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OPTIMAL INVESTMENT AND DIVIDEND STRATEGY UNDER
RENEWAL RISK MODEL\ast 

LIHUA BAI\dagger AND JIN MA\ddagger 

Abstract. In this paper we continue investigating the optimal dividend and investment problems
under the Sparre Andersen model. More precisely, we try to give a more complete description of
the optimal strategy when the claim frequency is a renewal process and therefore semi-Markovian,
for which it is well-known that the barrier strategy is no longer optimal (cf. [H. Albrecher and
J. Hartinger, Hermis J. Comp. Math. Appl., 7 (2006), pp. 109--122]). Building on our previous work
[L. Bai, J. Ma, and X. Xing, Ann. Appl. Probab., 27 (2017), pp. 3588--3632], where we established
the dynamic programming principle via a backward Markovization procedure and proved that the
value function is the unique constrained viscosity solution of the Hamilton--Jacobi--Bellman (HJB)
equation, which is a nonlocal, nonlinear, and degenerate parabolic partial integro-differential equation
on an unbounded domain, in this paper we show that the optimal strategy is still of a band type but
in a more complicated dynamic fashion. The main technical obstacles in constructing and validating
the optimal strategy include the regularity of the value function, due to the fundamental degeneracy
of the HJB equation caused by the Markovization procedure, and the well-posedness of the closed-
loop stochastic system, given the ``band"" nature of the optimal strategy. Some of the technical results
in this paper are purely analytical and therefore interesting in their own right.
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tion, viscosity solution, Krylov estimate
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1. Introduction. In this paper we continue our investigation on the optimal
dividend and investment problems under a Sparre Andersen insurance model. More
precisely, we assume that the claim number process is a renewal process instead of
a standard Poisson process; therefore, it is also referred to as a renewal risk model.
Finding the optimal strategy for such a problem has been considered as an intriguing
but challenging open problem for quite some time (cf., e.g., [2] and references cited
therein) mainly due to the semi-Markov nature of the renewal process, as well as
the nonoptimality of the well-known barrier strategy (see [1]). More specifically, for
a general insurance model involving investments, even under the simplest Cram\'er--
Lundberg form, direct calculation of optimal strategy becomes almost impossible,
and the solution procedure often depends on some more general stochastic control
technique. In particular, the approach of dynamic programming and consequently the
study of the associated Hamilton--Jacobi--Bellman (HJB) equation and its viscosity
solution become a natural way to attack the problem (cf., e.g., [4, 5]). However, as was
pointed out in [2], the non-Markovian nature of Sparre Andersen model drastically
complicated this approach, as it took away the basis of dynamic programming. On the
other hand, since the commonly believed barrier type of dividend strategy was shown
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OPTIMAL DIVIDEND STRATEGY UNDER RENEWAL MODEL 4591

to be nonoptimal in [1], the structure of the optimal dividend-investment strategy
under a renewal risk model has naturally become an intriguing issue to explore.

To better understand the main difficulties in this effort let us first briefly recall
the ``toy"" model studied in our recent paper [7], where we assumed that the surplus
process satisfies the following dynamics of Sparre Andersen type, defined on a filtered
probability space (\Omega ,\scrF ,\BbbP ;\BbbF ): for t \in [s, T ],

dX\pi 
t = pdt+ rX\pi 

t dt+ (\mu  - r)\gamma tX
\pi 
t dt+ \sigma \gamma tX

\pi 
t dBt  - dQt  - dLt, X\pi 

s = x,(1.1)

where T > 0 is a given time horizon, s \in [0, T ] is the initial time and x is the
initial surplus, p the premium rate, r the interest rate, and (\mu , \sigma ) the appreciation
rate and the volatility of the stock, respectively, all assumed to be positive constants;
B is a (\BbbP ,\BbbF )-Brownian motion representing the market noise, Qt =

