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Estimating Equations and Maximum
Likelihood asymptotics

Here we give a rigorous account of the consistency and asymptotic normal-
ity for certain solutions of estimating equations, of which least squares and
maximum likelihood estimation are special cases. Though the material and
the proof in particular are technical, it is worthwhile to understand the
conditions under which these types of estimators have such desired prop-
erties, and how those conditions can be verified, as is done in the examples
that follow.

Let be given n ∈ N and a set χ, a random vector X ∈ χn, a parameter
set Θ ⊂ Rp with non-empty interior and a function Un : χn ×Θ→ Rp. We
consider the estimating equation

Un(X, θ) = 0, θ ∈ Θ. (19.1)

For least squares estimation, say pairs (Xi, Yi), i = 1, . . . , n with
distribution depending on θ are observed for which

E[Yi|Xi] = fi(Xi; θ)

for fi(x; θ) in some parametric class of functions. The least squares estimate
of θ is given as the minimizer of

J(θ; X) =
1

2n

n∑
i=1

(yi − fi(Xi; θ))
2
,
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which under smoothness conditions can be obtained via (19.1) with

Un(x, θ) = ∂θJ(θ; x) =
1

n

n∑
i=1

(fi(xi; θ)− yi) ∂θfi(xi; θ). (19.2)

In the following, ∂θ as in (19.2) applied to a real valued function depending
on a vector parameter θ returns a gradient vector, and likewise ∂2

θ returns
a matrix of second partial derivatives. Further, functions appearing here in
connection with estimating equations may notationally appear to depend
only on the argument θ.

For maximum likelihood, under smoothness conditions on the density
p(x; θ) of X, the maximizer of the log likelihood Ln(θ; x) = log p(x; θ) is
given as a solution to (19.1) for

Un(X, θ) = ∂θLn(θ; X).

In typical cases, one observes independent vectors Xi for i = 1, . . . , n
which have distributions pi(xi; θ) from given parametric families. Hence,
the collection X of these vectors has density, or likelihood, given by the
product

p(x; θ) =

n∏
i=1

pi(xi, θ) with log likelihood Ln(θ) = log p(x; θ).

Under smoothness, the maximizer can be found by setting the derivative
of the logarithm Ln(θ) to zero, resulting in the estimating function

Un(x; θ) =

n∑
i=1

∂θ log pi(xi, θ).

The aim of the estimating equation Un(X, θ) = 0 is to provide a value
close to the one where the function Un(X, θ), written also as Un(θ) for short,
takes the value of 0 in some expected, or asymptotic sense. In particular,
in Theorem 19.0.1 we will show that the roots of the estimating equation
lie close to the value θ0 ∈ Θ for which the function Un(θ), with appropriate
scaling, is zero as n → ∞, or, more precisely for which there exists a se-
quence of real numbers an for which anUn(θ0)→p 0, see Condition (19.4).
In Theorem 19.0.2, we will also provide a corresponding limiting distribu-
tion result for consistent solutions to the estimating equation (19.1). Let
Un(X, θ) have components

Un(Xn, θ) = (Un,j(Xn, θ))1≤j≤p where Un,j : Rn ×Θ→ R.

In the case of maximum likelihood estimation, where the function Un(θ)
is given by the derivative of the log likelihood Ln(θ), and under the as-
sumption of the existence and continuity of second derivatives in θ, by the
equality of the mixed partial derivatives, we have

∂Un,j(θ)
∂θa

=
∂2Ln(θ)

∂θa∂θj
=
∂2Ln(θ)

∂θj∂θa
=
∂Un,a(θ)

∂θj
,
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that is, U ′n(θ) is the symmetric observed information matrix, and condition
(19.5) below is equivalent to the condition that the limiting information
matrix is positive definite.

As in general ∂Un,j(θ)/∂θa is not necessarily equal to ∂Un,a(θ)/∂θj the
limiting matrix Γ in (19.4) may not be symmetric. In general condition
(19.5) below is equivalent to the condition that Γ + ΓT is positive definite.
We let |·| denote the Euclidean norm of a vector in Rp, and also the operator
norm of a matrix in Rp×p. We also let ∂k denote the result of taking the
partial with respect to the kth coordinate, and use similar notation for
higher order derivatives. Further, for θ ∈ Θ let j, k entry of

U ′n(θ) ∈ Rp×p be given by (U ′n(θ)j,k = ∂kUn,j(θ)).

