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Abstract. We study two kinds of Discontinuous Reflecting Problem (DRP for short), defined by
Chaleyat-Maurel et al. [3] and Dupuis and Ishii [5] (reduced to the one-dimensional case) and the re-
lated Stochastic Differential Equations with Discontinuous Paths and Reflecting Boundary Conditions
(SDEDR for short). We compare the properties of the solutions to the two DRP’s as well as the two
SDEDR’s. Some comparison theorems, either for the solutions of different kinds of SDEDR’s or for
the same kind of SDEDR but with different data, are derived. As an application, we consider a class
of finite-fuel singular stochastic control problems for diffusions. With the new approach, the complete
class of admissible controls can now be obtained as a direct consequence of our comparison theorems
without any extra conditions. The existence of the optimal control (in a wider sense) is derived.
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1. Introduction. Let (Ω,F , P ;Ft) be a complete probability space with filtration
{Ft}t≥0 satisfying the usual conditions, (i.e., Ft is right-continuous in t and F0 contains

all the P -null sets in F). Assume that an r-dimensional Ft-Brownian motion {Bt :
t ≥ 0} is given on this probability space. Let a : Rd → Rd; σ : Rd → Rd⊗r be two

functions which are assumed to be smooth. Consider the following stochastic differential
equation: for Xt = (X1

t , ..., X
d
t ),

Xt = X0 +
∫ t

0
a(Xs)ds+

∫ t

0
σ(Xs)dBs + ξt +Kt,(1.1)

where X0 is an F0-measurable Rd-valued random variable, independent of the Brown-

ian motion {Bt : t ≥ 0} and P (X1
0 ≥ 0) = 1. The process {ξt : t ≥ 0} is Ft-adapted,

Rd-valued, càglàd (i.e., left-continuous with right-limit) and of locally bounded vari-

ation paths. Finally, {Kt : t ≥ 0} is a local-time-like process to assure that X1
t ≥ 0.

Roughly speaking, K = (K1, 0, ..., 0) where K1 is an Ft-adapted process whose paths
are nondecreasing, flat off the set {X1

t = 0}, and has a jump whenever X1 attempts a

jump across the origin. The equation (1.1) is called the Stochastic Differential Equation
with Discontinuous Paths and Reflecting Boundary Conditions and will be denoted by

SDEDR (or by SDEDR(X0, ξ) when X0 and ξ are concerned) throughout this paper.
The SDEDR of this form is actually motivated by a class of singular stochastic

control problems, in which the system is given by (1.1) with dimension one; X0 ≡ x ≥ 0
is the initial state; ξ is the ”control process”; and K is the ”reflecting” process generated

automatically so as to prevent X from becoming negative. The objective is to minimize
the following cost function:

J(ξ;T, x) = E[
∫ T

0
h(t, Xt)dt+

∫
[0,T )

f(t)dξ̌t + g(XT )],(1.2)
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where T > 0 is some fixed duration. {ξ̌t : t ≥ 0} is the total variation process of ξ
with ξ̌T ≤ y < +∞ and h, f, g are some nice functions. (The precise formulation of

the control problem and the conditions for h, f, g will be given in §6). The singular
stochastic control problems of this kind have been studied by Karatzas and Shreve

(1985) [9] and (1986) [10], El Karoui and Karatzas (1988) [8] in the case when a ≡
0, σ ≡ 1, namely, the diffusion

Xt = x+
∫ t

0
a(Xs)ds+

∫ t

0
σ(Xs)dBs(1.3)

is simply a Brownian motion starting from x ≥ 0. In these works, the connection

between the singular stochastic control and the optimal stopping are established, and
the existence of the optimal control is proved in different versions.

It was on the way of trying to generalize the above results to a more general diffusion
case that we found some interesting problems in Discontinuous Reflecting Problem (DRP

for short) and SDEDR themselves, which led to this paper. Our main results can be
briefly summarized as follows. Firstly, contrary to the main property of the Skorohod

problem considered by Dupuis and Ishii [5] (abbreviated as DRP(II) in the sequel),

we show by presenting a counterexample (in Appendix 1) that the DRP defined by
Chaleyet-Maurel et al. [3] (abbreviated as DRP(I) in the sequel) does not have the

Lipschitz continuity under the sup-norm. However, despite this fact, we note that the
known weaker ”Lipschitz continuity” of DRP(I) (see (3.2)) derived in [3] would be good

enough as far as only the existence and pathwise uniqueness of SDEDR are concerned.
We discuss this topic in sections 3 and 4. Secondly, in section 5 we establish some basic

relationship between the solutions of two kinds of SDEDR’s, as well as some comparison
theorems. Our main comparison results are Proposition 5.4 and Corolary 5.5, which

facilitate the proof of the comparison theorems both for the solutions to the different
kinds of SDEDR’s and for that to the same kind of SDEDR but with different data.

As far as we know, such comparison theorems do not exist in the literature. Thirdly,
we apply the above results to the singular stochastic control problems. As a matter of

fact, one of our original concerns is to construct a complete class of admissible controls,
as was done in [8], [9] and [10], but without the extra technical condition on the jumps

of the controls. The removal of such condition was carried out in a spacial case by

Baldursson [2] after some clever but laborious work of approximations. However, it
turns out that the DRP(II) will exactly do the job. We prove this, as a byproduct of

our comparison theorems without much extra work, in section 6. Finally, we prove the
existence of the optimal control for such control problem in section 7. In a subsequent

paper of the author, the control problem will be further developed.
Since the SDEDR in a half-space as we formulated at the begining of the section

is essentially a one-dimensional reflecting problem, and our main interest, either in
the control problems or in the comparison theorems, is also limited to the one dimen-

sional case, we hereafter assume that d = r = 1 throughout the paper without further
specification.

2. Definitions, Notations and the Preliminary Results. Let us denote by

D (resp. D) the space of all real-valued functions defined on [0,∞) which are left-
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continuous with right limits (resp. right-continuous with left limits). We will call a
function in D càglàd, and that in D càdlàg as usual. The space D is isometric to R×D
in an obvious way. Thus the Skorohod topology on the space D (cf. [6, p.117]) would
also make the space D a Polish space. To avoid unnecessary fussiness in notion, we

will still call this topology on D the Skorohod topology. Let D̂ be the subspace of D
consisting of all the elements in D with paths of locally bounded variation. It can be

shown that D̂ is a Borel set in D (one is referred to [12] for the details concerning above
facts).

We now turn to the probabilistic set-up. In this paper, all the probability spaces will
be defined together with the filtration satisfying the usual conditions. The probability

space is subject to change if necessary, especially in the control problems. However,

we always assume that it is rich enough to carry a one-dimensional, {Ft}-Brownian
motion.

Let W = C([0,∞); R) with the usual sup-norm, and let W0 be the collection of
those elements x ∈W such that x(0) = 0. The canonical space is defined by

Ω = R×W0 ×D,(2.1)

F = B(R)× B(W0)× B(D),(2.2)

Ft = B(R)× Bt(W0)× Bt(D), t ≥ 0.(2.3)

where, for a function space E, Bt(E) is the σ-field generated by the elements in E of the

form x(· ∧ t). We denote the generic element of Ω by ω = (y, w, ζ); define the canonical
process (X0, B, ξ) by (X0, Bt, ξt)(ω) = (y, w(t), ζ(t)), for t ≥ 0, ω ∈ Ω; and the usual

P -augmentation of F , {Ft} by FP , {FPt }, respectively.
Let M be the collection of all probability measures on the canonical space (Ω,F)

satisfying the following conditions: (1) P◦π−1
3 (D̂) = 1, where π3 is the (third) coordinate

projection mapping from Ω to D. (2) Under P , the second component of the canonical
process B is an FPt -Brownian motion. It is not hard to prove that, for any given

probability space (Ω̃, F̃ , P̃ ; F̃t), if a triple (X̃0, B̃, ξ̃) is given so that X̃0 is an F̃0-
measurable, R-valued random variable; {B̃t; t ≥ 0} is an F̃t-Brownian motion; and

{ξ̃t; t ≥ 0} is an F̃t-adapted process whose paths are locally of bounded variation, then
the law of the triple (X̃0, B̃, ξ̃) belongs to M.

Finally, it will be convenient to define the following spaces. Let A be the collection of
all functions ζ ∈ D̂ such that ζ is nondecreasing and ζ(0) = 0. For given T, y > 0, denote

A(T ) = {ζ ∈ A; ζ(t) = ζ(T+), t > T}; A(T, y) = {ζ ∈ A(T ); ζ(T+) ≤ y}; B(T ) =
{ζ ∈ D̂; ζ(t) = ζ(T+), t > T}; B(T, y) = {ζ ∈ B(T ); ζ̌(T+) ≤ y}.

Let (Ω,F , P ;Ft) be any given probability space. We denote the space of measur-
able, adapted, D-valued paths processes by DP and also define, for given T > 0, y > 0,

AP (resp. AP (T ),AP (T, y),BP (T ),BP (T, y), D̂P ) to be the processes ξ ∈ DP such that
the sample paths ξ(ω) ∈ A (resp. A(T ), A(T, y), B(T ), B(T, y), D̂) for P -almost every

ω ∈ Ω. To simplify notation, we often drop the subscript ”P” for above-mentioned

spaces of processes and simply denote them by A, D̂,..., and so on if the underlying
probability space is clear in the context. Moreover, if we denote the total variation



DISCONTINUOUS REFLECTION 4

process of ξ ∈ D̂ by ξ̌, we further assume that, for any ξ ∈ D̂, there exist ξ+, ξ− ∈ A
such that ξ = ξ+ − ξ−, ξ̌ = ξ+ + ξ−.

