
SINGULAR STOCHASTIC CONTROL FOR DIFFUSIONS AND SDEWITH DISCONTINUOUS PATHS AND REFLECTING BOUNDARYCONDITIONSJIN MA�Abstrat. In this paper, we ontinue to study a di�usion-type, �nite-fuel singular stohastiontrol problem and the related stohasti di�erential equations with disontinuous paths and reetingboundary onditions as de�ned in the previous work of the author [18℄. The measurable dependene ofthe solution with respet to the initial state and the underlying probability measures (with Prohorovmetri) is derived. For the appliation in the ontrol problem, we study more thoroughly the "ontrol"term in the stohasti di�erential equation whih auses the disontinuity of the paths of the solutions.The approximation of ertain omplete lass of ontrols by the ontinuous paths ones is proved to bepossible in a weak sense. With the help of these results, we prove the Dynami Programming Priniple(Bellman priniple) on a rigorous base and that the value funtion is a visosity solution of ertainHamilton-Jaobi-Bellman equation.keywords: disontinuous reeting problem, S.D.E. with disontinuous paths and reeting bound-ary ondition, singular stohasti ontrol, Bellman priniple, visosity solution.1. Introdution. This paper is the ontinuation of the previous work of the au-thor [18℄. We onsider the following reeted, di�usion type, �nite-fuel singular stohas-ti ontrol problem. Let (
;F ; P ;Ft) be a �ltered probability spae satisfying the usualonditions on whih is de�ned an fFtg-Brownian motion B = fBt : t � 0g. For eahontrol proess � = f�t : t � 0g whih is assumed to be left-ontinuous, Ft-adapted,with paths of loally bounded variation, the ontrol system is given byXt = x+ Z t0 a(Xs)ds+ Z t0 �(Xs)dBs + �t +Kt; t � 0;(1.1)where a; � are real-valued funtions satisfying Itô's onditions; fKt : t � 0g is theloal-time-like proess whih prevents Xt from beoming negative; x 2 [0;1) is theinitial state, whih will be assumed to be deterministi throughout the paper; andT < 1 is some �xed time duration. The objetive of a deision maker is to �nda suitable probability spae (
;F ; P;Ft), together with a Brownian motion B and aontrol proess � so as to minimize the ost funtion:J(P;B; �; r; x) = EP (Z T�r0 h(t + r;Xt)dt+ Z[0;T�r) f(t+ r)d��t + g(XT�r)) ;(1.2)where r 2 [0; T ℄, and h; f; g are ertain smooth funtions.In the sequel, we will all the six-tuple (
;F ; P;Ft; B; �) a set-up and denote it byS. Thus the ost funtion an be denoted as J(S; r; x). Further, the term "�nite-fuel"reets the fat that the ontrol proesses is subjet to the onstraint:Pf��T � yg = 1;(1.3)� Department of Mathematis, Purdue University, West Lafayette, IN 47907.1



SINGULAR STOCHASTIC CONTROL 2for some y � 0, whih stands for the total initial fuel available. If we denote the set ofall set-up's satisfying (1.3) by Sy, then the value funtion is de�ned byQ(r; x; y) = infS2Sy J(S; r; x):(1.4)The preise formulation and the notations will be given in x2.To be onsistent with the previous paper, we will all equation (1.1) a StohastiDi�erential Equation with Disontinuous Paths and Reeting Boundary Conditions(not to fuss with the name, we shall always use the abbreviation SDEDR as in [18℄,even when the paths are atually ontinuous). We note here that the SDEDR in thispaper should always be understood as SDEDR(I) de�ned in [18℄, whih is based on theDisountinuous Reeting Problem (DRP for short) de�ned by Chaleyat-Maurel et al.[4℄. The solution of (1.1) will often be denoted by (Xx;�; Kx;�) as usual.In [18℄ we established some basi properties of SDEDR, espeially some omparisonresults. As appliations to the ontrol problem, we also proved the ompleteness ofertain lass of admissible ontrols (see (2.11), (2.12)) and the existene of the optimalontrol. We shall ontinue developing the results in both aspets in this paper. Ourprimary goal is to haraterize the value funtion and, if possible, to desribe the optimalontrol proess. One of the possible ways of exeuting this in the singular ontrolliterature is to �nd a lassial solution of the heuristially derived optimality (or H-J-B) equation by using, for instane, the priniple of smooth �t; and to prove via averi�ation theorem that the solution of the H-J-B equation oinides with the valuefuntion. In the mean time, it is often possible to disover what a optimal ontrolproess should look like. This methodology has worked very well in the ase when thesystem is of linear or onstant drift and di�usion oeÆients (f. [2℄, [9℄,[12℄, [14℄, [21℄and the referenes therein); and some speial ases for nonlinear di�usions type systems(f. [17℄, [20℄). However, in general, �nding the lassial solution of a seond order H-J-B equation or a variational inequality is a very diÆult problem, and sometimesimpossible.In this paper, we use another way to investigate the ontrol problem. Namely, weprove rigorously the dynamial programming priniple (Bellman Priniple) and thatthe value funtion is a visosity solution of ertain H-J-B equation. For this purpose,some more thorough studies of the SDEDR are required. For example, we would liketo know that the solution of an SDEDR depends at least measurably on those elementsthat determine the ost funtion, this will enable us to prove that the omplete lassof admissible ontrols that we are interested in is a measurable subset in ertain Borelspae, so that the Jankov-von Newmann measurable seletion theorem an be appliedto derive a measurable seletor. This motivation leads to x3, x5 and x6 in whih wepresent several measurability results that may be of independent interest. On the otherhand, it is often onvenient to know whether the value funtion an be determinedby the lass of admissible ontrols with ontinuous paths. The result of this kind is



SINGULAR STOCHASTIC CONTROL 3somewhat traditional in the ontrol theory literature; and in the present ontext, itwill failitate the proof of uniform ontinuity of the value funtion as was done in [11℄.The proof of suh result basially requires that the solution of the SDEDR depend"ontinuously" on the the ontrol term in a ertain sense; one should note that theissue of this kind is no longer trivial under our setting beause the solution mappingof the DRP is at most Lipshitz under the uniform topology (f. [4℄, [7℄, or [18℄);therefore, the usual estimate via the Gronwall inequality does not apply (beause onewill be faing a dilemma to approximate a proess whih has, in general, disontinuouspaths, by ontinuous proesses under the uniform topology). On the other hand, anapproximation merely in distribution is not suÆient either, sine it does not provideus enough pathwise information to prove the onvergene of the ost funtions. Weshall see in x4, however, that an approximation in a weaker sense but with suÆientpathwise onvergene properties is possible, so that the task an be aomplished in asatisfatory way.With the help of these results, we devote the rest of the paper, x6 and x7, to theproof of the Bellman priniple of optimality, and of the fat that the value funtion isa visosity solution of a seond order variational inequality of the H-J-B type, togetherwith some terminal and boundary properties. The H-J-B variational inequality is de-rived on a heuristi base in [14℄ when a � 0 and � � 1; in a deterministi setting, asimilar (but of �rst order) H-J-B equation was derived reently by Barron, Jenson andMenaldi [1℄. We will adapt their ideas to get our result, whih is ompatible with bothases above and provides a general version for the nonlinear di�usion setting.2. De�nitions, Preliminaries and Formulations. In this paper, we will in-herit most of the notations from the previous paper [18℄ but make some neessaryadjustments. First, Reall the following spaes from [18℄:(1) W �= C[0;1) is the spae of all real-valued ontinuous funtions de�ned on[0;1), with the usual norm;(2) D �= fall real �agl�ad funtions de�ned on [0;1)g with the Skorohod topologyas was de�ned in [18℄, where �agl�ad means left ontinuous with right-limit;(3) A �= f� 2 D : � is nondereasingg;(4) D̂ �= f� 2 D : � is of loally bounded variationg;(5) for V = W;D;A; D̂:::, we denote V0 �= fv 2 V : v(0) = 0g.For eah � 2 D̂, we deompose it in a standard way as �t = �+t � ��t , t � 0, where�� 2 A, so that the total variation of � up to time t an be writen as ��t = �+t + ��t .Moreover, for eah 0 < � <1 and y > 0, we de�neA� (y) �= f� 2 A0 : ��+ � y; �t = ��+; t > �g;(2.1) D̂� (y) �= f� 2 D̂0 : ���+ � y; �t = ��+; t > �g:(2.2)In what follows, when we say "DRP" we mean the DRP(I) de�ned in [18℄, i.e., the onede�ned by Chaleyat-Maurel et al. [4℄. If on some probability spae (
;F ; P ;Ft), two



SINGULAR STOCHASTIC CONTROL 4D-valued semimartingales Y and Ŷ are given with the deompositions Y = Y0+M +Aand Ŷ = Ŷ0 + M̂ + Â respetively, then by an almost idential proof of Proposition8 in [4℄ but using Proposition 7 there more prudently, one an easily improve the"Lipshitz ontinuity" for the solution mapping � of DRP (see [4, Proposition 8℄ or [18,Proposition 3.6℄) to the ase when Y0 6= Ŷ0. Namely, if the pair (�(�); K(�)) is suh that�(Y ) = Y +K(Y ) solves DRP(Y ) for any Y 2 D, then there exists a onstant C > 0suh that for any stopping time 0 � � <1, one hasE " sup0�t�� j�(Y )t � �(Ŷ )tj2# + E " sup0�t�� jK(Y )t �K(Ŷ )tj2#(2.3) � CE 24jY0 � Ŷ0j2 + [M � M̂;M � M̂ ℄� +  Z[0;�) jd(A� Â)tj!235 :In this paper, we also use the notional onvention that if (U1;BU1); (U2;BU2) aretwo measurable spaes and f : U1 ! U2 is a mapping, then we say "f is BU1=BU2" if fis BU1=BU2-measurable; we sometimes denote this by "f 2 BU1=BU2".Finally, if U is a metrizable spae, then we denote the Borel �-�eld on U by BUand the totality of the probability measures on the measurable spae (U;BU) by P(U).We endow the spae P(U) with the Prohorov metri. It is known that P(U) is a Polishspae if U is so (see, for example, [8℄). Moreover, if U is separable, then the �-�eldBP(U) has the following struture (f. [3, Proposition 7.25℄):BP(U) = � " [E2� ��1E (BR)# ;(2.4)where � is any �-system generating BU and �E : P(U) 7! R is de�ned by �E(P ) =P (E); for E 2 �; P 2 P(U). Also reall that if U = D or W and Ut = U j[0;t℄, thenBUt = �f�s; 0 � s � tg;(2.5)where �t : D 7! R is the projetion mapping de�ned by �t(�) = �t; t � 0; � 2 U(f. [8℄). Thus in (2.4) we may take � to be the olletion of all the ylinder setsEt1;���;tnA1;���;An �= \ni=1��1ti (Ai); 0 � t1 < t2 < � � � < tn <1; Ai 2 BR; n = 1; 2; � � �.2.1. Set-up, Admissible set-up and Canonial set-up. As was already men-tioned in x1, we all a six-tuple (
;F ; P;Ft; B; �) a set-up if(i) (
;F ; P ); fFtgt�0 is a �ltered probability spae satisfying the usual onditions;(ii) fBt : t � 0g is an fFtg-Brownian motion de�ned on (
;F ; P ;Ft);(iii) f�t : t � 0g is an fFtg-adapted proesses suh that P (� 2 D̂0) = 1.The totality of the suh set-up's is denoted by Sad. The generi element of Sad willbe denoted by S. For any � > 0 and y > 0, a set-up S 2 Sad is alled (�; y)-admissibleif P (� 2 D̂� (y)) = 1. We denote the totality of (�; y)-admissible set-up's by Sad(�; y).Slightly di�erent from [18℄, in this paper we will always assume that the initialstate X0 � x � 0 is deterministi, so that the joint distribution of the triple (X0; B; �)



