independent and identically
distributed, we have

IX(θ) = nIX(θ).

11.2 The Information Inequality

The information inequality, or Cramer Rao bound, is a consequence of the
Cauchy Schwarz inequality which states that for random variables X and
Y with finite second moment,

|EXY | ≤
√
EX2EY 2,

with equality if and only if there exist α and β, not both zero, and a
constant c such that

P (αX + βY = c) = 1,

where c must necessarily be E(αX + βY ). Applying the inequality to X −
EX and Y − EY , we obtain

|Cov(X,Y )| ≤
√

Var(X)Var(Y )

with equality if and only if there exist α and β, not both zero, such that

P (α(X − EX) + β(Y − EY ) = 0) = 1.

For θ ∈ Θ ⊂ R, that is, for a one dimensional parameter space, the
Cramer Rao bound is as follows. First note that if X and Y are random
variables with finite second moment, then generally

Cov(X,Y ) = E(X − EX)(Y − EY ) = EXY − EXEY

so if EY = 0 we have

Cov(X,Y ) = EXY.
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Now let T (X) be a statistic with mean g(θ) = EθT (X). Then
differentiating

g(θ) =

∫
T (x)p(x; θ)dx

under the integral and using the fact that the score function has mean zero,
we obtain

|g′(θ)| = | d
dθ

∫
T (x)p(x; θ)dx|

= |
∫
T (x)

∂

∂θ
p(x; θ)dx|

= |
∫
T (x)

∂
∂θp(x; θ)

p(x; θ)
p(x, θ)dx|

= |EθT (X)U(X, θ)|
= |Covθ(T (X), U(X, θ))|
≤

√
Varθ(T (X))Varθ(U(X, θ))

=
√

Varθ(T (X))IX(θ),

Squaring and rearranging, we obtain the following lower bound on the
variance of T (X),

Varθ(T (X) ≥ g′(θ)2

IX(θ)
.

Recall that we have equality if and only if T (X) is linearly related to
U(X; θ). Hence, we now have two additional ways to prove that an estimator
is UMVU. We can now show that T (X) achieves the lower bound, and also
that T (X) and U(X; θ) are linearly related. The condition for equality
shows that there are not many UMVU’s for a particular one dimensional
model, as these all must be simply some multiple of the score function. In
higher dimensions, there are more possibilities, however.

Consider the one parameter family, which is a special case of the beta,
which, for α > 0 is given by

p(x;α) = αxα−1 0 < x < 1.

for which the score function is given by

U(x;α) =
∂

∂α
log p(x;α) = log x+

1

α
.

For the sample X1, . . . , Xn, the score function is sum of the marginal scores,
so

U(X, θ) =

n∑
i=1

logXi +
n

α
= n

(
1

n
log

n∏
i=1

Xi +
1

α

)
.
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Hence any linear function of 1
n log

∏n
i=1Xi is UMVU of its expectation.

Since the score has mean zero,

Eα

(
− 1

n
log

n∏
i=1

Xi

)
=

1

α
,

so

T (X) = − 1

n
log

n∏
i=1

Xi

is UMVU of 1/α.
Lets return to the normal example with known variance. The score for a

single observation is

U(X;µ) =
1

σ2
(X − µ), (11.4)

so taking the sum,

U(X;µ) =
1

σ2

n∑
j=1

(Xj − µ) =
n

σ2
(X − µ).

Hence U(X;µ) and X are linearly related, so X must be UMVU for its
expectation.

For the normal family where we take σ2 are our unknown parameter,
supposing for the moment that µ is known, recall

log p(x; θ) = −1

2
log(2πσ2)− 1

2σ2
(x− µ)2.

Taking partial with respect to σ2 (not with respect to σ), we find that the
score function for σ2 is given by

U(X;σ2) =
∂

∂σ2
log p(x; θ) = − 1

2σ2
+

1

2σ4
(x− µ)2. (11.5)

Noting that E(X − µ)2 = σ2, we can check that the expectation of the
score is zero, that is,

Eσ2U(X;σ2) = − 1

2σ2
+

1

2σ4
σ2 = 0.

