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Abstract. In this paper we study convolution formulae for the independent

sum of a normal random variable and several power exponential distributed

random variables. This problem is motivated by the numerical simulation for

pricing financial derivatives (such as options) when the underlying assets follow

a jump-diffusion model in which the logarithm of the jump sizes are assumed
to be within the class of power exponential distributions. When the “kurtosis
parameter” (denoted by β) of the power exponential distribution equals 1 and
1
2
, the power exponential distribution becomes a standard normal and a double

exponential distribution, respectively. Therefore our model contains those of
Merton [M] and Kuo-Wang [K-W] as special cases. We propose a closed form
convolution formula, represented in terms of infinite serious expanded using
either Hermite polynomials or parabolic cylindrical functions, depending on
the value of kurtosis parameter β. We also analyze the convergence of such
series, and perform the numerical experiments to illustrate these formulae.

1. Introduction

In this paper we study series forms of convolution formulae for a normal random
variable and several i.i.d. power exponential random variables. To be more precise,
we represent the convolution formulae of such independent sums as infinite series
of either Hermite polynomials or parabolic cylindrical functions. Compared to the
usual integral form of convolution formula, the series form has obvious an advantage
in numerical simulation because of its explicit nature. This advantage will become
more significant when the number of random variables involved increases, as we
shall see in this paper.

The study of such convolution formula was motivated by the numerical simula-
tion and/or calculation of asset prices and their derivatives when the dynamics of
the asset prices are assumed to follow jump diffusion models. Recall that the jump
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diffusion model was first considered by Merton (1976) [M], in which the logarithm
of the jump sizes are assumed to have normal distributions. It is by now well-
understood that the Black-Scholes-Merton model does not incorporate the asym-
metric leptokurtic natures (heavy tail and skew to the left) of the return distribution
and the so-called “volatility smile”. One the other hand, it is also understood that
while the normal distribution is often used by “default” for any random quantity
with unknown statistics, the statistical analysis based on the normal distribution
often lacks robustness. In a recent work Kuo and Wang (2001) [K-W] considered
jump diffusion models assuming that the logarithm of the jump sizes have the “dou-
ble exponential distributions”. In that paper the authors noted that by replacing
the normal distribution by the double exponential, one captures several fundamen-
tal features such as skewness, heavy tails, and kurtosis, as it is observed from the
empirical investigations. In that paper the authors also emphasize that one of the
main reasons that they choose double exponential (instead of t-distribution, an-
other obvious robust class) is the analytical tractability. In fact, using the double
exponential distribution the authors were able to derive some closed-form formulae
for pricing various types of options, including some path-dependent ones, such as
look-back options and barrier options.

At this point we should note that both the normal distribution and double
exponential distribution are special cases of the family of power exponential dis-
tributions, established by Subbotin in 1923 [S] as an extension of the normal
distribution (see also Box-Tiao (1965) [B-T], Hogg (1974) [Ho], Rahman, et al.
(1995)[R], Agrò (1995) [A], Gokhale-Rahman (1996)[Go-R], and Gómez-Gómez-
Villegas-Maŕın (1998) [G-G-M], for properties and applications of such distribu-
tions). The main purpose of this work is to see whether one can develop a class
of jump diffusion models based upon the general power exponential distributions,
and compare all the outcomes so as to choose one to “best fit” the empirical data.
In fact, it would be rather interesting if one can actually prove or disprove that
the double exponential distribution is “optimal” at least among the family of the
power exponential distributions to match the fundamental features of Skewness,
heavy tail, and kurtosis.

As it turns out, an analysis similar to that of [K-W] is possible for power ex-
ponential distributions. The main difficulty, however, lies in the explicit formula
for the convolution of one normal random variable and a (finite) sequence of i.i.d.
power exponential distributions, which leads to this paper. We should note that
finding the series form of convolution formula is not only useful for the closed-form
solution, but also important in numerical simulation. In fact, it is expected that it
is much more efficient than the Monte Carlo simulation for the traditional integral
form convolution formulae, especially when the number of power exponential ran-
dom variables increases, since the main ingredient of the infinite series, the Hermite
polynomials or parabolic cylindrical functions, can be computed off line.

We would like to point out that our series representation of the convolution
formulae depends on the kurtosis parameter (“β”) of the power exponential dis-
tributions. We show that if β > 1, then the series can be expressed in terms of
Hermite polynomials, but if β < 1 the series would be better expressed in terms of
parabolic cylinder functions (PCF). Since an integer-indexed PCF can be related
to a Hermite polynomial explicitly, we shall call both of them “Hermite-series” for
simplicity. It is interesting to note that the double exponential distribution actually
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corresponds to the case when β = 1/2, for which we would use PCF series which
seems to be much more complicated than that of [K-W]. We show that such a
series can be reduced to the formula of [K-W] rather easily, with a little help from
the properties of PCF’s.

This paper is organized as follows. In section 2 we give all the definitions
and basic properties of power exponential distributions, Hermite polynomials, and
PCF’s. In section 3 we describe the pricing problems for jump diffusion models in-
volving power exponential distributions, and introduce our “convolution problems”
NP (1) and NP (n), etc. In section 4 we give the series solutions to the problem
NP (1), and discuss their convergence. In section 5 we study two specail cases when
a power distribution is degenerated to a normal or a double exponential (β = 1 and
1
2 , respectively). Finally in section 6 we give a “formal” series solution for NP (n),
and in section 7 we show the numerical results.

2. Preliminaries

In this section we review some important facts regarding one dimensional power
exponential distribution, Hermite Polynomials, and Cylinder Parabolic functions,
which will play fundamental roles in the rest of the paper.

A. Power exponential distribution
A random variable X is said to have Power exponential distribution if its prob-

ability density function is given by:

(2.1) f(x) =
1

φΓ
(

1 + 1
2β

)

21+
1
2β

e−
1
2 | x−µφ |2β , x ∈ IR,

where µ ∈ IR, φ ∈ (0,∞), and β ∈ (0,∞) are traditionally called the location
parameter, scale parameter, and kurtosis parameter, respectively. We shall denote
X ∼ P (β, µ, φ) to indicate that X has a power exponential distribution with pa-
rameters (β, µ, φ).

We note that the power exponential distribution belongs to the family of sym-
metrical distributions. Two special cases of such distributions are well-understood:

(i) β = 1: clearly P (1, µ, φ) = N(µ, φ2), the normal distribution;
(ii) β = 1

2 : in this case we have the so-called double-exponential distribution.

In general, the parameter β indicates the disparity of a power exponential from
a normal distribution. When β decreases, the “tail” of the distribution function
gets “heavier”. Therefore any P (β, µ, φ)-distribution with β < 1 will have a heavier
tail than a normal distribution.

B. Hermite polynomials
The family of Hermite polynomials plays an important role in determining the

orthogonal basis for an L2-Gaussian space. Let n ∈ lN, the n-th Hermite polynomial,
denoted by Hn(x), is defined by

(2.2) Hn(x) = (−1)n exp(x2) d
n

dxn
exp(−x2),
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and H0(x) ≡ 1. The family of Hermite polynomials comes from the coefficients of

the Taylor expansion (in variable t) of the function G(x, t)
4
= exp(2xt− t2). In fact,

(2.3) G(x, t) = exp{2xt− t2} =
∞
∑

n=0

tnHn(x)

n!
, (t, x) ∈ IR2.