SINGULAR STOCHASTIC CONTROL 5is ompletely determined by that of (B; �). Thus, the anonial spae de�ned in [18℄an be simpli�ed as follows.We say a set-up (
;F ; P;Ft; B; �) is anonial if 
 =W0�D0; (B; �) is the anonialproess de�ned by (Bt; �t)(!) = (w(t); �(t)); t � 0; ! = (w; �) 2 
; and if fF0t g is thesmallest �ltration whih measures (B; �), F0 = F01, then F ; fFtg are the usual P -augmentation of F0; fF0t g respetively. The totality of all anonial set-up's will bedenoted by San.It is easily seen that a anonial set-up S = (
;F ; P;Ft; B; �) is determined om-pletely by the probability P , thus we may write S = S(P ) and often say that P 2 Sanif S(P ) 2 San when there is no danger of onfusion. Therefore, we might as well viewSan as a set of probability measures on the anonial spae (
;F), whih atually or-responds to the setM de�ned in [18℄; more preisely,M �= fP : S(P ) 2 Sang. We analso de�ne M(�; y) to be the set of all (�; y)-admissible anonial set-up's, and de�neM�(�; y) � M(�; y) to be all the elements in M(�; y) suh that Pf�+ � 0g = 1. IfP 2 M�(�; y), the seond omponent of the anonial proess is often denoted by ��,where � 2 A� (y).It is worth noting that, sine P(
) is obviously a Polish spae, and D̂0 is a Borelsubset of D (f. [18℄), it follows that M is a Borel set in P(
) and hene a standardspae (f. [10℄). In partiular,M is a seperable metri spae.2.2. Problem Formulation. Consider the ontrol system desribed in x1 on agiven set-up: Xt = X0 + Z t0 a(Xs)ds+ Z t0 �(Xs)dBs + �t +Kt; t � 0;(2.6)namely, (X;K) is the solution to SDEDR(x; �). We will make use of the following basiassumptions throughout.(C.1) The funtions a and � are bounded, ontinuous on R, suh thatinfx2R�(x) �= �0 > 0;(2.7)(C.2) There exists a onstant C1 > 0 suh thatja(x)� a(y)j+ j�(x)� �(y)j � C1jx� yj; for all x; y 2 R:(2.8)Let T > 0 be �xed, and denote in the sequel E = [0; T ℄� [0;1)� (0;1). Reallthat, for eah (r; x; y) 2 E and S 2 Sad(r; y), the ost funtion is de�ned byJ(S; r; x) = EP (Z T�r0 h(t + r;Xx;�t )dt+ Z[0;T�r) f(t+ r)d��t + g(Xx;�T�r)) :(2.9)We pose the following onditions on the funtions h; f; g appeared in (2.9).(C.3) The funtions h : [0; T ℄ � [0;1) ! [0;1), f : [0; T ℄ ! [0;1) and g :[0;1)! [0;1) are all ontinuously di�erentiable, suh that



SINGULAR STOCHASTIC CONTROL 6(i) h(t; �) is nondereasing and hx(t; 0) � 0 for all t � 0;(ii) g is onvex, nondeeasing;(iii) there exist C > 0, m � 1 suh that for any (t; x) 2 [0; T ℄� [0;1),0 � hx(t; x) + jht(t; x)j+ g0(x) � C(1 + xm);(iv) supx�0 g0(x) � inf0�t�T f(t).From now on, we will denote all the onstants depending only on T; f; g; h; a; � bya generi one C, whih may vary line by line.It is fairly easy to prove that, for given (r; x; y) 2 E,Q(r; x; y) = infS2Sad(T�r;y) J(S; r; x) = infP2M(T�r;y)J(P; r; x):(2.10)Next let (r; x; y) 2 E and P 2 M(T � r; y) be given, by the argument analogous to[18℄, we an �nd a pair of funtions (F xP ; GxP ) : 
! D�D suh that X = F xP ; K = GxPsolves SDEDR(x; �) (1.1) on the anonial spae. We de�ne a sublass Dan(r; x; y) ofM(T � r; y) byDan(r; x; y) �= fP 2 M�(T � r; y) : GxP is ontinuous; a:s:Pg(2.11) = fP 2 M�(T � r; y) : 0 � �t � (F xP )t; 0 � t � T; a:s:Pg:It was shown in [11℄, [13℄ and [18, Proposition 6.4℄ that for eah (r; x; y) 2 E, thereexists a P � 2 Dan(r; x; y), suh thatJ(P �; r; x) = Q(r; x; y) = infP2M(T�r;y) J(P; r; x):(2.12)In other words, the sublass Dan(r; x; y) is "omplete".2.3. Loalization. In this paper, We shall restrit all the proesses to a �nitetime interval [0; T ℄, the time duration for our ontrol problem. The main advantageof suh a restrition ours in x4 when we deal with the Girsanov-Cameron-Martintransformation. But on the other hand, it also auses some other tehnial diÆultieswhen we apply the "path-shifting" mathod, for instane, in x6. Therefore it is useful tointrodue the notion of loalization, whih we now desribe.We begin with an arbitrary set-up (
;F ; P;Ft; B; �). Let T > 0 be given. By"loalizing" the set-up we simply mean to restrit the proesses B and � to the �niteinterval [0; T ℄. Let us denote the lass of "loal" set-up's by S load . It is lear that forany S 2 Sad, there is a loal set-up Slo 2 S load suh that J(S; r; x) = J(Slo; r; x). Thuswe may "imbed" Sad into S load in a obvious way. If we de�ne, for given (r; x; y) 2 E,Qlo(r; x; y) = infS2Sload (T�r;y) J(S; r; x); Q(r; x; y) = infS2Sad(T�r;y) J(S; r; x);then it is evident that Qlo(r; x; y) � Q(r; x; y):(2.13)



SINGULAR STOCHASTIC CONTROL 7We wish to prove that equality atually prevails in (2.13).Let us onsider the anonial set-up's. Denote 
T = C[0; T ℄ � DT where DT �=Dj[0;T ℄; let G and Gt be the smallest �-�eld and �ltration respetively measuring theanonial proess. By an analogy with S load (T � r; y), we an de�ne Mlo(T � r; y)(similarly, Dloan(r; x; y)). We have the following proposition.Proposition 2.1. For any x � 0 and P 2 Mlo(T � r; y), there exists a ~P 2M(T � r; y), suh that ~P lo �= ~P jGT = P and J( ~P ; r; x) = J(P; r; x). Consequently, wehave Q(r; x; y) = Qlo(r; x; y):(2.14)Proof. Let P 2 Mlo(T � r; y) be given. De�ne a probability measure Q on (
;F)by Q = PW � Æf0g, where PW is the Wiener measure on W0 and Æf0g is the point massat the zero-funtion in D0. Consider the new spae 
̂ = 
T �
 with the orrespondingprodut �-�eld F̂ . De�ne the probability measure on (
̂; F̂) byP̂ (A�B) = P (A)Q(B); A 2 
T ; B 2 
:Let the generi element in 
̂ be !̂ = (!1; !2) where !1 = (w1; �1) 2 
T and !2 =(w2; �2) 2 
. De�ne a proess on (
̂; F̂) by (B̂; �̂), whereB̂t(!̂) = 8><>: w1t 0 � t � Tw2t � w2T + w1T t > T 9>=>; ; �̂t(!̂) = 8><>: �1t 0 � t � T�1T t > T 9>=>; :Let fF̂tg be the smallest �ltration measuring (B̂; �̂), satisfying the usual onditions,then it is easy to hek that B̂ is an (F̂t; P̂ )-Brownian motion and �̂t = �̂T = �̂T�r; t >T; a:s:P̂ . Furthermore, if we let ~P = P̂ Æ (B̂; �̂)�1, then we have ~P 2 M(T � r; y) and~P jGT = P̂ Æ ((B̂; �̂)j[0;T ℄)�1 = P , proving the �rst assertion. That (2.14) follows from the�rst assertion and the fats (2.10) and (2.13) is obvious, the proof is omplete.3. The measurable dependene of the solution to SDEDR. Reall from[18℄ that for any given (r; x; y) 2 E = [0; T ℄� [0;1)� (0;1) and P 2 San =M, thereexists a pair of progressively measurable funtions (F xP ; GxP ) from 
(�= W0 � D0) toD�D whih solves the SDEDR (1.1). For the same reason, there also exists a versionY xP 2 F1=BD of the solution Y x to the unrestrited equation:Y xt = x + Z t0 a(Xxs )ds+ Z t0 �(Xxs )dBs + �t; t � 0:(3.1)We would like to investigate in this setion the dependene of the solutions F xP ; GxP ; Y xPon the parameters x and P . Moreover, if we de�ne three mappings �; 	; � : [0;1)�M! P(D) by�(x; P ) �= P Æ (F xP )�1; 	(x; P ) �= P Æ (GxP )�1; �(x; P ) �= P Æ (Y xP )�1;(3.2)



SINGULAR STOCHASTIC CONTROL 8then we wish to establish the following theorem.Theorem 3.1. The funtions �;	;� are B[0;1) � BM=BP(D).We shall split the proof of the Theorem 3.1 into two main propositions.Proposition 3.2. For �xed P 2 M, the mappings �(�; P ); 	(�; P ); �(�; P ) :[0;1) 7! P(D) are ontinuous.Proof. Sine onvergene in probability implies onvergene in distribution and inthe spae D, the uniform topology is stronger than the Skorohod topology, we need onlyshow that for �xed P 2 M and t � 0, with Zx denoting F xP ; GxP ; Y xP respetively, wehave EP jZx � Zx0 j�;2t ! 0, whenever x! x0; where for t 2 [0;1), jZj�t �= sup0�s�t jZsjand jZj�;2t �= (jZj�t )2.To this end, let P 2 M be �xed; de�ne Xx = F xP ; Kx = GxP and Y x = Y xP , then itis known (f. [18℄) that Xx = �(Y x); Kx = Xx � Y x:(3.3)where � is the solution mapping of DRP. Further, by (2.3) and Doob's inequality, wehave for any t � 0,EP jXx �Xx0j�;2t = EP j�(Y x)� �(Y x0)j�;2t(3.4) � CT (jx� x0j2 + EP "Z T0 [ja(Xxs )� a(Xx0s )j2 + j�(Xxs )� �(Xx0)j2℄ds#) :Thus, the onditions on the oeÆients a and � and the Gronwall inequality yield thatEP njXx �Xx0j�;2T o � Cjx� x0j2:(3.5)It is readily seen by (3.1) and (3.3) that (3.5) is also true for Y and K. The lemma isproved.It is now easy to see that the Theorem 3.1 will follow from our seond proposition:Proposition 3.3. For �xed x � 0, the mapplings �(x; �);	(x; �) and �(x; �) areall BM=BP(D)-measurable.The proof of Proposition 3.3 is more involved, and therefore we shall split it intoseveral lemmas. Our �rst step is to prove that for �xed x � 0, the mappings (P; !) 7!F xP (!) (resp. GxP (!), Y xP (!)) is "jointly" measurable in ertain sense; and then theProposition 3.3 shall follow easily. Sine now the probability P is itself a "variable", weneed a new devie to handle those subsets A �M� 
 suh that for eah P 2 M, the"P -setion" of A is a P -null set. More preisely, we shall introdue a notion whih weall the "M-augmentation" of the �-�elds on M� 
 in the sequel. Let fFÆt g be thesmallest �ltration on the anonial spae 
 that measures the anonial proess and wemay modify it to be right-ontinuous. De�ne for any set A � M� 
 and P 2 M theP -setion of A by AP = f! : (P; !) 2 Ag; a set A � M� 
 is alled an M-null set iffor any P 2 M, P (AP ) = 0. Let us denoteN = fF �M� 
 : 9G 2 BM � FÆ1 suh that G is an M-null set, F � Gg:(3.6)



SINGULAR STOCHASTIC CONTROL 9Then the M-augmentation of any sub-�-algebra G � BM � FÆ1 is de�ned byGM �= �(G [ N ):It is then easily shown as usual (see, for example, [15, problem 2.7.3℄) thatGM = fF �M� 
 : 9G 2 G suh that F�G 2 Ng(3.7) = fF �M� 
 : 9G 2 G; N 2 N suh that F = G�Ng;where A�B �= (A nB) [ (B n A). We will be interested in the following �-�elds:Yt �= BM �FÆt M; t � 0; Y1 �= BM � FÆ1M:(3.8)Now denote by H the lass of all real-valued funtions ft(P; !) de�ned on [0;1)�M� 
. In H we say that f and g are M-equivalent if the setf(P; !) : 9t � 0; ft(P; !) 6= gt(P; !)gis an M-null set; and that f and g are M-versions to eah other if they are M-equivalent. We will onsider the (M-)equivalent lasses in H. DenoteHmeas = ff 2 H : ft 2 Yt=BR; for all t � 0g;(3.9) HDmeas = ff 2 Hmeas : f(P; !) : f(P; !) =2 Dg 2 Ng:(3.10)The following lemma gives the main properties of the spaes Hmeas and HDmeas.Lemma 3.4. (1) Both Hmeas and HDmeas are algebras;(2) For any f 2 HDmeas, there exists an M-version f̂ of f suh that f̂(P; !) 2 Dfor all (P; !) 2 M� 
 and that f̂ is Yt=BDt, for all t � 0;(3) Let fF (n)g1n=1 � Hmeas (resp. HDmeas) and F 2 H. Suppose that for any P 2 Mthere exists a set NP suh that P (NP ) = 0 and that for all ! =2 NP ,limn!1 jF (n)t (P; !)� Ft(P; !)j = 0; t � 0(3.11)(respetively, limn!1 jF (n)(P; !)� F (P; !)j�t = 0; t � 0);(3.12)then F 2 Hmeas (resp. HDmeas).Proof. (1) is obvious. To see (2), �rst note that for any f 2 HDmeas, the omplementof the set Af �= f(P; !) : f(P; !) 2 Dg is in N , whene Af 2 Yt, for all t � 0. Thus ifwe de�ne f̂t(P; !) = 1Af (P; !)ft(P; !); (t; P; !) 2 [0;1)�M� 
;then f̂ is an M-version of f , an element in HDmeas; and f̂(P; !) 2 D for all (P; !) 2M � 
. Therefore, we an view f̂ as a mapping from M� 
 to D and it is easilyheked by the de�nition of BDt (reall (2.5)) that f̂ is Yt=BDt for all t � 0.