3. Discontinuous Reflecting Problems. We now review the Discontinuous Re-
flecting Problems (DRP) defined by Chaleyat-Maurel et al. [3] and by Dupuis and Ishii

[5]. We shall compare the basic properties of these two DRP’s. Note that we are dealing
here with deterministic functions.

Consider the space D defined in §2. Denote, for each Y ∈ D, ∆Yt = Yt+−Yt, t ≥ 0
and SY = {t ≥ 0 : |∆Yt| > 0}. For a nondecreasing function K ∈ D, we write

Kd
t =

∑
0≤s<t ∆Ks, then Kt = Kc

t +Kd
t , where Kc is called the continuous part of K.

Let Y ∈ D. We first give the definition of DRP associated with Y defined by

Chaleyat-Maurel et al. [3]. We denote it by DRP(I) (or DRP(I; Y ) if Y needs to be
specified).

Definition 3.1. Let Y ∈ D, Y0 ≥ 0. We call the pair (X,K) ∈ D2 a solution to

DRP(I;Y ) if the following are satisfied:
(i) X = Y +K;

(ii) Xt ≥ 0, ∀t ≥ 0;
(iii) K is nondecreasing, K0 = 0; and

(a)
∫∞
0 XsdK

c
s = 0,

(b) ∆Kt = 2Xt+, for all t ∈ SK.

This definition of the DRP has been used to define the singular stochastic control
problems by Karatzas and Shreve [9, 10] and El Karoui and Karatzas [8], and will also

be used to define our control model. Here we summarize some of the principal results
of DRP(I) which will be useful in our paper (one is referred to [3] for details).

Proposition 3.2. For every Y ∈ D, there exists a unique solution (X,K) ∈ D2

to the DRP(I;Y), which satisfies the following properties: Denote

At = max[0, sup
0≤s≤t

{−Ys}];(3.1)

then
(1) At ≤ Kt ≤ At + Adt , 0 ≤ t <∞;

(2) Xt+ = |Xt + ∆Yt| = |Yt+ +Kt|, 0 ≤ t <∞;
(3) SK = {t ≥ 0;Xt + ∆Yt < 0};
(4) For any t ∈ SK, Kt+ +Kt = 2At+, and ∆Kt ≤ 2∆At;
(5) K is continuous if and only if K ≡ A;

The existence and the uniqueness of the solution to DRP(I; Y ) validates the fol-

lowing definition.
Definition 3.3. Let Y ∈ D, and let (X,K) solves DRP(I; Y ). The mapping

ΓI : D → D defined by ΓI(Y ) = X is called the solution mapping of DRP(I; Y ).
The DRP has been studied recently by Dupuis and Ishii [5] in another version,

which will be called DRP(II) (or DRP(II; Y )) in this paper. We note that the original
definition in [5] concerns a general region in Rn; in the one-dimensional càglàd case

with domain G = [0,∞), it takes the following form:
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Definition 3.4. Let Y ∈ D, Y0 ≥ 0. We call the pair (X,K) ∈ D2 a solution to
DRP(II; Y ) if the following are satisfied:

(i) X = Y +K;
(ii) Xt ≥ 0, t ≥ 0;

(iii) K is nondecreasing, K0 = 0; and Kt =
∫
[0,t) 1{Xs+=0}dKs, t ≥ 0.

For DRP(II), there are also some similar results as those in Proposition 3.2 for

DRP(I). Here we only verify those which will be useful in our discussion later.
Proposition 3.5. For every Y ∈ D there exists a unique solution (X,K) ∈ D2 to

the DRP(II;Y) which satisfies the following properties:
(1) For any t ∈ SK , Xt+ = 0;

(2) SK = {t ≥ 0;Xt + ∆Yt < 0};
(3) ∆Kt = |Xt + ∆Yt|, for all t ∈ SK .
(4) If K is continuous, then K ≡ A, where A is defined by (3.1), and the solutions

of DRP(I) and DRP(II) coincide.
Proof. The existence and uniqueness are proved in [5]; we need only check the

assertions (1)–(4).
(1) By Definition 3.4-(iii), for any t ≥ 0,

∫ t
0 Xs+dKs =

∫ t
0 Xs+1{Xs+=0}dKs = 0.

Hence ∆Kt > 0 implies Xt+ = 0.
(2) Since Xt+ = Xt + ∆Xt = Xt + ∆Yt + ∆Kt and by (1), t ∈ SK implies that

0 < ∆Kt = −(Xt + ∆Yt). Conversely, if Xt + ∆Yt < 0, then ∆Kt = Xt+− (Xt + ∆Yt) ≥
−(Xt + ∆Yt) > 0, i.e. t ∈ SK .

(3) Follows immediately from the above discussion.
(4) Since if K is continuous, then it is easily checked that conditions (iii) of both

DRP(II) and DRP(I) become the same, the result follows from Proposition 3.2-(5).
Also we can define a solution mapping, say ΓII , for DRP(II). The two DRP’s have

some obvious differences, especially when X attempts a jump across the origin; but

among others, the Lipschitz continuity of the solution mapping is probably the most
essential one. The main result in [5] is that ΓII is Lipschitz continuous under the uniform

topology inD (and then under the Skorohod topology). However, our counterexample in
Appendix 1 shows that the same Lipschitz continuity need not hold for ΓI . Therefore,

special consideration is necessary when one studies the problems involving DRP(I)
since the existing recipe depending on the ”strong” Lipschitz continuity of the solution

mapping may not work.
Nevertheless, it turns out that the solution mapping of DRP(I) still has a weaker

”Lipschitz continuity” (see Proposition 3.6 below). Let us consider a given probability
space (Ω,F , P ;Ft). If a process Y ∈ D is given on this space, we may construct the

solution to DRP(I; Y (ω)), say (X(ω), K(ω)), for each ω ∈ Ω. It follows from the results
of [3] that the processes X,K are all in D and are pathwise unique. We shall still call

such pair (X,K) ∈ D2 the solution to DRP(I; Y ) and still denote X = ΓI(Y ). The
solution mapping ΓI then enjoys the following property (cf. [3]).

Proposition 3.6. Suppose that on a probability space (Ω,F , P ;Ft), two semi-

martingales Y , Ŷ ∈ D are given with the decomposition Y = Y0 + M + A and Ŷ =
Ŷ0 + M̂ + Â respectively; assume that Y0+ = Ŷ0+. Let (ΓI(Y ), KI(Y )) be the solution
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to DRP(I; Y ) and (ΓI(Ŷ ), KI(Ŷ ) be that of DRP(I; Ŷ )), then there exists a constant

C > 0 such that for any stopping time τ ≥ 0, one has

E

[
sup

0≤t≤τ
|ΓI(Y )t − ΓI(Ŷ )t|2

]
+ E

[
sup

0≤t≤τ
|KI(Y )t −KI(Ŷ )t|2

]
(3.2)

≤ CE

[M − M̂,M − M̂ ]τ +

(∫
[0,τ)
|d(A− Â)t|

)2
 .

In particular, if τ ≡ T > 0 and Y , Ŷ ∈ D̂ are all deterministic, then (3.2) can be
reduced to

sup
0≤t≤T

|ΓI(Y )t − ΓI(Ŷ )t|+ sup
0≤t≤T

|KI(Y )t −KI(Ŷ )t| ≤ C
∫ T

0
|d(Y − Ŷ )s|.

This ”Lipschitz continuity” is obviously weaker than the one satified by ΓII . However,

with the counterexample in Appendix 1, we believe that this is the farthest one can go.
The relationship between the two problems is further discussed in Proposition 5.2.

4. Stochastic Differential Equations with Discontinuous Paths and Re-

flecting Boundary Conditions (SDEDR). Let (Ω,F , P ;Ft) be a given probability
space. Consider the following SDEDR described in §1:

Xt = X0 +
∫ t

0
a(Xs)ds+

∫ t

0
σ(Xs)dBs + ξt +Kt.(4.1)

We assume that the functions a and σ satisfy the following conditions:

There exists a constant C1 > 0 such that

|a(x)− a(y)|+ |σ(x)− σ(y)| ≤ C1|x− y|, for all x, y ∈ R;(4.2)

σ(0) 6= 0.(4.3)

Let X0 be an F0-measurable real random variable, and ξ be a given element in D̂. We
denote the equation (4.1) with respect to DRP(I) (resp. DRP(II)) with given data X0, ξ

by SDEDR(I; X0, ξ) (resp. SDEDR(II; X0, ξ)). The precise definitions of solutions to
SDEDR(I; X0, ξ) and SDEDR(II;X0, ξ) are the following.

Definition 4.1. A pair of processes (X,K) ∈ D2 is called a solution to SD-
EDR(I; X0, ξ) (4.1), denoted by (XX0,ξ(I), KX0,ξ(I)), if K is nondecreasing with K0 = 0

and P -almost surely, (X,K) satisfies (4.1) and
(I-i) Xt ≥ 0, t ≥ 0;

(I-ii)
∫∞
0 XsdK

c
s = 0;

(I-iii) ∆Kt = 2Xt+, for all t ∈ SK.