\sum Nt

i=1 Ui is the
(renewal) claim process, and \pi = (\gamma t, Lt), t \geq 0, is the investment-dividend pair in
which \gamma = \{ \gamma t\} t\geq 0 represents the proportion of the surplus invested in the stock at
each time t (hence \gamma t \in [0, 1]) and L = \{ Lt\} t\geq 0 is the cumulative dividends process
(hence increasing). Denoting Uad to be all such investment-dividend strategies and
the solution to (1.1) by Xt = X\pi 

t = X\pi ,x
t , define \tau \pi s = \tau \pi ,xs := inf\{ t \geq s;X\pi ,x

t < 0\} 
to be the ruin time of the insurance company. The goal is to maximize the following
expected cumulated dividends: for (s, x) \in [0, T ]\times \BbbR +,

J(s, x;\pi ) := \BbbE 

\Biggl\{ \int \tau \pi ,x
s \wedge T

s

e - c(t - s)dLt

\Biggr\} 
:= \BbbE 

\Biggl\{ \int \tau \pi 
s \wedge T

s

e - c(t - s)dLt

\bigm| \bigm| \bigm| X\pi 
s = x

\Biggr\} 
,(1.2)

where c > 0 is the discounting factor. We should note that even as the simplest
model, the solution to the problem (1.1)--(1.2) is surprisingly challenging. The first
obstacle is the non-Markovian nature of the renewal claim counting process N ; thus
the usual dynamic programming approach does not apply directly. To overcome this
difficulty we invoke a standard ``backward Markovization"" procedure by adding an
extra state process W = \{ Wt\} t\geq 0, a random clock measuring the time elapsed since
the last claim (see section 2 for details), so that the model becomes Markovian again.

In [7] we verified the dynamic programming principle and proved that the value
function of problem (1.1)--(1.2) is the unique constrained viscosity solution of the corre-
sponding HJB equation which is a fully nonlinear, nonlocal, and degenerate parabolic
partial integro-differential equation (PIDE) over an unbounded domain. However, in
[7] we did not address the existence and the structure of the optimal control, which
is particularly interesting given the counterexample of Albrecher and Hartinger [1].

The main purpose of this paper is to give a more complete answer to the open
problem suggested in [2], that is, the structure of the optimal strategy of the problem
(1.1)--(1.2), by using the solution (whence the value function) of the HJB equation. In
fact, by simply calculating the maximizer of the Hamiltonian from the HJB equation
(see (2.9) below), one could suspect the following candidate of optimal strategy:\left\{   \gamma \ast t =

\Bigl[ 
 - (\mu  - r)Vx(t,X

\ast 
t ,Wt)

\sigma 2X\ast 
t Vxx(t,X\ast 

t ,Wt)

\Bigr] 
\vee 0 \wedge 1;

a\ast t = \.L\ast 
t =M1\{ Vx(t,X\ast 

t ,Wt)<1\} + p1\{ Vx(t,X\ast 
t ,Wt)=1\} ,

(1.3)

where V is the viscosity solution and M \geq p > 0 is the given upper bound of the
dividend rate, that is, assuming 0 \leq at = \.Lt \leq M . From (1.3) we immediately
see that the optimal strategy should still have a ``barrier type"" but with a dynamic
nature. However, there are two major technical issues. First, the validity of (1.3)
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4592 LIHUA BAI AND JIN MA

depends on the regularity of the viscosity solution (i.e., the derivatives Vx and Vxx),
which seems to be a tall order in this case due to the nonlocal and degenerate nature of
the HJB equation. Second, the optimal dividend rate displays a ``band"" nature with
the state-dependent switching times, which raises some serious questions about the
well-posedness of the resulting closed-loop system. A natural way to get around these
difficulties is to add some additional Brownian motions to the system so that the
corresponding HJB equation becomes nondegenerate and hence possesses classical
solutions and an argument of ``vanishing viscosity"" might lead to at least some \varepsilon -
optimal strategy. Unfortunately, such a method does not work easily in this model,
since the random clock W , the key for the Markovization, cannot be perturbed by
a Brownian motion. Therefore the degeneracy of the HJB in the variable W is not
removable by this approach. To overcome this dilemma we shall take a less standard
route. That is, we shall perturb the HJB equation directly and consider an auxiliary
nondegenerate PIDE and prove that its solution can be used to construct the \varepsilon -
optimal strategy. The difficulty, however, is that such a PIDE does not correspond to
any control problem, so the analysis will have to be purely analytic without using any
control theoretic arguments. Our discussion benefitted greatly from a recent work on
nonlocal HJB equations (cf. [9]), except that in our case the domain is unbounded.