SINGULAR STOCHASTIC CONTROL 10We now prove (3). Sine the "Hmeas"-ase follows from an easy analogue of the"HDmeas"-ase, we only prove the latter. By de�nition, the omplement of the setA1 �= f(P; !) : limn;m!1 jF (n)(P; !)� F (m)(P; !)j�t = 0; t � 0gis in Y1 and is M-null, so it is easy to onstrut, by using (3.8), some other M-nullset G 2 BM � FÆ1, suh that A1 � G, whene A1 2 N and A1 2 Yt for all t � 0.Therefore, by de�ning �F (n)t (P; !) = 1A1(P; !) � F (n)t (P; !);(3.13) �Ft(P; !) = 1A1(P; !) � Ft(P; !);(3.14)we have limn!1 �F (n)t (P; !) = �Ft(P; !) for all (P; !) 2 M� 
, uniformly in t on om-pats, hene �F (P; !) 2 D for all (P; !) 2 M� 
 and is Yt=BDt for all t � 0. Finally,sine f(P; !) : �F (P; !) 6= F (P; !)g � A1 2 N ;we see that �F 2 HDmeas is an M-version of F , the proof is omplete.We now denote by HCmeas the subspae of HDmeas satisfying the de�nition (3.10) withD being replaed by W .Lemma 3.5. Suppose f 2 Hmeas. Let a; � be the funtions satisfying (C.1), (C.2)in x2. De�ne for (t; P; !) 2 [0;1)�M� 
,[I1(f)℄t(P; !) = Z t0 a(fs(P; !))ds;(3.15) [I2(f)℄t(P; !) = �Z t0 �(fs(P; �))dBs(�)� (!):(3.16)Then I1(f); I2(f) 2 HCmeas.Proof. (i) Set, for eah n and (P; !) 2 M� 
,[I1;n(f)℄t(P; !) = 1Xi=0 a(ft^(i=2n)(P; !))[t ^ ((i + 1)=2n)� t ^ (i=2n)℄;then it is lear that I1;n(f) 2 Hmeas, n = 1; 2; � � � by Lemma 3.4-(1). Sine for eahP 2 M, limn!1 jI1;n(f)(P; !)� I1(f)(P; !)j�;2t = 0; t � 0; for P � a:e: ! 2 
;I1(f) 2 Hmeas by Lemma 3.4-(3). That I1 has ontinuous paths is lear, so I1(f) 2HCmeas.(ii) To prove the result for I2, we �rst �x P 2 M and observe that the �rstoordinate of the anonial proess Bt(!) = w(t); t � 0; ! = (w; �) 2 
 is an (Ft; P )-Brownian motion. De�ne a mapping ' : [0;1)! [0;1) by'(x) = Z x0 du�(u) :(3.17)



SINGULAR STOCHASTIC CONTROL 11By the ondition on the funtion �, ' is C2, stritly inreasing and non-negative. Wenow onsider an element F 2 H de�ned byFt(P; !) �= w(t) + 12 Z t0 '00(fs(P; !))ds;(3.18)where fw(t) : t � 0g is the �rst omponent of the anonial proess, whih is obviouslyan element of HCmeas. Furthermore, the same argument as (i) shows that the integral in(3.18) is in HCmeas, whene F 2 HCmeas.It is now lear by applying Itô's Formula (for eah �xed P ) that'(I2(f)t(P; !)) = Ft(P; !); for P � a:e: ! 2 
;thus ' Æ I2(f) is aM-version of F , and therefore in Hmeas. Noting that ' is atually ahomeomorphism, we get that I2 2 Hmeas.Finally, it is lear that I2(f) also has ontinuous paths, the proof is omplete.Now let f 2 Hmeas. By Lemma 3.5-(2), we may assume that f is Y1=BD. It isthen well known (by using the property (3.7) and the Polishness of D) that there existsa mapping f̂ from M to D whih is BM � FÆ1=BD and di�ers from f only on a setN 2 N , i.e., f̂ is an M-version of f . Furthermore, it is evident that for eah P 2 M,we have P Æ f(P; �)�1 = P Æ f̂(P; �)�1 2 P(D):Namely, the mapping P 7! P Æ f̂(P; �)�1 is independent of the hoie of suhM-versionsof f . Hene the funtion F (P ) �= P Æ f(P; �)�1 2 P(D)(3.19)is well-de�ned; and we may always assume that the orresponding f is BM � FÆ1=BDwhen we mention the funtion F de�ned by (3.19) in the sequel. We have the followinglemma.Lemma 3.6. Suppose f 2 HDmeas. Then the mapping F : M 7! P(D) isBM=BP(D).Proof. By the onvention preeding the lemma, f is BM � FÆ1=BD. So by (2.4),it suÆes to show that for every Â = Et1;���;tnA1;���;An 2 BD and B 2 BR, the set F�1(Â) =fP : P Æ f(P; �)�1(Â) 2 Bg is in BM. We laim that this an be redued to thefollowing simpler assertion: for any bounded funtion H 2 BM � FÆ1=BR, if LH(P ) �=R
H(P; !)P (d!), then LH is BM=BR.To substantiate the laim, note thatL̂(P ) �= P Æ f(P; �)�1(Â) = Z
 1Â(f(P; !))P (d!)= Z
�ni=11Ai(fti(P; !))P (d!);



SINGULAR STOCHASTIC CONTROL 12so if we let H �= �ni=1(1Ai Æ �ti Æ f) whih is obviously BM �FÆ1=BR, then L̂ = LH andthe lemma follows from the assertion.We now prove the assertion. By a standard Monotone-Class argument, it suÆesto prove the assertion for H = 1A�B where A 2 BM, B 2 FÆ1. But in this ase,LH(P ) = 1A(P ) � P (B) = 1A(P ) � �B(P ), where � is the same as that was de�ned in(2.4). So replaing D by 
 in (2.4), we see that LH is BM=BR, proving the lemma.Proof of Proposition 3.3:Let x � 0 be �xed. De�ne Yx(P; !) = Y xP (!); Xx(P; !) = XxP (!); Kx(P; !) =KxP (!); thus �(x; P ) = P Æ [Yx(P; �)℄�1; �(x; P ) = P Æ [Xx(P; �)℄�1; 	(x; P ) = P Æ[Kx(P; �)℄�1. So by Lemma 3.6, it suÆes to show that Yx;Xx;Kx 2 HDmeas. To thisend, denote I0t (P; !) = x � �t(!) = x � �(t), t � 0, where � is the seond oordinateof the anonial proess, namely, �t(!) = �(t) for ! = (w; �) 2 
. It is evident thatI0 2 HDmeas.Let � : D ! D be the solution mapping of DRP. It an be heked from theonstrution of the funtions (�(Y ); K); Y 2 D (f. [4, Proposition 2, Theorem 5℄)that � is BDt=BDt , t � 0. Therefore, if f 2 HDmeas, then by Lemma 3.4-(2), we anhoose anM-version f̂ of f suh that f̂(P; !) 2 D for all (P; !) 2 M�
 and is Yt=BDtfor all t � 0, thus so is the omposition �(f̂). Sine �(f̂) is a M-version of �(f), wehave �(f) 2 HDmeas.We now reall from Lemma 3.5 the funtions I1(�); I2(�) and de�ne for n =0; 1; 2; � � �, X(n) = �(Y(n)); K(n) = X(n) � Y(n), whereY(0) = I0; Y(n) = I0 + I1(X(n�1)) + I2(X(n�1)); n = 1; 2; � � � :(3.20)It follows from the previous argument that Y(0) = I0 2 HDmeas implies that X(0);K(0) 2HDmeas. Furthermore, if Y(n�1);X(n�1);K(n�1) 2 HDmeas, then by Lemma 3.5 and Lemma3.4-(1), we have Y(n) 2 HDmeas; thus so is X(n) and then K(n); � � �. So by indution, wehave Y(n);X(n);K(n) 2 HDmeas for all n = 1; 2; � � �.Moreover, a similar estimate as (3.3) gives that for �xed P 2 M,EP ���X(n+1)(P; �)� X(n)(P; �)����;2t(3.21)= EP ����(Y(n+1)(P; �))� �(Y(n)(P; �))����;2t � C Z t0 EP jX(n)(P; �)� X(n�1)(P; �)j�;2s ds:By the boundedness of a and �, one easily hek, by using (2.3) that for eah t � 0,there exists a onstant Ct > 0 suh that for all P 2 M,EP jX(1)(P; �)�X(0)(P; �)j�;2s � Ct � s; 0 � s � t:Therefore, a simple iteration shows thatsupP2MEP jX(n+1)(P; �)�X(n)(P; �)j�;2t � Cn! � Cttn;



SINGULAR STOCHASTIC CONTROL 13whene there exists an ~X 2 H, suh thatlimn!1 supP2MEP jX(n)(P; �)� ~X(P; �)j�t = 0;for all t � 0. By a fairly easy analogy with F. Riesz's Theorem, we an extrat asubsequene that is independent of P , and hene may assume to be fX(n)g1n=0 itself,suh that for all P 2 M,limn!1 jX(n)(P; !)� ~X(P; !)j�;2t = 0; t � 0; P � a:e: ! 2 
:By Lemma 3.4-(3), ~X 2 HDmeas. It is then not hard to hek, by using (3.2), thatfY(n)g, and then fK(n)g also onverge in a same manner to some limits ~Y; ~K 2 HDmeas,respetively; moreover, it holds that~Y = I0 + I1(~X) + I2(~X):(3.22)It remains to show that ~X = �(~Y) so that for eah P 2 M, (~X(P; �); ~K(P; �)) solvesSDEDR(~Y(P; �)) on (
;FÆ; P ). To see this, de�ne X̂ = �(~Y). Sine EP j~X(P; �) �X(n)(P; �)j�;2t ! 0 as n!1 for all t � 0 by de�nition, we wish to show thatEP jX(n)(P; �)� X̂(P; �)j�;2t ! 0; for all t � 0;(3.23)as n!1. One (3.23) is proved, then X̂ = ~X in H and the uniqueness of the solutionof SDEDR will yield that Yx = ~Y; Xx = X̂ = ~X; Kx = ~K in H, i.e., Yx;Xx;Kx 2 HDmeasand the onlusion follows.Finally, note that X(n) � X̂ = �(Y(n)) � �(~Y). So by using (3.20) and (3.22); thesimilar estimate as (3.21) and the fat that EP jX(n�1)(P; �)� ~X(P; �)j�;2t ! 0; t � 0, wean derive (3.23) easily. The proof is now omplete.4. An approximation theorem. In this setion we validate the fat that thereexists a "dense" sub-lass of admissible ontrols with ontinuous paths. To be morespei�, let Can(T � r; y) by de�nition be the sublass of admissible ontrols onsistingof all the elements P 2 M suh that Pf� 2 C[0;1) \ D̂T�r(y); �+ = 0g = 1, then itis lear that Can(r; y) � Dan(r; x; y) for any x � 0. Our main result of this setion isto strengthen (2.12):Theorem 4.1. It holds thatQ(r; x; y) = infP2Can(T�r;y) J(P; r; x):(4.1)First, it should be lear by Proposition 2.1 that we must only deal with the "loal"ounterpart of (4.1). Namely, it suÆes to prove thatQlo(r; x; y) = infP2Cloan(T�r;y) J(P; r; x):



SINGULAR STOCHASTIC CONTROL 14Therefore in this setion we will always restrit ourselves to the �nite time interval [0; T ℄and the loal anonial spae (
T ;G) and fGtg.We start from some lemmas onerning the SDEDR. Let us �x (r; x; y) 2 E andP 2 Dloan(r; x; y), the system (1.1) an be writen asXx;��t = x+ Z t0 a(Xx;��s )ds+ Z t0 �(Xx;��s )dBs � �t +Kt; 0 � t � T:(4.2)We reall the funtion �(x) of (3.17), whih is of lass C2, non-negative and stritlyinreasing. So by setting Zt = �(Xx;��t ), z = �(x),  = ��1 and applying Itô's Formula(in a general form, see [19℄) to �(Xx;��t ), we get from a little omputation thatZt = z + Z t0 â(Zs)ds+Bt � �̂t + K̂t;(4.3)where â(x) = �0( (x))a( (x)) + 12�00( (x))�2( (x));(4.4) �̂t = Z[0;t) �0(Xx;��s )d�s � X0�s<t h�(Xx;��s+ )� �(Xx;��s ) + �0(Xx;��s )�Xx;��s i ;(4.5) K̂t = Z t0 �0(Xx;��s )dKs:(4.6)Lemma 4.2. (1) The proess �̂ is non-dereasing, a.s. P;(2) The proess K̂ is ontinuous, and (Z; K̂) is the solution of SDEDR (4.3) on[0; T ℄.Proof. (i) Sine P 2 Dloan(r; x; y), K is ontinuous; whene �Xx;��t = ���t and(4.5) an be writen as�̂t = Z[0;t) �0(Xx;��s )d�s � X0�s<t h�(Xx;��s+ )� �(Xx;��s )i ; t 2 [0; T ℄:Beause � is stritly inreasing, it is easily seen that both terms on the right hand sideabove are nondereasing sine � is nondereasing and �Xx;��t = ���t � 0 for all t � 0,(1) thus follows.(ii) It is obvious that the proess K̂ is ontinuous sine K is so. The de�nition ofZt gives that Zt � 0; 0 � t � T; a:s:P . It remains to show that R T0 ZtdK̂t = 0; a:s: P .But this is lear sineZ T0 ZtdK̂t = Z T0 �(Xx;��s )�0(Xx;��s )1fXx;��s =0gdKs = 0; a:s: P;proving the lemma.Our next step is to remove the "drift" term in equation (4.3) via the hange of theprobability measure. To this end, de�ne�t = exp�� Z t0 â(Zs)dBs � 12 Z t0 jâ(Zs)j2ds� :(4.7)