Furthermore, using the identities










∂G

∂x
= 2tG,

∂2G

∂x2
− 2x

∂G

∂x
+ 2t

∂G

∂t
= 0.

one can easily derive the recursive relation on {Hn(·)}:

(2.4)







H ′n(x) = 2nHn−1(x), n = 1, 2, 3, · · · ,
H ′′n(x)− 2xH ′n(x) + 2nHn(x) = 0, n = 0, 1, 2, · · · ,
Hn(x)− 2xHn−1(x) + 2(n− 1)Hn−2(x) = 0 n = 2, 3, 4, · · · ,

with the “intial values”: H0 = 1 and H1 = 2x.
We list some of the properties that will be useful in the future (cf. e.g.,

Gradshteyn-Ryzhik [Gr-R]):
• For each n ∈ lN, one has

(2.5)

{

H2n(0) = (−1)n2n(2n− 1)!!,
H ′2n(0) = 0,

and

(2.6)

{

H2n+1(0) = 0,

H ′2n+1(0) = (−1)n 2(2n+1)!n! .

• The Hermite polynomials Hn(x) are “orthogonal” in the weighted L2(IR):

(2.7)

∫ ∞

−∞
e−x

2

Hn(x)Hm(x)dx =

{

0, n 6= m,√
π2nn! n = m.

• For any n ∈ lN and x ∈ IR, it holds that

(2.8) |H2n(x)| ≤ 2n(2n− 1)!!e
x2

2 .

C. Parabolic Cylinder Functions
Parabolic Cylinder Functions (PCF) have been used in many fields such as

Dirichlet problems in parabolic cylinder coordinates (half-integral order) and sta-
tistical thermodynamics, crystallography or lattice field theory (integral order). We
are interested in them because of their relation to Hermite polynomials. We refer
to [Gr-R], [Ha], and [T] for more detailed information on such functions.

By “Parabolic Cylinder Functions” we mean the solutions of the following sec-
ond order ordinary differential equations with parameter p:

(2.9) y′′ +

(

p+
1

2
− 1

4
x2
)

y = 0.

Let p ∈ IR, and we consider PCF’s, denoted by Dp, that have closed-form
formulae. Such closed-form presentation will facilitate the numerical experiment
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tremendously. To write down the explicit formula let us introduce some auxiliary
functions. Let Γ(α) be the usual Γ-function, and denote

(a)n
4
= Γ(a+ n)/Γ(a), n = 0, 1, 2, · · · .

The so-called confluent hypergeometric function is defined by

1F1(a, c, z) =

∞
∑

n=0

(a)nz
n

(c)nn!
.

Next, we define the following pair of auxiliary functions:

y1(a, z) = e−(1/4)z
2

1F1

(

−1

2
a+

1

4
,
1

2
;−1

2
z2
)

= e(1/4)z
2

F1

(

1

2
a+

1

4
,
1

2
;−1

2
z2
)

,

y2(a, z) = ze−(1/4)z
2

1F1

(

1

2
a+

3

4
,
3

2
;
1

2
z2
)

= ze(1/4)z
2

1F1

(

−1

2
a+

3

4
,
3

2
;−1

2
z2
)

.

The Parabolic Cylinder Functions Dp can then be written as follows (see, e.g.,
Temme [T]):

Dp(z) =
√
π2

p
2+

1
4

{

2−
1
4 y1(−(p+ 1

2 ), z)

Γ( 12 −
p
2 )

− 2
1
4 y2(−(p+ 1

2 ), z)

Γ(−p
2 )

}

.(2.10)

It is fairly easy to check that the following recursive relations hold for the functions
Dp and D−p:

(2.11)







Dp+1(x) = xDp(x)− pDp−1(x), p ∈ IR
d
dxDp(x) =

−x
2 Dp(x) + pDp−1(x), p ∈ IR

d
dxDp(x) =

x
2Dp(x)−Dp+1(x). p ∈ IR.

An important case, which is of particular interest to us, is the case when p = n,
a natural number. In this case the PCFs have the following relations with the
Hermite polynomials:

Dn(z) = −2−n
2 e−

z2

4 Hn

( z√
2

)

.

Finally, we note that the parabolic cylinder functionDp(z) has the following integral
form for p < 0:

(2.12) Dp(z) =
e−

z2

4

Γ(−p)

∫ ∞

0

t−p−1e−tz−
t2

2 dt.

3. Problem Formulation

In this section we study the jump diffusion models that motivated the convo-
lution formulae that we are interested in. We should note that our framework is
almost parallel to the one proposed by Kou-Wang [K-W], except for the assump-
tion on the logarithm of the jump sizes. Let (Ω,F ,P; {Ft}) be a complete filtered
probability space on which is defined a Brownian motion W and a compound Pois-
son process J , both adapted to the filtration {Ft}. More precisely, we assume that
the process J takes the following form:

(3.1) Jt =

Nt
∑

j=1

(Vj − 1), t ≥ 0,
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where N = {Nt} is a standard Poisson process with rate λ, and {Vj} is a sequence
of i.i.d. nonnegative random variables. We assume that

(i) for each j, Xj = log(Vj) has a power exponential distribution with density
given in (2.1);

(ii) the processes W , N , and Xj ’s are independent;
(iii) Ft = σ{Ws, Js : 0 ≤ s ≤ t}, t ≥ 0, augmented under P so that it satisfies

the usual hypotheses (cf. e.g., [P]).
In our jump diffusion model we assume that all the economics have a finite

horizon [0, T ], and the price of our underlying risky asset is given by the following
stochastic differential equation (SDE):

(3.2)
dSt
St

= µdt+ σdWt + dJt = µdt+ σdWt + d

(

Nt
∑

i=1

(Vi − 1)

)

.

We assume that the drift µ and the volatility σ are constants. It is then well-
known (see, e.g., Protter [P]) that the solution to the SDE (3.2) is given by the
Doléans-Dade stochastic exponential

(3.3) St = S0 exp

{

(µ− 1

2
σ2)t+ σWt

} Nt
∏

i=1

Vi.

Consequently, the return process Zt = log(St/S0) is given by

(3.4) Zt =
{

µ− 1

2
σ2
}

t+ σWt +

Nt
∑

i=1

Vi, Z0 = 0.

In light of the results of Kuo-Wang [K-W], we now consider the discretized
version of (3.2)–(3.4), following the well-known Euler method.

Let π : t0 = 0 ≤ t1, · · · , tn = T be any partition of [0, T ]. Denote4i = ti+1−ti,
and |π| 4= max0≤i≤n−1{4i}, the mesh size of the partition. In what follows, for any
process ξ, we denote 4iξ = ξti+1 − ξti , i = 0, 1, · · · , n − 1. Consider the following
discretized version of (3.2): Sπ0 = S0, and for i = 0, 1, · · · , n− 1, define

(3.5) Sπti+1 = Sπti + Sπti {µ4i + σ[4iW ] +4iJ} .

Noting the definition of the process J (see (3.1)), we derive easily that

(3.6)
4iS

π

Sπti
= µ4i + σ[4iW ] +







Nti+1
∑

j=Nti+1

(Vj − 1)







.