Finally, we should note that, while this paper still treats only the simplest ``toy
model,"" as we shall see, the technicality involved is already overwhelming. In order not
to be distracted by the main message of this paper, that is, to understand the structure
of the optimal strategy and the procedure of obtaining the \varepsilon -optimal strategies, we will
not pursue the generality of the model. We should also note that while the optimal
strategy still has a ``barrier"" nature, the switching times will depend on not only the
surplus level but also the random clock, and it is possible to have multiple barrier
levels. We shall therefore call it a generalized band strategy.

The rest of the paper is organized as follows. In section 2 we briefly recall the
original problem and introduce all the concepts and notations. In section 3 we prove
the existence and uniqueness of the viscosity solution of our key auxiliary PIDE, keep-
ing in mind that such a PIDE does not corresponding to an actual control problem(!).
In section 4 we prove the desired convergence of the solutions of the approximating
PIDEs to the value function. In section 5 we construct a prospective \varepsilon -optimal strat-
egy in terms of the solutions to the approximating PIDEs. In section 6 we prove the
well-posedness of the closed-loop system corresponding this strategy, and in section 7
we verify that the constructed strategy does produce the desired \varepsilon optimality.

2. Preliminaries. Throughout this paper we consider a complete probability
space (\Omega ,\scrF ,\BbbP ) on which is defined standard Brownian motion B = \{ Bt : t \geq 0\} and
a renewal counting process N = \{ Nt\} t\geq 0, independent of B. More precisely, denoting
\{ \sigma n\} \infty n=1 to be the jump times (\sigma 0 := 0) of N and Ti = \sigma i  - \sigma i - 1, i = 1, 2, . . ., to
be its waiting times, we assume that Ti's are independent and identically distributed
(i.i.d.) with a common distribution F : \BbbR + \mapsto \rightarrow \BbbR +. We shall assume that there
exists an intensity function \lambda : [0,\infty ) \mapsto \rightarrow [0,\infty ) such that \=F (t) := \BbbP \{ T1 > t\} =

exp\{  - 
\int t

0
\lambda (u)du\} , so that \lambda (t) = f(t)/ \=F (t), t \geq 0, where f is the density function of

Ti's. Clearly, if \lambda (t) \equiv \lambda is a constant, then N becomes a standard Poisson process.
Let T > 0 be a given time horizon, \BbbX be a generic Euclidean space, and \scrG \subseteq \scrF 

be any sub-\sigma -field. We denote \BbbC ([0, T ];\BbbX ) to be the space of continuous functions
taking values in \BbbX with the usual sup-norm; Lp(\scrG ;\BbbX ) to be the space of all \BbbX -valued,
\scrG -measurable random variables \xi such that \BbbE | \xi | p <\infty , 1 \leq p \leq \infty ; and Lp

\BbbF ([0, T ];\BbbX )
to be the space of all \BbbX -valued, \BbbF -progressively measurable processes \xi satisfying
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OPTIMAL DIVIDEND STRATEGY UNDER RENEWAL MODEL 4593

\BbbE 
\int T

0
| \xi t| pdt < \infty , where \BbbF = \{ \scrF t : t \geq 0\} is a given filtration in \scrF and 1 \leq p \leq \infty .

Here p = \infty means that all elements are bounded.
Given a renewal counting process N , we shall consider the following claim process

for our reserve mode: Qt =
\sum Nt

i=1 Ui, t \geq 0, where \{ Ui\} \infty i=1 is a sequence of random
variables representing the ``size"" of the incoming claims. We assume that \{ Ui\} are
i.i.d. with a common distribution function G (and density g), independent of (N,B).
We note that the process Q is non-Markovian in general (unless the counting process
N is Poisson) but can be ``Markovized"" by the so-called backward Markovization
technique (cf., e.g., [17]). More precisely, if we denote Wt = t  - \sigma Nt

, t \geq 0, that is,
the time elapsed since the last jump, then it is known (see, e.g., [17]) that the process
(t, Qt,Wt), t \geq 0, is a piecewise deterministic Markov process. We note that at each
jump time \sigma i, | \Delta W\sigma i

| = \sigma i  - \sigma i - 1 = Ti and 0 \leq Wt \leq t \leq T , t \in [0, T ].