SINGULAR STOCHASTIC CONTROL 15The basi assumption (C.1), (C.2) on the funtions a, � leads to the boundedness ofthe funtion â, whih renders the proess f�t : 0 � t � Tg a (Gt; P )-martingale. Thusif we de�ne a probability measure P Æ on the anonial spae (
T ;G) bydP ÆdP = �T ;(4.8)then the Girsanov-Carmeron-Martin Theorem shows that the proessWt �= R t0 â(Zs)ds+Bs is a (Gt; P Æ)-Brownian motion for 0 � t � T ; and on the new probability spae(
T ;G; P Æ;Gt), we have Zt = z +Wt � �̂t + K̂t; 0 � t � T:(4.9)Sine P Æ � P , it an be easily heked that (Z; K̂) solves DRP(z + W � �̂) on(
T ;G; P Æ;Gt).We now onstrut as in [11℄ a sequene of ontinuous proesses�̂(n)t = 8>>>>>>><>>>>>>>: 0; 0 � t � 1nn R tt� 1n �̂sds; 1n < t � T � r�̂(n)T�r; t > T � r
9>>>>>>>=>>>>>>>; ; n � 1;on the probability spae (
T ;G; P Æ;Gt). Then thanks to the Lemma 5.4 and Proposition5.6 in [11℄, we have that P Æf�̂(n)t % �̂t; as n!1; 0 � t <1g = 1 and thatP Æ � limn!1(Z(n)t ; K̂(n)) = (Zt; K̂t); 0 � t � T� = 1;(4.10)where (Z(n); K̂(n)) are the solutions of DRP(z +W � �̂(n)), n = 1; 2; � � � :De�ne for eah n a probability measure P (n) on (
T ;G) bydP (n)dP Æ = �(n)T ;(4.11)where �(n)t = exp�Z t0 â(Z(n)s )dWs � 12 Z t0 jâ(Z(n)s )j2ds� ;(4.12)It is readily seen that �(n)T ! ��1T ; a:s:P Æ, hene P (n) ) P . Thus fP (n)g shouldbe the right andidates for our purpose as soon as we an modify them to satisfyP (n) 2 Cloan(T � r; y) and limn!1 J(P (n); r; x) = J(P; r; x).To this end, we onsider the probability spae (
T ;G; P Æ;Gt) on whih (Z; K̂) sat-is�es (4.9), and (Z(n); K̂(n)) satis�esZ(n)t = z +Wt � �̂(n)t + K̂(n)t :(4.13)



SINGULAR STOCHASTIC CONTROL 16De�ne X(n)t �=  (Z(n)t ) andK(n)t = �(0)K̂(n)t ; �(n) = Z t0  0(Z(n)s )d�̂(n)s ; B(n)t = Wt � Z t0 â(Z(n)s )ds:(4.14)Then it is easily heked that (
T ;G; P (n);Gt; B(n);��(n)) 2 S load . Furthermore, we havethe following lemma.Lemma 4.3. (1) For eah n, (X(n); K(n)) solves SDEDR(x;��(n)) on the set-up(
T ;G; P (n);Gt; B(n);��(n)).(2) P -almost surely, probably along a subsequene, one haslimn!1 �(n)t = �t; 0 � t � T ;(4.15) limn!1(X(n)t ; K(n)t ) = (Xt; Kt); 0 � t � T:(4.16)Remark 4.1. Unlike the Brownian motion ase (see [11, Lemma 5.4℄), here (X(n); K(n))may not even be the solution of SDEDR(x;��(n)) on the original spae (
T ;G; P ).However, (4.15) and (4.16) do provide suÆient information for our approximationsheme.Proof. (i) First note that P (n) � P Æ for all n � 1 and that on eah probabilityspae (
T ;G; P (n)), the proess Z(n) satis�esZ(n)t = z + Z t0 â(Z(n)s )ds+ dB(n)s � �̂(n)t + K̂(n)t ; t 2 [0; T ℄;(4.17)and has ontinuous paths. Therefore by Itô's Formula we have (Z(n)t ) = x+ Z t0 [ 0(Z(n)s )â(Z(n)s ) + 12 00(Z(n)s )℄ds+ Z t0  0(Z(n)s )dB(n)s(4.18) � Z t0  0(Z(n)s )d�̂(n)s + Z t0  0(Z(n)s )dK̂(n)s :A diret omputation shows that a(x) =  0(�(x))â(�(x)) + 12 00(�(x)), whene (4.18)an be rewriten asX(n)t = x+ Z t0 a(X(n)s )ds+ Z t0 �(X(n)s )dB(n)s � �(n)t +K(n)t ;(4.19)where we used (4.14) and the fat thatZ t0  0(Z(n)s )dK̂(n)s = Z t0  0(Z(n)s )1fZ(n)s =0gdK̂(n)s = �(0)K̂(n)t = K(n)t :(4.20)The onlusion (1) now follows from a diret vari�ation of the de�nition of a solutionto SDEDR (see [18℄).(ii) The proof of (2) is a little bit more involved. We go bak to the probabilityspae (
T ;G; P Æ;Gt) and apply Itô's Formula there to the C2 funtion  by using Z



SINGULAR STOCHASTIC CONTROL 17and Z(n) respetively to get (Z(n)s ) =  (z) + Z t0  0(Z(n)s )dWs + Z t0  0(Z(n)s )dK̂(n)s + 12 Z t0  00(Z(n)s )ds(4.21) � Z t0  0(Z(n)s )d�̂(n)s (Zs) =  (z) + Z t0  0(Zs)dWs + Z t0  0(Zs)dK̂s + 12 Z t0  00(Zs)ds(4.22) � Z t0  0(Zs)d�̂s + X0�s<t [ (Zs+)�  (Zs)�  0(Zs)�Zs℄ :De�ne �t = Z t0  0(Zs)d�̂s � X0�s<t [ (Zs+)�  (Zs)�  0(Zs)�Zs℄ :(4.23)then by (4.21), (4.22), (4.20) and note that  0(�(x)) = �(x), we have�(n)t = �� (Z(n)s )�  (z)� Z t0  0(Z(n)s )dWs(4.24) � Z t0  0(Z(n)s )dK̂(n)s � 12 Z t0  00(Z(n)s )ds� ;�t = �� (Zs)�  (z)� Z t0  0(Zs)dWs(4.25) � Z t0  0(Zs)dK̂s � 12 Z t0  00(Zs)ds� :Note that the funtions  0 and  00 are bounded beause of the assumptions (C.1),(C.2), thus by virtue of (4.24) and (4.25), the Bounded Convergene Theorem and theontinuity of �, we see that for eah 0 � t � T ,�(n)t ! �t () Z t0  0(Z(n)s )dK̂(n)s ! Z t0  0(Zs)dK̂s; as n!1:However, by the same reason as (4.20), we have for P Æ-almost surely,Z t0  0(Z(n)s )dK̂(n)s = �(0)K̂(n)t ; Z t0  0(Zs)dK̂s = �(0)K̂t; 0 � t � T:So it follows from (4.10) that P Æflimn!1 �(n)t = �t; for all t 2 [0; T ℄g = 1. It thenremains to show that � = �. Observe that �(Xs) � �(Xs+) = ��Zs = ��̂s andsimilarly,  (Zs+)�  (Zs) = �Xs = ���s, we haveZ t0  0(Zs)d�̂s = Z t0  0(Zs)�0(Xs)d�s(4.26) + X0�s<t 0(Zs)[�(Xs)� �(Xs+)� �0(Xs)��s℄= �t + X0�s<t f 0(Zs)[�(Xs)� �(Xs+)℄���sg := �t + X0�s<t f (Zs+)�  (Zs)�  0(Zs)�Zsg :



SINGULAR STOCHASTIC CONTROL 18This, together with (4.23), proves (4.15). Sine (X(n)t ; K(n)t ) = ( (Z(n)t ); �(0)K̂(n)t )and ( (Zt); �(0)K̂t) = (Xt; Kt), the onlusion (4.16) follows easily from (4.10), theontinuity of the funtion  , and the fat that P � P Æ. The proof is now omplete.Our �nal step is to get a modi�ation of �(n), say ~�(n), whih satis�es the onditionP (n)f~�(n)T�r � yg = 1. To this end, de�ne for eah 0 � r � T; y > 0 and n = 1; 2; � � � thestopping times � (n)r;y = 8>><>>: infft 2 [0; T � r℄; �(n)t > �T�rg;T � r; iff� � �g = ;;(4.27)and de�ne ~�(n)t = �(n)t^� (n)r;y ; 0 � t � T , where �(n) is de�ned by (4.14). Then it islear that P (n)-almost surely, ~�(n)t � �T�r � y; 0 � t � T ; and ~�(n)� (n)r;y = �(n)� (n)r;y = �T�rsine �(n) is ontinuous. Therefore, if we denote ~P (n) = P (n) Æ (B(n); ~�(n))�1, then~P (n) 2 Cloan(T � r; y).Theorem 4.1 will now follow from the following lemma.Lemma 4.4. Let �P (n) = P (n) Æ (B(n); �(n))�1, then it holds thatlimn!1J( �P (n); r; x) = J(P; r; x);(4.28) limn!1[J( ~P (n); r; x)� J( �P (n); r; x)℄ = 0:(4.29)Proof. (i) First, by using the basi assumption (C.1),(C.2), it is easy to hek thatthe sequene fEP Æ[�(n)T ℄2g is uniformly bounded in n; and by de�nition,J( �P (n); r; x) = EP (n) (Z T�r0 h(t + r;X(n)t )dt+ Z[0;T�r) f(r + t)d�(n)t + g(X(n)T�r))= EP Æ (�(n)T "Z T�r0 h(t + r;X(n)t )dt+ Z[0;T�r) f(r + t)d�(n)t + g(X(n)T�r)#) :Thus a standard argument using Shwartz inequality, Dominated Convergene Theo-rem, Lemma 4.3, and the argument analogous to Lemma 5.5 of [11℄ will yield thatlimn!1J( �P (n); r; x)= EP Æ (��1T "Z T�r0 h(t+ r;Xt)dt+ Z[0;T�r) f(r + t)d�t + g(XT�r)#)= EP (Z T�r0 h(t + r;Xt)dt+ Z[0;T�r) f(r + t)d�t + g(XT�r))= J(P; r; x);



SINGULAR STOCHASTIC CONTROL 19thus (4.28) is proved. To prove (4.29), we �rst laim thatlimn!1 Z T�r0 jd(�(n) � ~�(n))sj ! 0; a:s: P Æ:(4.30)Indeed, note that �(n)t � ~�(n)t = 1ft>� (n)r;y g[�(n)t � �(n)� (n)r;y ℄ so that �(n) � ~�(n) is ontinuous,nondereasing, we have by Lemma 4.3 thatZ T�r0 jd(�(n) � ~�(n))sj = �(n)T�r � �(n)� (n)r;y = �(n)T�r � �T�r ! 0; a:s: P Æ;as n !1, this proves the laim. Next, if we denote ( ~X(n); ~K(n)) to be the solution ofSDEDR(x; � ~�(n)) on (
T ;G; P (n)), and~Y (n) = x+ Z t0 a( ~X(n)s )ds+ Z t0 �( ~X(n)s )dB(n)s � ~�(n)t ;Y (n) = x+ Z t0 a(X(n)s )ds+ Z t0 �(X(n)s )dB(n)s � �(n)t ;Then under P (n), X(n) = �(Y (n)); ~X(n) = �(~Y (n)). By (2.3), (C.1) and (C.2), we getEP (n)jX(n) � ~X(n)j�;2t = EP (n)j�(Y (n))� �( ~Y (n))j�;2T�r(4.31) � CEP (n) 8<: Z T�r0 jd(�(n) � ~�(n))sj!2 + Z t0 jX(n) � ~X(n)j�;2s ds9=; :The Gronwall inequality and (4.30) then yield that EP (n)jX(n)� ~X(n)j�;2T�r ! 0 as n!1.It is now not hard to hek that (4.29) will follow from the Dominated ConvergeneTheorem and the fat (4.30), so Lemma 4.4 (hene Theorem 4.1) is proved.5. Basi properties of the ost and value funtions. In the �rst half of thissetion we shall prove that the ost funtion J : M� [0; T ℄ � (0;1) ! 1 is jointlymeasurable. The seond half will be devoted to the study of the properties of the valuefuntion Q.We begin with a lemma whih may be of independent interest. Reall the spae Dand P(D) de�ned in x2.Lemma 5.1. Suppose that U is a seperable metrizable spae with Borel �-algebraBU , and that the mapping � : U 7! P(D) is BU=BP(D). Suppose F : R � R 7! R isBorel measurable. De�ne, for eah (u; v; t) 2 U �R� [0;1),I(u; v; t) = ZD F (v; �t)�(u)(d�):(5.1)Then the funtion I is (BU � BR � B[0;1))=BR, provided the integrals exist for all(u; v; t) 2 U �R� [0;1).Proof. For eah u 2 U , onsider the probability spae (D;BD; �(u)) and theoordinate proess f�t : t � 0g de�ned by �t(�) = �t; t � 0. Clearly, for �xed u 2 U ,the funtion �̂(u; t) �= �(u) Æ ��1t is left-ontinuous in t.