Recall that X = log V (or V = eX), we can approximate V by 1 + X so as to
rewrite (3.6) as

(3.7)
4iS

π

Sπti
= µ4i + σ[4iW ] +







Nti+1
∑

j=Nti+1

Xj







.

for i = 0, ..., n − 1. In what follows we shall consider only the equi-distant dis-
cretization, that is ti =

iT
n , i = 0, 1, · · · , n, so that |π| = 4i =

T
n , for all i.

Note that for each 1 ≤ i ≤ n the random variable 4iW ∼ N(0, |π|), we can

write 4iW =
√

|π|Zi, where Zi’s are i.i.d. N(0, 1)-random variables. The equation
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(3.7) then becomes

(3.8)
4iS

π

Sπti
= µ4i + σ

√

|π|Zi +







Nti+1
∑

j=Nti+1

Xj







.

As it was shown in [K-W], for 4i small enough we have

Nti+1
∑

j=Nti+1

Xj =

{

XNt+∆i
w.p. λ4i,

0 w.p. 1− λ4i.

In other words, if δ
4
= |π| is sufficiently small, the return can be approximated in

distribution by

(3.9)
4St
St

= µδ + σZ
√
δ +B ·X

where B is a Bernoulli random variable with P(B = 1) = λδ and P(B = 0) = 1−λδ,
and Z ∼ N(0, 1). Note that

P{σ
√
δZ +BX≤x} = P{σ

√
δZ +X≤x}P{B = 1}+P{σ

√
δZ ≤ x}P{B = 0}

= P{σ
√
δZ +X ≤ x}λδ + P{σ

√
δZ ≤ x}(1− λδ).

The problem is thus reduced to calculate the distribution of the random variable
σ
√
δZ + X, an independent sum of a normal random variable and a power expo-

nential random variable. In what follows we refer the problem of calculating the
distribution of such a sum as Problem NP(1), with “1” meaning that there is only
one power exponentially random variable involved.

Let us now look at the option pricing problem. Following the idea of Merton
[M] and/or Duffie [D], we shall start with the risk-neutral measure P∗, under which
the return process is rewritten as

(3.10)
dSt
St

= (r − λE(V − 1))dt+ σdWt + dJt = (µ− λα)dt+ σdWt + dJt,

where α = E(eX) − 1, and r is the shot rate of the riskless asset. Note that the
unique solution to the SDE (3.10) is given by

St = S0 exp

{

(r − 1

2
σ2 − λα)t+ σWt

} Nt
∏

i=1

Vi(3.11)

= S0 exp

{

(r − 1

2
σ2 − λα)t+ σ

√
tZ +

Nt
∑

i=1

Xi

}

,

where Z ∼ N(0, 1). For an option of the form g(ST ) the hedging price at time 0 is
given by

V0 = E∗
{

e−µT g

(

S0 exp

{(

r − σ2

2
− λα

)

T + σ
√
TZ

} Nt
∏

i=1

Vi

)}

=

∞
∑

n=0

E∗
{

e−rT g

(

S0e
(r−σ2

2 −λα)T+σ
√
TZ

Nt
∏

i=1

Vi

)∣

∣

∣

∣

∣

NT = n

}

P{NT = n}

= e−rT
∞
∑

m=0

e−λT
(λT )m

m!
E∗
{

g

(

S0e
−λαT e

(

r−σ2

2

)

T+σ
√
TZ+

∑m
i=1Xi

)}

.
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Clearly, the calculation of the right hand side above would require the knowl-
edge of the distribution of the random variable σ

√
TZ +

∑m
i=1Xi, m = 1, 2, · · · ,

which are essentially the independent sums of one normal random variable and m
independent power exponentially distributed random variables. In what follows we
refer to such a problem as Problem NP (m), m = 2, 3, · · · .

We remark that the solution to the Problem NP(m) is nothing but the m+ 1-
fold convolution of a normal random variable and k independent power exponential
random variables. Our main purpose is to find the convolution formulae in terms
of either Hermite polynomials or parabolic cylinder functions so as to numerically
simulate the underlying prices and calculate option prices. We should also note such
series solution may not even converge in general. For this reason, we borrow the
notation of the well-known Taylor series expansion. For example, we shall denote
in general a Hermite polynomial expansion as

f(z) ∼=
∞
∑

n=0

αn(z)Hn(βnz)

or

f(z) ∼=
∞
∑

n=0

αn(z)[Dβn(z) +Dβn(−z)],

and change the sign “∼=” to “=” after we verify the convergence of the series. The
essence here, however, is that with the explicit form of the series expansion, one
can always use the partial sum to approximate the density function, even without
actually proving the convergence(!).

To end this section we take a closer look at the quantity α
4
= E{eX} which

plays an important role in the formula (3.10). The following series expansion for α
gives an idea for what we are trying to do in the rest of the paper.

Proposition 3.1. Suppose that X ∼ P (β, 0, φ). Then for all β ≥ 1/2 and
φ < 1/2 the following formula follows

(3.12) E(eX) =
C(φ, β)

β

∞
∑

n=0

Γ
(

2n+1
2β

)

(2n)!
2
2n+1
2β φ2n+1,

where

(3.13) C(φ, β) =
1

φΓ
(

1 + 1
2β

)

21+
1
2β

.

Proof. Suppose X ∼ P (β, 0, φ). Then its density function f(x) = fX(x) is
given by (2.1) with normalizing constant C(φ, β). Assume that β ≥ 1/2, then first
using the Taylor expansion for ex and then formally applying Fubini’s theorem we
have

E(eX) =

∫

IR

exfX(x)dx ∼= C(φ, β)

∞
∑

n=0

1

n!

∫

IR

xne
− 1

2φ2β
|x|2β

dx.

Note that the integrals on the right hand side above are all absolutely convergent,
and it holds that

∫

IR

xne
− 1

2φ2β
|x|2β

dt =







2

∫ ∞

0

xne
− 1

2φ2β
x2β

dx=Γ

(

n+ 1

2β

)

1

β
φn+12

n+1
2β if n is even,

0 if n is odd.
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Thus we have

E(eX) ∼= C(φ, β)

β

∞
∑

n=0

Γ
(

2n+1
2β

)

(2n)!
2
2n+1
2β φ2n+1.

To show that the equality actually holds in the above (whence (3.12)), first
recall an important limit (see, e.g., [Gr-R])

(3.14) lim
|z|→∞

Γ(z + a)

Γ(z)
z−a = 1.

Let us define bn(β)
4
=

Γ( 2n+12β )
(2n)! 2

2n+1
2β φ2n+1. Then, applying the ratio test we have,

for any n,

(3.15)

∣

∣

∣

∣

bn+1(β)

bn(β)

∣

∣

∣

∣

=
2
1
β φ2

(2n+ 2)(2n+ 1)

Γ
(

2n+3
2β

)

Γ
(

2n+1
2β

) .

Thus for β > 1/2, if we let z = n
β + 1

2β and a = 1
β in (3.14), then by (3.15) we

obtain that

(3.16) lim
n→∞

∣

∣

∣

∣

bn+1(β)

bn(β)

∣

∣

∣

∣

= lim
n→∞

2
1
β φ2(nβ + 1

2β )
1
β

(2n+ 2)(2n+ 1)







(n

β
+

1

2β

)− 1
β
Γ
(

2n+3
2β

)

Γ
(

2n+1
2β

)







= 0.

