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Convergence to the Poisson distribution, for the number of occurrences of 
dependent events, can often be established by computing only first and 
second moments, but not higher ones. This remarkable result is due to Chen 
(1975). The method also provides an upper bound on the total variation 
distance to the Poisson distribution, and succeeds in cases where third and 
higher moments blow up. This paper presents Chen's results in a form that is 
easy to use and gives a multivariable extension, which gives an upper bound 
on the total variation distance between a sequence of dependent indicator 
functions and a Poisson process with the same intensity. A corollary of this is 
an upper bound on the total variation distance between a sequence of 
dependent indicator variables and the process having the same marginals but 
independent coordinates. 

1. Introduction. Convergence to the Poisson distribution, for the number of 
occurrences of dependent events, can often be established by computing only 
first and second moments, but not higher ones. This remarkable result is due to 
Chen (1975). The method also provides an upper bound on the total variation 
distance to the Poisson distribution and succeeds in cases where third and higher 
moments blow up. This paper presents Chen's results in a form that is easy to 
use and gives a multivariable extension, which gives an upper bound on the total 
variation distance between a sequence of dependent indicator functions and a 
Poisson process with the same intensity. A corollary of this is an upper bound on 
the total variation distance between a sequence of dependent indicator variables 
and the process having the same marginals but independent coordinates. 

The surprisingly wide applicability of Poisson approximations is very nicely 
described in notes on the "Poisson clumping heuristic" by Aldous (1987). Chen's 
method works directly in situations involving "clumps" of occurrences provided 
that each clump {Yf(), Ya(2),... } can be identified with a single index Xa. Such 
identification is used in Section 3, in Examples 3-5, which all involve the 
extremes of a stochastic process. The distribution of extremes is analyzed, as in 
Watson (1954), via the random number W of exceedances of a test value, so that 
the quality of the approximation of P(W = 0) by e-EW is given special attention 
in Theorem 1. 

Chen's method is the adaptation to the Poisson distribution of Stein's differ- 
ential method for the normal distribution, presented, in Stein (1971). Both 
methods are discussed in a recent monograph by Stein (1986a). 
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10 R. ARRATIA, L. GOLDSTEIN AND L. GORDON 

Chen's method is applied to some random graph problems in Barbour (1982) 
and in Bollobas (1985) and to some statistical problems in Barbour and Eagleson 
(1983). There are many situations where a law of large numbers is proved by the 
first and second moments method-see Erdds and Renyi (1960) or Bollobas 
(1985). In many of these situations, Chen's method could be used to get a Poisson 
limit. Better bounds on the Poisson convergence for independent trials are given 
in Barbour and Hall (1984) and Barbour (1987a, b). See also Barbour and 
Eagleson (1984), Barbour and Holst (1987) and Barbour and Jensen (1987). More 
references are given in Example 2 of Section 3. 

This paper is organized as follows. Notation and the statements of our two 
theorems form Section 2. Theorem 1 is essentially contained in Chen (1975), and 
Theorem 2, which is a process version, is new. Theorem 3 is an easy corollary of 
Theorem 2 and gives a way of decoupling dependent events. Section 3 gives 
examples of applications. Section 4 defines and gives bounds on operators used in 
Chen's proof. Section 5 proves Theorem 1-all the ingredients of this proof are 
in Chen (1975) and Barbour and Eagleson (1983); but our presentation here is 
needed to prepare the way for the proof of Theorem 2, which is Section 6. 

2. Notation and statement of results. Let I be an arbitrary index set, and 
for a E I, let Xa be a Bernoulli random variable with Pa P(XXa = 1) = 
1 - P(Xa = 0) > 0. Let 

(1) W- EXa and X_ E W PaX 
asI asI 

We assume that X E (0, o). 
For each a E I, suppose we have chosen Ba C I with a' E Ba. We think of Ba 

as a "neighborhood of dependence" for a, such that Xa is independent or nearly 
independent of all of the X for /3 not in Ba. Define 

b1-- E EPa~pua 
asI 8 eB, 

b -- I, E Pace where pa,- E(XaXp), 
a I a* e B 

b3 E SI and b3- E 
asI asI 

where 

Sa-=E E{Xa-Pa |E X 

?Sa-E-E{Xa pIa(X : I -IBa)}). 

Loosely speaking, our results are that when bl, b2 and b3 are all small, then: 

1. The total number W of events is approximately Poisson (Theorem 1). 
2. The locations of the dependent events approximately form a Poisson process 

(Theorem 2). 
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POISSON APPROXIMATIONS 11 

3. The dependent events are almost indistinguishable from a collection of inde- 
pendent events having the same marginal probabilities (Theorem 3). 

Loosely, b1 measures the neighborhood size, b2 measures the expected num- 
ber of neighbors of a given occurrence and b' or b measures the dependence 
between an event and the number of occurrences outside its neighborhood. 

Let Z denote a Poisson random variable with mean X, so that for k= 
0 1, 2,.. ., P(Z =k) = e X-(Xk/k!). 

Let f, h: Z' R,whereZ'= {0,1,2,...},andwrite lihl- supk?Oh(k)l.We 
denote the total variation distance between the distributions of W and Z by 

I| '(W) - Y(Z) sup I Eh(W) - Eh(Z)I 
J~hjJ=1 

-2 sup IP(W E A) - P(Z E A)I. 
AcZt 

We observe that convergence in distribution is equivalent to convergence under 
the Prohorov metric, which coincides with half of the total variation distance on 
the set of probability measures supported on the integers. 