Over each coordinate j = 1, . . . , p we will make use of the second order
Talyor expansion of Un,j(θ) about zero,

Un,j(θ) = Un,j(0) +

p∑
k=1

∂kUn,j(0)θk +
1

2

∑
1≤k,l≤p

θk∂k,lUn,j(θ∗n,j)θl, (19.3)

where θ∗n,j lies on the line segment connecting θ and 0.

Theorem 19.0.1 Suppose that there exists θ0 ∈ Θ, a sequence of real
numbers an, and a matrix Γ ∈ Rp×p such that

anUn(θ0)→p 0 and anU ′n(θ0)→p Γ, (19.4)

and that Un(θ) is twice continuously differentiable in an open set Θ0 ⊂ Θ
containing θ0. Assume that for some γ > 0 that Γ satisfies

inf
|θ|=1

θTΓθ = γ. (19.5)

Further, for any η ∈ (0, 1), suppose there exists a K such that for all n
sufficiently large,

P (|an∂k,lUn,j(θ)| ≤ K, 1 ≤ k, l, j ≤ p, θ ∈ Θ0) ≥ 1− η. (19.6)

Then for any given ε > 0 and η ∈ (0, 1), for all n sufficiently large, with

probability at least 1 − η there exists θ̂n ∈ Θ satisfying Un(θ̂n) = 0 and

|θ̂n − θ0| ≤ ε. Thus, there exists a sequence of roots to the estimating
equation (19.1) consistent for θ0.

In addition, for any sequence θ̂n →p θ0, we have

anU ′n(θ̂n)→p Γ, (19.7)

that is, Γ can be consistently estimated by anU ′n(θ̂n) from any sequence
consistent for θ0.

Proof: By replacing Un by anUn and θ by θ− θ0, we may assume that the
conditions of Theorem 19.0.1 hold with an = 1 and θ0 = 0, and so (19.3)
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is in force. For δ > 0 let

Bδ = {θ : |θ| ≤ δ}.

For the given η ∈ (0, 1), let K and n0 be such that (19.6) holds with η
replaced by η/2 for n ≥ n0. For the given ε > 0, take δ ∈ (0, ε) such that

Bδ ⊂ Θ0 and Cδ < γ where C = 2 +
1

2
K.

Now by (19.4) there exists n1 ≥ n0 such that for n ≥ n1, with probability
for each event below at least 1− η/2,

|Un(0)| < δ2 and |U ′n(0)− Γ| < δ. (19.8)

Let Rn = (Rn,1, . . . , Rn,p)
T have components

Rn,j =
∑

1≤k,l≤p

θk∂k,lUn,j(θ∗n,j)θl.

Then, for n ≥ n1 and θ ∈ Bδ, with probability at least 1− η, from (19.3),
(19.8) and (19.6),

|Un(θ)− Γθ| ≤ |Un(θ)− U ′n(0)θ|+ |U ′n(0)θ − Γθ|

= |Un(0) +
1

2
Rn|+ |(U ′n(0)− Γ)θ|

< δ2 +
1

2
K|θ|2 + δ|θ| ≤ Cδ2,

so

|θTUn(θ)− θTΓθ| < Cδ3.

Hence, if |θ| = δ,

θTUn(θ) > θTΓθ − Cδ3 ≥ γδ2 − Cδ3 = δ2(γ − Cδ) > 0.

Now we argue as in Lemma 2 of Aitchison, John, and S. D. Silvey.
“Maximum-likelihood estimation of parameters subject to restraints,” An-
nals of Mathematical Statistics (1958): 813-828. Assume for the sake of
contradiction that Un(θ) does not have a root in Bδ. Then for θ ∈ Bδ, the
function f(θ) = −δUn(θ)/|Un(θ)| continuously maps Bδ to itself. By the
Brouwer fixed point theorem, there exists ϑ ∈ Bδ, with f(ϑ) = ϑ. Since
|f(θ)| = δ for all θ ∈ Bδ, we have |f(ϑ)| = |ϑ| = δ, which gives the contra-
diction δ2 = |ϑ|2 = ϑTϑ = ϑTf(ϑ) < 0. Hence Un(θ) has a root within δ of
0, and since δ < ε, therefore within ε, as required.