SINGULAR STOCHASTIC CONTROL 20On the other hand, for �xed t � 0, the funtion �̂(�; t) = �(�) Æ ��1t is BU=BP(R).Indeed, by (2.4) and the disussion related to it, we need only observe that for anyA;B 2 BR and t � 0, fp 2 P(D) : p(��1t (A)) 2 Bg = ��1��1t (A)(B) 2 BP(D), hene by themeasurability of �, we havefu : �̂(u; t)(A) 2 Bg = fu : �(u) Æ ��1t (A) 2 Bg = ��1(��1��1t (A)(B)) 2 BU ;Consequently, �̂ 2 BU � B[0;1)=BP(R).The rest of the proof is standard. We �rst hek the result for those F 's of the formF (z1; z2) = 1A�B(z1; z2); A; B 2 BR. In that ase, I(u; v; t) = 1A(v) � �(u)(��1t (B)) =1A(v) � �̂(u; t)(B), whih is obviously BU �BR�B[0;1)=BR. The onlusion then followsfrom a standard Monotone-Class argument.We now de�ne I1(u; v; z) �= RD [R z0 F (v + t; �t)dt℄�(u)(d�), then by Fubini's Theo-rem, we have I1(u; v; z) = R z0 I(u; v + t; t)dt. The following Corollary is obvious.Corollary 5.2. With the assumptions and the notations of Lemma 5.1, the fun-tion I1(u; v; z) is BU � B[0;1) � BR=BR.We an now prove the followingTheorem 5.3. The ost funtion J(�; �; �) is (BM � B[0;T ℄ � B[0;1))=BR.Proof. Reall from Theorem 3.1 that the mapping (x; P ) 7! �(x; P ) �= P Æ (F xP )�1is B[0;1) � BM=BP(D). Write J(P; r; x) = J1(P; r; x) + J2(P; r) + J3(P; r; x), whereJ1(P; r; x) �= EP Z T�r0 h(r + t; (F xP )t)dt = ZD "Z T�r0 h(r + t; �t)dt#�(x; P )(d�);J2(P; r) �= EP Z[0;T�r) f(r + t)d��t;J3(P; r; x) �= EPg((F xP )T�r) = ZD g(�T�r)�(x; P )(d�):It is easily seen, by applying Lemma 5.1 and Corollary 5.2 with U being replaed by[0;1)�M and �(u) by �(x; P ), that J1 and J3 are BP(
)�B[0;T ℄�B[0;1)=BR. Therefore,We need only show the measurability of J2.Reall from x2 thatM is the olletion of all the element of a losed subset of P(
)(i.e., M1) restrited on 
̂, we may ontent ourselves with 
̂. Consider the mapping' : 
̂! D̂ de�ned by '(!) = ��, where ! = (w; �) 2 
̂. It is fairly easily to show that' is F̂=BD̂, where F̂ is the restrition of F on 
̂. Thus � : M ! P(D̂) de�ned by�(P ) = P Æ '�1 is BM=BP(D̂). Replaing the spae D by D̂ in Lemma 5.1, we see thatfor any 0 � s � t, the funtionJs;t(P; r) �= EP [f(r + s)��t℄ = ZD̂ f(r + s)�t�(P )(�)is BM � B[0;T ℄=BR. Thus for any partition 0 = t0 < t1 < � � � < tn = T � r,J (n)2 (P; r) �= EP ( nXi=1 f(r + ti)(��ti+1 � ��ti)) = nXi=1[Jti;ti+1(P; r)� Jti;ti(P; r)℄



SINGULAR STOCHASTIC CONTROL 21is also BM � B[0;T ℄=BR. Sine J2(P; r) is the (pointwise) limit of the funtion of theform J (n)2 (P; r), it is BM � B[0;T ℄=BR as well.We now turn to the value funtion. First we laim that, by using Theorem 4.1,the moment estimates and omparison theorems for the solutions of SDEDR's that wederived in [18℄, and some well known fats of a reeted di�usion, we an "dupliate"most of the assertions in [11, x6℄ under our setting. The following theorem states thebasi properties of Q that an be derived quite easily by a line to line analogy withthose results in [11, x6℄; thus we omit the details.Theorem 5.4. Suppose that the onditions (C.1) and (C.2) hold. Then the valuefuntion Q : [0; T ℄ � [0;1) � (0;1) ! R is loally uniformly ontinuous. Moreover,for �xed r 2 [0; T ℄; y � 0, the funtion Q(r; �; y) is nondereasing; while for �xedr 2 [0; T ℄; x � 0, the funtion Q(r; x; �) is noninreasing. Finally, the value funtionsatis�es the boundary ondition:limÆ&0 Q(r; Æ; y)�Q(r; 0; y)Æ = 0:(5.2)Remark 5.1. The only results in [11, x6℄ that annot be easily adapted to thenonlinear di�usion ase are Lemma 6.1 (the onvexity of Q in the variables x and y); apart of Lemma 6.7 and Corollary 6.8. For the latter, the basi diÆulty seems to be thatthe inequality (6.6) there, whih is essential for deriving (6.13) in Lemma 6.7 and (6.14)in Corollary 6.8 in [11℄, is no longer true when the drift and di�usion oeÆients arenon-onstant. Nevertheless, by using a "ruder" estimate, namely, allowing the righthand sides of (6.13) and (6.14) there be multiplied by some onstant C > 0, one anstill derive the results stated in Theorem 5.4 above, whih is suÆient for our purposein this paper.Next, we shall establish some further properties of the value funtion onerningits behavier near the boundary y = 0 and the terminal time r = T . These propertieswill serve as the boundary and terminal onditions of our H-J-B equation in x8. LetP 2 M be any anonial set-up. We donotev(r; x) = EP (Z T�r0 h(r + t; Xxt )dt+ g(XxT�r)) ;(5.3)where Xx is the reeted di�usion de�ned byXxt = x + Z t0 a(Xxs )ds+ Z t0 �(Xxs )dBs +Kxt ; t � 0:(5.4)It is lear that v(r; x) is in dependent of the hoie of the set-up P .Proposition 5.5. The value funtion Q satis�es the terminal ondition:limr%T Q(r; x; y) = inf0�u�x^yff(T )u+ g(x� u)g; (r; y) 2 (0; T )� (0;1);(5.5)



SINGULAR STOCHASTIC CONTROL 22and the boundary ondition:limy&0Q(r; x; y) = v(r; x); (r; x) 2 (0; T )� (0;1):(5.6)Proof. (i) For any u 2 [0; x ^ y℄, de�ne P = PW � Æf�ug on the anonial spae(
;F), where PW is the Wiener measure on (W0;BW0) and �u 2 D is de�ned by�ut = u � 1(0;1)(t); t � 0. Then it is easily heked thatQ(r; x; y) � EP (Z T�r0 h(r + t; Xx�ut )dt+ f(r)u+ g(Xx�uT�r)) ;where Xx�u is the reeted di�usion starting from x� u. Thus it follows thatlim supr%T Q(r; x; y) � inf0�u�x^yff(T )u+ g(x� u)g:(5.7)To prove the reverse inequality, we denote b = inf0�u�x^yff(T )u + g(x � u)g, andassert that for any sequene rn % T , there exists a subsequene frn0g suh thatlimn0!1Q(rn0; x; y) � b. To prove our assertion, let frng be any sequene suh thatrn % T . We hoose for eah n a P (n)� 2 Dan(rn; x; y) suh thatJ(P (n)� ; rn; x) = Q(rn; x; y); n = 1; 2; 3; � � � :Then by using the moment estimate of the solution to SDEDR (f. [18℄), the onditionson h and f , we an �nd a onstant C > 0 depending on T; x; y; h; f so that for anyÆ > 0 and n large enough, we haveQ(rn; x; y) � �CÆ + EP (n)� ff(T ) � �T�rn + g(Xx;��T�rn)g(5.8)Sine fP (n)� g is tight by [11, Corollary 12.3℄, the Skorohod Theorem enables us to �nd aprobability spae (
̂; F̂ ; P̂ ) on whih is de�ned a sequene (B̂(n); �̂(n)) with the distribu-tion P (n)� , n = 1; 2; � � �, suh that for P̂ -almost surely (probably along a subsequene),limn!1(B̂(n);��̂(n)) = (B;��) for some Brownian motion B, and some nondereasingproess �. By the property of the Skorohod topology (see for example, [8, Proposition3.6.5℄), limn!1 �̂(n)T�rn exists P̂ -almost surely, and if we denote limn!1 �̂(n)T�rn = �, then �equals either �0 = 0 or �0+ � 0. Observe that on (
̂; F̂ ; P̂ ), if we denote X(n) = Xx;��̂(n),then X(n)T�rn = x + Z T�rn0 a(X(n)s )ds+ Z T�rn0 �(X(n)s )dB̂(n)s � �̂(n)T�rn +K(n)T�rn � 0:Hene upon taking a further subsequene one an show that for P̂ -almost surely,lim infn!1 X(n)T�rn � (x� �) _ 0 = x� (� ^ x) � 0:



SINGULAR STOCHASTIC CONTROL 23It is obvious that 0 � � � y so that 0 � � ^ x � x ^ y. So by Fatou's lemma and themonotoniity of g ((C.3)-(ii)), and non-negativity of f , we getlim infn!1 EP (n)� ff(T )�T�rn + g(Xx;��T�rn)g = lim infn!1 EP̂ff(T )�(n)T�rn + g(X(n)T�rn)g� EP̂ff(T )(� ^ x) + g(x� (� ^ x))g � b:Applying this to (5.8) gives us that lim infr%T Q(r; x; y) � b sine Æ in (5.8) is arbitrary.Along with (5.7), we obtain (5.5).(ii) De�ne P = PW � Æf0g on the anonial spae, where Æf0g is the point mass atthe zero funtion in D. Clearly, P 2 Can(T � r; y) for any (r; x; y), henev(r; x) = EP (Z T�r0 h(r + t; Xx;0t )dt+ g(Xx;0T�r)) � Q(r; x; y);It follows that lim supy&0Q(r; x; y) � v(r; x).Conversely, for any sequene fy(n)g suh that y(n) ! 0, let P (n)� 2 Dan(r; x; y(n))be the optimal ontrols with respet to (r; x; y(n)), thenQ(r; x; y(n)) � EP (n)� (Z T�r0 h(r + t; Xx;��t )dt+ g(Xx;��T�r )) :By a similar argument as in part (i), we an �nd a probability spae (
̂; F̂ ; P̂ ) anda sequene (B̂(n); �̂(n)) with the distribution P (n)� , suh that limn!1(B̂(n);��̂(n)) =(B;��), P̂ -almost surely. Sine P̂ (�̂(n)T�r � y(n)) = P (n)� (�T�r � y(n)) = 1, we have�̂(n)t � y(n) ! 0, t � 0, P̂ -a.s., whene Xx;��̂(n)t ! Xx;0t as n ! 1, uniformly in t inompats, P̂ -almost surely. Thus, lim infn!1Q(r; x; y(n)) � v(r; x). The proof in nowomplete.6. A measurable seletor. In [18℄, we proved that for any �xed (r; x; y) 2 E �=[0; T ℄� [0;1)� (0;1), there exists a probability measure P � 2 Dan(r; x; y), suh thatJ(P �; r; x) = Q(r; x; y):In this setion we shall �nd a universally measurable seletor R : E 7! M, suh thatR(r; x; y) 2 Dan(r; x; y) and J(R(r; x; y); r; x) = Q(r; x; y) for all (r; x; y) 2 E.To begin with, we look at the set K �= f(P; r; x; y) : P 2 Dan(r; x; y); (r; x; y) 2 Eg.We shall prove that K is a Borel measurable set in the spae M�E. In the ase whena = 0; � = 1, this is quite lear (see [11, x13℄). However, when the system is non-linearas ours, it takes a little bit more work. In fat, the results of the previous setions aremainly motivated by this onsideration.Reall the set M(T � r; y) de�ned in x2, where r 2 [0; T ℄ and y > 0; and de�neC = fp 2 P(D) : p(C[0;1)) = 1g:(6.1)