THEOREM 1. Let W be the number of occurrences of dependent events, and 
let Z be a Poisson random variable with EZ = EW = X. Then 

1(W) - (Z) < 2[(b1 + b2) X + b(1 A 1.4X-1/2) 

< 2(b1 + b2 + b3) 

and 

IP(W= 0) - e-X| < (b1 + b2 + bl)(1 - e-X)/X < (1 A C-1)(b1 + b2 + b3). 

THEOREM 2. For a E I, let Ya be a random variable whose distribution is 
Poisson with mean Pa with the Ya mutually independent. The total variation 
distance between the dependent Bernoulli process X (Xa)a ,, and the Pois- 
son process Y on I with intensity p(.), Y (Ya , satisfies 

IIY(X) - Y(Y) II < 2(2b1 + 2b2 + b3). 
This follows easily from the following finite-dimensional bound: Let the index 
set I be partitioned into disjoint nonempty subsets I(1),..., I(d), and let 

(2) W- Xa, Z- E Y and X. EWj= EZ1, 
a GE l( ) aGE l( ) 

so that W = W1 + + Wd and Z = Z1 + ? +Zd. The total variation dis- 
tance between the joint distribution of (W1,..., Wd) and (Z1,..., Zd) satisfies 

<2((W1A . 4. . n Wd)) - ((Zl b ? 2b Zd)) b 

< 2(1 A 1.4(min X i) -1/2) (2b, + 2b2 + b3). 

This content downloaded  on Sat, 9 Feb 2013 01:08:09 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


12 R. ARRATIA, L. GOLDSTEIN AND L. GORDON 

The corollary below follows by applying Theorem 2 to compare each of the 
Bernoulli processes X and X', whose support is {O, 1 }', with the Poisson process 
Y, whose support is {O, 1, 2.... }. For Theorem 2 applied to X', we use Ba = {a}, 
so that b1 = Ep.2 b2 = b3 = O. 

THEOREM 3. For a E I, let Xa' have the same distribution as Xa, with the Xa' 
mutually independent. The total variation distance between the dependent 
Bernoulli process X (Xa)a ,, and the independent Bernoulli process X' 
(Xai')eI having the same marginals, satisfies 

11 (X) - 9(X') II < 2(2 b, + 2 b2 + b3) + 4Ea2p. 

We observe that the total variation distance 112(X) - Y(X')Il can be inter- 
preted as twice the minimum value of P(X # X') over all realizations of both 
processes on the same probability space. By bounding the distance between X' 
and Y coordinatewise, we see that the 4Ep2p in Theorem 3 could be improved to 
2Epa2. 

OPEN PROBLEM. It is natural to ask, in cases in which Epp2 is not small, so 
that the Poisson approximation is not useful, what comparison can be made 
between a dependent Bernoulli process X and the independent Bernoulli process 
X' having the same marginals? 

In many applications, the appropriate choice of Ba makes Xa independent of 
a(XB: / E I - Ba), so that b3 = 0, and this can be verified without performing 
any calculations. In these situations, calculating b1 and b2 is essentially equiv- 
alent to computing the first and second moments of W-both tasks involve only 
the quantities Pa and Pan. The first sentence in this paper refers to these 
situations. In fact, when Xa is independent Of a(XB : E I - Ba), our upper 
bound on 112'(X) - ??(Y)II is 4(b1 + b2), and b2 - b, = E(W2) - X - V = 
E(W2) - E(Z2), so our upper bound is small if and only if both b1 is small, and 
the discrepancy in the second moment of W relative to the Poisson is small. In 
most applications, the quantities Pa and IBaJ are constant as a varies over I, so 
that b1 = X2IBaJ/III, hence for fixed X, b1 is small if and only if the neighbor- 
hood Ba is small relative to the entire index set. 

There are situations involving long-range dependence in which the Chen-Stein 
method is applicable, with b3 > 0. For example, to analyze the Mood test, which 
is based on the length of the longest head run in m + n tosses of a coin given 
that there are exactly n heads, the number of head runs of a test length t can be 
approximated along the lines of Example 3, but upper bounds on b3, as opposed 
to asymnptotic upper bounds, are quite messy to derive. Chen (1975) discusses an 
example with a "+O-mixing" condition on the Xa, so that a bound on b3 is 
available by hypothesis. 

Of course, two moments of W alone cannot determine the distribution of W, 
which is an arbitrary nonnegative integer valued random variable. But it is not 
so naive to ask whether or not a Poisson approximation could be established in 
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POISSON APPROXIMATIONS 13 

terms of just the quantities Pa and Pafi. For example, consider 

(3) bo _ p.? + ICOv(Xa, Xi)| 
asI a*/3ssI 

In those of our applications in Section 3 in which X stays bounded, bo is small 
and a Poisson approximation is valid. Is there a family of examples in which bo 
becomes arbitrarily small, whereas W stays bounded away from the Poisson? 
The reader is urged to try to resolve this question, before turning to our answer 
at the end of this paper, just before the references. 