To compute the information, since the first term in the score (11.5) is
constant, we have

IX(σ2) = Varσ2(
1

2σ4
(X − µ)2) =

1

4σ4
Varσ2(

X − µ
σ

)2 =
1

2σ4
,

since [(X − µ)/σ]2 ∼ χ2
1, and has variance

Var(Z2) = EZ4 − (EZ)2 = 3 · 1− 1 = 2.
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We can alternatively find the information by taking the expectation of
the negative of the second partial. Differentiating (11.5) in σ2, we obtain

−Iσ2(X) = Eσ2

(
∂2

∂(σ2)2
log p(x; θ)

)
= Eσ2

(
1

2σ4
− 1

σ6
(x− µ)2

)
=

1

2σ4
− σ2

σ6
= − 1

2σ4
,

agreeing with the previous calculation.
When µ is known, then the estimator

T (X) =
1

n

n∑
i=1

(Xi − µ)2 (11.6)

is UMVU for σ2, since it is linearly related to the score function as follows.
Summing (11.5) we obtain

U(X; θ) = − n

2σ2
+

1

2σ4

n∑
i=1

(Xi − µ)2 = − n

2σ2
+

n

2σ4
T (X).

Alternatively, we see that

n

σ2
T (X) =

n∑
i=1

(
Xi − µ
σ

)2

∼ χ2
n,

and therefore (with the 2 below the same 2 as the one above)

Varσ2(
n

σ2
T (X)) = 2n

so that

Varσ2(T (X)) =
2σ4

n
= (nIX(σ2))−1 = (IX(σ2))−1,

that is, T (X) achieves the information bound. We remark that one also has
that T (X) is UMVU by the Lehmann Schefe theorem.

Now, what if µ and σ2 are both unknown. On the one hand, we can still
estimate µ by X, here it seems not to matter whether we know σ2 or not,
we should do just as well, but we can no longer estimate σ2 by T (X) of
(11.6). Actually, from the Lehmann Schefe theorem, we already know that

S2 =
1

n− 1

n∑
j=1

(Xi −X)2

is UMVU in the case where µ is unknown, as it is an unbiased estimator
which is function of a complete sufficient statistic. Note that when µ is
known then these same statistics are not complete. At present we cannot
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apply our information bound to the case where both parameters are un-
known, but we may wonder if there exist cases where the lower bound is
not achieved.

Consider in general the information for the location parameter in a loca-
tion scale family. Taking p(x), x ∈ R any smooth density which is positive
on R, for θ ∈ Θ ⊂ R let p(x; θ) = (1/σ)p((x − µ)/σ). The score function
for µ is

∂

∂µ
(− log σ + log p((x− µ)/σ)) = − (1/σ)p′((x− µ)/σ)

p((x− µ)/σ)

and the variance of this mean zero score is its second moment, we ob-
tain its variance by squaring and multiplying by the density, which has an
additional factor of 1/σ, we have

I(µ) =
1

σ3

∫ ∞
−∞

[p′((x− µ)/σ)]2

[p((x− µ)/σ)]2
p((x− µ)/σ)dx

=
1

σ3

∫ ∞
−∞

[p′((x− µ)/σ)]2

p((x− µ)/σ)
dx.

Making the change of variable y = (x− µ)/σ, we have

I(θ) =
1

σ2

∫ ∞
−∞

[p′(y)]2

p(y)
dy.

For the normal,

p(y) =
1√
2π
e−y

2/2

so ∫ ∞
−∞

[p′(y)]2

p(y)
=

∫ ∞
−∞

y2

2π e
−y2

1√
2π
e−y2/2

=

∫ ∞
−∞

y2

√
2π
e−y

2/2 = 1,

recovering the earlier result that the information about the mean in one
observation of a normal is I(µ) = 1/σ2.

Now we compute the information for the Cauchy, based on the density

p(x) =
1

π

1

1 + x2
p′(x) = − 1

π

2x

(1 + x2)2

so that the ratio

[p′]2

p
=

4

π

x2

(1 + x2)3
.

Nice calculus exercise, or better yet, by complex contour integral, or better
yet using a symbolic package, we have

4

π

∫ ∞
−∞

x2

(1 + x2)3
dx =

4

π
× π

8
=

1

2
,
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yielding

I(µ) =
σ2

2

for the Cauchy family, half of the information about the location parameter
than for a normal family.

Note that under the smoothness conditions the lower bound for the vari-
ance of our estimates in the iid model is 1/(nIX(θ), so they can decay no
faster than 1/n, or, the standard deviation can decay no faster than n−1/2.
Before taking on the multiparameter information inequality, lets consider
a case where the smoothness conditions are violated; it may be that we
do better than rate 1/n given by the lower bound. Consider the iid U [0, θ]
model, where we know, from Lehmann Schefe theorem, that

T (X) =

(
n+ 1

n

)
X(n),

is UMVU for θ, as it is unbiased for θ, and is a function of the complete
sufficient statistic X(n), the maximum order statistic. The statistic T (X)
has variance

Varθ(T (X)) =

(
n+ 1

n

)2

Varθ(X(n)),

Using the unbiasedness of T (X) we have

EθX(n) =

(
n

n+ 1

)
θ,

and now recalling the density of the maximum order statistic,

EθX
2
(n) =

∫ θ

0

x2nx
n−1

θn
dx =

n

θn

∫ θ

0

xn+1dx =
n

θn
θn+2

n+ 2
=

nθ2

n+ 2
.