Accordingly, we have
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Definition 4.2. A pair of processes (X,K) ∈ D2 is called a solution to SD-
EDR(II; X0, ξ) (4.1), denoted by (XX0,ξ(II), KX0,ξ(II)), if K is nondecreasing with

K0 = 0 and P -almost surely, (X,K) satisfies (4.1) and
(II-i) Xt ≥ 0, t ≥ 0;

(II-ii)
∫∞
0 Xs+dKs = 0;

(II-iii) ∆Kt = |Xt + ∆ξt|, for all t ∈ SK.

When the context is clear, we drop the indices X0 and ξ from the notation.
To derive the existence and (pathwiwe) uniqueness of the SDEDR (4.1), we will

apply the method used in [1]. Namely, we first consider the unrestricted equation
without reflection corresponding to (4.1):

Yt = X0 +
∫ t

0
(a(Γ(Y )s)ds+

∫ t

0
(σ(Γ(Y )s)dBs + ξt,(4.4)

where Γ can be either ΓI or ΓII . Since Y ∈ D implies Γ(Y ) ∈ D, equation (4.4) is well-

defined as long as the solution is sought in the space D with certain moment conditions
(e.g., in the space H2 defined in Appendix 2). If Y is the solution of (4.4), then we let

X = Γ(Y ) so that X = Y +K, where K is the process in Definition 3.1. Hence

Xt −Kt = Yt = X0 +
∫ t

0
a(Γ(Y )s)ds+

∫ t

0
σ(Γ(Y )s)dBs + ξt

= X0 +
∫ t

0
a(Xs)ds+

∫ t

0
σ(Xs)dBs + ξt,

and (X,K) solves the equation (4.1).

Since the ”Lipschitz continuity” of ΓII facilitates the proof of the existence and

pathwise uniqueness of the equation (4.4), the method will certainly work for SD-
EDR(II). Therefore in the rest of the section, we only discuss SDEDR(I) without speci-

fication; the analogues for SDEDR(II) are trivially true. We shall first state an existence
and uniqueness theorem (Theorem 4.3); its proof is based on the ”Lipschitz” property

(3.2) for ΓI (a summary of the proof is provided in Appendix 2; one is referred to [12]
for complete details). Next, we give a theorem (Theorem 4.4) concerning a stronger

version of the solution depending only on the distribution of (X0, B, ξ). The derivation
of such a stronger version is quite a routine task (see, for example, [15, V.10] or [12,

II.4]); the details are also omited.
We remark that the existence and uniqueness of the SDEDR similar to (4.1) was

also studied in [3] under the condition that X0 + ξt ≥ 0, t ≥ 0, a.s.. By modifying the
function space there on which the Fixed Point Theorem is applied, one can show that

the theorem is also true in our case. Nevertheless, our recipe seems simpler.
Theorem 4.3. Under the assumptions (4.2) and (4.3), the SDEDR (4.1) has a

pathwise unique solution (X,K) ∈ D2. Moreover, if Y is the solution to (4.4), then the

pair (X,K) solves the DRP(Y).
Theorem 4.4. Let (Ω,F), {Ft} be the canonical space defined by (2.1)–(2.3),

and (X0, B, ξ) : Ω → Ω be the canonical process. Let M be the subspace of probability
measures on (Ω,F) defined in §2. Assume that the conditions (4.2) and (4.3) hold.

Then for any P ∈ M there exists a pair of functions (FP , GP ) : Ω = R ×W0 ×D →
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D ×D such that for all t ≥ 0, (FP , GP )−1(Bt(D ×D)) ⊆ FPt , and (X,K)
∆
= (FP , GP )

solves the SDEDR (4.1) on the probability space (Ω,FP , P ;FPt ).

Moreover, let (Ω̃, F̃ , P̃ ; F̃t) be any probability space on which the triple (X̃0, B̃, ξ̃)

has the joint distribution P (∈ M), then (X̃, K̃)
∆
= (FP , GP )(X̃0, B̃, ξ̃) solves SDEDR

(4.1) on (Ω̃, F̃ , P̃ ; F̃t).
To end this section, we present a moment estimate for the solution (X,K) to the

SDEDR (4.1) and the solution Y to the unrestricted equation (4.4).

Theorem 4.5. Suppose that a, σ satisfy (4.2) and (4.3); and that (X,K), Y
are the solutions to the equations (4.1), (4.4) respectively on some probability space

(Ω,F , P ;Ft). Then for any T > 0 and m ≥ 1, there exists a constant Cm,T depending
only on m and T , such that, if Z denotes X, K or Y ; and Z∗t = sup0≤s≤t |Zs|, then

E(Z∗T )2m ≤ Cm,T (1 + E|X0|2m + Eξ̌2m
T ).(4.5)

Proof. To simplify notation, we henceforth denote any constant depending only
on m and T by a generic one, Cm,T , which may vary line by line. Furthermore, since

either E|X0|2m = ∞ or Eξ̌2m
T = ∞ makes the theorem trivial, we will assume that

E|X0|2m <∞, and Eξ̌2m
T <∞.

Let (X,K) be the solution to SDEDR (4.1) and Y be that of (4.4). We first prove
(4.5) for Z = X. By (1) of Proposition 3.2, we have Kt ≤ At +Adt ≤ 2At and therefore

X∗t ≤ 3Y ∗t , for t ∈ [0, T ],(4.6)

(see also [3, Proposition 12]). Hence, recall (4.4), we have that

E(X∗t )2m ≤ 32mE(Y ∗t )2m(4.7)

≤ Cm,T

E|X0|2m + E
∫ t

0
|a(Xs)|2mds+ E

[
sup

0≤u≤t

∣∣∣∣∫ u

0
σ(Xs)dBs

∣∣∣∣
]2m

+ Eξ̌2m
T

 .
Applying the Burkholder-Davis-Gundy inequality (cf. [15, IV.42]) to the third term in

{...} on the right hand side above, and using the conditions (4.2) and (4.3), we have
from (4.7) that

E(X∗t )2m ≤ Cm,T

[
1 + E|X0|2m + Eξ̌2m

T +
∫ t

0
E(X∗s )2mds

]
.

Thus, Gronwall’s inequality leads to that

E(X∗T )2m ≤ Cm,T [1 + E|X0|2m + Eξ̌2m
T ].(4.8)

Namely, (4.5) is proved for Z = X. Now by (4.6) and (4.7),

E(Y ∗T )2m ≤ Cm,T

[
1 + E|X0|2m + Eξ̌2m

T +
∫ T

0
E|(Y ∗s )|2mds

]
.

So by the Gronwall inequality again, (4.5) is also true for Z = Y . Finally, since

Kt = Xt − Yt, we see that (4.5) is true for Z = K as well.
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5. Relations Between Two SDEDR’s and Comparison Theorems. We are
now ready for the main results of this paper. We shall give in this section the explicit

formulae that relate the solutions of two SDEDR’s to one another, and some comparison
results as well. We assume that the coefficients a and σ satisfy the conditions (4.2) and

(4.3), and that the probability space (Ω,F , P ;Ft) is given. For the sake of simplicity,
we henceforth assume that the initial state X0 ≡ x ∈ R.

To begin with, we give a proposition analogous to Proposition 5.3 in [8]. Since the
proof is quite similar to that proposition, we omit it (see [12] for detail).

Proposition 5.1. Suppose θ, L ∈ A and Yt is the solution to the SDE:

Yt = x+
∫ t

0
a(Ys)ds+

∫ t

0
σ(Ys)dBs − θt +  Lt.(5.1)

Suppose Yt ≥ 0 for all t ≥ 0, a.s.P . Then there exist ζ, K ∈ A such that L = ζ + K

and

(i) ζt = Ldt +
∫ t
0 1{Ys>0}dL

c
s; Kt =

∫ t
0 1{Ys=0}dθ

c
s + 1

2
Λ0
t (Y ), where Λ0

· (Y ) is the local
time of Y at zero;

(ii) (Y,K) solves the SDEDR (I; x, ζ − θ).
Remark 5.1 Recall that Y is càglàd. By ”local time of Y ” we will always mean

the local time of Y , the càdlàg modification of Y .

5.1. The basic relationship. Recall that, for x ≥ 0, ξ ∈ D̂, the solutions to SD-
EDR(I; x, ξ) and SDEDR(II; x, ξ) are denoted by (Xx,ξ(I), Kx,ξ(I)), (Xx,ξ(II), Kx,ξ(II))

respectively. We have the following proposition:
Proposition 5.2. Let x ≥ 0 and ξ ∈ D̂ be given.

(1) There exists an η ∈ A such that Xx,ξ
t (I) = Xx,ξ+η

t (II), t ≥ 0, a.s.P, and such
that Kx,ξ+η(II) is continuous. More precisely, we have

ηt = (Kx,ξ(I))dt , t ≥ 0, a.s.P.(5.2)

(2) There exists an η ∈ D̂ such that Xx,ξ
t (II) = Xx,ξ+η

t (I), t ≥ 0, a.s.P, and such
that Kx,ξ+η(I) is continuous. More precisely, if we denote Lt = ξ+

t +Kx,ξ
t (II), then

ηt = Kx,ξ
t (II)−

∫ t

0
1{Xx,ξ

s (II)=0}dL
c
s.(5.3)

Proof. (i) Denote X = Xx,ξ(I); K = Kx,ξ(I); we have

Xt = x+
∫ t

0
a(Xs)ds+

∫ t

0
σ(Xs)dBs + ξt +Kt

= x+
∫ t

0
a(Xs)ds+

∫ t

0
σ(Xs)dBs + ξt +Kd

t +Kc
t .