3. Examples of applications. The following five examples are all discussed 
only at the level of Theorem 1. The last three involve the maximum of a 
stationary random sequence or random field. Each example may be viewed as a 
sequence of problems of increasing size, in which the number W of occurrences 
has a Poisson limit. A bound on the rate of convergence is obtained as a bonus. 

Theorem 2 gives "spatial" information about the locations of occurrences. It 
may be more convenient to use Theorem 2 to show that the locations of the 
occurrences converge to a spatial Poisson process in the usual sense, by taking 
appropriate rescalings and partitions of the index set. The approximation of a 
discrete intensity measure by its continuous limit then introduces another error 
(use your favorite metric on the space of nonnegative measures) on top of the 
approximation error controlled by Theorem 2. 

In Example 5, for instance, when X0 E (0, co) and m, n, t -> co so that 
X(m, n, t) -3 X 0, the random measure , =(i, j) eI: X,=18(i/m, i/n) where 8(x, y) 
denotes unit mass at the point (x, y), converges in distribution to the Poisson 
process on [0,1]2 with constant intensity X0 times Lebesgue measure. This 
example was our original motivation for proving Theorem 2; the Poisson process 
limit was established for the special case a = 1 and log(m)/log(n) -3 1 by the 
method of moments in Arratia, Gordon and Waterman (1986). 

In Examples 2-4, the first half of Example 1 and some cases of Example 5, the 
Poisson convergence could also have been established by the method of mo- 
ments. In the context of Poisson convergence, using the method of moments is 
equivalent to using Laplace transforms or using inclusion-exclusion; see, for 
example, Watson (1954) or Arratia, Gordon and Waterman (1986). Example 5, 
which arises naturally in trying to assess the significance of matchings between 
DNA sequences, has cases in which E(W3) -s co, whereas Chen's method proves 
that W converges in distribution to a Poisson limit. 

All our examples have cases, such as the second half of Example 1, in which 
both X -s o0, and the total variation distance to the Poisson distribution tends 
to 0. In these cases, the Poisson distribution may be approximated by the 
normal, so that Chen's method is an easy way of proving a central limit theorem. 

In summary, Chen's method of establishing a Poisson limit, compared with 
the method of moments or inclusion-exclusion, 
1. is easier to use; 
2. gives a rate of convergence; and 
3. may work even when moments higher than the second blow up. 
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14 R. ARRATIA, L. GOLDSTEIN AND L. GORDON 

EXAMPLE 1 (A random graph problem). This problem comes from Rinott. 
On the cube {0, 1}', assume that each of the n2'-1 edges is assigned a random 
direction by tossing a fair coin and consider W, the number of vertices at which 
all n edges point inward. Here, I is the set of all 2n vertices, Xa is the indicator 
that vertex a has all of its edges directed inward, Pa = 2-n and X = 1. We take 
Ba-{18: la-811 = 1}, so b2 = b3 = O and b, = III IBpa2 = XIBa[Pa-2-n. 
Thus IIY(W) - Y(Z)ll < 2b1 = 2n2-. 

There are many other tractable variants of this problem. We give an example 
in which X -> co at the same time that Chen's method works, so that the Poisson 
approximation may be further approximated by a normal. With the same cube 
and random edges, let W W(k, n) be the number of vertices at which exactly 
k edges point outward, so the special cases k = 0 was handled previously. Let I 
be the set of all 2n vertices and Xa be the indicator that vertex a has exactly k 
of its edges directed inward. We have 

Pa =2(k) and k 

Let Ba -{f: la - P1 = 1), so b3 = 0 and 

b, = npaX = n2-n(). 

For Ia - 1BI = 1, by conditioning on the direction of the edge between a and 1, 
we see that 

Pa - 22 2n )(n < ) Pa2 

so b2 < bl. Using X ? 1, Theorem 1 gives 

jjY(W) - 9(Z)jj < 2(b1 + b2)/X < 4b1/X = 4n2-n(). 

Notice that there are cases in which b1 -3 co, whereas bl/X -* 0 and the Poisson 
convergence is established. Notice also how easily Chen's method has yielded a 
central limit theorem: For k, n with 0 < k < n and n2n(- ) _ 0, 

{W(k, n) - () (_) 
converges in distribution to the standard normal. 

EXAMPLE 2 (The birthday problem). We first learned about Chen (1975) 
from a lecture on the birthday problem and its variants by Diaconis, who also 
suggested references on the birthday problem: Diaconis and Mosteller (1988), 
Janson (1986) and Stein (1986b), which gives proofs of more general results using 
similar techniques. 

Suppose n balls (people) are uniformly and independently distributed into d 
boxes (days of the year), and we want to approximate the probability that 
at least one box receives k or more balls, for fixed k = 2,3,.... Only in 
the "classical" case k = 2 is there a simple exact formula, P(W = 0) = 
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d-'d!l(d - n)!, but the Chen-Stein method is robust and easily establishes a 
simple approximation in many variants of the classical birthday problem. 

Let I {a c {1, 2,..., n}: la = k} and let Xa be the indicator of the event 
that the balls indexed by a all go into the same box. Then V a, Pa = dlk, 

- (*)d1-k and P(no box gets k or more balls) = P(W = 0) is approximated 
by 

P(Z = 0) = exp(-X) = exp (k()dlk}. 

We take Ba {- - EI: a n # 0), hence b3 = 0. Since 

IBal =I() - (n-k) 

we have b1 = p2III IBal = X2IBaI/III < X2k2n-1, with asymptotic equality as 
n -- oo. 