Hence
∑

bn(β) <∞, and the series in (3.12) converges for all β > 1/2.
Finally, we note that when β = 1/2, the limit in (3.16) is actually equal to

(2φ)2, thus the series (3.12) converges for φ < 1/2. ¤

We remark that when β = 1/2 the series (3.12) is equal to 4φ
(1−(2φ)2) , and it

coincides with the result in [K-W] for the case of “double exponential”. Since
the double exponential distribution has the “heaviest tail” among all the power
exponential distributions with β ≥ 1/2, this result essentially shows that the double
exponential distribution is more or less the farthest one can go in such jump diffusion
models, whenever α = E[eX ] <∞ is satisfied.

4. Solution of Problem NP(1)

We now turn to the (Hermite) series solution to Problem NP(1). Let us assume
that X ∼ P (β, µ1, φ) and Y ∼ N(µ2, σ

2). That is, the density functions of X and
Y are, respectively,

fX(x) =
1

φΓ
(

1 + 1
2β

)

21+
1
2β

e−
1
2 | x−µ1φ |2β = C(φ, β)e−

1
2 | x−µ1φ |2β ,

where C(φ, β) is given by (3.13), and

fY (y) =
1√
2πσ

e−
(y−µ2)

2

2σ2 .

To simplify notation we assume from now on µ1 = µ2 = 0, the general case can be
argued in the same way.

Recall that the complete (Hermite-series) solution of NP(1) consists of two
parts: a closed form series representation and its convergence analysis. Since the
convergence analysis is usually lengthy, and the series representation is sometimes
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already sufficient for practical purposes, we thus present the results separately. We
first give a formal Hermite-expansion theorem without studying the convergence.

Theorem 4.1. Suppose that X ∼ P (β, 0, φ) and Y ∼ N(0, σ2), and that X and
Y are independent. Then the density function of X + Y has the following series
representation:

(i) for β > 1,

(4.1) fX+Y (z) ∼=
C(φ, β)√

2πσ
e
−z2

2σ2

∞
∑

n=0

Γ
(

2n+1
2β

)

(2n)!(2σ2)n
φ2n+12

2n+1
2β H2n(

z√
2σ

);

(ii) for 0 < β < 1,

fX+Y (z) ∼= C(φ, β)√
2π

e−
z2

4σ2

∞
∑

n=0

(−1)nΓ(2βn+ 1)σ2βn

n!2nφ2βn
(4.2)

·
[

D−(2βn+1)(
z

σ
) +D−(2βn+1)(−

z

σ
)
]

,

where Hn’s and Dµ’s are the Hermite polynomials and the parabolic cylinder func-
tions, respectively.

Proof. First assume β > 1. From (2.3) it is easily seen that

e
1
2σ2

(−t2+2zt) =
∞
∑

n=0

tn

n!(
√
2σ)n

Hn

( z√
2σ

)

,

where Hn’s are the Hermite polynomials. Formally applying the Fubini theorem to
the convolution formula we have

fX+Y (z) =

∫

IR

fX(x)fY (z − x)dx

∼= C(φ, β)√
2πσ

e−
z2

2σ2

∞
∑

n=0

Hn(
z√
2σ

)

n!(
√
2σ)n

∫

IR

tne
− 1

2φ2β
|t|2β

dt.

We note that the integrals inside the summation on the right hand side above are
obviously absolutely convergent, and they can be calculated explicitly as

∫

IR

tne
− 1

2φ2β
|t|2β

dt =







2

∫ ∞

0

tne
− 1

2φ2β
t2β

dt=Γ

(

n+ 1

2β

)

1

β
φn+12

n+1
2β if n is even,

0 if n is odd .

Consequently we have

fX+Y (z) ∼=
C(φ, β)√

2πσ
e−

z2

2σ2

∞
∑

n=0

Γ
(

2n+1
2β

)

(2n)!(2σ2)n
φ2n+12

2n+1
2β H2n

( z√
2σ

)

,

proving (4.1).
Now let us assume 0 < β < 1. As we will see in the next theorem, the usual

technique used to prove the convergence of the series representation for β > 1 does
not work for this case. Thus a different approach is in order. In this case let us
first use the Taylor expansion for the exponential function

e
− 1

2φ2β
|t|2β

=
∞
∑

n=0

(−1)n
n!2nφ2βn

|t|2βn.
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Formally applying Fubini’s theorem again in the convolution formula we obtain
that

(4.3) fX+Y (z) ∼=
C(φ, β)√

2πσ
e
−z2

2σ2

∞
∑

n=0

(−1)n
n!2nφ2βn

∫

IR

|t|2βne− 1
2σ2

(t2−2tz)dt.

Note that the integrals inside the summation on the right hand side are still ab-
solutely convergent. In fact, we have the following closed form formula (see, for
example, [Gr-R]): for µ > 0, ν > 0, and x ∈ IR,

(4.4) I(x;µ, ν)
4
=

∫ ∞

0

tν−1e−µt
2−xtdt = (2µ)−

ν
2 Γ(ν)e

x2

8µD−ν

(

x√
2ν

)

.

Thus the integral on the right hand side of (4.3) should read
∫

IR

|t|2βne− 1
2σ2

(t2−2tz)dt

= I(− z

σ2
;

1

2σ2
, 2βn+ 1) + I(

z

σ2
;

1

2σ2
, 2βn+ 1)(4.5)

= σ2βn+1Γ(2βn+ 1)e
z2

4σ2

[

D−(2βn+1)
(

− z

σ

)

+D−(2βn+1)
( z

σ

)]

.

Plugging (4.5) into (4.3) we derive (4.2). ¤

We now try to replace the sign “∼=” by “=” in (4.1) and (4.2). The following
theorem explains why we need to use different representations for the cases β > 1
and β < 1.

Theorem 4.2. Suppose that X and Y are random variables as defined in The-
orem 4.1. Then, the following convergence results hold:

(i) if β > 1 and φ ≤ σ, then the Hermite series (4.1) converges absolutely and
uniformly in z ∈ IR;

(ii) if 0 < β < 1 and σ ≤ φ, then the Hermite series (4.2) converges absolutely
and uniformly in z ∈ IR;

Consequently, in all cases above the “∼=” signs in both (4.1) and (4.2) can be
replaced by equalities.

Proof. (i) Assume β > 1 and φ ≤ σ. Denote the right hand side of (4.1) by
I1(z). Then we have

|I1(z)| ≤ C(φ, β)√
2π

e−
z2

2σ2

∞
∑

n=0

Γ
(

2n+1
2β

)

(2n)!2n

(

φ

σ

)2n+1

2
2n+1
2β

∣

∣

∣
H2n

( z√
2σ

)
∣

∣

∣

≤ C(φ, β)√
2π

e−
z2

2σ2

∞
∑

n=0

Γ
(

2n+1
2β

)

(2n)!2n
2
2n+1
2β

∣

∣

∣
H2n

( z√
2σ

)∣

∣

∣
.(4.6)

Thus it suffices to show the convergence of the series

(4.7)
∞
∑

n=0

Γ
(

2n+1
2β

)

(2n)!2n
2
2n+1
2β

∣

∣

∣
H2n

( z√
2σ

)
∣

∣

∣
e−

z2

2σ2 .
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Note that the basic estimate of Hermite polynomial (2.8) implies that for all z ∈ IR,

Γ
(

2n+1
2β

)

(2n)!2n
2
2n+1
2β

∣

∣

∣
H2n

( z√
2σ

)∣

∣

∣
e−

z2

2σ2 ≤
Γ
(

2n+1
2β

)

(2n)!
2
2n+1
2β (2n− 1)!!e−

z2

4σ2

≤
Γ
(

2n+1
2β

)

(2n)!
2
2n+1
2β (2n− 1)!!