SINGULAR STOCHASTIC CONTROL 24It is not hard to hek that C is a Borel subset of P(D).For eah T > 0 and N � 0, let KN �= [0; T ℄� [0; N ℄� [ 1N ; N ℄ andKN �= f(P; r; x; y) 2 K : (r; x; y) 2 KNg:Then K = [1N=1KN , hene it suÆes to show that eah KN is Borel measurable. Butthis follows immediately from the following lemma.Lemma 6.1. (1) KN = K1N \ K2N , whereK1N �= f(P; r; x; y) : P 2 M�(T � r; y)g;K2N �= f(P; r; x; y) : P 2 	(x; �)�1(C); (r; x; y) 2 KNg;where 	(x; P ) is de�ned by (3.2).(2) K1N is a losed set in M� E;(3) K2N is a Borel set in M� E.Proof. (1) is obvious by the de�nition and the fat that	(x; P ) 2 C () PfGxP 2 C[0;1)g = 1:To see (2), let (Pn; rn; xn; yn) 2 K1N suh that (Pn; rn; xn; yn) ! (P; r; x; y) as n ! 1.Then (r; x; y) 2 KN sine KN is losed. To hek that P 2 M�(T�r; y), we again applythe Skorohod Theorem to obtain on some probability spae (
̂; F̂ ; P̂ ) a sequene of 
-valued proesses f(B(n); �(n))g1n=0 with distributions P and fPng1n=1 respetively, suhthat (B(n); �(n)) ! (B(0); �(0)); n ! 1, a:s:P̂ for some (F̂t; P̂ )-Brownian motion B(0).Moreover, it is easy to hek that for eah t > T � r, we have P̂f�(0)t = limn!1 �(n)t �yg = 1. So by letting t& T �r, we get P̂f�(0)(T�r)+ � yg = 1, whene P 2 M�(T �r; y).The proof of (3) is based on the results derived in x3. It is easily seen by hangingthe order of variables thatK2N = f(P; r; x; y) 2 M� E : (r; y; x; P ) 2 (K̂N �M) \ [0; T ℄� [ 1N ;N ℄� 	�1(C)g;where K̂N = f(r; y; x) : (r; x; y) 2 KNg. Therefore (3) follows from Theorem 3.1, andthe proof is omplete.We an now prove the followingTheorem 6.2. There exists a analytially measurable funtion R : E 7! P(
) suhthat for eah (r; x; y) 2 E, R(r; x; y) 2 Dan(r; x; y) and J(R(r; x; y); r; x) = Q(r; x; y).Proof. By Theorem 5.3 and 5.4, J(P; r; x) is BP(
) � BE=BR and Q(r; x; y) isontinuous; thus Lemma 6.1 and the argument preeding it tell us that the setL �= f(P; r; x; y) : P 2 Dan(r; x; y); J(P; r; x) = Q(r; x; y)gis a Borel measurable set in the Borel spae M� E. Moreover, the existene of theoptimal ontrol (f. [18, x7℄) implies that ProjE(L) = E. Therefore, by the Jankov-von Neumann Theorem (f. e.g., [3℄), there exists a analytially measurable (thereforeuniversally measurable) seletor R : E = ProjE(L) 7! P(
) suh that Graph(R) � L.



SINGULAR STOCHASTIC CONTROL 257. The Bellman Priniple. In this setion, we put the results that we derivedin the previous paper [18℄ and the previous setions in this paper together to prove theEquation of Dynami Programming (i.e., the Bellman Priniple). We begin with somenotations.De�nition 7.1. For any given numbers 0 � u < v < 1, we denote by =u;v theolletion of all fFtg-stopping times � with values in [u; v℄. De�ne = = =0;T .For any � 2 =0;T�r, (r; x; y) 2 E, and P 2 M(T � r; y), let Q!(A) : 
�F 7! [0; 1℄be the regular onditional probability of P given F� . Suh Q�(�) always exists sine
 is Polish (f. for example, [10℄). Furthermore, let (Xx;��; Kx;��) be the solutionto SDEDR(x;��) on the probability spae (
;F ; P ;Ft), onsider the F� -measurablerandom vetor X �= (�; B� ; �� ; Xx;��� ; Kx;��� ). It is well known that (f. e.g., [22℄), forP � a:e: ! 2 
, Q!f!0 : X (!0) = X (!)g = 1;(7.1)and that ~Bt �= B�+t�B� is an (F�+t;Q!)-Brownian motion. The following propositionwill be useful.Proposition 7.2. Let (r; x; y) 2 E, � 2 =0;T�r, and P 2 Dan(r; x; y) be given. LetQ�(�) : 
�F 7! [0; 1℄ be the regular onditional probability of P given F� . Suppose thatthe pair (Xx;��; Kx;��) solves SDEDR( x;��) on the probability spae (
;F ; P ;Ft).Denote, ~X!t = Xx;���(!)+t; ~x(!) = Xx;���(!) (!), ! 2 
; and with Z denoting Kx;��; B; �respetively, set ~Zt = Z�+t � Z� . Then for P � a:e: ! 2 
, the pair ( ~X; ~K) solvesSDEDR(~x(!); � ~�!) on the set-up (
;F ;Q!; ~Ft; ~B;��), where ~Ft = F�+t.Moreoever, if ~Q! = Q! Æ ( ~B;�~�)�1, then ~Q! 2 Dan(r+ �(!); ~x(!); y� ��(!)(!)) forP � a:e: ! 2 
.Proof. Let (r; x; y), � , P be given as assumed, onsider the original probabilityspae (
;F ; P ;Ft). Sine P -almost surely, we haveXx;���+t = ~x+ Z �+t� a(Xx;��s )ds+ Z �+t� �(Xx;��s )dBs � (��+t � �� )(7.2) + (Kx;���+t �Kx;��� ); t � 0:A standard Monotone-Class argument and the fat (7.1) enable us to rewrite (7.2) as~Xt = ~x(!) + Z t0 a( ~Xs)ds+ Z t0 �( ~Xs)d ~Bs � ~�t + ~Kt; t � 0; a:s:Q!;(7.3)for P � a:e: ! 2 
. It is lear that Q!f ~Xt � 0; t � 0g = 1; Q!f ~K 2 C[0;1)g = 1, andQ! �Z 10 ~Xtd ~Kt = 0� = Q! (Z 1�(!)Xx;��t dKx;��t = 0) = 1;for P � a:e: ! 2 
, so the pair ( ~X; ~K) solves SDEDR(~x(!);�~�) on (
;F ;Q!; ~Ft) forP � a:e: ! 2 
, proving the �rst assertion.



SINGULAR STOCHASTIC CONTROL 26To see the seond part, let ~Q! = Q! Æ ( ~B;�~�)�1. By Theorem 4.4 in [18℄, for eah! 2 
, there exists a pair (F !; G!) : 
 ! D2 whih solves SDEDR(~x(!);���) on theanonial spae (
;F ;Q!), where F ! �= F ~x(!)~Q! ; G! �= G~x(!)~Q! , and ��� now denotes theseond omponent of the anonial proess; suh that for P � a:e: ! 2 
, Q!-almostsurely, F !( ~B;�~�)t = ~Xt; G!( ~B;�~�)t = ~Kt; t � 0:It is easy to hek (reall (7.1)) that for P � a:e: ! 2 
,~Q!f!0 : ��t(!0) = ��T�r��(!)(!) � y � ��(!)(!); t > T � r � �(!)g = 1:Therefore ~Q! 2 M�(T � r � �(!); y � ��(!)(!)), for P � a:e: ! 2 
.Finally, sine PfKx;�� 2 C[0;1)g = 1, we have for P � a:e: ! 2 
,~Q!fG! 2 C[0;1)g = Q!fG!( ~B;�~�) 2 C[0;1)g = Q!f ~K 2 C[0;1)g = 1;whene ~Q! 2 Dan(r + �(!); ~x(!); y � ��(!)(!)) for P � a:e: ! 2 
, proving the propo-sition.The main result of this setion is the following system of equations of dynamiprogramming (Bellman Priniple).Theorem 7.3. (Bellman Priniple) For every (r; x; y) 2 E, and every � 2=0;T�r, Q(r; x; y) = infP2Dan(r;x;y)EP (Z �0 h(r + t; Xx;��t )dt+ Z[0;�) f(r + t)d�t(7.4) +Q(r + �;Xx;��� ; y � �� )o ;Q(r; x; y) = inf0�u�x^yff(r)u+Q(r; x� u; y � u)g:(7.5)Proof. We �rst assume (7.4) to prove (7.5), sine the latter is relatively easier.De�ne I(r; x; y; u) = f(r)u + Q(r; x � u; y � u). Beause Q(r; x; y) = I(r; x; y; 0), wehave inf0�u�x^y I(r; x; y; u) � Q(r; x; y):Conversely, for any �xed u 2 [0; x^y℄, we de�ne �ut = u�1(0;1)(t) and P = PW�Æf�ug,where PW is the Wiener measure on (W0;BW0) and Æf�ug 2 P(D) is the point mass at�u. Clearly, P 2 Dan(r; x; y). Now for any � > 0, by (7.4), we haveQ(r; x; y)(7.6) � EP (Z �0 h(r + t; Xx;��ut )dt+ Z[0;�) f(r + t)d�ut +Q(r + �;Xx;��u� ; y � �u� ))= EP �Z �0 h(r + t; Xx;��ut )dt+ f(r)u+Q(r + �;Xx;��u� ; y � u)� :



SINGULAR STOCHASTIC CONTROL 27Note that lim�&0Xx;��u� = Xx;��u0+ = x � u; a:s:P ; and that the value funtion Q isloally uniformly ontinuous (see Theorem 5.4), we obtain thatQ(r; x; y) � lim�&0EP �Z �0 h(r + t; Xx�u;0t )dt+ f(r)u+Q(r + �;Xx�u;0� ; y � u)�= I(r; x; y; u);(7.7)whene (7.5) follows from taking the in�mum in (7.7).Proof of (7.4): We split the proof of into two lemmas whih will take are of twodiretions of inequalities respetively.Lemma 7.4. For any (r; x; y) 2 E and � 2 =0;T�r, it holds thatQ(r; x; y) � infP2Dan(r;x;y)EP (Z �0 h(r + t; Xx;��t )dt+ Z[0;�) f(r + t)d�t(7.8) +Q(r + �;Xx;��� ; y � �� )o :Proof. Let (r; x; y) 2 E and � 2 =0;T�r be given; pik any P 2 Dan(r; x; y). Againdenote by Q! the regular onditional probability of P given F� . By Proposition 7.2(with the same notations there), we have ~Q! 2 Dan(r+�(!); ~x(!); y���(!)(!)), wheneQ(r + �(!); ~x(!); y � ��(!)(!))� E ~Q! (Z T�r��0 h(r + � + t; ~X!t )dt+ Z[0;T�r��) f(r + � + t)d~�t + g( ~X!T�r��))= EP (Z T�r� h(r + t; Xx;��t )dt+ Z[�;T�r) f(r + t)d�t + g(Xx;��T�r )�����F�) (!);for P � a:e: ! 2 
. It follows thatJ(P; r; x) � EP (Z �0 h(r + t; Xx;��t )dt+ Z[0;�) f(r + t)d�t(7.9) +Q(r + �;Xx;��� ; y � �� )o :By taking the in�mum over P 2 Dan(r; x; y) on both sides of (7.9), we derive (7.8).The reverse inequality is the diret onsequene of the following lemma.Lemma 7.5. For eah (r; x; y) 2 E, � 2 =0;T�r and P 2 Dan(r; x; y), there existsa P � 2 Dan(r; x; y) suh that P � = P on F� , andJ(P �; r; x) = EP � (Z �0 h(r + t; Xx;��)t)dt+ Z[0;�) f(r + t)d�t(7.10) +Q(r + �;Xx;��� ; y � ��)o :