Hence

Varθ(X(n)) =
nθ2

n+ 2
−
(

n

n+ 1

)2

θ2

= θ2n

(
(n+ 1)2 − n(n+ 2)

(n+ 2)(n+ 1)2

)
= θ2 n

(n+ 2)(n+ 1)2
.

Hence

Var(T (X)) = θ2 (n+ 1)2

n2

(
n

(n+ 2)(n+ 1)2

)
=

θ2

n(n+ 2)
≤ θ2

n2
,

which has rate O(n−2), or, in terms of the standard deviation,√
Var(T (X) ≤ θ

n
,
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much faster than in cases where smoothness implies the information bounds
holds; compare to X in the normal model, at rate 1/

√
n.

We now consider the multiple parameter Information Inequality. Par-
allel to the one dimensional case, in the multidimensional case we X ∼
p(x, θ), θ ∈ Rd. Again we consider the score function

U(θ,X) =
∂ log p(x; θ)

dθ
∈ Rd×1,

the gradient with respect to θ, and define I(θ) ∈ Rd×d the information
matrix, which is its variance

I(θ) = Varθ(U(θ,X)).

Define the partial order on non-negative definite matrices. We say

Σ ≥ Γ if Σ− Γ is positive definite,

that is, if

aTΣa ≥ aTΓa for all a.

Note that in this notation we have Σ is non-negative definite if and only if
Σ ≥ 0.

Say we want to estimate a vector

q(θ) ∈ R1×r by the statistic T (X) ∈ R1×r

with expectation given by

EθT (X) = g(θ) =

∫
T (x)p(x; θ)dx =

∫
p(x; θ)T (x)dx ∈ R1×r.

For instance, for a Γ(α, β) we may want to estimate

q(θ) = (αβ, αβ2),

the mean and variance of the distribution.
The multiparameter information inequality says that, under regularity,

Varθ(T (X)T) ≥ ġ(θ)
T
I(θ)−1ġ(θ).

Clearly this inequality reduces to the one already shown in the case d = 1.
Note that the derivative

ġ(θ) ∈ Rd×r,

so that each column of ġ is the gradient with respect to θ of the row entry
of g.

For the proof, we assume we can differentiate under the integral, (and
noting that the density p(x; θ) is placed before T (X) so that the dimensions
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work out when we differentiate) we form

ġ(θ) =

∫
∂

∂θ
p(x, θ)T (X)dx

=

∫ ∂
∂θp(x, θ)

p(x; θ)
T (X)p(x; θ)dx

= EθU(X, θ)T (X) = Cov(U(X, θ), TT(X)).

Now we use

Cov(AX,BY ) = ACov(X,Y )BT and Cov(X,Y ) = Cov(Y,X)T

to derive

0 ≤ Varθ(T (X)T − ġ(θ)TI(θ)−1U(θ,X)))

= Varθ(T (X))T − Cov(T (X)T, ġ(θ)TI(θ)−1U(θ,X))

− Cov(ġ(θ)TI(θ)−1U(θ,X), T (X)T) + Varθ(ġ(θ)TI(θ)−1U(θ,X))

= Varθ(T (X))T − Cov(T (X)T, U(θ,X))I(θ)−1ġ(θ)

− ġ(θ)TI(θ)−1Cov(U(θ,X), T (X)T) + Varθ(ġ(θ)TI(θ)−1U(θ,X))

= Varθ(T (X))T − ġ(θ)TI(θ)−1ġ(θ)

− ġ(θ)TI(θ)−1ġ(θ) + ġ(θ)TI(θ)−1Varθ(U(θ,X))I(θ)−1ġ(θ)

= Varθ(T (X)T)− ġ(θ)TI(θ)−1ġ(θ),

which is the desired result.
Lets consider the two dimensional case d = 2, when we interested in

unbiased estimates of the components of the θ vector, that is, the values of
the parameters themselves. Lets write

I =

[
I11 I12

I12 I22

]
for the information matrix. If θ2 is known, then only θ1 is a parameter, and
the previous one dimensional results apply to yield the bound

Varθ(T (X)) ≥ 1

I11
.