Now let us denote \{ \scrF \xi 
t : t \geq 0\} to be the natural filtration generated by process

\xi = B,Q,W , respectively, with the usual \BbbP -augmentation such that it satisfies the
usual hypotheses (cf., e.g., [16]). Throughout this paper we consider the filtration

\BbbF = \BbbF (B,Q,W ) = \{ \scrF t\} t\geq 0, where \scrF t := \scrF B
t \vee \scrF Q

t \vee \scrF W
t , t \geq 0. For any s \in [0, T ], let us

consider the process (B,Q,W ) starting from s \in [0, T ]. First assume Ws = w, \BbbP -a.s.;
let us consider the regular conditional probability distribution \BbbP sw(\cdot ) := \BbbP [ \cdot | Ws = w]
on (\Omega ,\scrF ), and consider the ``shifted"" version of processes (B,Q,W ) on the space
(\Omega ,\scrF ,\BbbP sw;\BbbF s), where \BbbF s = \{ \scrF t\} t\geq s. Define Bs

t := Bt  - Bs, t \geq s. Clearly, since
B is independent of (Q,W ), Bs is an \BbbF s-Brownian motion under \BbbP sw, defined on
[s, T ], with Bs

s = 0. Next, we restart the clock at time s \in [0, T ] by defining the
new counting process Ns

t := Nt  - Ns, t \in [s, T ]. Then, under \BbbP sw, N
s is a ``delayed""

renewal process in the sense that while its waiting times T s
i , i \geq 2, remain i.i.d. as

the original Ti's, its ``time-to-first jump,"" denoted by T s,w
1 := TNs+1 - w = \sigma Ns+1 - s,

should have the survival probability

\BbbP sw\{ T s,w
1 > t\} = \BbbP \{ T1 > t+ w| T1 > w\} = e - 

\int w+t
w

\lambda (u)du.(2.1)

In what follows we shall denoteNs
t

\bigm| \bigm| 
Ws=w

:= Ns,w
t , t \geq s, to emphasize the dependence

on w as well. Correspondingly, we shall denote Qs,w
t =

\sum Ns,w
t

i=1 Ui and W s,w
t :=

w+Wt - Ws = w+[(t - s) - (\sigma Nt
 - \sigma Ns

)], t \geq s. It is readily seen that (Bs
t , Q

s,w
t ,W s,w

t ),
t \geq s, is an \BbbF s-adapted process defined on (\Omega ,\scrF ,\BbbP sw), and it remains Markovian.

The Markovized optimal investment-dividend problem. Taking the process
W into account, we now reformulate the renewal risk model (1.1)-(1.2) so that it is
Markovian. Similar to our previous work [7], we shall make use of the following
standing hypothesis.

Hypothesis 2.1. (a) The parameters (r, \mu , \sigma ) and premium rate p are all constants.
(b) The distribution functions F and G are continuous on [0,\infty ) with densities f

and g, respectively. Furthermore, we assume that \lambda (t) := f(t)/ \=F (t) > 0, t \in [0, T ].
(c) The cumulative dividend process L is absolutely continuous. That is, there

exists a \in L2
\BbbF ([0, T ];\BbbR +) such that Lt =

\int t

0
asds, t \geq 0. We assume further that for

some constant M \geq p > 0, it holds that 0 \leq at \leq M , dt\times d\BbbP -a.e.
Remark 2.2. (i) The main technical difficulty in this paper is the degeneracy of the

HJB equation, caused by the Markovization procedure, even under Hypothesis 2.1(a).
Our method is applicable to more general models with ``nice"" coefficients, but this is
not the main point of the paper.

(ii) Hypothesis 2.1(c) is purposely restrictive, which removes the possible ``singu-
lar"" behavior of the optimal strategy. Such a restriction is due largely to our goal of
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4594 LIHUA BAI AND JIN MA

constructing the ``\varepsilon -optimal strategy"" in this paper, which essentially eliminates the
need to consider the singular case.