4
= an(β).

But note that

(4.8)

∣

∣

∣

∣

an+1(β)

an(β)

∣

∣

∣

∣

=
2
1
β

(2n+ 2)

Γ
(

2n+3
2β

)

Γ
(

2n+1
2β

) .

Since β > 1, if we set z = n
β + 1

2β and a = 1
β in the identity (3.14), then from (4.8)

we see that

(4.9) lim
n→∞

∣

∣

∣

∣

an+1(β)

an(β)

∣

∣

∣

∣

= lim
n→∞

2
1
β (nβ + 1

2β )
1
β

(2n+ 2)







(n

β
+

1

2β

)− 1
β
Γ
(

2n+3
2β

)

Γ
(

2n+1
2β

)







= 0.

Hence
∑

an(β) <∞, and the series in (4.7) converges absolutely and uniformly for
all z, proving part (i).

(ii) 0 < β < 1. Again we write the right hand side of (4.2) as I2(z), using the
assumption σ ≤ φ we then have

|I2(z)| ≤
∞
∑

n=0

1

2nn!
Γ(2βn+ 1)

[

|D−(2βn+1)(z)|+ |D−(2βn+1)(−z)|
]

(4.10)

4
= I12 (z) + I22 (z),

where

I12 (z)
4
=

∞
∑

n=0

1

2nn!
Γ(2βn+ 1)|D−(2βn+1)(z)|

I22 (z)
4
=

∞
∑

n=0

1

2nn!
Γ(2βn+ 1)|D−(2βn+1)(−z)|.

It then suffices to show that both I12 (·) and I22 (·) converge uniformly in z. It is
readily seen that we need only check the uniform convergence of I12 (z) for z > 0,
thanks to the symmetry.

To this end, let p = −(2βn+ 1). By (2.12) we have

D−(2βn+1)(z) =
e−

z2

4

Γ(2βn+ 1)

∫ ∞

0

t2βne−tz−
t2

2 dt.

Putting this into the right side of I12 we can easily check that, for z > 0,

I12 (z) ≤
∞
∑

n=0

1

2nn!
e−

z2

4

∫ ∞

0

t2βne−tz−
t2

2 dt

≤
∞
∑

n=0

1

2nn!
e−z

2/4

∫ ∞

0

t2βne−t
2/2dt ≤

∞
∑

n=0

2
2βn−1
2 Γ

(

2βn+1
2

)

2nn!
.
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Again, let us define

an(β)
4
=

2
2βn−1
2 Γ

(

2βn+1
2

)

2nn!
.

Then, applying (3.14) again (with z = 2βn+1
2 and a = β) we get that, for β < 1,

lim
n→∞

∣

∣

∣

∣

an+1(β)

an(β)

∣

∣

∣

∣

= lim
n→∞

2β−1

n+ 1

Γ
(

2βn+1+2β
2

)

Γ
(

2βn+1
2

)(4.11)

≤ lim
n→∞

(βn+ 1
2 )
β

(n+ 1)







(βn+
1

2
)−β

Γ
(

2βn+1+2β
2

)

Γ
(

2βn+1
2

)







=0.

Thus, by the ratio test we see that
∑

an(β) < ∞, and hence I12 (z) converges
absolutely and uniformly for z > 0. The proof is now complete. ¤

5. Two special cases (β = 1 and β = 1
2)

Observe that in Theorems 4.1 and 4.2 we did not discuss the case β = 1. In
fact in this case neither argument works, since the limits in both ratio tests equal
to 1(!). We shall nevertheless prove that in this case the Hermite series (4.1) still
converges, and it is in fact the unique solution to the Cauchy problem of a second
order ODE. Further, since the case β = 1/2 corresponds to the double exponential
distribution, for which an explicit formula is given by Kuo-Wang [K-W], we shall
prove in this section that our Hermite series expansion (4.2) produces exactly the
same thing, although starting from a seemingly different formula.

5.1. The normal case (β= 1). We first note that when β = 1, P (1, 0, φ) =
N(0, φ2), thus the solution to problem NP(1) is nothing but a normal distribution.
Furthermore, since both X and Y are normal random variables in this case, in the
convolution formula the role of σ and φ are interchangeable. Hence we might as
well assume in this section that φ = σ = 1. That is, X ∼ P (1, 0, 1) = N(0, 1) and
Y ∼ N(0, 1), hence the independent sum X + Y ∼ N(0, 2). In other words, we
have

(5.1) fX+Y (z) =
1

2
√
π
e
−z2

4 .

On the other hand, setting β = 1, φ = 1 in (4.1) we have

(5.2) fX+Y (z) ∼=
C(1, 1)√

2π
e
−z2

2

∞
∑

n=0

H2n(
z√
2
)

(2n)!2n
Γ

(

2n+ 1

2

)

2
2n+1
2 .

Since, by (3.13), we have

C(1, 1) =
1

Γ
(

1 + 1
2

)

21+
1
2

=
1√
2π
,

we have the following result.
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Theorem 5.1. Suppose that X and Y are two independent N(0, 1)-random
variables. Then it holds that

fX+Y (z) =
1

2
√
π
e
−z2

4 =
C(1, 1)√

2π
e
−z2

2

∞
∑

n=0

H2n(
z√
2
)

(2n)!2n
Γ

(

2n+ 1

2

)

2
2n+1
2(5.3)

=
1√
2π
e
−z2

2

∞
∑

n=0

H2n(
z√
2
)

(2n)!
Γ

(

2n+ 1

2

)

.(5.4)

Furthermore, the series

ψ(u) =
∞
∑

n=0

H2n(u)

(2n)!
Γ

(

2n+ 1

2

)

=

√

π

2
e
u2

2

is the unique solution of the following second order homogenerous ODE:

(5.5)

{

ψ′′(u)− uψ′(u)− ψ(u) = 0,
ψ(0) =

√

π
2 , ψ′(0) = 0.

Proof. First, letting u = z√
2
, we see that it suffices to show the following

identity:

(5.6)

∞
∑

n=0

H2n(u)

(2n)!
Γ

(

2n+ 1

2

)

=

√

π

2
e
u2

2 .

We first analyze the particular case u = 0. By (2.5) we have

H2n(0) = (−1)n2n(2n− 1)!! and Γ

(

2n+ 1

2

)

=

√
π

2n
(2n− 1)!!.

Therefore (5.6) is equivalent to

(5.7)
∞
∑

n=0

(−1)n(2n− 1)!!(2n− 1)!!

(2n)!
=

1√
2
.