To prove (19.7), a first order Talyor expansion yields

∂kUn,j(θ̂n) = ∂kUn,j(0) +

p∑
l=1

∂k,lUn,j(θ∗n,j)θ̂n,l

:= ∂kUn,j(0) +QT
n,k,j θ̂n
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where QT
n,k,j = (∂k,1Un,j(θ∗n,j), . . . , ∂k,pUn,j(θ∗n,j)) and θ∗n,j lies along the

line segment connecting θ̂n and 0. Writing this identity out in vector
notation, we have

U ′n(θ̂)− U ′n(0) = Qn where (Qn)k,j = QT
n,k,j θ̂n.

Let η ∈ (0, 1) and ε > 0 be given, choose δ ∈ (0, ε/Kp3/2) so that
Bδ ⊂ Θ0, and let K and n2 be such that for all n ≥ n2, with probability
at least 1 − η, |∂k,lUn(θ)| ≤ K for all 1 ≤ k, l ≤ p and |θ̂n| ≤ δ. Then, for
n ≥ n2 with probability at least 1−η. each entry of the matrix Qn satisfies
the inequality

|QTn,k,j θ̂n| ≤ K
√
pδ ≤ ε/p.

It follows that

|U ′n(θ̂)− U ′n(0)| = |Qn| ≤ ε.

The claim follows, since ε and η are arbitrary, and U ′n(0) →p Γ by
assumption.

Theorem 19.0.2 Suppose the sequence of solutions θ̂n to (19.1) is con-
sistent for θ0, let an be a sequence of real numbers for which the second
condition of (19.4) and (19.6) hold, assume that the matrix Γ is non-
singular and that Un(θ) is twice differentiable in an open set Θ0 ⊂ Θ
containing θ0. Further, let bn be a sequence of real numbers such that for
some random variable Y ,

bnUn(θ0) →d Y. (19.9)

Then

bn
an

(θ̂n − θ0)→d −Γ−1Y.

Proof: As in the proof of Theorem 19.0.1, without loss of generality take
an = 1, and θ0 = 0. Since the limit in distribution does not depend on
events of vanishingly small probability, we may assume that for all n suffi-
ciently large θ̂n ∈ Θ0, and |∂k,jUn(θ)| ≤ K for all 1 ≤ j, k ≤ p and θ ∈ Θ0

for some K. For such n the expansion (19.3) holds, and substituting θ̂n for

θ and using Un(θ̂n) = 0 yields

−Un(0) = (U ′n(0) + εn)θ̂n = Γnθ̂n

where εn is the matrix with components

(εn)j,l =
1

2

∑
k

θ̂n,k∂k,lUn,j(θ∗n,j) and Γn = U ′n(0) + εn.

Since, by the Cauchy-Schwarz inequality,

|(εn)j,l| ≤
√
p

2
K|θ̂n| →p 0,
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we have Γn →p Γ so that Γ−1
n exists with probability tending to 1, and

converges in probability to Γ−1; set Γ−1 = 0 arbitrarily when Γ is singular.
Now using (19.9) and Slutsky’s theorem, on an event of probability tending
to one as n tends to infinity,

bnθ̂n = Γ−1
n

(
bnΓnθ̂n

)
= −Γ−1

n (bnUn(0))→d −Γ−1Y.

In the independent case, and in one dimension, distributional conver-
gence is shown by applying the Central Limit Theorem to a sum

Sn =

n∑
i=1

Xi

of independent random variables with Var(Xi) = σ2
i , and s2

n =
∑n
i=1 σ

2
i .

In this case,

Sn − E[Sn]

sn
→d N (0, 1)

when the Lindeberg condition is satisfied, that is, when

∀ε > 0 lim
n→∞

1

s2
n

n∑
i=1

E
[
(Xi − E[Xi])

21(|Xi − E[Xi]| > εsn)
]

= 0.

(19.10)

This condition holds, generally speaking, when all the summands contribute
the same order to the total variance. It is a bit unwieldy to check, but one
can obtain a stronger condition that implies (19.10) and that is easier to
verify. Indeed, by Hölder’s inequality with p = 3/2, q = 3, followed by
Markov’s inequality, we obtain the following bound on the summmands,

E
[
(Xi − E[Xi])

21(|Xi − E[Xi]| > εsn)
]

≤
(
E|Xi − E[Xi]|3

)2/3
(P (|Xi − E[Xi]| > εsn))

1/3

≤
(
E|Xi − E[Xi]|3

)2/3(E|Xi − E[Xi]|3

ε3s3
n

)1/3

=
E|Xi − E[Xi]|3

εsn
.