In what follows, given [s, t] \subseteq [0, T ], we say that a strategy \pi = (\gamma , a) is admissible
on [s, t] if \pi \in L2

\BbbF ([s, t];\BbbR 2) with (\gamma u, au) \in [0, 1] \times [0,M ], u \in [s, t], \BbbP -a.s. Moreover,
for any (s, w) \in [0, T ]2, we denote the set of all admissible strategies on [s, T ], defined
on the probability space (\Omega ,\scrF ,\BbbP sw) by U s,w

ad [s, T ]. In particular, we denote U 0,0
ad [0, T ]

by Uad[0, T ] = Uad for simplicity.
Let \pi = (\gamma , a) \in U s,w

ad [s, T ], we now consider the ``Markovized"" reserve model:\biggl\{ 
dXt = pdt+ [r + (\mu  - r)\gamma t]Xtdt+ \gamma tXtdBt  - dQs,w

t  - atdt,Xs = x;
Wt = w + (t - s) - (\sigma Nt

 - \sigma Ns
), t \in [s, T ],

(2.2)

with the expected cumulated dividends up to ruin and the value function:

J(s, x, w;\pi ) := \BbbE sxw

\Biggl\{ \int \tau \pi 
s \wedge T

s

e - c(t - s)atdt

\Biggr\} 
,(2.3)

V (s, x, w) := sup
\pi \in U sw

ad [s,T ]

J(s, x, w;\pi ).(2.4)

In the above \tau \pi s := inf\{ t > s : X\pi 
t < 0\} is the ruin time, (X\pi ,W ) is the solution to

(2.2), and \BbbE swx\{ \cdot \} := \BbbE sw\{ \cdot | X\pi 
s = x\} .

The HJB equation and its viscosity solution. We now briefly recall the
main result of [7]. We first note that there is a natural domain for the initial state
(s, x, w), denoted by D := \{ (s, x, w) : 0 \leq s \leq T, x \geq 0, 0 \leq w \leq s\} . Here w \leq s is
due to the fact that Wt \leq t. We thus assume that the value function V is defined on
D and that V (s, x, w) = 0, for (s, x, w) /\in D. We also define the following two sets:

D := intD = \{ (s, x, w) \in D : 0 < s < T, x > 0, 0 < w < s\} ;(2.5)

D\ast := \{ (s, x, w) \in D : 0 \leq s < T, x \geq 0, 0 \leq w \leq s\} .

Clearly D \subset D\ast \subseteq \=D = D, and D\ast does not include boundary at the terminal time
s = T . Furthermore, we denote \BbbC 1,2,1

0 (D) to be the set of all functions \varphi \in \BbbC 1,2,1(D)
such that for \eta = \varphi , \varphi t, \varphi x, \varphi xx, \varphi w, it holds that lim (t,y,v)\rightarrow (s,x,w)

(t,y,v)\in D
\eta (t, y, v) = \eta (s, x, w)

for all (s, x, w) \in D and \varphi (s, x, w) = 0 for (s, x, w) /\in D. We note that while a function
\varphi \in \BbbC 1,2,1

0 (D) is well-defined on D, it is not necessarily continuous on the boundaries
\{ (s, x, w) : x = 0 or w = 0 or w = s\} .

Now, for \theta = (s, x, w) \in D, \xi = (\xi 1, \xi 2) \in \BbbR 2, y,A, z \in \BbbR , and (\gamma , a) \in [0, 1] \times 
[0,M ], we define the following Hamiltonian:

H(\theta , y, \xi , A, z, \gamma , a) :=
\sigma 2

2
\gamma 2x2A+ [p+ (r + (\mu  - r)\gamma )x - a]\xi 1 + \xi 2(2.6)

+ \lambda (w)z + (a - cy),

and for \varphi \in \BbbC 1,2,1
0 (D) we define the second-order partial integro-differential operator:

L [\varphi ](\theta ) := sup
\gamma \in [0,1],a\in [0,M ]

H(\theta , \varphi ,\nabla \varphi ,\varphi xx, I(\varphi ), \gamma , a),(2.7)
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where \nabla \varphi := (\varphi x, \varphi w), and I[\varphi ] is the integral operator defined by