To prove (5.7) let us make the following elementary observations. First, consider
the Taylor expansion:

(5.8)
1√

1− 4x
=

∞
∑

n=0

(2n)!

n!n!
xn, −1

4
≤ x <

1

4
.

Now, setting x = −1
4 in (5.8) and noting that (2n)! = (2n − 1)!!(2n)!! = (2n −

1)!!2nn!, we obtain that

1√
2
=

∞
∑

n=0

(−1)n(2n)!
(2nn!)2

=

∞
∑

n=0

(−1)n(2n)!((2n− 1)!!)2

((2n)!)2
.

The identity (5.7) thus follows.
In the general case we shall make use of the properties of the Hermite polyno-

mials given in (2.4), and the stability result of viscosity solutions (see, e.g., Fleming
and Soner [F-S]). For any integer N , define

ψN (u)
4
=

N
∑

n=0

H2n(u)

(2n)!
Γ

(

2n+ 1

2

)

=
√
π +

N
∑

n=1

H2n(u)

(2n)!
Γ

(

2n+ 1

2

)

.
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Differentiating both sides above and using the recursive relation (2.4) we obtain
that

(5.9) ψ′N (u) =

N
∑

n=1

H ′2n(u)

(2n)!
Γ

(

2n+ 1

2

)

=

N
∑

n=1

4n
H2n−1(u)

(2n)!
Γ

(

2n+ 1

2

)

.

Differentiating (5.9) again and applying (2.4) we obtain

ψ′′N (u) =

N
∑

n=1

4n2(2n− 1)H2n−2(u)

(2n)!
Γ

(

2n+ 1

2

)

=

N
∑

n=1

4n2(2n− 1)(−H2n(u) + 2uH2n−1(u))

(2n)!2(2n− 1)
Γ

(

2n+ 1

2

)

(5.10)

= −
N
∑

n=1

4nH2n(u)

(2n)!
Γ

(

2n+ 1

2

)

+ 2uψ′N (u).

On the other hand, it is easily seen that

ψ′′N (u) =

N
∑

n=1

4n2(2n− 1)H2n−2(u)

(2n)!
Γ

(

2n+ 1

2

)

=

N
∑

n=1

2(2n− 1)H2n−2(u)

(2n− 2)!
Γ

(

2n− 1

2

)

(5.11)

= 2

N
∑

n=1

H2n−2(u)

(2n− 2)!
Γ

(

2n− 1

2

)

+

N
∑

n=1

4(n− 1)H2n−2(u)

(2n− 2)!
Γ

(

2n− 1

2

)

= 2[ψN (u)− H2n(u)

(2n)!
Γ

(

2n+ 1

2

)

] +

N−1
∑

n=1

4nH2n(u)

(2n)!
Γ

(

2n+ 1

2

)

.

Adding (5.10) and (5.11) and dividing both sides by 2 we obtain that

(5.12) ψ′′N (u) = ψN (u) + uψ′N (u)− (2n+ 1)
H2n−2(u)

(2n)!
Γ

(

2n+ 1

2

)

.

This amounts to saying that ψN (·) is a (classical) solution to the (non-homogeneous)
ODE (5.12) for each N . Since

αN (u)
4
= −(2n+ 1)

H2n−2(u)

(2n)!
Γ

(

2n+ 1

2

)

→ 0, as N →∞,

uniformly in u on compacts, and ψN (·) converges to ψ(u) 4=
∑∞

n=0
H2n(u)
(2n)! Γ

(

2n+1
2

)

,

uniformly near u = 0, we conclude from the stability of the viscosity solution that
ψ is a viscosity solution to the ODE (5.5), at least near u = 0. But the uniqueness

of the viscosity solution would then imply that the ψ must coincide with
√

π
2 e

u2

2 ,
the unique solution of (5.5), whenever the series converges. The result then follows
from some standard arguments using the extension of the solution for ODEs and
analytic functions. ¤
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5.2. The double exponential case (β=1/2). In the case β = 1/2 the power
exponential distribution P ( 12 , 0, φ) becomes the “double exponential”, that is, the
density function is given by

fX(x) =
1

2η
e−

|x|
η ,

where η = 2φ . Such a case was studied by Kuo-Wang [K-W]. In particular, in
[K-W] it is proved that in this case the density function of X + Y is given by the
following formula

(5.13) fX+Y (t) =
1

η
eσ
2/(2η2)

{

1

2
e−t/ηΦ

(

tη − σ2
ση

)

+
1

2
et/ηΦ

(

− tη + σ2

ση

)}

.

In what follows we show that our Hermite series representation (4.2) gives exactly
the same formula. To simplify numerical calculations, we shall consider only the
case when φ = 1/4 and σ = 1. The general cases can be obtained by a simple
change of variables. We have the following result.

Theorem 5.2. Suppose that β = 1
2 , φ = 1

4 , and σ = 1. Then the Hermite
series (4.2) takes the following form:

1√
2π
e−z

2/4
∞
∑

n=0

(−1)n2n
[

D−(n+1)(z) +D−(n+1)(−z)
]

(5.14)

= e2
(

e−2zΦ(z − 2) + e2zΦ(−z − 2)
)

,

where Φ(·) denotes the standard normal distribution function.
Furthermore, if we define

ϕ(z) =
1√
2π
e−z

2/4
∞
∑

n=0

(−1)n2n
[

D−(n+1)(z) +D−(n+1)(−z)
]

,

then ϕ is the unique solution to the following second order ODE:

(5.15)

{

ϕ′′(z) = 4ϕ(z)− 4√
2π
e−z

2/2

ϕ(0) = 2e2Φ(−2), ϕ′(0) = 0.

Proof. First, setting β = 1
2 , φ = 1

4 , and σ = 1 in (4.2), and noting that

C( 14 ,
1
2 )) = 1 and Γ(n+ 1) = n! we have

fX+Y (z) =
1√
2π
e−z

2/4
∞
∑

n=0

(−1)n2n
n!

Γ (n+ 1)
[

D−(n+1)(z) +D−(n+1)(−z)
]

=
1√
2π
e−z

2/4
∞
∑

n=0

(−1)n2n
[

D−(n+1)(z) +D−(n+1)(−z)
]

.(5.16)

On the other hand, setting β = 1
2 , φ = 1

4 , and σ = 1 in (5.13), we have

(5.17) fX+Y (z) = e2
(

e−2zΦ(z − 2) + e2zΦ(−z − 2)
)

.