Hence (19.10) is satisfied if

lim
n→∞

1

s3
n

n∑
i=1

E|Xi − E[Xi]|3 = 0. (19.11)

One of the main applications of Theorems 19.0.1 and 19.0.2 is to maxi-
mum likelihood estimators, and to verify the conditions of these theorems
for that setting it helps to have at hand ways to confirm that differentia-
tion under the integral is allowed. In particular, the dominated convergence
theorem says that if fn → f pointwise, and |fn| ≤ g almost everywhere on
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an arbitrary measure space (χ,M, µ), and
∫
g <∞, then∫

fn →
∫
f. (19.12)

We can apply the dominated convergence theorem to derive the following
lemma to verify that integration and differentiation with respect to θ ∈ B ⊂
Rp can be interchanged.

Lemma 19.0.1 Let the function f : Rn × B → R be differentiable with
respect to θ in an open set B0 ⊂ B, and suppose that there exists g : Rn → R
such that ∫

g(x)dx <∞,

and for all θ ∈ B0,

| ∂
∂θ
f(x; θ)| ≤ g(x).

Then for all θ ∈ B0,

∂

∂θ

∫
f(x; θ)dx =

∫
∂

∂θ
f(x; θ)dx. (19.13)

Proof: Since (19.13) is true if and only if it is true componentwise, it
suffices to consider a real valued function f . For β ∈ B0, take any θn → θ.
Then for all n sufficiently large βn lies in an open ball B0 centered at β.
For such n, let

fn(x; θ) =
f(x; θn)− f(x; θ)

θn − θ
.

By the mean value theorem, the ratio equals ∂f(x;β∗n)/∂β for some β∗n on
the line segment connecting β and βn, therefore lying in the ball B0. Hence
for all β ∈ B0 and large n,

|fn(x; θ)| ≤ g(x),

and therefore (19.13) holds by (19.12), since f(x;β) is given by the limit
limn→∞ fn(x;β) = ∂f(x;β)/∂β.

When f and g satisfy the conditions of Lemma 19.0.1 we say that f ′ is
L1 dominated in B0.

We now focus on the case where we have n observations from the model
of the form

yi = fi(xi; θ0) + εi, (19.14)

where εi, i = 1, . . . , n are independent, mean zero random variables with
finite variance, and θ is estimated via least squares. From (19.2) we have

Un(x, θ) =
1

n

n∑
i=1

(fi(xi; θ)− yi) ∂θfi(xi; θ). (19.15)
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In this case, we have

Un(x, θ) =
1

n

n∑
i=1

(fi(xi; θ)− fi(xi; θ0)− εi) ∂θfi(xi; θ)

=
1

n

n∑
i=1

(fi(xi; θ)− fi(xi; θ0))∂θfi(xi; θ))−
1

n

n∑
i=1

εi∂θfi(xi; θ). (19.16)

In particular,

Un(x, θ0) = − 1

n

n∑
i=1

εi∂θfi(xi; θ0).

Here is a toy example to illustrate the theorems and the conditions
needed to invoke them, in the problem of the estimation of an unknown
slope.

Example 19.0.1 Consider the following one dimensional case of the
linear model, where

fi(x; θ) = θx and we observe yi = θ0xi + εi, i = 1, . . . , n.

Suppose that εi, i = 1, 2, . . . have mean zero, variance σ2 and are
uncorrelated, and that for some γ > 0

1

n

n∑
i=1

x2
i → γ. (19.17)

From (19.16) we have

Un(x, θ) =
1

n

n∑
i=1

(θxi − θ0xi − εi)xi = (θ − θ0)
1

n

n∑
i=1

x2
i −

1

n

n∑
i=1

εixi

In this example, though we may directly find that the solution to the
estimating equation is given by

θ̂n = θ0 +

∑n
i=1 εixi∑n
i=1 x

2
i

,

which is easily seen to be consistent and asymptotically normal under sim-
ple assumptions on the sequence x1, . . . , xn and the errors ε1, . . . , εn. We
(neverthless) explore the verification of the conditions of the theorem.