In the classical case k = 2 we have V a # 13, Pafi = Paipe, which is a nice 
natural example of pairwise but not mutual independence. Now 

b2 = III(IBaI - 1)Pao = bj(IBaI - 1)/IBaI < b, < 4X/n, 

so that 

11 '(W) -Y'(Z) II < {16X2(1 - e-A)/X}n-1. 
Direct comparison of P(W = 0) = d-nd!/(d - n)! and P(Z = 0) = e- shows 
that if n, d -- oo in such a way that X = n(n - 1)/2d is bounded away from 0 
and so, then 

jj Y(W) - Y(Z)j1 > 21P(W= 0) - P(Z = o)I > Cn- 

for some nonzero constant. Hence the bound on total variation distance, given 
easily by Chen's method, is sharp apart from a constant factor. 

In the general case k ? 2 we have 

b2 = kz( k) ()j (k j )dl 2k 

where the jth term is the contribution to b2 from pairs (a, 13) with Ia n P11 = i 
and Pa., = dl?+-2k. With d/n is large, the dominant contribution to b2 comes 
from the pairs (a, P3) with Ia n P11 = j = k - 1. Now take n, d s-*o in such a 
way that the ratio X/1 is bounded away from 0 and so, which we denote by 
X 1. Then nk dkl, bj IBal/lII n- and b2 nl+kdk n/d 
in- l/(k- 1). Thus for k ? 3 we have I I (W) - Y(Z)II = (n- l1/(k- 1)), with b2 
making the main contribution. 

The bounds above can be improved by a factor of k2/(k - 1)2 if we change 
the natural definition of Ba to the following less natural definition, in which we 
mAke a canonical choice of some element of a and allow 13 E Ba even if 13 
overlaps a at this one element: 

Ba -{ E3 I: (a - min(a)) n 13 # 0), 
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16 R. ARRATIA, L. GOLDSTEIN AND L. GORDON 

so that 

Ia= k - 1) ( k - 1 ) 

Since the distribution of the balls is uniform, we still have b3 = 0. 

EXAMPLE 3 (The longest perfect head run). Let 0 < p < 1 and Z0, Z1, Z2,... 
be an i.i.d. sequence with p = P(Zi = 1) = 1 - P(Zi = 0). Let R, be the length 
of the longest consecutive run of heads, i.e., l's, starting within the first n tosses. 
We observe that Rn is the maximum of n terms from a stationary sequence of 
dependent, geometrically distributed random variables. The asymptotic distribu- 
tion of Rn is discussed in Guibas and Odlyzko (1980) and in Gordon, Schilling 
and Waterman (1986), where a variant problem allowing a fixed number k of 
tails is also handled. 

Let I- {1, 2,..., n} and fix a positive integer "test" value t. Let X1 

Z1Z2 Zt, and 
for a = 2 to n, Xa - (1 - Zail)ZaZa,, Z 

As events, {Rn < t} = {W = 0). Notice that we are dealing directly with 
"boundary effects," so that the Xa are not stationary-X1 is different from the 
other Xa's. In Example 4 we handle the boundary by a different method, which 
would also work in this example. Now 

(4) A - (n, t) --EW = ptf (n - 1)(1 - p) +1} 
Let Ba. E{ I:1a - fI < t} for a = 1 to n, so that b2 = b3 = 0 and 

b1 < X2(2t + 1)/n + 2Xpt. The distribution of Rn is controlled by 

(5) IP(Rn < t) -e X(nt)I < bj(i A 1/X). 

Now X stays bounded away from 0 and so if and only if t - log1/p(n) 
stays bounded, and in this case, b1 -) 0 as n -s0o [in fact, b, = O(log(n)/n) 
and careful analysis of P(W = 0) using inclusion-exclusion shows that 
IP(W = 0) - e-In/log(n) is bounded away from 0]. From (4) and (5) it follows 
that the family {Rn - log1/p(n(l - p))} is tight. All of the limit distributions of 
this family may be described as those of the " integerized extreme value" random 
variables Yr [Y + r] - r for r E [0,1], where P(Y < c) = exp(-pc). Further- 
more, from (4) and (5) one can see that Rn - log1/p(n(l - p)) -> Y1 in distribu- 
tion if and only if n -* o along a subsequence such that, taken modulo 1, 
log1/p(n(l - p)) -) r. 

EXAMPLE 4 (The Erd6s-Renyi law, in distribution): Let 0 <p < a < 1 and 
Z-1, Z0, Z1, Z2*... be an i.i.d. sequence with p = P(Zi = 1) = 1 - P(Zi = 0). 

Let Rn be the length of the longest consecutive run, starting within the first n 
tosses, in which the fraction of heads is at least a. The previous example is the 
special case a = 1 of the current example. Erd6s and Renyi (1970) prove that 

R./log(n) -, 1/H(a, p) almost surely, 
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POISSON APPROXIMATIONS 17 

where 
(6) H(a, p) = a log(a/p) + (1 - a)log((1 - a)/(1 - p)) 

is the relative entropy of a and p, with H(1, p) = log(1/p). Using Chen's 
method, it is not hard to approximate the distribution of Rn. The approximation 
implies that, for a # 1, the family of random variables 

{Rn - (log(n) - !loglog(n))/H(a, p)} 
is tight. This is sketched in the following discussion, and done in detail in 
Arratia, Gordon and Waterman (1988). 