Thus the first conclusion follows from Theorem 4.2 and the result of [K-W].
We now prove that the function ϕ, defined as the right hand side of (5.16),

satisfies the ODE (5.15). Again, we first analyze the case z = 0. In this case we
note that

1√
2π

∞
∑

n=0

(−1)n2n+1D−(n+1)(0) = 2e2Φ(−2).
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In the general case we follow the same argument as in the previous theorem to
show that the function

ϕ(u)
4
=

1√
2π
e−u

2/4
∞
∑

n=0

(−1)n2n
[

D−(n+1)(u) +D−(n+1)(−u)
]

is at least the unique solution to the ODE (5.15). To see this, first note that by
taking partial sum if necessary, we can (formally) differentiate the function ϕ to
get

ϕ′(u) =
−u
2
ϕ(u) +

1√
2π
e−u

2/4

( ∞
∑

n=0

(−1)n2nu
2

[

D−(n+1)(u) +D−(n+1)(−u)
]

−
∞
∑

n=0

(−1)n2n [D−n(u)−D−n(−u)]
)

= − 1√
2π
e−u

2/4
∞
∑

n=0

(−1)n2n [D−n(u)−D−n(−u)](5.18)

= −2ϕ(u) + 4√
2π
e−u

2/4
∞
∑

n=0

(−1)n2nD−(n+1)(u),

and by using the recursive relation (2.11) to get

ϕ′′(u) = −2ϕ′(u) + 4√
2π
e−u

2/4
∞
∑

n=0

(−1)n2nD′−(n+1)(u)(5.19)

− 2u√
2π
e−u

2/4
∞
∑

n=0

(−1)n2nD−(n+1)(u)

= −2ϕ′(u)− 4√
2π
e−u

2/4
∞
∑

n=0

(−1)n2nD−n(u)

= −2ϕ′(u)− 4√
2π
e−u

2/4

(

e−u
2/4−2

∞
∑

n=0

(−1)n2nD−(n+1)(u)
)

(5.20)

= −2ϕ′(u)− 4√
2π
e−u

2/2+e−u
2/4 8√

2π

∞
∑

n=0

(−1)n2nD−(n+1)(u).

Combining (5.18) and (5.19) and following the stability arguments if needed, one
shows that the function ϕ is at least a viscosity solution to the ODE (5.15). We
can then repeat the same arguments as those in the previous theorem to conclude
that ϕ must coincide with the unique analytic solution of (5.15), completing the
proof. ¤

6. Convolution formulae for the NP(m) cases

In the last part of this paper we shall give the series presentations of the so-
lution to the Problem NP(m). As we will see, such a presentation will turn out
to be quite complicated in its form, although the idea is rather straightforward.
Consequently, we will pay more attention to the actually computational aspect of
the convolution formulae, rather than the detailed convergence analysis. We shall
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verify the convergence by performing the actual numerical simulation, and compare
the results.

To begin with, let X be a normal random variable, and let Y1, · · · , Ym be m
i.i.d. random variables with a same power exponential distribution. We will study

the convolution formula for the random variable Z = X +
m
∑

i=1

Yi. We still consider

the cases of β > 1 and β < 1 separately again.

Case 1. β > 1. First assume m = 2. Then applying Theorem 4.1 we have

fX+Y1+Y2(z) =

∫ ∞

−∞
fX+Y1(z − t)fY2(t)dt(6.1)

∼= C2(φ, β)√
πσ

∫ ∞

−∞
e−

|z−t|2

2σ2

∞
∑

n=0

H2n(
z−t√
2σ

)Γ( 2n+12β )φ2n+12
2n+1
2β e−

1
2 | tφ |2β

(2n)!(2σ2)n
dt

=
C2(φ, β)√

πσ

∞
∑

n=0

Γ( 2n+12β )φ2n+12
2n+1
2β

(2n)!(2σ2)n

∫ ∞

−∞
H2n

(z − t√
2σ

)

e−
|z−t|2

2σ2 e−
1
2 | tφ |2βdt.

Note that

H2n

(z − t√
2σ

)

=
n
∑

j=0

22n−j
(

z − t√
2σ

)2n−2j (
2n

2j

)

(2j − 1)!!(6.2)

and

e−
|z−t|2

2σ2 =
∞
∑

k=0

(−1)k(z − t)2k
(2σ2)k

,

we get that

fX+Y1+Y2(z) =
C2(φ, β)√

πσ

∞
∑

n=0

Γ
(

2n+1
2β

)

φ2n+12
2n+1
2β

(2n)!

×
∞
∑

k=0

n
∑

j=0

(−1)k
(

2n
2j

)

(2j − 1)!!

2kσ2(2n+k−j)

∫ ∞

−∞
(z − t)2(k+n−j)e− 12 | tφ |

2β

dt

=
C2(φ, β)√

πσ

∞
∑

n=0

Γ( 2n+12β )φ2n+12
2n+1
2β

(2n)!

∞
∑

k=0

n
∑

j=0

(−1)k
(

2n
2j

)

(2j − 1)!!

2kσ2(2n+k−j)

·
2(k+n−j)
∑

i=0

(−1)i
(

2(k + n− j)
i

)

)z2(k+n−j)−i
∫ ∞

−∞
tie−

1
2 | tφ |2βdt.

It is fairly easy to calculate the last integral in the above as

(6.3)

∫ ∞

−∞
tie−

1
2 | tφ |2βdt = [1 + (−1)i] 1

2β

[

1

2φ2β

]

i+1
2β

Γ

(

i+ 1

2β

)

.
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We conclude that

fX+Y1+Y2(z) =
C2(φ, β)√

πσ

∞
∑

n=0

Γ( 2n+12β )φ2n+12
2n+1
2β

(2n)!

∞
∑

k=0

n
∑

j=0

(−1)k
(

2n
2j

)

(2j − 1)!!

2kσ2(2n+k−j)

·
k+n−j
∑

i=0

(

2(k + n− j)
2i

)

1

β

[

1

2φ2β

]

2i+1
2β

Γ

(

2i+ 1

2β

)

z2(k+n−j−i).

For the general n we can repeat this procedure to obtain the following formula.

fX+Y1+...+Yn(z)

=
Cn−1(φ, β)√

πσ

∞
∑

n=0

Γ
(

2n+1
2β

)

φ2n+12
2n+1
2β

(2n)!

∞
∑

k=0

n
∑

j=0

(−1)k
(

2n
2j

)

(2j − 1)!!

2kσ2(2n+k−j)

·
k+n−j
∑

i3=0

(

2(k + n− j)
2i3

)

1

β

[

1

2φ2β

]

2i3+1
2β

Γ

(

2i3 + 1

2β

)

·
k+n−j−i3
∑

i4=0

(

2(k + n− j − i3)
2i4

)

1

β

[

1

2φ2β

]

2i4+1
2β

Γ

(

2i4 + 1

2β

)

· · ·
k+n−j−i3−i4−...−in−1

∑

in=0

(

2(k + n− j − i3 − i4 − . . .− in−1)
2in

)

× 1

β

[

1

2φ2β

]

2in+1
2β

Γ

(

2in + 1

2β

)

z2(k+n−j−i3−i4−...−in)

Case 2. β < 1. Again we first consider the case m = 2. In this case we use the
expansion in terms of PCF’s to get

fX+Y1+Y2(z) =

∫ ∞

−∞
fX+Y1(t)fY2(z − t)dt

=
C2(φ, β)√

2π

∫ ∞

−∞
e
−1
2 | tφ |2βe

−(t−z)2

4σ2

∞
∑

n=0

(−1)n
n!2n

(

σ

φ

)2βn

Γ(2βn+ 1)

×
[

D−(2βn+1)

(

(t− z)
σ

)

+D−(2βn+1)

(−(t− z)
σ

)]

.