For consistency, to verify the first condition in (19.4), we take θ = θ0

and an = 1, and obtain

Un(x, θ0) = − 1

n

n∑
i=1

εixi and Var

(
− 1

n

n∑
i=1

εixi

)
=
σ2

n2

n∑
i=1

x2
i → 0,
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thus showing that the first condition in (19.4) is satisfied. For the second
condition there, we have

U ′n(θ) =
1

n

n∑
i=1

x2
i → γ,

yielding (19.5). The second derivative condition (19.6) is satisfied trivially,
as U ′′(θ) = 0.

For Theorem 19.0.2, assuming now that the error terms are independent,
letting bn =

√
n we have

√
nU(θ0) = − 1√

n

n∑
i=1

εixi → N (0, σ2γ2)

when Lindeberg condition, or the stronger condition (19.11) derived above,
holds for the case at hand Let Xi = xiεi, and suppose that εi are mean zero
with constant variance σ2 and uniformly bounded absolute third moment
E|ε|3 ≤ τ3. Then

E[Xi] = 0, σ2
i = σ2x2

i and E|Xi|3 ≤ τ3|xi|3,

and condition (19.11) is satisfied when

lim
n→∞

τ3
∑n
i=1 |xi|3

σ3 (
∑n
i=1 x

2
i )

3/2
= 0.

If there exists ψ ∈ R such that

lim
n→∞

1

n

n∑
i=1

|xi|3 → ψ then

lim
n→∞

τ3
∑n
i=1 |xi|3

σ3 (
∑n
i=1 x

2
i )

3/2
= lim
n→∞

1√
n

τ3 1
n

∑n
i=1 |xi|3

σ3
(

1
n

∑n
i=1 x

2
i

)3/2 = 0,

as desired. In particular, the condition is (trivially) satisfied when xi = c, a
constant, or, say, when xi = i/n, i = 1, . . . , n. The conditions that εi have
constant variance can also be somewhat relaxed.

The next example takes on the situation where the observed value for
an individual i is some function of xi, known to lie in a parametric class of
functions, and additive noise.

Example 19.0.2 Suppose we observe

yi = f(xi, θ0) + εi i = 1, . . . , n

and estimate θ0 via least squares, minimizing

Jn(θ) =
1

2n

n∑
i=1

(f(xi, θ)− yi)2
=

1

2n

n∑
i=1

(f(xi, θ)− f(xi, θ0)− εi)2
.
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Taking derivative with respect to θ, we obtain the estimating equation
Un(θ) = 0 where

Un(θ) =
1

n

n∑
i=1

(f(xi, θ)− f(xi, θ0)− εi) ∂θf(xi, θ).

We have

U ′n(θ) =
1

n

n∑
i=1

(
(∂θf(xi, θ))

2
+ (f(xi, θ)− f(xi, θ0)− εi) ∂θf(xi, θ)

)
,

so in particular,

Un(θ0) = − 1

n

n∑
i=1

∂θf(xi, θ0)εi and

U ′n(θ0) =
1

n

n∑
i=1

(∂θf(xi, θ0))
2 − 1

n

n∑
i=1

εi∂θf(xi, θ0).

The two conditions in (19.4), and condition (19.5) will be satisfied, as in
Example (19.0.1), and under the conditions on the errors as there, when
there exists γ > 0 such that

lim
n→∞

1

n

n∑
i=1

(∂θf(xi, θ0))2 = γ.

When the limit of this sum exists, it will be positive under the condition,
say, that when x is chosen according to some distribution, then for some
τ > 0 we have P (|∂θf(X, θ)| ≥ τ) > 0. Similarly, if xi are deterministic,
then the limit will be positive when there exists a τ > 0 and a set χ such
that

inf
x∈χ
|∂θf(X, θ)| ≥ τ and lim inf

n→∞

1

n
|{i : xi ∈ χ}| > 0.

Returning to Example (19.0.1), for the case where x is chosen accord-
ing to a distribution, when f(x, θ) = θx then ∂θf(x, θ) = x and the
condition is equivalent to P (|x| = 0) < 1.

The reader may verify that Condition (19.6) holds under the foregoing
assumptions on the noise when ∂2

θf(x, θ) is uniformly bounded over an
open set containing θ0, now altogether yielding the existence of a consistent
sequence of roots to the estimating equation.

We leave the reader to explore sets of conditions on f(x, θ) under which
the hypotheses of Theorem (19.0.2) are satisfied, in particular, the Lindeberg
Condition for the guarantee of asymptotic normality.