For t a positive integer and a E [0,1], define indicators 

t~~~- 
*k=o 

t 2t 

xa, t- Ya, t H1 (1 -Ya -j, t)) x, - Ye: H (1 -Yea-j) 
j=1 j=1 

Let I { 1, 2,. .., n}, and define 

W= E xa, ty Wf-EX 
aEI aEI 

Apart from "boundary effects," W is the number of places within the first n 
tosses at which a "quality a, length t" head run begins, and W' is the number of 
places within the first n tosses at which a "quality a, length t or greater" head 
run begins, so the event {Rn < t} can be approximated by the event {W' = 0). 
The error in this approximation can be controlled by observing that 

{Rn < t, W' O} U {Rn 2 t, W' = O} c {Y1/ + + Y2/t > O}, 
so that 

(7) IP(W = 0) - P(Rn < t)| < 2tEY1' < 2te-tH(aP). 

The easy bounds E~a t < EY'1 < etH(a, P) can be proved by Cramer's argument: 
Compute expectations with respect to the probability Q under which 

Z1,X Z0, Z1, Z2,... are a-coins, and observe that on the event {YJ = 1), the 
Radon-Nikodym derivative satisfies dP/dQ < e'(a, P). 

(In the definition of Xa, t in terms of Y, or of Xa' in terms of Y', the upper 
bound t or 2 t in the product over j could easily be replaced by anything 
that tends to infinity with t, but in the definition of Y,' in terms of 
Ya, ty Ya, t+ ' * * *y,,2t, the upper bound 2t is minimal, since we wish to use the 
following argument: "When the fraction of heads in a window is at least a, the 
same must be true in the first or second half of the window; hence, if there is a 
quality a window of length t or greater, there must be one of length between t 
and1 2t inclusive.") 

For both W and W', it is easy to establish a Poisson approximation using the 
Chen-Stein method. In this paragraph we handle the case W', together with its 
relation to R.. Let '- EW'. Let Ba -{1 E I: la - PI < 4t} for a = 1 to n, so 

This content downloaded  on Sat, 9 Feb 2013 01:08:09 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


18 R. ARRATIA, L. GOLDSTEIN AND L. GORDON 

that b3 = O. If la - 11 < 2t, then E(XatXJ) = 0, but if 2t < la - P11 < 4t, then 
we can only conclude that E(Xa'X~) < (EXa')EY', so that b2 < 4tX'EYJ and 
b, = (8t - 1)X'EXa'. Combining (7) with Theorem 1, we have 

IP(R < - e-EW'I < 2te-tH(aP) + (b1 + b2)(1 A 1/XA) 

(8) < 2te tH(a p) + 4tX'(2EXa' + EYa')(1 A 1/k') 
< 2te-tH(a>p) + 12te-tH(a, p) 

< 14te- tH(a, p) -- as t so. 

To calculate Pa EXa, t iS much easier than to calculate EX,,. We can obtain 
a simple expression for the former, but only lower and upper bounds for the 
latter. To calculate Pa, let s [at] and consider the events 

A S Zk} B ( { (Zt-k Z-k) > O for m = 1. t) 

so that X0,t= l(A)1(B) and Pa = P(A)P(BIA). An argument involving ex- 
changeability and the ballot theorem shows that P(B IA) -* (a - p) as t -3 co 
(and a large deviation argument shows that this convergence is exponen- 
tially fast in t). Thus we have the asymptotic relations, as t oo, Pa 
(a - p)( t)ps(1 - p)t-s and 

(9) X -X(n, t) -EW = np,, - (a - p)n( tp (1 _p) ts 

In the case a # 1, Stirling's formula lets us express X in terms of the relative 
entropy H(., p): as t -* 0o, 

(10) A (a -p)n {27a(1 - a)tl/2 exp{ tH(s/t p)} 
and good explicit lower and upper bounds can be given. Although s [at], it is 
not possible to replace s/t by a in the argument to H(., p), since the resultant 
change would be approximately a factor of exp{ - t(s/t - a)dH/da(a, p)}, 
where s [at]. 

Now for a # 1, X EW stays bounded away from 0 and infinity if and only if 
t - {log(n) - 'log log(n)}/H(a, p) stays bounded. It is not hard to show that 
there is a constant Ca p < 00, independent of t and n, such that X' EW' 
satisfies X/c < X' < Cap X. Write R* Rn - {log(n) - 1og log(n)}/ 
H(a, p). From (10) and (8) it follows that the family {R*} is tight. 