I[\varphi ] :=

\int \infty 

0

[\varphi (s, x - u, 0) - \varphi (\theta )]dG(u) =

\int x

0

\varphi (s, x - u, 0)dG(u) - \varphi (\theta ).(2.8)

Here the last equality is due to the fact that \varphi (\theta ) = \varphi (s, x, w) = 0 for x < 0.
The main result of [7] is that the value function V is the unique constrained

viscosity solution of the following HJB equation:

\{ Vs + L [V ]\} (\theta ) = 0; \theta = (s, x, w) \in D ; V (T, x, w) = 0.(2.9)

We end this section by recalling the definition of the ``constrained viscosity solu-
tion"" to the PIDE (2.9) (cf. [7]).

Definition 2.3. Let \scrO \subseteq D\ast such that \partial T\scrO := \{ (T, y, v) \in \partial \scrO \} \not = \emptyset .
(a) v \in \BbbC (\scrO ) is called a viscosity subsolution of (2.9) on \scrO if v(T, y, v) \leq 0,

(T, y, v) \in \partial T\scrO and if for any (s, x, w) \in \scrO and \varphi \in \BbbC 1,2,1
0 (\scrO ) such that 0 = [v  - 

\varphi ](s, x, w) = max(t,y,v)\in \scrO [v  - \varphi ](t, y, v), it holds that \varphi s(s, x, w) + L [\varphi ](s, x, w) \geq 0.
(b) v \in \BbbC (\scrO ) is called a viscosity supersolution of (2.9) on \scrO if v(T, y, v) \geq 0

for (T, y, v) \in \partial T\scrO and if for any (s, x, w) \in \scrO and \varphi \in \BbbC 1,2,1
0 (\scrO ) such that 0 = [v  - 

\psi ](s, x, w) = min(t,y,v)\in \scrO [v  - \varphi ](t, y, v), it holds that \varphi s(s, x, w) + L [\varphi ](s, x, w) \leq 0.
(c) v \in \BbbC (D) is called a ``constrained viscosity solution"" of (2.9) on D\ast if it is

both a viscosity subsolution on D\ast and a viscosity supersolution on D .

3. An auxiliary equation. As we pointed out, in order to construct a sen-
sible approximation of the optimal strategy based on the explicit form (1.3) using
the solution to the HJB equation (2.9), the main obstacle is the degeneracy of the
Hamiltonian (2.6), especially in the variable w, since the random clock W = \{ Wt\} 
cannot be perturbed by an extra Brownian noise for it would destroy the Markoviza-
tion procedure. As a remedy we shall introduce an auxiliary nondegenerate PIDE
that is of the same structure as (2.9), with which the approximating strategies will be
constructed. It should be noted, however, that such a PIDE cannot be associated to
any stochastic control problem. As a consequence our argument will be purely ana-
lytical and therefore interesting in its own right. In fact, to the best of our knowledge,
the regularity of the constrained viscosity solution to a nonlocal HJB equation of this
particular type on a unbounded domain is new.

Our plan of attack is quite similar to that of the recent work [14]. More precisely,
we begin with the following extended domain of D: for each \delta > 0,

D\delta = \{ (s, x, w) : 0 < s \leq T + \delta , x \geq  - \delta , - \delta \leq w \leq s+ \delta \} .(3.1)

As before, we denote D\delta := intD\delta and consider the ``truncated"" complement"" of D\delta :

D\ast ,c
\delta := (\{ T + \delta \} \times \BbbR 2) \cup 

\bigl( 
\cup 0<s<T+\delta Dc

\delta ,s

\bigr) 
,(3.2)

where for 0 < s < T + \delta , D\delta ,s = \{ (x,w) : x >  - \delta , - \delta < w < s+ \delta \} is the s-section of
D\delta , and Dc

\delta ,s is the complement of D\delta ,s. Clearly, D\delta \cup D\ast ,c
\delta = (0, T + \delta ]\times \BbbR 2.