Set η = Kd ∈ A. We claim that Kx,ξ+η
t (II) = Kc

t , t ≥ 0, a.s.P . Indeed, by the

definition of the solution to SDEDR(I; x, ξ), we have
∫∞

0 XsdK
c
s = 0. It is then easily

checked that, for each t ≥ 0,

Kc
t =

∫ t

0
1{Xs=0}dK

c
s .(5.4)
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Since almost surely, the set {s : Xs = 0} differs from the set {s : Xs+ = 0} only by
countably many points, and the measure dKc does not charge any countable set, (5.4)

becomes Kc
t =

∫ t
0 1{Xs+=0}dK

c
s , t ≥ 0, a.s.P. By Definition 4.1, Kc = Kx,ξ+η(II) and

X = Xx,ξ+η(II), this proves (1).

(ii) We now denote X = Xx,ξ(II); K = Kx,ξ(II); θt = ξ−t ; Lt = ξ+
t + Kt, and

apply Proposition 5.1. It is readily seen that if we set ζt = Ldt +
∫ t
0 1{Xs>0}dL

c
s; K̃t =∫ t

0 1{Xs=0}d(ξ−)cs + 1
2
Λ0
t (X), then X = Xx,ζ−ξ−(I); K̃t = Kx,ζ−ξ−(I). A little computa-

tion shows that

ζt = Lt −
∫ t

0
1{Xs=0}dL

c
s = ξ+

t +Kt −
∫ t

0
1{Xs=0}dL

c
s,

so that ζt − ξ−t = ξt + Kt −
∫ t
0 1{Xs=0}dL

c
s. Since K̃ is continuous and nondecreasing,

setting ηt = Kt −
∫ t
0 1{Xs=0}dL

c
s, we proved (2).

5.2. The comparison theorems. Consider the stochastic differential equations:

X i
t = xi0 +

∫ t

0
ai(X i

s)ds+
∫ t

0
σ(X i

s)dBs + ξit +Ki
t , i = 1, 2,(5.5)

where ξi ∈ D̂, Ki ∈ A, i = 1, 2 are the same as those in the previous sections. Trying to
get the minimal conditions for the comparison theorem, we will start from a necessary

and sufficient condition. All of our comparison theorems are actually its corollaries.
First of all, let us give a lemma which is a modification of Le Gall’s observation (cf.

[11, Lemma 1.0], [15, V.39]). The proof is standard and easy, we omit it.
Lemma 5.3. Let Y be a (càglàd) semimartingale satisfying

∑
0<s≤t |∆Ys| < ∞

a.s., for each t > 0, and Λ0
· (Y ) be its local time at zero. Suppose there exists a function

ρ : R+ → R+ which is increasing, such that for every δ > 0,
∫ δ
0 ρ(u)−1du =∞.

Then Λ0
· (Y ) ≡ 0 provided

∫ t
0 ρ(Ys)

−11{Ys>0}d[Y ]cs <∞, a.s.P.
Now let x1

0 ≥ x2
0 ≥ 0 and η1, η2 ∈ D̂ be given, and let X i, i = 1, 2 be the solutions

to the SDE’s:

X i
t = xi0 +

∫ t

0
a(X i

s)ds+
∫ t

0
σ(X i

s)dBs + ηit, i = 1, 2.(5.6)

To simplify notation, we use the following convention in the sequel: for any function

ν ∈ D̂, we denote ν̃ to be the signed measure generated by ν, namely, for any Borel set
E ⊆ [0,∞), ν̃(E) =

∫
E dνt. If H is a Borel set in [0,∞) and ν, µ ∈ D̂, then µ̃ ≤ ν̃ on H

means that for any Borel set A ⊆ H , µ̃(A) ≤ ν̃(A), or equivalently,
∫ t
0 1Hdµs ≤

∫ t
0 1Hdνs,

for any t ≥ 0. We will denote this by 1Hdµt ≤ 1Hdνt, t ≥ 0.

Proposition 5.4. Suppose X1 and X2 are defined by (5.6) with x1
0 ≥ x2

0 ≥ 0. Then
P{X1

t ≥ X2
t , t ≥ 0} = 1 if and only if the following conditions hold: for a.e. ω ∈ Ω,

(a) On the set H1(ω)
∆
= {t : X2

t (ω) > X1
t (ω)}, one has dηt ≤ 0, where ηt = η2

t−η1
t .

Namely, 1H1(ω)dηt(ω) ≤ 0, t ≥ 0.

(b) On the set H2(ω)
∆
= {t : X1

t (ω) ≥ X2
t (ω)}, one has X1

t+(ω) ≥ X2
t+(ω).

Proof. The necessity of the proposition is obvious since if X1
t ≥ X2

t for all
t ≥ 0, a.s.P , then H1 = ∅, a.s.P , and (b) always holds. So we need only prove the

sufficiency.
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Let Y = X2 −X1 and set ρ(x) = |x|2 to be the function in Lemma 5.3. It is easily
checked, by using the condition (4.2) for the function σ, that

∫ t
0 ρ(Ys)

−11{Ys>0}d[Y ]cs ≤
C2t <∞, t ≥ 0, a.s.P. Further, since ∆Yt = ∆ηt and η is of locally bounded variation,
we have

∑
0≤s<t ∆|Yt| <∞ for any t ≥ 0. Thus Y satisfies all the conditions in Lemma

5.3 and hence Λ0(Y ) ≡ 0.
Denote Ht = a(X2

t )− a(X1
t ); Gt = σ(X2

t )− σ(X1
t ). By Tanaka’s Formula (see for

example, [3, §2.1]; or [2, Appendix] for the càglàd version), we have

Y +
t − Y +

0 =
∫

[0,t)
1{Ys>0}dYs +

1

2
Λ0
t (Y )(5.7)

+
∑

0≤s<t
[1{YsYs+<0}|Ys+|+ 1{Ys=0}(Ys+)+]

=
∫ t

0
1{Ys>0}Hsds+

∫ t

0
1{Ys>0}GsdBs +

∫
[0,t)

1{Ys>0}dηs

+
∑

0≤s<t
1{YsYs+<0}|Ys+|+

∑
0≤s<t

1{Ys=0}(Ys+)+.

For each t ≥ 0, ω ∈ Ω, define the random time

τt(ω) =


sup{s ∈ [0, t] : Y +

s (ω) = 0}, if Y +
t (ω) > 0;

t, if Y +
t (ω) = 0.

By the left continuity of the paths of Y +, we have τt(ω) < t if Y +
t (ω) > 0, and

Y +
τt(ω)(ω) = 0 for all (t, ω) ∈ [0,∞) × Ω. Moreover, for any t ≥ s ≥ 0, we denote

I(t, s) = I(t) − I(s), where I(t) =
∫ t
0 1{Ys>0}GsdBs, a continuous local martingale.

Then we can rewrite (5.7) pathwise as

Y +
t =

∫ t

τt
1{Ys>0}Hsds+ I(t, τt) +

∫
[τt,t)

1{Ys>0}dηs(5.8)

+
∑

τt≤s<t
[1{YsYs+<0}|Ys+|+ 1{Ys=0}Y

+
s+]

= I1 + I2 + I3,

where I1 =
∫ t
τt

1{Ys>0}Hsds+I(t, τt); I2 =
∫
[τt,t) 1{Ys>0}dηs; I3 =

∑
τt≤s<t[1{YsYs+<0}|Ys+|+

1{Ys=0}(Ys+)+].

Clearly, condition (a) implies that I2 ≤ 0, a.s.P , since {s : Ys > 0} = H1. Fur-
thermore, the condition (b) gives that Y +

s+ = 0 whenever Y +
s = 0. By definition of τt,

1{YsYs+<0} = 0 for all s ∈ (τt, t) and at τt, we have Y +
τt

= 0 so that Y +
τt+ = 0, which

implies that YτtYτt+ ≥ 0, so that 1{YsYs+<0} ≡ 0 for s ∈ [τt, t), and thus I3 = 0, a.s.

Thus, for any given T > 0 and 0 ≤ t ≤ T , (5.8) gives

E[Y +
t ]2 ≤ E[I1]2 ≤ 2

{
E

[∫ t

τt
1{Ys>0}Hsds

]2

+ E [I(t, τt)]
2

}
(5.9)

≤ CT

{
E

[∫ t

0
1{Ys>0}|X2

s −X1
s |2ds

]
+ E

[
sup

0≤u≤t

∣∣∣∣∫ t

u
1{Ys>0}GsdBs

∣∣∣∣2
]}

,
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where CT is some constant depending only on T . (We will denote all such constant by
a same one which may vary line by line). Since

E sup
0≤u≤t

∣∣∣∣∫ t

u
1{Ys>0}GsdBs

∣∣∣∣2 ≤ 2

{
E

∣∣∣∣∫ t

0
1{Ys>0}GsdBs

∣∣∣∣2 + E sup
0≤u≤t

∣∣∣∣∫ u

0
1{Ys>0}GsdBs

∣∣∣∣2
}

≤ CTE
∫ t

0
1{Ys>0}|Gs|2ds

≤ CTE
∫ t

0
1{Ys>0}|X2

s −X1
s |2ds,

where the second step is due to Doob’s inequality, we then have from (5.9) that

E[Y +
t ]2 ≤ CT

∫ t

0
E[Y +

s ]2ds.(5.10)

So the Gronwall inequality gives E[Y +
t ]2 = 0, 0 ≤ t ≤ T , which leads to Y +

t = 0, for all

t ≥ 0 a.s.P , since Y + is càglàd. Thus we proved the proposition.
A direct consequence of Proposition 5.4 is the following comparison theorem. This

is sufficent for the proof of our main result of this section, provided the jumps of ξ are
”ordered” (i.e., if {Tn}∞n=0 are stopping times whose graphs {[[Tn]]}∞0 are disjoint, and

the union of [[Tn]]’s equals the set of jumps of ξ (the existence of such Tn’s can be found
in Dallacherie [4]), then 0 < T0 < T1 < · · ·). However, if the jumps of ξ are not ordered,

this comparison theorem does not yield our main result. But nevertheless, we present

this comparison theorem as a corollary of Proposition 5.4 because of its neat form. As
far as we know, it is new.