EXAMPLE 5 (The Erdos-Renyi law for matching two random sequences). 
This example is closely related to Examples 3 and 4; the special case a = 1, 
corresponding to perfect matching, has been discussed in Arratia and Waterman 
(1985a, b), and Arratia, Gordon and Waterman (1986). Let ..., A_1, Ao, 
A1, A2 ... and ._. . B_ 1 Bo, B1, B2, ... be i.i.d. integer valued random "letters," 
say, with common nontrivial distribution ti. Let p - IE- zl, so that V i, j, 
p = P(Aj = B1). Let a E (p, 1]. We are interested in the asymptotic distribu- 
tion, for large m and n, of the length Mm, n of the longest "quality a" matching 
consecutive segment common to the two sequences A1,..., Am and B, ..., Bn. 
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For t a positive integer and a E [0,1], define indicators 

1-1 

zij- l(Ai = B1), Y- 1 forsome 1 E [t,2t], al < Zi+k, j+k 
k=o 

2t 

Xij - Yij7 (1 - Yi- I, j- ) 

Let I - 1,2,., m} x {1,2,... n) and 

W WMM, n, a, t)- Exa 
aeI 

Define Mm* n by Mm n = max{t: W(m, n, a, t) > 0). Apart from boundary ef- 
fects, which can be controlled as in the previous example, Mm* n agrees with the 
length of the longest quality a matching, Mm n. We observe that Mm*, n is the 
maximum of an m X n rectangle of random variables from a two-parameter 
stationary sequence, where the same stationary sequence is used for all m, n. If a 
Poisson approximation can be established by the Chen-Stein method, the net 
result can be expressed as a comparison between the distribution of the length of 
the longest quality a matching for sequences of length m and n, and the 
distribution of the length of the longest quality a head run in a sequence of 
tosses of a p-coin of length mn: As m, n -x 00, 

max I P(Mm, n < t) - P(R(mn) < t) 0 

with an explicit bound on the rate of convergence. 
The essential novel feature of this problem, in contrast to Examples 3 and 4, is 

that distinct "coins" Zij and Zkl are strictly positively correlated if i = k or else 
j = 1, provided that M is not the uniform distribution on a finite set. Let 

p3 E(Z11Z12) = P(A1 = B1 = B2) = E (p1) . 
leZ 

By Jensen's inequality, p3 < p3/2. Define 0 0(a, p, p3) by 

1 + 0 = limlog(E(YOOYO, 4t))/log(EYoo), 

where large deviation arguments show that the limit 0 E (0,1] exists, and 
furthermore 1 + 0 = lim log(E(X00X04d))/log(EX00). For the case a = 1, it is 
obvious that 1 ? 0 = log(p3)/log(p), so that 0 > 2. We will show in the next 
paragraph why 0 > 2 is necessary and sufficient for Chen's method to succeed in 
establishing a Poisson convergence for W, as m = n -x 00 and t grows ap- 
propriately. In Arratia, Gordon and Waterman (1988) it is shown that, perhaps 
surprisingly, there are nontrivial cases in which 0(a, P, P3) < 2, so that a 
Poisson convergence cannot be established by this method. Nevertheless, the 
analog of the Erdos-Renyi law for matching two sequences of equal length, 
namely that 

Mn, n/log(n2) 2 1/H(a, p) almost surely, 
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always holds; this is proved in Arratia and Waterman (1989). 
For a = (i, j) E I, let Ba = {3 = (k, l) EI: li - kl A Il - 11 < 4t} and 

C(a) = ff3 = (k, 1) E I: ji - kI V Ij - 11 < 4t}, so that Ba is the union of two 
perpendicular strips and C(a) is the square where the strips intersect. We have 
b3 = 0 and b1 = X2IBaI/III < 28t(m + n)/(mn). Assume that m, n, t -x oc with 
both X and log(m)/log(n) bounded away from 0 and xo. The central contribu- 
tion tob b2* Y2fi Gc(a)Pap converges to 0 in all cases. There are asymptotically 
mn(m + n) pairs (a,c 3), which are identical in one coordinate and differ by at 
least 4t in the other coordinate. These pairs have Pafi = E(XOOXO,4t) = (Pa) X 
where we write x = y to mean log(x) - log(y). A little more work shows that 
the remaining contributions to b2 do not increase the exponential growth rate, so 

b-* b mn(m + n)(pa)+ O. Suppose further now that log(n)/log(mn) -* p E 
[2, 1). Then 

b-* mn(m + n)(pa)1+0 = (mn)'+P(pa)'+6 = (mn)P-91+? (mn)P-0. 
Thus if 6 < 2 then b2 -x cc and Chen's method fails (in fact EW2 x ) for all 
values of p, including the important special case with m = n and p = 2. In cases 
where 6 > 2, we have that b2 -' 0 and Chen's method yields a Poisson limit, 
uniformly in m, n, t such that X stays in a compact subset of (0, xc) and 
log(n)/log(mn) stays in a compact subset of (1 - 6, 6). This latter condition on 
the relative growth of m and n is the same as would be required to have EW2 
stay bounded. For any nonuniform distribution M for the i.i.d. letters, strictly 
stronger conditions would be required to have the higher moments of W stay 
bounded. Thus, for example with a = 1, we have EW3 -x cc if p 
lim log(n)/log(mn) E (4/2, 6), where 4 2 1 is defined by p4 = (11)4 = pl+4 

and 4 < 26 iff M is nonuniform. In these cases, Chen's method establishes the 
Poisson convergence, together with a bound on the rate of convergence, whereas 
the method of moments blows up. 