Next, we define a ``perturbed"" nondegenerate Hamiltonian. Let \varepsilon n > 0, n =
1, 2, . . . be a sequence such that \varepsilon n \downarrow 0, as n \rightarrow \infty . We define for \theta = (s, x, w) \in D\delta ,
\xi = (\xi 1, \xi 2) \in \BbbR 2, y,A1, A2, z \in \BbbR , and (\gamma , a) \in [0, 1]\times [0,M ],

Hn(\theta , y, \xi , A1, A2, z, \gamma , a) := H(\theta , y, \xi , A1, z, \gamma , a) +
\varepsilon n
2
A1 +

\varepsilon n
2
A2,(3.3)
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4596 LIHUA BAI AND JIN MA

where H is the Hamiltonian defined by (2.6). Consider the following auxiliary PIDE:\biggl\{ 
vt(s, x, w) + L n,\delta [v](s, x, w) = 0 on D\delta ,
v(s, x, w) = \Psi (s, x, w), (s, x, w) \in D\ast ,c

\delta .
(3.4)

Here, as before, for a smooth function \varphi and \nabla \varphi = (\varphi x, \varphi w),\left\{       
L n,\delta [\varphi ](s, x, w) := sup

\gamma \in [0,1],a\in [0,M ]

Hn(s, x, w, \varphi ,\nabla \varphi ,\varphi xx, \varphi ww, I
\delta [\varphi ], \gamma , a),

I\delta [\varphi ](s, x, w) :=

\int x+\delta 

0

\varphi (s, x - u, - \delta )dG(u) - \varphi (s, x, w),
(3.5)

and \Psi is a function to be determined later. We shall argue that there exists a unique
classical solution to (3.4), denoted by V n,\delta , such that limn\rightarrow \infty ,\delta \rightarrow 0 V

n,\delta = V , the
value function defined by (2.4), uniformly on compacta.

We should note that since (3.4) does not necessarily correspond to any stochastic
control problem, the existence of the solution, even in the viscosity sense, is not clear.
In the rest of this section we shall first show that there is indeed a viscosity solution
to this equation, and in the next section we shall argue that such a solution is actually
the unique classical solution. To simplify the argument we shall assume 0 < \delta < 1
throughout our discussion.

The function \Psi . We now give a detailed description of the function \Psi , which is
crucial for our construction of the viscosity solution. We first note that once such a
function is chosen, we can modify the PIDE (3.4) to one with homogeneous boundary
condition via the following standard transformation. Assume that \Psi is a (smooth)
boundary condition. Let \~v = v  - \Psi ; then we have\biggl\{ 

(\~v +\Psi )t + L n,\delta [\~v +\Psi ] = vt + L n,\delta 
\Psi [\~v] = 0,

\~v(s, x, w) = 0, (s, x, w) \in D\ast ,c
\delta ,

(3.6)

where L n,\delta 
\Psi [\varphi ] := \Psi t + L n,\delta [\varphi +\Psi ] will have the same properties as L n,\delta . Further-

more, we shall make the following hypotheses. Recall the set D\delta and the constants
M > 0 in Hypothesis 2.1.

Hypothesis 3.1. There exists \Psi \in \BbbC 1,3,3(\BbbR 3) such that
(i) there exists K1 > 0 such that 0 \leq \Psi (\theta ) \leq K1, \theta = (s, x, w) \in D1, and

\Psi (\theta ) = 0, \theta \in Dc
1;

(ii) there exists 0 < K2 < M such that for any \theta \in D1,

M  - K2 \leq \Psi t +Hn(\theta ,\Psi ,\nabla \Psi ,\Psi xx,\Psi ww, I
\delta [\Psi ], 0,M), 0 < \delta < 1, n \geq 1;

(iii) \Psi (s, x, w) is strictly increasing with respect to x, and for some 0 < \delta 0 < 1,

b := inf
(s,x,w)\in (0,T ]\times [ - \delta 0,0]\times [0,s]

\Psi x(s, x, w) > 1.(3.7)

We should note that under Hypothesis 2.1, Hypothesis 3.1(ii) holds if M is large
enough, but (iii) is a special requirement that is important in our convergence analysis.
In the rest of the paper we shall fix a function \Psi satisfying Hypothesis 3.1 and consider
a viscosity solution within a special class of functions associated to \Psi . More precisely,
we have the following definition.