Corollary 5.5. (Comparison Theorem) Let 0 < T ≤ ∞ be given and 0 ≤
τ1 < τ2 ≤ T be two stopping times. Suppose ξ1, ξ2 ∈ D̂ and (X1, K1) and (X2, K2) are

the corresponding solutions of the SDEDR(I; xi, ξi) (or SDEDR(II; xi, ξi)) i = 1, 2,
respectively. Suppose that

(1) X1
τ1
≥ X2

τ1
, a.s.P;

(2) For P−a.e. ω ∈ Ω, ξ1
t (ω)−ξ2

t (ω) is nondecreasing on the interval [τ1(ω), τ2(ω));

(3) K2 is continuous on [τ1, τ2), a.s.P .
Then for a.e. ω ∈ Ω, X1

t (ω) ≥ X2
t (ω), τ1(ω) ≤ t < τ2(ω).

Proof. We split the proof into three steps.
(i) First assume that τ1 = 0; τ2 = T . Let ηi = ξi+Ki, i = 1, 2; η = η2−η1, ξ = ξ2−

ξ1, K = K2−K1 and still let Y = X2−X1. Fix ω in the set with probability one such
that conditions (1)–(3) hold. Observe that H1(ω) = {t : Yt(ω) > 0} ⊆ {t : X2

t (ω) > 0},
by condition (3) and the definition of K2, 1H1(ω)dK2

t (ω) = 0, t ≥ 0. Therefore, we

have, P − a.e.,

1H1dηt = 1H1d(ξt +Kt) = 1H1dξt − 1H1dK1
t ≤ 0, t ≥ 0,

by condition (ii) and the fact that K1 is nondecreasing. Hence the condition (a) of

Proposition 5.4 is satisfied.
The next observation is that ∆Yt = ∆ξt − ∆K1

t ≤ 0, for all t ≥ 0, since K2 is

continuous. This leads to the condition (b) of Proposition 5.4 and the result follows.
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(ii) Next assume that τ 1 = 0; 0 ≤ τ = τ2 ≤ T . Let (ξi)τt = ξit∧τ , t ≥ 0, and let
(X̃ i,τ , K̃i,τ ) be the solutions to SDEDR(I; xi, (ξi)τ ) (or SDEDR(II; xi, (ξi)τ )), i = 1, 2.

Applying step (i) to X̃1,τ , X̃2,τ , and noting that X i,τ
t = X i

t , 0 ≤ t < τ, a.s.P, i = 1, 2,
by the pathwise uniqueness of the solutions of SDEDR, we see that the conclusion is

also true in this case.
(iii) Finally, let 0 ≤ τ1 ≤ τ2 ≤ T be general. Observe that the random variable

τ2 − τ1 is an {Fτ1+t}t≥0-stopping time. We consider the ”shifted processes”: for t ≥ 0,
i = 1, 2, let X̃ i

t = X i
τ1+t; ξ̃it = ξiτ1+t − ξiτ1; K̃i

t = Ki
τ1+t − Ki

τ1
, B̃t = Bτ1+t − Bτ1 ;

and F̃t = Fτ1+t, t ≥ 0. Then B̃ is an F̃t-Brownian motion such that, as one can
easily check, on the space (Ω,F , P ; F̃t), the conditions of step (ii) above are satisfied

by X̃ i, ξ̃i, i = 1, 2 with B replaced by B̃ and τ replaced by τ2 − τ1, therefore the result
follows from step (ii).

Remark 5.3 (1) Some direct consequences can be drawn from Corollary 5.5. For

example, if ξ2 is continuous then condition (3) can be dropped. However, condition (2)
is not removable (one can easily find a counterexample to show this). In the special

case ξ1 ≡ ξ2 ≡ 0, we get the comparison theorem for reflected diffusions. (The case in
which a = 0, σ = 1 is well known).

(2) By applying the same technique as that used in Ikeda and Watanabe [7, VI.1]
or Rogers and Williams [15, V.43], one can easily extend Proposition 5.1 and Corollary

5.5 to more general cases in which the drift coefficients are different or even ”non-
Markovian”.

5.3. Main results. Now let x ≥ 0 and ξ ∈ D̂ be given. The first main result of
this section is the following:

Theorem 5.6. Xx,ξ
t (I) ≥ Xx,ξ

t (II), t ≥ 0, a.s.P .
Proof. Let η1 = ξ + Kx,ξ(I); η2 = ξ + Kx,ξ(II), we will check the conditions (a)

and (b) of Proposition 5.4.
(a) Denote X1 = Xx,ξ(I), K1 = Kx,ξ(I) and X2 = Xx,ξ(II), K2 = Kx,ξ(II), then

η
∆
= η2 − η1 = K2 −K1 ∆

= K. By the definition of SDEDR(II),

K2
t =

∫
[0,t)

1{X2
s+=0}dK

2
s =

∫ t

0
1{X2

s+=0}d(K2
s )c +

∑
0≤s<t

1{X2
s+=0}∆K

2
s(5.11)

=
∫ t

0
1{X2

s=0}d(K2
s )c +

∑
0≤s<t

1{X2
s+=0}∆K

2
s .

Note again that H1 = {t : X2
t > X1

t } ⊆ {t : X2
t > 0}, hence 1{X2

t =0,X2
t>X

1
t } ≡ 0. By

(5.11),

1H1dηt = 1{X2
t>X

1
t }d(ηt) = 1{X2

t>X
1
t }(dK

2
t − dK1

t )

= 1{X2
t+=0, X2

t>X
1
t }∆K

2
t − 1{X2

t>X
1
t }dK

1
t

= 1{X2
t+=0, X2

t>X
1
t }[∆K

2
t −∆K1

t ]− 1{X2
t>X

1
t }d(K1

t )c(5.12)

− 1{X2
t+>0, X2

t>X
1
t }∆K

1
t

≤ 1{X2
t+=0, X2

t>X
2
t }[∆K

2
t −∆K1

t ], t ≥ 0.
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If t is such that X2
t+ = 0, X2

t > X1
t , then t ∈ SX2 and X2

t + ∆ξt ≤ 0, since K2 is
nondecreasing. Hence X1

t + ∆ξt < X2
t + ∆ξt ≤ 0; and by Proposition 3.1-(4), t ∈ SK1.

Therefore, by Definition 4.1, 4.2 and Proposition 3.2,

∆K2
t = |X2

t + ∆ξt| < |X1
t + ∆ξt| =

1

2
∆K1

t .

It then follows from (5.12) that 1H1dηt = 1{X2
t>X

1
t }dηt ≤ 0. t ≥ 0, a.s.P. Condition (a)

of Proposition 5.4 is verified. We will now verify (b).

Let ω ∈ Ω and X1
t (ω) ≥ X2

t (ω). Consider X2
t (ω) + ∆ξt(ω).

(Case 1) If X2
t + ∆ξt ≥ 0, then X1

t + ∆ξt ≥ 0, so by Propositions 3.2 and 3.5, t is

the continuity point of both K1 and K2. Hence X1
t+ = X1

t + ∆ξt ≥ X2
t + ∆ξt = X2

t+.

(Case 2) If X2
t + ∆ξt < 0, then t ∈ SK2 and by proposition 3.5, we always have

X2
t+ = 0 ≤ X1

t+.
So in either case, we have X1

t+(ω) ≥ X2
t+(ω). This varifies condition (b) of Propo-

sition 5.4, and the result follows.
The next theorem is the most important one for us to construct complete class of

admissible control processes in the following sections.

Theorem 5.7. For any given x ≥ 0 and ξ ∈ D̂, there exists γ ∈ A such that a.s.P .
(i) Xx,ξ

t (I) ≥ Xx,−γ
t (I), t ≥ 0;

(ii) Kx,−γ(I) is continuous;
(iii) dγt ≤ dξ−t , t > 0.