4. Bounds on the inverse operator. Recall that Z denotes a Poisson 
random variable with mean X. Define linear operators S and T, which depend on 
the parameter X, by 

(Tf)(w)-wf(w)-Xf(w +1), for w ?0 
and 

(Sh)(w + 1) -X-<P(Z = w)f1E(h(Z); Z < w), for w 2 0. 
To be definite, we let (Sh)(0) = 0, but this is an arbitrary choice; the value Sh(O) 
is never used. Note that S is inverse to T in that V h, T(Sh) = h, and that 
"V f bounded, E[(Tf )(Z)] = 0" precisely characterizes the distribution of Z 
as Poisson with mean X. We write lA f for the function defined by (I\ f )(w) = 
f(w + 1) - f(w). The proof of the following lemnia is in the appendix to 
Barbour and Eagleson (1983). 

LEMMA 1. Suppose that V w 2 0, h(w) E [0,1] and f = S(h(.) - Eh(Z)). 
Then 

jAtf 11 < (1 - e-X)/X and 11f 11 < 1 A 1.4X-12. 
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Furthermore, if h(w) = 1(w = 0) - e-, then 11 f 11 = (1 - e-X)/x. 

The starting point for obtaining these bounds is the observation that if 
Eh(Z) = 0, then 

(Sh)( w + 1) = -ACP(Z = w) lcov(h(Z), 1(Z < w)). 
For fixed k ? 0, if h(w) = 1(w < k) - P(Z < k), then 

cov(h(Z), 1(Z < w)) = P(Z < k A W) - P(Z < k)P(Z < w). 
Since d/dXP(Z < j) = -P(Z = j), we have P(Z < j) = 1 - oJe-vv Jj! dv= 

Jf??e-vv'/j! dv. Combining these ingredients, for the special case k = 0, we have 
(1 -e- )/ = -f(l) > -f(2) > ... > 0, which proves the last part of this 
lemma. 

5. Proof in the one-variable case. In this section we give the proof of 
Theorem 1. Let h be given with IIhII = 1. Let h(*) h(.) - Eh(Z) and f Sh, 
so that Tf = h, and E[Tf(W)] = E h(W) - h(Z)]. The series of equalities and 
one inequality below show that 

(11) | E{h(W) - h(Z)} < (b1 + b2)IIL f 1? + b31 f I1. 
Combining (11) with the bounds on 11 f111 and I1I' f I .from Lemma 1 completes the 
proof; a factor of 2 is introduced in handling the positive and negative parts of h 
separately. 

Write V.B GI-BaXpB and W. W-Xa, so that V. < W, < W Xaf(W) = 

Xaf(Wa + 1) and f(Wa + 1)-f(W+ 1) = Xj f(Wa + 1)-f(Wa + 2)]. We 
compute 

E{h(W) - h(Z)} 
= E{Wf(W) - Xf(W+ 1)) 

= E E{Xaf(W)-paf(W+ 1)) 
aEI 

= EE{pf(W, + 1)-paf(W +1)) 
aEI 

+ E {Xjf(Wa + 1)- paf(Wa + 1)) 
aEI 

(12) = EE{paXa[f(Wa+1)-f(Wa+2)]} 
aEI 

+ EE{(Xa-pa)[f(Wa+)-f(Va+ 1)]) 
aEI 

+ E Ef{(Xa -pa)f(Va + 1)) 
asI 

< ? Af 11 + f1( Pap? + PaP)? + b1II 11 
aEI ~ aI a?I 3Ba 

- (b1 + b2)IIL\f 11 + &II f 11- 
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The upper bound on (12) is justified as follows. The first sum is less than or 
equal to Il f IIE= Ip*2. For the second sum, each term can be written as a 
telescoping sum of IBaI - 1 terms, each with one more summand X, being left 
out. Each such term in the telescoping sum is of the form 

E{ (Xa - Pa)( f(U + Xf) - f(U))} = E{ (Xa - pa)Xp( f(U + 1) - f(U))) 

= E{ XaXpA f (U)} - EtpaX A f (U)} 

< 1LA f ii(Pap + PaPp) 

Thus our upper bound for the second term is 

IlAf II1 E E (Pan + Pa~pA 
a eI a *f3Be 

which combined with the bound on the first term yields (b1 + b2)IlL1f II. The 
third term is bounded by b3II f 11. E 

6. Proof in the multivariable case. In this section we give the proof of 
Theorem 2. The process bound is a consequence of the d-dimensional bound, as 
follows. Given E > 0, since A < ox, there exist d < ox and d - 1 distinct indices 
a(1),..., a(d - 1) with El ?< dPa(j) > A - E. Applying the d-dimensional bound 
with singletons I(j) = {a(j)} and I(d) = I - {ca(1),..., a(d - 1)} and using 
Chebyshev's bound P(Wd > 0) < E P(Zd > 0) < c, we have 

IL9(X) - Y(Y)II < 2(2b, + 2b2 + b3) + 2c, 
which establishes the first part of Theorem 2. 