Example 19.0.3 Maximum Likelihood Estimation in one dimension based
on an i.i.d. sample. Let the data Xn be composed of independent observa-
tions X1, . . . , Xn, each having density p(x; θ0), θ0 ∈ Θ ⊂ Rp. Let X denote
a variable with the common observation distribution.



198 19. Estimating Equations and Maximum Likelihood asymptotics

We first address the question of consistency of the MLE. Assume that
in some open set Θ0 ⊂ Θ containing θ0 the density p(x, θ) is twice differ-
entiable with respect to θ and that p′(x, θ) and p′′(x, θ) are L1 dominated,
that U(X, θ0) is a non-degenerate random variable with finite variance, and
there exists a function R(x) such that

|U ′′(X, θ)| ≤ R(X) for all θ ∈ Θ0 and E[R(X)] <∞. (19.18)

We show that the conditions of Theorem 19.0.1 hold with an = 1/n and
Γ = IX(θ0), which we denote by I0 for short.

Since p′(x, θ) is L1 dominated in a neighborhood of θ0, Proposition 19.0.1
with f(x; θ) = p(x; θ) at θ0 justifies the interchange of differentiation and
integration, and hence that

E[U(X; θ0)] = E[∂θ log p(x; θ0)] =

∫
∂θp(x; θ0)

= ∂θ

∫
p(x, θ)dx = ∂θ1 = 0.

Since the score function

Un(Xn, θ0) =

n∑
i=1

∂θ log p(Xi; θ0)

is therefore the sum of mean zero i.i.d random variables, the first condition
in (19.4) is satisfied with an = 1/n by the law of large numbers.

Since the second derivative of p(x, θ) is also dominated, the interchanges
allowed by Proposition 19.0.1 show that the information ‘matrix’ I0, here of
dimension 1×1, can be obtained either as the variance of the score function
U(X, θ) or as the negative of the expected value of U ′(X, θ). It must be non-
zero, by our assumption of non-degeneracy. Since U ′n is the sum of i.i.d.
variables all with mean I, the second condition in (19.4) is satisfied with
an = 1/n by the law of large numbers with Γ = I0.

It remains to verify (19.6). Since R(X) is integrable, for given η ∈ (0, 1)
take K we may take K so large that E[R(X)]/K ≤ η. Now, by (19.18) and
the Markov inequality

P (
1

n

n∑
i=1

|U ′′(Xi, θ)| ≥ K, θ ∈ Θ0) ≤ P (
1

n

n∑
i=1

R(Xi) ≥ K)

≤ ER(X)

K
≤ η.

The hypotheses of Theorem 19.0.1 are satisfied, therefore there exists a
consistent sequence of roots to the likelihood equation.

To invoke Theorem 19.0.2 it is necessary only to verify (19.9). The
classical CLT for i.i.d. variables gives

1√
n

n∑
i=1

Un(Xi, θ0)→d Y where Y ∼ N (0, I0),
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so that (19.9) is satisfied with bn = n−1/2. Hence, since bn/an =
√
n and

I−1
0 Y ∼ N (0, I−1

0 ), Theorem 19.0.2 yields that for a consistent sequence of

roots θ̂n for θ0,
√
n(θ̂n − θ0)→d N (0, I−1

0 ).

We consider the application of the conditions above to the estimation
of the parameter θ0 ∈ (0,∞) from an i.i.d. sample having the exponential
distribution

p(x; θ0) = θ0 exp(−θ0x), x > 0.

Differentiating,

p′(x; θ) = (1− θx) exp(−θx) and p′′(x; θ) = (θx2 − 2x) exp(−θx).

Let 0 < θL < θ0 < θU <∞. Then for all θ ∈ Θ0 = (θL, θU ),

|p′(X; θ)| ≤ (1 + θUX) exp(−θLX)

and

|p′′(X; θ)| ≤ (2X + θUX
2) exp(−θLX),

so that p′ and p′′ are L1 dominated.
The score function and its first two derivatives at θ0 are

U(x, θ0) = 1− θ0x, U ′(x, θ0) = −x, and U ′′(x, θ0) = 0,

so that U ′(X, θ0) is a non-degenerate random variable with finite variance
θ0, and (19.18) is trivially satisfied.

Hence, there exists a consistent sequence of roots θ̂n to the estimating
equation, and these satisfy

√
n
(
θ̂n − θ0

)
→d N (0, 1/θ0).
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