Proof. Let x ≥ 0 and ξ ∈ D̂ be given. Consider (Xx,−ξ−(II), Kx,−ξ−(II)). By

Proposition 5.2, there exists an η ∈ D̂ such that Xx,−ξ−
t (II) = Xx,−ξ−+η

t (I), t ≥ 0. Set

γ = ξ− − η. We shall prove that this γ satisfies (i) —(iii) above and is nondecreasing.
(i) The proof is basically the same as that of Theorem 5.6 except for the little

change that we only use the −ξ− part in SDEDR(II). The extra part ξ+ therefore

requires some consideration. For simplicity, denote X1
t = Xx,ξ

t (I); X2
t = Xx,−ξ−+η

t (I) =

Xx,−ξ−
t (II); K1

t = Kx,ξ
t (I); K2

t = Kx,−ξ−+η
t (I); K3

t = Kx,−ξ−
t (II); ξ1

t = ξt; ξ2
t =

−ξ−t + ηt. Here η is the process determined by Proposition 5.2, which can be writen
down in its explicit form (cf. (5.3)): ηt = K3

t −
∫ t
0 1{X2

s=0}dL
c
s, where L now is simply

K3. Thus, by the definition of SDEDR(II), we have

ηt = K3
t −

∫ t

0
1{X2

s=0}d(K3
s )c = K3

t −
∫ t

0
1{X2

s+=0}d(K3
s )c(5.13)

=
∑

0≤s<t
1{X2

s+=0}∆K
3
s .

We now check the condition (a),(b) of Proposition 5.4 (bearing in mind the difference
of the notations here and those in Proposition 5.4).

(a): As in Theorem 5.6, if we let ξ̃ = ξ2 − ξ1 and K = K2 −K1, and note that K2

is continuous and flat on the set {t : Xt > 0}, we shall have by analogy with (5.12),

1H1dηt = 1{X2
t>X

1
t }[d(ξ̃t +Kt)] ≤ 1{X2

t>X
1
t ,X

2
t+=0}(∆K

3
t −∆K1

t −∆ξ+
t ).

Again, from Proposition 3.5, for any t ∈ SK3 such that X2
t > X1

t , and X2
t+ = 0, we have

the following cases:
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(Case 1) If X1
t −∆ξ−t + ∆ξ+

t ≥ 0 ≥ X2
t −∆ξ−t > X1

t −∆ξ−t , then

∆ξ+
t ≥ |X2

t −∆ξ−t | = ∆K3
t ;

(Case 2) If 0 ≥ X2
t −∆ξ−t > X1

t −∆ξ−t + ∆ξ+
t ≥ X1

t −∆ξ−t , then t ∈ SK1 and

∆K3
t = |X2

t −∆ξ−t | < |X1
t −∆ξ−t + ∆ξ+

t | =
1

2
∆K1

t < ∆K1
t ;

(Case 3) Finally, if 0 > X1
t −∆ξ−t +∆ξ+

t ≥ X2
t −∆ξ−t > X1

t −∆ξ−t , then t ∈ SK1∩SK3

and

∆K3
t = |X2

t −∆ξ−t | < |X1
t −∆ξ−t + ∆ξ+

t |+ ∆ξ+
t =

1

2
∆K1

t + ∆ξ+
t .

Hence in any case we have ∆K3
t − ∆K1

t − ∆ξ+
t ≤ 0 (if t is a continuity point of K3,

this is trivially true), which leads to

1H1d(ξ̃t +Kt) = 1{X2
t>X

1
t }d(ξ̃t +Kt) ≤ 0, t ≥ 0, a.s.P.

Condition (a) is thus proved, whereas condition (b) follows from the same argument
as in Theorem 5.6. Therefore, by Proposition 5.4, we obtain Part (i). Part (ii) follows

from the construction of γ and Proposition 5.2–(2).
We combine together the proof of (iii) and that γ is nondecreasing. First, note that

dγt = d(ξ−t − ηt) = 1{X2
t+=0}[∆ξ

−
t −∆K3

t ] + d(ξ−t )c + 1{X2
t+>0}∆ξ

−
t . Thus

1{X2
t+=0}[∆ξ

−
t −∆K3

t ] ≤ dγt ≤ dξ−t .(5.14)

Clearly, the second inequality in (5.14) gives the part(iii). As for the left most term, it
is nonnegative if t is a continuity point of K3. If t ∈ SK3, we have ∆K3

t = |X2
t −∆ξ−t | ≤

∆ξ−t , since X2
t ≥ 0. Therefore 1{X2

t+=0}[∆ξ
−
t −∆K3

t ] ≥ 0 for all t ≥ 0, which leads to
that dγt ≥ 0, t ≥ 0. The proof is now complete.

6. The Singular Stochastic Control Problem with Finite Fuel. From now

on, we shall restrict ourselves only to the SDEDR(I). Suppose that on some probability
space (Ω,F , P ;Ft) carrying a one-dimensional {Ft}-Brownian Motion {Bt; t ≥ 0}, we

have the following stochastic system:

Xt = x+
∫ t

0
a(Xs)ds+

∫ t

0
σ(Xs)dBs + ξt +Kt,(6.1)

with the cost function:

J(ξ;T, x) = E[
∫ T

0
h(t, Xx,ξ

t )dt+
∫

[0,T )
f(t)dξ̌t + g(Xx,ξ

T )].(6.2)

We impose the following conditions on the functions a, σ, h, f, g:

(6-i) The coefficients a, σ satisfy the conditions (4.2) and (4.3).
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(6-ii) The function h : [0, T ]× [0,∞)→ [0,∞) is of class C1,1; it plays the rôle of a
”running cost per unit time” on the state. We assume that h(t, ·) is nondecreasing and

hx(t, 0) ≥ 0 for all t ≥ 0.
(6-iii) The function f : [0, T ]→ [0,∞), which is assumed to be Lipschitz continuous,

represents a cost of controlling effort per unit time.
(6-iv) The function g : [0,∞)→ [0,∞) is convex, nondeceasing, and of class C1; it

represents a terminal cost on the state.
(6-v) For any (t, x) ∈ [0, T ]× [0,∞),

0 ≤ hx(t, x) + |ht(t, x)|+ g′(x) ≤ C(1 + xm).(6.3)

for some C > 0, m ≥ 1, and

sup
x≥0

g′(x) ≤ inf
0≤t≤T

f(t).(6.4)

Remark 6.1. The condition (6.4) is inherited from [8] to facilitate the arguments (e.g.,

in the proof of Theorem 7.3) which are analogous to those in [8].
If on a given probability space, there exists a process ξ∗ ∈ B(T, y) such that

J(ξ∗;T, x) = inf
ξ∈B(T,y)

J(ξ;T, x),(6.5)

we say that ξ∗ is an optimal control in the strict sense. (In [9, 10], an optimal control
was sought in the strict sense, but in [8], the optimal control could be realized on a

different probability space). In this paper, we shall discuss the existence of the optimal
control in a ”wide sense” which is basically the same as that in [8].

Let us now assume that (Ω,F ,Ft) is the canonical space defined by (2.1)–(2.3).
Definition 6.1. Let x ≥ 0, y > 0. T > 0 be given. Define the set M(T, x, y) to

be the subset of M consisting of all P ∈ M such that the canonical process (X0, B, ξ)
satisfies:

(1) P (X0 = x) = 1.
(2) P (ξ ∈ B(T, y)) = 1.

Theorem 4.4 tells us that for each P ∈ M(T, x, y), there exists a pair (FP , GP ) ∈
D2
P such that X = FP , K = GP solves the SDEDR (6.1). By a Monotone-Class argu-

ment, we can show that there is a function ITP : Ω→ R which is FPT /B(R)-measurable

so that P -almost surely,

ITP (x,B, ξ) =
∫ T

0
h(t, FP (x,B, ξ)t)dt+

∫
[0,T )

f(t)dξ̌t + g(FP (x,B, ξ)T ),(6.6)

and hence the cost function (6.2) can be writen as

J(P ;T, x)
∆
= EP [ITP (x,B, ξ)];(6.7)

and the value function will be

V (T ; x, y) = inf
P∈M(T,x,y)

J(P ;T, x).(6.8)
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If there exists a probability space, on which one can find a process ξ∗ ∈ B(T, y) such
that the joint distribution of the triple (x,B, ξ∗), denoted by P ∗, satisfies

J(P ∗;T, x, y) = V (T ; x, y),

then we call such a ξ∗ (together with the canonical probability space corresponding to

it) the optimal control in the ”wide” sense.
It is easily seen that this model is a generalization of the work of Karatzas and

Shreve [9], and El Karoui and Karatzas [8] to the general ”diffusion” type with finite
fuel. In light of the results of [9] and [8], the following Complete Class of admissible

controls is of essential importance.
Definition 6.2. For each x ≥ 0, y > 0, T > 0 , Dcan(T, x, y) ⊆ M(T, x, t)

(”can” for canonical) is the set consisting of all the elements in M(T, x, y) for which
the condition (2) in Definition 6.1 is replaced by

(2’) P (ξ ∈ B(T, y), ξ+ ≡ 0) = 1;
and such that on any realization of P ∈ Dcan(T, x, y), the solution Xx,−ξ− to the

equation (6.1) satisfies

Xx,−ξ−
t ≥ ∆ξ−t ≥ 0, for all t ≥ 0, a.s.(6.9)

or equivalently, the corresponding Kx,−ξ− is continuous, a.s..
In the sequel, we will simply denote the process ξ− by ξ if there is no confussion.

The following proposition is a direct consequence of Theorem 5.7.

Proposition 6.3. For any P ∈ M(T, x, y), there exists a P̃ ∈ Dcan(T, x, y) such
that

J(P̃ ;T, x, y) ≤ J(P ;T, x, y).