For i = 1, .. ., d, write ei E Rd for the unit vector with 1 as its ith coordinate. 
Write j (jlr ... id) for an element Of (Z?)d and write f, h, fm.. . bd for 
functions from (Z+)d into R. Define linear operators Si and Ti to be the analogs 
of S and T from Theorem 1, but acting only on the ith coordinate: 

(Tif )(j) jijf(j) - Xif(j + e), 

(Sih)(j + ei) -(XiP(Zi =i)) j 1E{h( Il,..., Zi,..., id)1(Zi ?ii)}) 

As before, for i = 1,..., d, for all h, TiSih = h. 
Define a linear operator Pi that averages over the ith coordinate with respect 

to the Poisson distribution with parameter Ai: 

( Pih) (j) Eh( jl) .. * Zi) .. * id) X 

so that Pih is a function of the d - 1 coordinates other than the ith coordinate. 
Write Ai for the difference operator on the ith coordinate, so that (AXi f )(j) 
f(j + e) - f(j). Fix h with lihil < 1 and let 

fi Si(h- pih)- 

so that Ti fi = h - Pih. By Lemma 1 (treating the d - 1 arguments other than 
the ith as fixed parameters and handling the positive and negative parts of h 
separately), || filI < 2(1 A 1.4X X1/2), So LkfiII < 4(1 A 1.4XT1/2). 
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An argument similar to the following will be used d times. At the ith step, 
each f1 is replaced by fi, and the first i - 1 coordinates are replaced by 
Zl1 ... X Zi- 1, in the vector argument to every function in the series of equalities 
(13)-(14). On the left side of (13), the ith coordinate is Wi in one term and Zi in 
the other, so that the result is an upper bound on 

I Eh(Zl, ..., Zil, WV , Wi+l **... * Wd) - Eh(Zl, .. ., Zi-1, Zi, Wi+1, ... * Wd) 1 

The combination of these d results yields an upper bound on 

IEh(Wl, W2... , Wd)-Eh(Zl, Z2,..., Zd) 
establishing the theorem. Instead of presenting the general ith step, we write out 
the version for i = 1, and then briefly discuss the modifications needed for the 
steps with i = 2,..., d. 

To begin the step for i = 1, for a E I(1) let Wa (W1 - Xa, W2,..., Wd) and 
let Va be the random element of (Z+)d whose kth coordinate is 

(Va)k - E X 
13 E I(k) -B. 

so that V_ < Wa < W. coordinatewise. We compute 

Eh(Wl, W2 ..., Wd )-Eh(Zl, W2, ... , Wd) 

- E{(h - Plh)(Wl, W2, ... , Wd)} 

(13) = E{(Tlfl)(Wj, W2)-.- Wd)) 

= E W1 fl(W) - X1 fl(W + el)} 

- E E{Xafl(W)-pafl(W + el)} 
a EI(1) 

- E E{pafl(Wa + el)-pafl(W + el)} 
aEI(1) 

+ E E{Xafl(Wa+el)-pafl(Wa+el)} 
a EI(1) 

- E E{paX,( fl(Wa + el) - fl(Wa + 2el))} 
a EI(1) 

(14) + E{(Xa- pa)[ fl(Wa + el) 
- 

fl(Va + e? ] 
aEI(1) 

+ E E{(Xa-pa)fi(Va+el)} 
aEI(1) 

< 211 flII Pa2 + 211 fillt Pa + PaP) + 11fill scj) 
aEI(1) ~ aEI(l) a?f3EB/ a.I(1) 

which is less than or equal to the contribution to 2(1 A 1.4(minjXj) -1/2)(2 b1 + 
2b2 + b3) from terms with a E I(1). 

As in the proof of Theorem 1, the first sum in (14) is bounded by 
II Alfl IEaGI(l)pa2, and the third sum is bounded by II fIIamsa, which is 
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the contribution to 11 f111b3 from terms a E I(1). For the second sum, the 
term indexed by a can be written as a telescoping sum of terms indexed by 
,/ E Ba - {a}. When the index /3 is in I(k), the corresponding summand is of 
the form 

E{ (Xa -pa)( fl(U + Xek) - fl(U))} 

(15) = E{(Xa -pa)X(fl(U + ek) - f(U))} 
= E{ XaXp l(U)} - E{ PaXl\kfl(U)} 

< 211 fjlI(Pap0 + PaPp)- 

Thus our upper bound for the second term is 

211 fjII E E (Pap + PaPO) 
aEI(1) a*I3EBa 

which combined with the bound on the first term yields the contribution to 
(b1 + b2)211 fjI1 from terms with a E I(1). This ends the argument for the step 
with i = 1. 

For the general ith step, the first i - 1 components of V. are changed to 
Zj) . .. ZiZ- 1, and the telescoping sum for bounding the a term of the second sum 
involves only those /3 in I(i) U ... U I(d). E 

We note that the bound after equation (15) accounts for the difference 
between the bounds of Theorems 1 and 2-for Ak f1 the only available bound is 
II| k f |II < 211 fjII. 

Acknowledgments. The authors are very grateful to Persi Diaconis for 
having brought Chen's work to our attention and to Michael S. Waterman for 
many stimulating conversations. 

In answer to the puzzle at formula (3) at the end of Section 2: "Be wise, 
symmetrize." Let W be any bounded, positive integer valued random variable 
having equal mean and variance; say P(W < m) = 1 and X EW = var(W). 
Fix W, and let n ? m; we will consider the limit as n tends to 00. Let 
I{1, ... ,n} and let {Xa: a E I} be an exchangeable family of Bernoulli 
variables with E.aG IXa = W. Note that the family {Xa: a E I} depends on n, 
but its sum W does not. We have Pa = X/n and 

X = var(W) = Evar(Xa) + E cov(Xa, X)- X - X2/n + E cov(Xa, Xe). 

By exchangeability, all of the covariance terms have the same sign, hence 

A2/n = E cov(Xa, XY) = E IcoV(X, X,)| 

and bo = 2X2/n. 
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