When θ2 is unknown, we derive a lower bound of the form

Varθ(T (X)) ≥ 1

I∗11

.

for some number I∗11, which we call the effective information. To find I∗11,
take g(θ) = θ1, so that

ġ(θ) = (1, 0)T

to obtain the lower bound

Varθ(T (X)) ≥ ġ(θ)
T
I−1ġ(θ) = (I−1)11 =

I22

I11I22 − I2
12
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as

I−1 =
1

I11I22 − I2
12

[
I22 −I12

−I12 I11

]
.

Hence,

I∗11 =
I11I22 − I2

12

I22
= I11 −

I2
12

I22
= I11 − I11

I2
12

I11I22
= I11(1− ρ2),

where

ρ = Cor(U1, U2)

the correlation between the score for θ1 and θ2. Note that the presence of
the unknown θ2 decreases the available information, as clearly,

I∗11 ≤ I11.

Note that the amount that I11 gets cut down by due to the presence of
the unknown parameters, which gets worse and worse as the scores get
more and more correlated, until finally there is zero information, and the
parameter is not identifiable.

How as it in the normal case that ignorance of σ2 did not affect the
estimation of µ, while ignore of µ did affect the estimation of σ2. The first
fact indicates that the information is diagonal, since the information for µ
seemed to have not decreased when we consider σ2 unknown, suggesting
I∗11 = I11, which is true only when I is diagonal. But the second fact, that
ignorance of µ affects the estimation of σ2, suggests just the opposite. Lets
examine the score functions to see which is correct.

Recalling the scores for µ and for σ2, from (11.4) and (11.5),

U(x;µ) =
1

σ2
(x− µ),

and

U(x;σ2) =
∂

∂σ2
log p(x; θ) = − 1

2σ2
+

1

2σ4
(x− µ)2,

we have already determined the diagonal elements of I when considering
the estimation of each parameter when the other is known, in particular,
we found that

I11 =
1

σ2
and I22 =

1

2σ4
.

As for the diagonal element, note that the two score functions above (having
mean zero) are uncorrelated, since

E(X − µ)k = 0 for all odd k.

Hence the information matrix I is diagonal, in particular,

I(θ) =

[
1
σ2 0
0 1

2σ4

]
and I−1(θ) =

[
σ2 0
0 2σ4

]
.
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That I is diagonal is consistent with the fact that ignorance of σ2 does not
effect estimation of µ. But what about estimation of σ2, with lower bound,
whether µ is known or not, of

Var(T (X)) ≥ 2σ4

n
.

We have already shown the bound is achieved when µ is known. When µ
is unknown, the Lehmann Scheffe shows that

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2

is UMVU. Using our results we showed for quadratic forms on the
multivariate normal distribution, we proved

(n− 1)

σ2
S2 ∼ χ2

n−1 so Varθ

(
(n− 1)

σ2
S2

)
= 2(n− 1).

yielding Var(S2) =
2σ4

n− 1
>

2σ4

n
.

Since S2 is UMVU, when µ is unknown the information bound is not
achievable. Note the theorem in no way guarantees that there will exist
an estimator which achieves the bound.

Though the bound is not achievable for finite samples, though as n→∞
the ratio (n− 1)/n→ 1, so asymptotically it won’t make much difference.
Later we will example where where ignorance of one parameter makes a
difference in the estimation of the other, even as n→∞.

Still with d = 2, lets consider an example where we are interested in some
function q(θ) of the two parameters, rather than their values. Consider then
the estimation of the signal to noise ratio from a normal sample, that is,

g(µ, σ2) =
µ

σ
;

the inverse of this quantity is known as the coefficient of variation. The
gradient vector of g is

ġ(µ, σ2) =

[
1
σ−µ

2σ3

]
.

Multiplying, we find the bound of

ġ(µ, σ2)TI−1ġ(µ, σ2) = [
1

σ
,
−µ
2σ3

]

[
σ2 0
0 2σ4

] [
1
σ−µ

2σ3

]
= 1 +

1

2
(
µ

σ
)2.

Hence, for n iid observations, one has

Varθ(X) ≥ 1

n

(
1 +

1

2

(µ
σ

)2
)
.
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It is actually not clear whether one can find an unbiased estimator. Still,
what if you use

T =
X̄

S
.

Will be biased (by Jensen’s inequality) but one can still find if it achieves
the bound when compared to all estimators having the same expectation.

Lets consider the Gamma family with both parameters unknown,

p(x; θ) =
xα−1e−x/β

Γ(α)βα
x > 0.

We introduce the digamma and trigamma functions, which are the the first
and second derivative, respectively, of the log of gamma function

ψ(α) =
d log Γ(α)

dα
=

Γ′(α)

Γ(α)
and £(α) = ψ′(α).