Proof. We consider the canonical space (Ω,FP , P ;FP ). Then for P − a.e. ω ∈ Ω,
ξ(ω) ∈ B(T, y). Let Xx,ξ be the solution to (6.1) on this probability space (remember it

is the solution to SDEDR(I)). By Theorem 5.7, there exists a process γ ∈ A(T, y) such

that P -almost surely, Xx,−γ
t ≤ Xx,ξ

t ; dγt ≤ dξ̌−t ≤ dξ̌t for t ≥ 0 (hence γT ≤ ξ̌T ≤ y),
and Kx,−γ is continuous. Let P̃ be the joint distribution of the triple (x,B,−γ) back

on the canonical space (Ω,F), then P̃ ∈ Dcan(T, x, y) and the result follows from the
assumptions on f, g and h.

We end up with the following result for the ”completeness” of the class Dcan(T, x, y).
Proposition 6.4.

V (T ; x, y) = inf
P∈Dcan(T,x,y)

J(P ;T, x).

7. Existence of Optimal Control. We take a minimizing sequence as follows.
Let x ≥ 0, y > 0, T > 0 be given, Let (Ω(n),F (n), P (n);F (n)

t ) be a sequence of probabil-

ity spaces, on which a sequence of processes {B(n), ξ(n)} is defined such that P̃ (n), the
joint distribution of (x,B(n), ξ(n)) under P (n), belongs to Dcan(T ; x, y) and such that

lim
n→∞

E(n)ITP (n)(x,B
(n), ξ(n)) = V (T ; x, y).
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Define Y 1,(n) =
∫ t

0 a(X(n)
s )ds, Y 2,(n) =

∫ t
0 σ(X(n)

s )dB(n)
s , and consider the law (under

P (n)) of the quintuple (Y 1,(n), Y 2,(n), B(n), ξ(n), K(n)) on the space S = W0 ×W0 ×
W0 × D × D. With the Skorohod topology in D, S is a complete, separable metric
space. We shall need the following lemmas.

Lemma 7.1. The laws of the quintuples (Y 1,(n), Y 2,(n), B(n), ξ(n), K(n)); n = 1, 2, ...
are tight.

Proof. It is sufficient to show that the marginal distributions are tight. The
tightness of the triples (B(n), ξ(n), K(n)); n = 1, 2, ... is proved in [8, Proposition 7.4];

thus we only need verify that the first two marginals are tight.
1. {Y 1,(n)}∞n=0 are tight. By the criterion of tightness of continuous processes (see

for instance, [7, I-theorem 4.2] ), it suffices to verify that for every T > 0, ε > 0,

lim
h↓0

sup
n
P (n)

{
sup

s,t∈[0,T ];|t−s|≤h
|Y 1,(n)
t − Y 1,(n)

s | > ε

}
= 0,(7.1)

as Y
(n)

0 = 0, n = 1, 2, · · ·. Let T > 0, ε > 0, n ≥ 1 be fixed. Since

|Y 1,(n)
t − Y 1,(n)

s |2 =

∣∣∣∣∫ t

s
a(X(n)

s )ds

∣∣∣∣2 ≤ 2TC2(1 + sup
0≤s≤T

|X(n)
s |2)h

for all s, t ∈ [0, T ], |t − s| ≤ h, a.s.P (n), the Chebyshev inequality and the moment
estimate (4.5) for X(n) lead to

P (n)

{
sup

s,t∈[0,T ];|t−s|≤h
|Y 1,(n)
t − Y 1,(n)

s | > ε

}
≤ ε−22TC2[1 + C2,T (1 + |x|2 + y2)]h.

Thus, (7.1) holds and the laws of {Y 1,(n)}∞n=1 are tight.
2. We verify that Y 2,(n)’s also satisfy (7.1). Let T > 0, ε > 0 be given, and n ≥ 1,

0 < h < 1 be fixed. Define a partition of [0, T ]: 0 = t0 < t1 < t2 < · · · < tN = T , so that
ti − ti−1 = h, i = 1, 2, ..., N − 1 and tN − tN−1 ≤ h. Clearly, T ≤ Nh ≤ T + h < T + 1.

It is not hard to check that the set

A
∆
= { sup

s,t∈[0,T ];|t−s|≤h
|Y 2,(n)
t − Y 2,(n)

s | > ε} ⊆
N−1⋃
k=0

{ sup
0≤t≤2h

|Y 2,(n)
(tk+t)∧T − Y

2,(n)
tk | > ε

2
}.

Therefore,

P (n)(A) ≤
N−1∑
k=0

P (n)

{
sup

0≤t≤2h
|Y 2,(n)

(tk+t)∧T − Y
2,(n)
tk | > ε

2

}
.(7.2)

Now for each fixed k, Zk
t

∆
= Y

2,(n)
(tk+t)∧T − Y

2,(n)
tk is an Fkt

∆
= Ftk+t-martingale and [Zk]t =∫ (tk+t)∧T

tk σ2(X(n)
s )ds, so by applying the Burkholder-Davis-Gundy inequality, and noting

(4.2), (4.5), we obtain that for any m > 1,

E(n)

[
sup

0≤t≤2h
Zk
t

]2m

≤ E(n)([Zk]2h)
m ≤ Cm,T (1 + |x|2m + y2m)hm,(7.3)



DISCONTINUOUS REFLECTION 19

where Cm,T is a constant depending only on m,T . Therefore, the Chebyshev’s inequal-
ity, together with (7.2) and (7.3), leads to

P (n)(A) ≤
N−1∑
k=0

ε−2m22mE(n)

[
sup

0≤t≤2h
Zk
t

]2m

≤ CT (ε)(1 + |x|2m + y2m)Nhm.

Since Nh < T + 1 and m > 1, we get limh↓0 supn P
(n)(A) = 0. Noting that Y

2,(n)
0 =

0, n = 1, 2, · · ·, the lemma is proved.

We can now apply the Skorohod Theorem (see, for example, [6, p.102]), to get

a probability space (Ω,F , P ;Ft) on which is defined a sequence of adapted processes
{(Ŷ 1,(n), Ŷ 2,(n), B̂(n), ξ̂(n), K̂(n))}∞n=1, so that

(i) The quintuples (Y 1,(n), Y 2,(n), B(n), ξ(n), K(n)) and (Ŷ 1,(n), Ŷ 2,(n), B̂(n), ξ̂(n), K̂(n))
are identical in law for n = 1, 2, ...;

(ii) the sequence {(Ŷ 1,(n), Ŷ 2,(n), B̂(n), ξ̂(n), K̂(n))} converges, almost surely, to the
quintuple (Y 1, Y 2, B, θ, L) ∈W0 ×W0 ×W0 ×D ×D, as n→∞.

To simplify notation, we now drop ”ˆ” for this sequence. Note that each B(n) is
a Brownian motion under P , one can easily check that so is B. Also note that on the

probability space (Ω,F , P ;Ft) the processes X
(n)
t = x+Y

1,(n)
t +Y

2,(n)
t − ξ(n) +K

(n)
t will

converge, almost surely, to a process X ∈ D in the Skorohod topology.

Lemma 7.2. The process X satisfies the S.D.E:

Xt = x+
∫ t

0
a(Xs)ds+

∫ t

0
σ(Xs)dBs − θt + Lt.(7.4)

Proof. The proof is technical and lengthy but not of special importance in this

paper, we therefore omit it. The details can be found in [12, II.7].
We can now follow the argument of El Karoui and Karatzas [8, p.241] line by line

to derive our result. Here we only give the outline for completeness (one is referred
to [8, p.241-242] for detail). First, note that the process X is nonnegative and is the

solution to the SDE (7.4), so by Proposition 5.1, we can find processes ζ, K ∈ A such
that (X,K) solves the SDEDR(x, ζ − θ). By using Proposition 12.1 in [8], Dominated

Convergence Theorem, Fatou’s lemma and the conditions on the functions g, f, h

(6-ii)–(6-v), one shows that, with P denoting the joint distribution of (x,B,−θ + ζ),

J(P ;T, x) = E

[∫ T

0
h(t, Xt)dt+

∫
[0,T )

f(t)dθt + g(YT )

]

≤ lim inf
n→∞

E

[∫ T

0
h(t, X

(n)
t )dt+

∫
[0,T )

f(t)dξ
(n)
t + g(X

(n)
T )

]
= lim

n→∞
E(n)

[
ITP (n)(x,B

(n), ξ(n))
]

= V (T, x, y).

Finally, by applying Proposition 6.3 and noting that θT ≤ y, we find a P ∗ ∈
Dcan(T ; x, y) such that

J(P ∗;T, x) ≤ J(P ;T, x) ≤ V (T, x, y).
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Moreover, Theorem 5.7 enables us actually to find a process ξ∗ ∈ A(T, y) on the same
probability space on which B, θ and L are defined, such that P ∗ is the joint distribution

of (x,B,−ξ∗), i.e., −ξ∗ is the optimal control for our singular stochastic control problem.
We have proved the following theorem:

Theorem 7.3. Under the condition (6-i)–(6-v), for any x ≥ 0, y > 0, there exist
a probability measure P ∗ on the canonical base (Ω,F) , P ∗ ∈ Dcan(T, x, y), such that

EP ∗
[
ITP ∗(x,B, ξ)

]
= V (T, x, y).

More precisely, there exists a probability space (Ω′,F ′, P ′;F ′t) on which we can find a
Brownian motion B and a process ξ∗ ∈ B(T, y) satisfing (6.9) on this probability space

and such that the joint distribution of the triple (x,B,−ξ∗) = P ∗. The process ξ∗ is
called the optimal control.