(6.4)

Now recall from §2-C that

[

D−(2βn+1)

(

t− z
σ

)

+D−(2βn+1)

(−(t− z)
σ

)]

=
√
2π2−(βn+

1
4 )

[

2−
1
4

(

y1(2βn+ 1
2 ,

t−z
σ ) + y1(2βn+ 1

2 ,
−t+z
σ )

)

Γ(βn+ 1)

− 2
1
4

(

y2(2βn+ 1
2 ,

t−z
σ )− y1(2βn+ 1

2 ,
−t+z
σ )

)

Γ(βn+ 1
2 )

]

,
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where

y1(a, u) + y1(a,−u) = 2e
u2/4
1 F1(a/2 + 1/4, 1/2;u2/2),

y2(a, u) + y2(a,−u) = u2e
u2/4
1 F1(−a/2 + 3/4, 3/2;−u2/2),

we obtain that

fX+Y1+Y2(z)

= C2(φ, β)
∞
∑

n=0

(−1)n
n!2n2βn

(

σ

φ

)2βn

Γ(2βn+ 1)

·
∞
∑

k=0

Γ(βn+ 1
2 + k)

Γ(βn+ 1)Γ(βn+ 1
2 )(2k − 1)!!k!

− 4(−1)kΓ(−βn+ 1
2 + k)

Γ(βn+ 1
2 )Γ(−βn+ 1

2 )(2k + 1)!!k!

· 1

σ2k

∫ ∞

−∞
(t− z)2ke

−1
2 | tφ |2βdt.

Since (t− z)2k =
∑2k

`=0

(

2k
`

)

(−1)`z2k−`t`, we have

fX+Y1+Y2(z)

= C2(φ, β)

∞
∑

n=0

(−1)n
n!2n2βn

(

σ

φ

)2βn

Γ(2βn+ 1) ·

·
∞
∑

k=0

{

Γ(βn+ 1
2 + k)

Γ(βn+ 1)(2k − 1)!!
− 4(−1)kΓ(−βn+ 1

2 + k)

Γ(−βn+ 1
2 )(2k + 1)!!

}

1

Γ(βn+ 1
2 )k!

· 1

σ2k

2k
∑

k=0

(

2k

`

)

(−1)`z2k−`
∫ ∞

−∞
t`e−

1
2 | tφ |2βdt.

Now using (6.3) we finally obtain that

fX+Y1+Y2(z)

= C2(φ, β)
∞
∑

n=0

(−1)n
n!2n2βn

(

σ

φ

)2βn

Γ(2βn+ 1)

·
∞
∑

k=0

{

Γ(βn+ 1/2 + k)

(2k − 1)!!
− 4(−1)kΓ(−βn+ 1/2 + k)

Γ(−βn+ 1/2)(2k + 1)!!

}

1

Γ(βn+ 1/2)k!

· 1

σ2k

k
∑

`=0

(

2k

2`

)

z2(k−`)
2

2β

[

1

2φ2β

]

k+1
2β

Γ

(

`+ 1

2β

)

.

Finally, for general n we have the following formula: denoting s(k, `) = ik+ · · ·+ i`,
fX+Y1+Y2(z)

∼= Cn−1(φ, β)
∞
∑

n=0

(−1)n
n!2n2βn

(

σ

φ

)2βn

Γ(2βn+ 1)

·
∞
∑

k=0

{

Γ(βn+ 1
2 + k)

Γ(βn+ 1)(2k − 1)!!
− 4(−1)kΓ(−βn+ 1

2 + k)

Γ(−βn+ 1
2 )(2k + 1)!!

}

1

Γ(βn+ 1
2 )k!
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· 1

σ2k

k
∑

`=0

(

2k

2`

)

z2(k−`)
2

2β

[

1

2φ2β

]

`+1
2β

Γ

(

`+ 1

2β

)

·
k−
∑̀

i3=0

(

2(k − `)
2i3

)

1

β

[

1

2φ2β

]

2i3+1
2β

Γ

(

2i3 + 1

2β

)

·
k−`−i3
∑

i4=0

(

2(k + `− j − i3)
2i4

)

1

β

[

1

2φ2β

]

2i4+1
2β

Γ

(

2i4 + 1

2β

)

· · ·
k−`−S(3,n−1)

∑

in=0

(

2(k + n− j − s(3, n− 1))

2in

)

1

β

[

1

2φ2β

]

2in+1
2β

Γ

(

2ik + 1

2β

)

·z2(k−`−s(3,n)).

7. Numerical Illustrations

In this section we illustrate our results by numerical experiments. We will be
interested in the following three cases: 1) NP(1) with β = 1; 2) NP(1) with β 6= 1;
and 3) NP(2) with all β.

7.1. NP(1) with β=1. This is a special case worth mentioning. On the one
hand this is the case the convergence analysis of Theorem 4.2 does not apply. But on
the other hand, in this case one actually has a convolution of two standard Normal
random variables, thus the NP (1) sum is simply a N(0, 2) random variable. We
nevertheless did an experiment just to see how efficient (or inefficient) the Hermite
expansion could be in this case. We whould note that this numerical computation
is only for theoretical purposes.

In Figure 1 the defaulting parameters are µ1 = µ2 = 0 and σ = φ = 1. We
see that while the Hermite series (5.2) actually does converge, it is extremely slow.
For example, the result is far from satisfactory when n = 200; and it only becomes
more acceptable when n = 500.

-6 -4 -2 2 4 6

0.05

0.1

0.15

0.2

0.25

Beta=1,n=200

Beta=1,n=500

Figure 1. NP(1) with β = 1 (∼ N(0, 2))
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7.2. NP(1), β 6= 1. In this case we have the convolution of a normal random
variable and a Power exponential. We would like to see two things: the speed of
convergence and the shape of “tails” for different values of β. We fix the default
parameters µ1 = µ2 = 0 and σ = φ = 1, but let β vary. In Figure 2 we combine the
graphs of those with β = 3/10, 1/2, 1, 2, and 5/2. In all the cases (except for β = 1)
we find that n = 100 is already sufficient for the satisfactory results. As we can
see that the smaller the β value is, the heavier the tail becomes. The example for
β = 3/10 shows that there might be cases in which a power exponential distribution
can be more efficient than double exponential (β = 1/2), if the heavier tails are
desired. In general, all power exponentials with β < 1 may be of independent
interest in robustness studies. Among other things, they could be useful in modeling
the errors in Regression Analysis and Time Series, for example.

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1 Beta=3� 10,n=100

Beta=1� 2,n=100

Beta=1,n=500

Beta=2,n=100

Beta=5� 2,n=100

Figure 2. NP(1) for different values of β

7.3. NP(2) with all β’s. In this experiment we expect to see the same fea-
tures of case (2), and we would also like to see the difference in tail shape when
m, the number of power exponentials, increases. In Figure 3 we show the graphs
of convolution of one N(0, 1) random variable and two Power exponentials with
µ1 = µ2 = 0, σ = φ = 1. It is a little surprising that although the closed form
expression of the solution to NP(2) is much more complicated as we saw in the pre-
vious section, the speed of convergence is almost no worse than the case of NP(1).
In fact, n = 100 is again sufficient for a satisfactory result. One should also note
that the solutions of NP(2) have even heavier tails than those of NP(1) with the
same β values. We believe that “heaviness” of the tails increases as m increases,
but we did not perform further numerical experiment as it goes beyond our original
purpose of this paper.
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-3 -2 -1 1 2 3
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Figure 3. NP(2) for different values of β

References
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