To begin to compute the score functions for the Gamma family, we take
log of the density and obtain

log p(x; θ) = (α− 1) log x− x/β − log Γ(α)− α log β.

Taking partial with respect to α we obtain,

Uα(x; θ) =
∂

∂α
log p(x; θ) = log x− ψ(α)− log β,

and with respect to β,

Uβ(x; θ) =
∂

∂β
log p(x; θ) =

x

β2
− α

β
. (11.7)

Computing the information by the second derivative formula, we have

Iαα = −Eθ
(
∂2

∂α2
log p(X; θ)

)
= ψ′(α) = £(α).

Recalling the mean of the Gamma distribution is given by EθX = αβ, or
just using the fact that the score has mean zero, we have

Iββ = −Eθ
(
∂2

∂β2
log p(X; θ)

)
= −Eθ

(
−2X

β3
+

α

β2

)
=

α

β2
.

Lastly, the mixed partial derivative gives the off diagonal element, by, say,
taking partial with respect to α in (11.7),

−Eθ
(

∂2

∂α∂β
log p(x; θ)

)
=

1

β
.

In particular, then, the information matrix

I =

[
£(α) 1

β
1
β

α
β2

]
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is not diagonal. As the score functions are not linearly related, the ma-
trix must be strictly positive definite, and in particular, its determinant is
positive; this is quite hard to prove by simply using the definitions of the
derivatives of the Gamma function.

Computing the inverse,

I(θ)−1 =

[
£(α) 1

β
1
β

α
β2

]−1

=
β2

α£(α)− 1

[ α
β2 − 1

β

− 1
β £(α)

]
.

Note that the average of score functions Uβ(x, θ) in (11.7) in β is linearly
related to X, having mean αβ. Hence,

Tα(X) =
X

α

is UMVU of β when α is known. We may double check, by noting that

Var(Tα(X)) =
β2

nα
= (nIββ)−1,

that is, Tα(X) achieves the Cramer Rao bound for the estimation of β. But
if α is unknown then we cannot form this estimator. This is in some sense
similar to what happened in the normal case for the estimation of variance,
but there the matrix was diagonal and we were able to achieve the bound
asymptotically. In this case the off diagonal element of the information
matrix is nonzero, and we get into some trouble with the estimation of β
when α is unknown, even asymptotically.

In particular, the variance bound for β when α is not known is the corner
entry (I−1)22. Since I is positive definite, and the determinant of a positive
definite matrix is positive, we have

α£(α)− 1 > 0

and therefore

(I−1)22 =
β2£(α)

n(α£(α)− 1)
>
β2

nα
,

that is, the best variance which can be achieved in this case is strictly larger
than the variance which is achieved when α is known.

As an aside, regading the trigamma function, differentiating the Gamma
function under the integral we obtain

Γ(m)(α) =

∫ ∞
0

[log x]mxα−1e−xdx,

so that for X ∼ Γ(α, 1)

E[logX]m =
Γ(m)(α)

Γ(α)
so in particular £(α) = Var(X) ≥ 0.
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Regression example with normal errors, first lets consider σ2 known,

Yi = β0 + β1xi + εi or that Yi ∼ N (β0 + β1xi, σ
2),

how much does ignorance of β0 hurt in the estimation of β1. The density
for one observation is given by

p(yi, θ) =
1√
2πσ

exp(− 1

2σ2
(yi − β0 − β1xi)

2)

which has logarithm

log p(yi, θ) = −1

2
log 2π − 1

2
log σ2 − 1

2σ2
(yi − β0 − β1xi)

2,

and taking partial derivatives with respect to β0 yields

∂ log p

∂β0
=

1

σ2
(y − β0 − β1x)

∂2 log p

∂β2
0

= − 1

σ2

and with respect to β1,

∂ log p

∂β1
=

1

σ2
(y − β0 − β1x)x

∂2 log p

∂β2
1

= −x
2

σ2

and a mixed partial of

∂2 log p

∂β1β0
= − x

σ2
.

Note that none of these quantities depend on the random y.
Hence

I(β) =
n

σ2

[
1 x̄
x̄ x̄2

]
and I−1(β) =

σ2

n(x̄2 − x̄2)

[
x̄2 −x̄
−x̄ 1

]
So the variance bounds for the slope, in the cases where the intercept is
known, and not known, respectively are

σ2

nx̄2
and

σ2

n(x̄2 − x̄2)
,

the latter of which which is clearly larger. In particular, these are equal if
and only if x̄ = 0.
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