8. Appendix 1. (A Counterexample). To show that the mapping ΓI of Def-

inition 3.3 is not Lipschitz continuous under the uniform topology on D, it suffices to
construct for any integer N > 0 two functions Y N

1 (·), Y N
2 (·) ∈ D such that for some

T > 0,

sup
0≤t≤T

|ΓI(Y N
1 )(t)− ΓI(Y N

2 )(t)| > N sup
0≤t≤T

|Y N
1 (t)− Y N

2 (t)|.(8.1)

To simplify the notation, we denote Γ = ΓI . Fix N > 0. Define

f(t; m, (n, n+ 2]) = (m− 2)1(n,n+1](t) +m1(n+1,n+2](t), m ∈ Z, n ∈ N.

For t ∈ [0, 4(N + 1)], let

Y N
1 (t) =

N∑
k=0

f(t; a1
k, (4k + 1, 4k + 3]) +

N∑
k=0

b1
k · 1(4k+3, 4(k+1)+1](t)(8.2)

=
N∑
k=0

[
(a1
k − 2)1(4k+1, 4k+2](t) + a1

k · 1(4k+2, 4k+3](t)
]

+
N∑
k=0

b1
k · 1(4k+3, 4(k+1)+1](t);

Y N
2 (t) = −1(0,1](t)− 2 · 1(1,3](t) +

N∑
k=1

f(t; a2
k, (4k − 1, 4k + 1])(8.3)

+
N∑
k=1

b2
k · 1(4k+1, 4k+3](t),

= −1(0,1](t)− 2 · 1(1,3](t)

+
N∑
k=1

[
(a2
k − 2)1(4k−1,4k](t) + a2

k · 1(4k,4k+1](t)
]

+
N∑
k=1

b2
k · 1(4k+1, 4k+3](t),
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where, {
a1
k = −(1 + 10k + 8

∑k−1
i=1 i);

b1
k = a1

k − (5 + 4k), k = 0, 1, ...N ;
(8.4) {

a2
k = −(5 + 14(k − 1) + 8

∑k−2
i=1 i);

b2
k = a2

k − (7 + 4(k − 1)), k = 1, ..., N.
(8.5)

(Here, we define
∑j
i=1 i = 0 for j < 1). For t ≥ 4(N+1), let Y N

i (t) = Y N
i (4(N+1)), i =

1, 2.
Let δY N = Y N

1 −Y N
2 . It is easily seen that |δY N (t)| = 1 for t ∈ [0, 4]. Furthermore,

one can check that, for k = 1, ..., N ,

δY N(t) =


b1
k−1 − a2

k, t ∈ (4k, 4k + 1];

(a1
k − 2)− b2

k, t ∈ (4k + 1, 4k + 2];

a1
k − b2

k, t ∈ (4k + 2, 4k + 3];
b1
k − (a2

k+1 − 2), t ∈ (4k + 3, 4k + 4].

After a little algebra, by virtue of (8.4), (8.5), one can see that |δY N(t)| ≡ 1 for
t ∈ (4, 4(N + 1)] (and so for t ∈ [0,∞)). Namely, we have sup0≤t≤∞ |δY N (t)| = 1.

However, solving DRP(Y N
1 ), (Y N

2 ) by using (8.2), (8.3) and Definition 3.1, one has

Γ(Y N
1 )(t) =

N∑
k=0

[
(4k + 3)1(4k+1, 4k+2](t) + (4k + 5)1(4k+2, 4k+3](t)

]
;

Γ(Y N
2 )(t) = 1[0,1)(t) +

N∑
k=0

[
(4k + 1)1(4k−1,4k](t) + (4k + 3)1(4k,4k+1](t)

]
,

(drawing a picture would be very helpful). Therefore, for t ∈ [0, 4(N + 1)],

|Γ(Y N
1 )(t)− Γ(Y N

2 )(t)| =


1 t ∈ [0, 1]

4k + 3 t ∈ (4k, 4k + 1]
4k + 5 t ∈ (4k + 2, 4(k + 1)]. for k = 1, ..., N.

So, Y N
1 , Y N

2 obviously meet our requirement (8.1).

9. Appendix 2 (Sketch of the Proof of Theorem 4.3). We first introduce

some spaces of semimartingales that were defined in Protter [14]. Let SM denotes the

space of all semimartingales with paths in D. Then any Y ∈ SM admits a decom-
position Yt = Y0 + Mt + At, t ≥ 0, where M is a local martingale and A an adapted

process with paths in D and of locally bounded variation, such that M0 = A0 = 0 (one
should note that this decomposition is unique only when A is natural). It is easily seen

that Y ∈ SM if and only if its càdlàg modification is indistinguishable with a classical
semimartingale (cf. [14, III]). We denote the elements in SM with Y0 = 0 by SM0.

Let us define two subspaces of SM. First, for Y ∈ SM, denote Y ∗t = sup0≤s≤t |Ys|,
t ≥ 0, and Y ∗∞ = limt↗∞ Y

∗
t . For 1 ≤ p ≤ ∞, define ‖Y ‖Sp = ‖Y ∗∞‖Lp and Sp = {Y ∈
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SM : ‖Y ‖Sp < ∞}. Furthermore, let Y ∈ SM0 with the decomposition Y = M + A,
such that M0+ = A0+ = 0, define

jp(M,A) = ‖[M,M ]1/2∞ +
∫ ∞

0
|dAs|‖Lp,(9.1)

‖Y ‖Hp
0

= inf
Y=M+A

jp(M,A).(9.2)

where M and A are the càdlàg modifications of M and A respectively, and the infimum

is taken over all possible decompositions of Y . Define Hp
0 = {Y ∈ SM0 : Y0 = Y0+ =

0, ‖Y ‖Hp < ∞}. It is known (cf. [14, pp 188-189 and Theorem IV.2.1]) that the

space H2
0 is a Banach space. Furthermore, if Y is a general element in SM with the

decomposition Y = Y0 +M + A, we can write

Yt = 1{t=0}Y0 + 1{t>0}Y0+ + Ỹt, t ≥ 0,(9.3)

where Y0+ = M0+ + A0+ and Ỹ0 = Ỹ0+ = 0. It is now easy to construct an injective

mapping φ : L2 ⊕ L2 ⊕H2
0 → SM in an obvious way so that the H2 ∆

= Range(φ) is a

Banach space with the norm

‖Y ‖H2 = ‖Y0‖L2 + ‖Y0+‖L2 + ‖Ỹ ‖H2
0
.

In general, we shall define for any 1 ≤ p ≤ ∞ and Y ∈ SM,

‖Y ‖Hp = ‖Y0‖Lp + ‖Y0+‖Lp + ‖Ỹ ‖Hp
0
.(9.4)

The following propositions are modifications of those in [14, V.2]:

Proposition 9.1. For any 1 ≤ p ≤ ∞, there exists a constant Cp > 0, such that
for any Y ∈ SM, ‖Y ‖Sp ≤ Cp‖Y ‖Hp.

Proposition 9.2. (Emery’s Inequality) Let Y be a semimartingale, Y0 = Y0+ = 0,
H ∈ D and 1

p
+ 1

q
= 1

r
(1 ≤ p ≤ ∞; 1 ≤ q ≤ ∞), one has

‖
∫ .

0
HsdY s‖Hr ≤ ‖H‖Sp‖Y ‖Hq ,

where Y is the càdlàg modification of Y .
Sketch of the proof of Theorem 4.3.

Step 1. (”Local” existence and uniqueness ). Let T > 0 be given. Suppose
E(|X0|2) <∞, E(ξ̌2

T ) <∞. For the given T > 0, define the semimartingales Z1
t = t∧T

and Z2
t = Bt∧T , t ≥ 0. Define a mapping Λ : H2 → SM by

Λ(Y )t = X0 +
∫ t

0
a(Γ(Y )s)dZ

1
s +

∫ t

0
σ(Γ(Y )s)dZ

2
s + ξTt , t ≥ 0, Y ∈ H2,(9.5)

where ξTt = ξt∧T for t ≥ 0 and Γ = ΓI . By using Proposition 9.1 and 9.2, one can

show that Λ is a contraction mapping from the Banach space H2 into itself provided
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T > 0 is small enough. Therefore, the Fixed Point Theorem leads to the existence and
uniqueness of a semimartingale Y ∈ H2 satisfying the equation (4.4) for t ∈ [0, T ].

Step 2. To get the ”global” solution, we use an induction argument. Namely, we
prove that for each positive integer n, there exists a unique semimartingale Y (n) ∈ H2

such that Y (n) satisfy (4.4) on [0, nT ]. Step 1 shows that this is true for n = 1. A
standard ”path–shifting” and Monotone class argument, together with the uniqueness

of DRP, enables one to extend the solution to [0, (n+ 1)T ] if it exists on [0, nT ], which
finishes the proof of the induction step.

Finally, since for n > m, the semimartingale (Y (n))(m)
·

∆
= Y

(n)
·∧mT ∈ H2 satisfies

(4.4) on [0, mT ], the uniqueness of such element in H2 gives that Y
(n)
t = Y

(m)
t , for all

t ∈ [0, mT ] a.s.P . Hence the family {Y (n)} ⊆ H2 will be consistant and then one can

”patch” them up by defining, for every t ∈ [0,∞), Yt = Y
(n)
t if t ∈ [0, nT ]. Then it is

easily seen that Y will be the global solution as we want.
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