SINGULAR STOCHASTIC CONTROL 28Proof. Suppose that (r; x; y) 2 E, � 2 =0;T�r and P 2 Dan(r; x; y) are given.Let R : (r; x; y) 7! Dan(r; x; y) be the (universally) measurable seletor obtained inTheorem 6.2. Let Z(!) = (r + �(!); ~x(!); y � ��(!)(!)) for ! 2 
 (reall that ~x(!) =Xx;���(!) (!)); and let � = P Æ Z�1 2 P(E). By the universal measurability of R, thereexists a funtion R� : (r; x; y) 7! Dan(r; x; y) whih is a version of R (under �) andis BE=BM, (see, for example, [3, x7℄). We now de�ne Q! �= R�(Z(!)) 2 M; ! 2 
(note the notational di�erene between this Q! and the Q! de�ned before). It is easyto hek that for eah A 2 F , Q�(A) is F� -measurable; moreover, we have by de�nitionthat the value funtion at Z(!) is Q(Z(!)) = J(Q!; r + �(!); ~x(!)).To onstrut the desired P �, we follow the idea of [11℄ and [22℄. First, for eaht � 0, we de�ne a mapping  : 
� 
! 
 byt(!; !0) = !0(t)� !0(t ^ �(!)) + !(t ^ �(!)); t � 0:(7.11)We laim that  is F� � F=F . Indeed, observe that  = P3i=1 i, where for t � 0,1t (!; !0) = !0(t); 2t (!; !0) = !0(t ^ �(!)); 3t (!; !0) = !(t ^ �(!)):It is readily seen that 1 and 3 are F� � F=F sine they depend atually only onone variable. As for 2, we �rst �x t � 0, onsider the following two mappings: � :[0;1)� 
! R and ~�t : 
� 
! [0;1)� 
 de�ned by�(t0; !0) = !0(t0); ~�t(!; !0) = (t ^ �(!); !0):It is then obvious that � is B[0;1)�F=BR and ~�t is Ft^� �F=B[0;1)�F for every t � 0.Sine 2t = � Æ ~�t, it is Ft^� �F=BR, whene F� �F=BR, for every t � 0. Beause F isgenerated by the ylinder sets, we obtain that 2 is F� �F=F . This substantiates thelaim.We now de�ne for eah ! 2 
,~Q! = Q! Æ (!; �)�1:(7.12)By an easy Monotone-Class argument, one shows that for any f 2 F� � F=BR, themapping ! 7! R
 f(!; !0)Q!(d!0) is F�=BR. Consequently, the mapping! 7! ~Q!(A) = Z
 1A((!; !0))Q!(d!0) = Z
 1�1A (!; !0)Q!(d!0)is F�=BR. Furthermore, it is lear by the de�nition (7.11) and (7.12) that ~Q!f!0 :!0(�(!)) = !(�(!))g = 1 for every ! 2 
. Therefore, we an apply Theorem 6.1.2 in[22℄ to obtain for eah P 2 Dan(r; x; y) a P � 2 P(
) suh that(1) P �jF� = P jF� ;(2) P �[ � jF� ℄(!) = Æ! 
�(!) ~Q!; for P � a:e: ! 2 
;where for s � 0, Q 2 P(
j[s;1)) and ! 2 
, Æ!
sQ denotes the probablity measurein P(
) satisfying (1) Æ!
sQf!0 : !0(t) = !(t); t � sg = 1 and (2) Æ!
sQ(A) = ~Q(A),



SINGULAR STOCHASTIC CONTROL 29for A 2 �f!0(t); t � sg (see [22, Lemma 6.1.1℄). It is then intuitively lear by theonstrution of P � and the properties of P and ~Q that P � belongs to Dan(r; x; y). Thejusti�ation is straight forward and similar to [11, Proposition 13.5℄, with the help of[22, Theorem 1.2.10℄, we therefore omit it.Finally, baring in mind that P � = P on F� , we an apply Proposition 7.2 and usethe similar argument as in Lemma 7.4 to obtain thatJ(P �; r; x)(7.13)= EP � (Z T�r0 h(r + t; (F xP �)t)dt+ Z[0;T�r) f(r + t)d�t + g((F xP �)T�r))= EP � (Z �0 h(r + t; (F xP �)t)dt+ Z[0;�) f(r + t)d�t+ EP � "Z T�r� h(r + t; (F xP �)t)dt+ Z[0;T�r) f(r + t)d�t + g((F xP �)T�r)�����F�#)= EP � (Z �0 h(r + t; (F xP �)t)dt+ Z[0;�) f(r + t)d�t +Q(T � r � �;Xx;��� ; y � �� )) :Namely, (7.10) holds.8. The Hamilton-Jaobi-Bellman equation. Throughout this setion, we de-note z �= (r; x; y) and EÆ �= (0; T ) � (0;1) � (0;1). For any u 2 C2(EÆ), let Du bethe gradient and D2u the Hessian of u. De�ne the following di�erential operators:(Lu)(z) = ur(z) + a(x)ux(z) + 12�2(x)uxx(z);(8.1) (Gu)(z) = ux(z) + uy(z);(8.2)where ur; ux; uy are the �rst derivatives of u with respet to r; x; y respetively; and uxxis the seond derivative of u with respet to x. We onstrut the Hamiltonians by �rstletting H1(z;Du;D2u) = h(r; x) + (Lu)(z); H2(z;Du) = f(r)� (Gu)(z);(8.3)and then setting H = �(H1 ^H2). The H-J-B equation is of the following form:H(z;Du;D2u) = 0:(8.4)Next we introdue the de�nition of a visosity solution due to Crandall-Lions [6℄or Lions [16℄.De�nition 8.1. A ontinuous funtion u : EÆ ! R is alled a visosity subsolution(resp. supersolution) of the equation (8.4), if for all  2 C1;2([0; T ℄ � R2) for whihu�  has a maximum (resp. minimum) point at z 2 EÆ, we haveH(z;D ;D2 ) � 0; (resp: H(z;D ;D2 ) � 0):



SINGULAR STOCHASTIC CONTROL 30u is alled a visosity solution of (8.4) if it is both a visosity subsolution and a visositysupersolution.We �rst prove that the value funtion Q(r; x; y) is a visosity subsolution of (8.4),whih omes from the following proposition.Proposition 8.2. Let  2 C1;2([0; T ℄ � R2) be suh that z 2 EÆ is a maximumpoint of Q�  and suh that Q(z) =  (z). Thenh(r; x) + (L )(z) � 0; f(r)� (G )(z) � 0:(8.5)Proof. By a simple stopping-time-argument, we may assume that z 2 EÆ is a globalmaximum of Q �  . Thus Q(z0) �  (z0), for all z0 2 EÆ. Let Æ > 0 be given; hooseP 2 Dan(z) so that Pf�t = 0; 0 � t � Æg = 1. De�ne� = infft � 0 : Xx;0t = 0g:Sine x > 0, P (� > 0) = 1. By the �rst equation of Bellman Priniple (7.4) and thede�nition of  , one an easily derive that (z) � EP (Z Æ^�0 h(r + t; Xx;0t )dt+  (r + Æ;Xx;0Æ^� ; y)) :(8.6)Denoting Zt = (r + t; Xx;0t ; y) and applying Itô's formula to  (Zt), we get (ZÆ^� ) =  (z) + Z Æ^�0 (L )(Zs)ds+ Z Æ^�0  x(Zs)�(Xx;0s )dBs + Z Æ^�0  x(Zs)dKx;0s :It is readily seen that Kx;0t = 0 for t � � , a:s:P and the stohasti integral on the righthand side above is a true martingale, thus upon taking expetation, we derive from(8.6) that 0 � [h(r; x) + (L )(z)℄Æ + o(Æ). Deviding Æ on both sides and then lettingÆ ! 0, we obtain the �rst half of (8.5).To show the seond half of (8.5), we use the seond equation of Bellman Priniple(7.5). Namely, for any Æ < x ^ y, we have (r; x; y) = Q(r; x; y) � f(r)Æ +  (r; x� Æ; y � Æ):(8.7)Now applying Taylor's formula to the seond term on the right hand side of (8.7) andthen using the similar argument as before, we derive the seond inequality of (8.5).We now turn to prove that Q is also a visosity supersolution of (8.4). We �srt givean assumption on the optimal ontrol whih is tehnially important for the rest of thesetion.(C.5): There exist a onstant C > 0, a stopping time � 2 =0;T�r and an optimalontrol P � 2 Dan(r; x; y) suh that P �f� > 0g = 1, and that for all stopping time



SINGULAR STOCHASTIC CONTROL 31� 0 2 =0;T�r suh that P �f0 < � 0 � �g = 1, it holds that P �f�d� 0 � �0+ < C� 0g = 1,where �d� 0 = P0�s<� 0 ��s.Remark. The ondition (C.5) essentially says that (�dt � �0+)=t = O(1), as t! 0,uniformly for P �� a:e: ! 2 
. Clearly, this is trivially true if �t is ontinuous for smallt > 0. As a matter of fat, in almost all known solvable problems of this kind, theoptimal ontrols are ontinuous exept for an initial jump (see for example, [2℄, [14℄,[17℄, [20℄, among others), both for the linear systems and the nonlinear systems, so theondition (C.5) is always satis�ed. However, under the present ontext, we need thisondition a priori.The following Proposition leads to the onlusion that the value funtion Q is alsoa visosity supersolution of (8.4).Proposition 8.3. Suppose that ondition (C.5) holds. Let  2 C1;2([0; T ℄�R2) besuh that (r; x; y) 2 EÆ is a minimum point of Q� and suh that Q(r; x; y) =  (r; x; y).Then one of the following must hold:h(r; x) + (L )(z) � 0; f(r)� (G )(z) � 0:(8.8)Proof. Suppose that the onlusion is not true. Then there must exist a onstant� > 0, suh that h(r; x) + (L )(z) > �; f(r)� (G )(z) > �:(8.9)Let us denote F (z) = (h(r; x) + (L )(z)) ^ (f(r)� (G )(z)) and setE = fz0 2 EÆ : F (z0) > �2; j(G )(z0)� (G )(z)j < �2C ; x > 0g;(8.10)where C is the onstant given in Condition (C.5). Pik an optimal ontrol P � 2Dan(r; x; y) satisfying the ondition (C.5); denote Zt = (r+ t; Xx;��t ; y� �t); t � 0, andde�ne �̂ = infft � 0 : Zt 2 Eg;(8.11)we have the following lemma.Lemma 8.4. Suppose (8.9) holds. Then we have that(1) P �f��0 = 0g = 1, where � is the seond omponent of the anonial proess.(2) P �f�̂ > 0g = 1:(3) P �-almost surely, one hasX0�s<�̂[ (Zs+)�  (Zs)�  x(Zs)�Xs �  y(Zs)�Ys℄ � � �C X0�s<�̂��s:Proof. (i) First observe that, if we denote z = (r; x; y), zu = (r; x � u; y � u), and�Qz (u) �= f(r)u + Q(zu) for 0 � u � x ^ y, then the funtion �Qz (�) is nondereasing.



SINGULAR STOCHASTIC CONTROL 32Indeed, for 0 � u < u0 � x^ y and �u = u0� u > 0, we have from the seond equationof Bellman priniple (7.5) that�Qz (u) = uf(r) +Q(zu) � uf(r) + [�u � f(r) +Q(zu+�u)℄= u0f(r) +Q(zu0) = �Qz (u0):Note that under P � 2 Dan(r; x; y), we have by de�nition that P �f��0 � x^yg = 1;moreover, if we let � � Æ > 0 in the �rst equation of Bellman priniple (7.4) and notethat the "inf" sign on the right hand an be removed sine P � is optimal, then by lettingÆ ! 0 in (7.4), we get that Q(z) = EP �f�Qz (��0)g.On the other hand, beause the set E is open, we an �nd a d > 0 suh that for all0 � u � d, zu 2 E . Thus by the monotoniity of �Qz (�), the de�nition of the funtion  ,and a little omputation, we getQ(z) � EP �f�Qz (��0 ^ d)g � EP �f� z (��0 ^ d)g� EP �fZ ��0^d0 [f(r)� (G )(zu)℄du+  (r; x; y) � �2EP �[��0 ^ d℄ +Q(z):The part (1) follows immediately.(ii) Sine � does not have any initial jump and x > 0, we must have �̂ > 0, a:s:P �,proving part (2).(iii) Observe that for any 0 � s < � , we must have Kx;��s = 0, thus �Xs = �Ys =���s, so that  x(Zs)�Xs +  y(Zs)�Ys = �(G )(Zs)��s. On the other hand, if wedenote Z�t = Zt + �(Zt+ � Zt), t � 0, then it is readily seen that (Zs+)�  (Zs) = Z 10 dd� (Z�s )d� = Z 10 (G )(Z�s )d� � (���s):Therefore, for eah 0 � s < �̂ , we have (Zs+)�  (Zs)�  x(Zs)�Xs �  y(Zs)�Ys = ��s � Z 10 [(G )(Zs)� (G )(Z�s )℄d�:Sine s < �̂ , we have Zs; Z�s 2 E for all � 2 (0; 1). Therefore, P �-almost surely,(G )(Zs)� (G )(Z�s ) � �j(G )(Zs)� (G )(z)j � j(G )(z)� (G )(Z�s )j � � �C ;whene the result follows sine ��s � 0, for all s � 0.We an now �nish the proof of Proposition 8.3. Without loss of generality, wemay assume that �̂ = � , where � is the stopping time de�ned in Condition (C.5); forotherwise we an always onsider � 0 = � ^ �̂ .Applying the generalized Itô's Formula to  (Zt): (Z� ) =  (z) + Z �0 (L )(Zs)ds� Z �0 (G )(Zs)d�t(8.12) + Z �0  x(Zs)�(Xs)dBs + Z �0  x(Zs)dKx;0s+ X0�s<�[ (Zs+)�  (Zs)�  x(Zs)�Xs �  y(Zs)�Ys℄:



SINGULAR STOCHASTIC CONTROL 33By a similar argument as in Propositon 8.2, together with the de�nition of � (= �̂) and(8.10), (8.11), we see that in the right hand side of (8.12): P �-almost surely, the �rstintegral is no less than � R �0 h(r + s;Xx;��s )ds+ �2� ; the seond integral is no less than� R �0 f(r+ s)d�s+ �2� ; moreover, the fourth term is a true martingale and the �fth termshould vanish. Thus, upon taking expetation and doing a little algebra, we obtain that (z) + EP �[�� +�� ℄(8.13) � EP � �Z �0 h(r + s;Xx;��s )ds+ Z �0 f(r + s)d�s +  (Z� )� ;where �� = P0�s<� [ (Zs+) �  (Zs) �  x(Zs)�Xs �  y(Zs)�Ys℄. Now reall thatz = (r; x; y) is the zero minimum point of Q� , (8.13) will remain true if we replae  by Q and then the right hand side of (8.13) equals Q(z) (=  (z)) by the �rst equationof Bellman priniple and the fat that P � is optimal. It follows that EP �[�� +�� ℄ � 0.However, by Lemma 8.4 and the assumption (C.5), we should have �� � � �C �d� > ��� ,a:s:P �, whene EP �[�� +�� ℄ > 0. The ontradition yields the proposition.Remark. (1) From the proof of Proposition 8.3, we see that the proposition willremain true as long as the last term in (8.12) is nonnegative. One of the suÆientonditions for this is that the value funtion Q is onvex in the variables x and y so that an be modi�ed to be onvex near z so that the last term of (8.12) is nonnegative. Inthe linear ase (a and � are onstant or linear in x), this ondition is easy to be veri�ed,but in our ase, this is again not known a priori.(2) One may have already notied that we didn't mention the uniqueness of thevisosity of the H-J-B equation (8.4) (with terminal ondition (5.5) and mixed boundaryonditions (5.2) and (5.6)). In fat, beause the domain (0;1)� (0;1) in (x; y)-spaeis not of smooth boundary, we have not found any existing result onerning this.Therefore we would like to raise this question to those who might be interested.Aknowledgments: I would like to thank Professor Naresh Jain for his valuablehelp during the time when most of this paper was aomplished. My thanks are alsodue to Professor Niolai V. Krylov for many useful disussions.9. Appendix 1. We now sketh the proof of Lemma 5.1.(i) The proof of (1) is a modi�ation of [11, Lemma 6.3℄. Let 0 < � < r < T andP 2 Can(r � �; y) be given. Let X �= F xP ; K �= GxP be the solution to SDEDR(x;��).Then Q(r; x; y) � EP "Z T�r0 h(r + t; Xt)dt+ Z T�r0 f(r + t)d�t + g(XT�r)# :whene a similar estimates as in [11, Lemma 6.3℄ leads toJ(P; r � �; x; y)�Q(r; x; y) � EP (Z T�r+�T�r h(r � � + t; Xt)dt(9.1)



SINGULAR STOCHASTIC CONTROL 34+ Z T�r0 [h(r � � + t; Xt)� h(r + t; Xt)℄dt+ Z T�r0 [f(r � � + t)� f(r + t)℄d�t)� EP (Z T�r+�T�r g0(Xs)[a(Xs)ds+ �(Xs)dBs � d�s + dKs℄+ Z T�r+�T�r f(r � � + t)d�t + 12 Z 10 [�T�r+�(a)� �T�r(a)℄dg0(a)) :where f�t(a) : t � 0g is the loal time of the ontinuous semimartingale X at level a.The moment estimate of the solution X and the onditions on the funtions h; f; g anda give that EP R T�r+�T�r g0(Xs)�(Xs)dBs = 0; R T�r+�T�r [f(r� �+ t)� g0(Xs)℄d�s � 0; a:s:;R T�r+�T�r g0(Xs)dKs = g0(0)[KT�r+��KT�r℄ � 0; a:s:; R10 [�T�r+�(a)��T�r(a)℄dg0(a) �0; a:s:. Thus J(P; r � �; x; y)�Q(r; x; y) � �� � CM ;and whene Q(r � �; x; y)�Q(r:x:y) � �� � CM :(9.2)Conversely, let P 2 Can(T �r; y) and note that a:s:P , the oordinate proess � satis�esthat �t = �T�r � y, thus P 2 Can(T � r+ �; y). Following the same estimate as that in[11, Lemma 6.4℄, we an easily obtain thatQ(r � �; x; y)� J(P; r; x; y) � � � CM + EP [g(XT�r+�)� g(XT�r)℄:(9.3)Moreover, it is easily heked that for t 2 [T � r; T ℄, (X;K) satis�esXt = XT�r + Z tT�r a(Xs)ds+ Z tT�r �(Xs)dBs +Kt �KT�r;namely, X is a reeted di�usion proess starting from XT�r. It then easily follows thatEP jXT�r+� �XT�rj2 is of order of �, the onlusion of part (1) follows from the sameargument as [11, Lemma 6.4, Corollary 6.5℄(ii) First note that for �xed P 2 Can(r; y), we haveJ(P; r; x+ Æ; y) � J(P; r; x; y);for all x � 0, it follows that the funtion Q(r; �; y) is nondereasing on [0;1), the proofof part (2) is essentially the same as [11, Lemma 6.7, Corollary 6.9℄. However, oneshould note here that the result of [11, Corollary 6.8℄ an not be easily adapted tononlinear di�usion ase, the basi diÆulty is that the inequality (6.6) in [11℄, whih isessential to derive the result of Corollary 6.9 in [11℄, is no longer true when the driftand di�usion oeÆients are non-onstant. Nevertheless, the rest of the proof is nothard to be adjusted to our ase.



SINGULAR STOCHASTIC CONTROL 35For an arbitrary Æ > 0 and P 2 Dan(r; x; y) � Dan(r; x+Æ; y), denote (X;K); (X(Æ); K(Æ))to be the solution to the SDEDR(x;��) and SDEDR(x+Æ;��) respetively, and utilizeall the notations in [11℄. A similar estimate as Lemma 6.7 in [11℄, together with theomparison theorem of the SDEDR (see [18℄), gives thatQ(r; x + Æ; y)� J(P; r; x; y)� EP "Z (T�r)^TÆ0 (Xt(Æ)�Xt)hx(r + t; Xt(Æ))dt+ (XT�r(Æ)�XT�r)g0(XT�r(Æ))1fT�r<TÆg# ;where TÆ �= infft � 0 : Xt � Xt(Æ)g. It is readily seen that the moment estimateEP jX(Æ)�Xj�;2mT � Cm;T � Æ;holds for all m > 0 and Æ 2 (0; 1), where Cm;T is a onstant depending only on m; T .Thus part (2) follows right away.(iii) We use the same method as in Lemma 6.10. Again, we note that the funtionQ(r; x; �) is non-inreasing. Indeed, it is obvious that Dan(r; x; y) � Dan(r; x; y0), forany y � y0, thus Q(r; x; y) � Q(r; x; y0), for y � y0. We now prove the seond inequality.To begin with, let P be an arbitrary element in Dan(r; x; y + �) for some � > 0.De�ne the stopping time �y �= (T � r) ^ infft � 0 : �t � yg;where � is the seond omponent of the anonial proess. Set�t = 8><>: �t 0 � t � �y;y t > �y:It is obvious that � is nondereasing and �T�r � y, a:s:P . Further, the pathwiseuniqueness of the solution of SDEDR implies that for any 0 � t < �y, one has Xx;��t =Xx;��t , a:s:P . Thus ��t = ��t � Xx;��t = Xx;��t ;and for t > �y, one has ��t � 0. As for t = �y, note that ���y = y � ��y , and ��y+ � yby the de�niton. Hene, ���y � Xx;���y implies that���y � ���y � Xx;���y = Xx;���y ;where the last equality is due to the �agl�ad property of the paths. Therefore, it holdsthat for any t � 0, ��t � Xx;��t ; a:s:P:(9.4)



SINGULAR STOCHASTIC CONTROL 36Observe that, on the probability spae (
;F ; P ), we have��t � (��t) = �t � �t = 8><>: 0; 0 � t � �y;�t � y t > �y;whih is non-negative, non-dereasing. Note that the reeting proess Kx;�� is on-tinuous, the Comparison Theorem [18, Corollary 5.5℄, gives Xx;��t � Xx;��t � 0, for allt � 0. Now let ~P = P Æ (B;��)�1, we have ~P 2 Dan(r; x; y), the onditions on thefuntions h; f; g lead to thatQ(r; x; y) � J( ~P; r; x; y)(9.5) = EP "Z �y0 h(r + t; Xx;��t )dt+ Z T�r�y h(r + t; Xx;��t )dt+ Z[0;�y℄ f(r + t)d�t + g(Xx;��T�r )1f�y�T�rg + g(Xx;��T�r )1f�y<T�rg# :(9.6)In onjuntion with the similar estimate as in [11, Lemma 6.10℄ and the Shwartzinequality, one an easily derive thatQ(r; x; y)� J(P; r; x; y + �)(9.7)� nEP jXx;�� �Xx;�j�;2T�ro1=2 �8<:EP "Z T�r�y Z 10 hx(r + t; Zt(�))d�dt+ Z 10 g0(Zt(�))d�#29=;1=2 ;where Z(�) = �Xx;�� + (1� �)Xx;�� LetY x;��t = x + Z t0 a(Xx;��s )ds+ Z t0 �(Xx;��s )dBs � �tY x;��t = x + Z t0 a(Xx;��s )ds+ Z t0 �(Xx;��s )dBs � �t:Then Xx;�� = �(Y x;��); Xx;� = �(Y x;��);where � is the solution mapping of DRP(I), by de�nition. However, the ontinuityof the reeting proess Kx;�� and Kx;�� implies that � oinides with the solutionmapping of DRP(I), so that it is Lipshitz ontinuous under the sup-norm. Therefore,a simple Gronwall- argument yields thatjXx;�� �Xx;��j�;2T�r � CM j� � �j�;2T�r � CM � �; t � 0; a:s:P:The onsequene then follows easily from the moment estimate of the solutions toSDEDR, the onditions on the funtions h; f; g; a; �, and the inequlity (9.5). The proofis now ompleted. 2



SINGULAR STOCHASTIC CONTROL 3710. Appendix 2. In this setion we prove Lemma ??. i.e., the measure P� �=P
�(�)Q�! 2 DP;�an(r; x; y). Sine P 2 Dan(r; x; y) and P� = P on F� by the onstrution,P� 2 DP;�an(r; x; y) provided P� 2 Dan(r; x; y).(i) We prove that the �rst omponent of the anonial proess, Bt(w; �) = w(t); t �0; ! = (w; �) 2 
, is an (fFtg;P�)-Brownian motion by heking that for any 0 � s < tand � 2 R, EP � [exp[i�(Bt � Bs)℄jFs℄ = exp[�(t� s)�2=2℄; a:s:P �(10.1)It suÆes to hek that for any ylinder set A = At1;���;tn1;�;n , 0 � t1 � � � � � tn � s,1; � � � ; n 2 BR, one hasEP �[exp[i�(Bt � Bs) : A℄ = exp[�(t� s)�2=2℄P �(A):(10.2)In the sequel, we will denote P ! = Æ! 
�(!) Q�! for simpliity. By de�nition of theprobability P �, we haveEP � [exp[i�(Bt(!0)� Bs(!0)℄ : A℄(10.3)= Z
Z
 exp[i�(Bt(!0)� Bs(!0)℄1A(!0)P !(d!0)P (d!)= Z
Z
 exp[i�(Bt(!0)� Bs(!0)℄1A(!0)[1f�(!)<sg + 1fs��(!)<tg + 1ft��(!)g℄P !(d!0)P (d!)= I1 + I2 + I3;(10.4)where I1 = Z
Z
 exp[i�(Bt(!0)�Bs(!0)℄1A(!0)1f�(!)<sgP !(d!0)P (d!);I2 = Z
Z
 exp[i�(Bt(!0)�Bs(!0)℄1A(!0)1fs��(!)<tgP !(d!0)P (d!);I3 = Z
Z
 exp[i�(Bt(!0)�Bs(!0)℄1A(!0)1ft��(!)gP !(d!0)P (d!):For eah ! 2 
, there exists a k(!) 2 ft1; � � � ; tng, suh that �(!) 2 (k(!); k(!)+1℄,so that A = A1(!) \ A2(!), whereA1(!) �= f!0 : !0(t1) 2 1; � � � ; !0(tk(!)) 2 k(!)g;A2(!) �= f!0 : !0(tk(!)+1) 2 k(!)+1; � � � ; !0(tn) 2 ng:ThusI1 = Z
Z
 exp[i�(Bt(!0)� Bs(!0)℄1A1(!)(!0)1A2(!)(!0)1f�(!)<sgP !(d!0)= Z
 1A1(!)(!0)1f�(!)<sg(!0) "ZA2(!) exp[i�(Bt(!0)�Bs(!0)℄Q�!(d!0)#P (d!)= exp[��22 (t� s)℄ Z
 1A1(!)(!0)1f�(!)<sg(!0)Q�!(A2(!))P (d!)= P �(A \ f� < sg);



SINGULAR STOCHASTIC CONTROL 38beause A2 \ f� < sg 2 F� . As for I2, we haveI2 = Z
Z
 exp[i�(Bt(!0)�Bs(!0)℄1A(!0)1fs��(!)<tgP !(d!0)= Z
 �Z
 exp[i�(Bt(!0)�B�(!)(!)℄Q�!(d!0)� 1A(!)1fs��(!)<tg exp[i�(B�(!)(!)� Bs(!)℄P (d!)= Z
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