Definition 3.2. We say that a function v is of class (\Psi ) if it satisfies the fol-
lowing conditions:
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(1) v(s, x, w) = \Psi (s, x, w), (s, x, w) \in D\ast ,c
\delta ;

(2) v(s, x, w) is increasing with respect to x on D\delta ;
(3) v(s, x, w) is bounded on D\delta ;
(4) v(s, x, w) - v(s, - \delta , w) \geq x+\delta as x \downarrow  - \delta for any 0 \leq s \leq T+\delta , - \delta \leq w \leq s+\delta .

We shall construct a viscosity solution of (3.4) that is of class (\Psi ) by the well-
known Perron's method. To begin with, we need the following lemma. Since its proof
is merely computational, we give only a sketch of the proof.

Lemma 3.3. Assume Hypothesis 2.1 and Hypothesis 3.1. There exist both viscos-
ity supersolution \psi and subsolution \psi of class (\Psi ) to (3.4) on D\delta . Furthermore, it

holds that \psi = \psi = \Psi on D\ast ,c
\delta .

Proof. We shall argue only the subsolution case; the supersolution case is similar
to [9]. First recall the distance function d(x;D) := infy\in D | x  - y| , for x \in \BbbR m, and
D \subset \BbbR m; and we define dD\delta 

(\theta ) := d(\theta ;Dc
\delta ), \theta = (s, x, w). Then one can check that

dD\delta 
(\theta ) = (x+ \delta ) \wedge (w + \delta ) \wedge 

\surd 
2

2
(s+ \delta  - w) \wedge (T + \delta  - s) \wedge s, \theta \in D\delta .(3.8)

Now consider the function \psi (\theta ) :=  - kdD\delta 
(\theta ), \theta := (s, x, w) \in (0, T + \delta ) \times \BbbR 2,

where k > 0 satisfies the constraint

k \leq min

\left\{         b - 1, M  - K2, inf
\theta \in \Gamma \delta 

s

\Psi x(\theta ),
M  - K2

sup
w\in [0,T+1]

\bigm| \bigm| c+ f(w)
\=F (w)

 - r
\bigm| \bigm| (T + 4\delta )

\right\}         .(3.9)

In the above b is the constant defined by (3.7), and \Gamma \delta 
s := [0, T ]\times [ - \delta , T +3\delta ]\times [0, s].

It is then straightforward, albeit tedious, to check that \psi +\Psi is a viscosity subsolution
of class (\Psi ) in the sense of Definition 3.2. We leave it to the interested reader.

Next, for given \Psi , we consider the following set:

F = \{ v : v is a viscosity subsolution of class (\Psi ) to (3.4) on D\delta s.t. \psi \leq v \leq \=\psi \} ,

where \psi and \=\psi are the viscosity subsolution and supersolution, respectively, of class
(\Psi ) mentioned in Lemma 3.3. Define

u(s, x, w) := sup
v\in F

v(s, x, w), (s, x, w) \in D\delta ,(3.10)

and let u\ast (resp., u\ast ) be the upper semicontinuous envelope (resp., lower semicontin-
uous envelope) of u, defined, respectively, by\left\{             

u\ast (s, x, w) :=

lim
r \downarrow 0

sup
\Bigl\{ 
u(t, y, v) : (t, y, v) \in D\delta ,

\sqrt{} 
| t - s| 2 + | y  - x| 2 + | v  - w| 2 \leq r

\Bigr\} 
,

u\ast (s, x, w) :=

lim
r \downarrow 0

inf
\Bigl\{ 
u(t, y, v) : (t, y, v) \in D\delta ,

\sqrt{} 
| t - s| 2 + | y  - x| 2 + | v  - w| 2 \leq r

\Bigr\} 
.

(3.11)

The main result of this section is the following theorem, which obviously implies the
existence of the viscosity solution to (3.4).

Theorem 3.4. Assume that Hypotheses 2.1 and 3.1 are in force. Then u\ast (resp.,
u\ast ) is a viscosity subsolution (resp., supersolution) of class (\Psi ) to (3.4) on D\delta .
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Proof. The fact that u\ast is a subsolution is more or less straightforward; we shall
omit the proof and accept it as a fact and prove only that u\ast is a supersolution of
class (\Psi ). It is easy to verify that u\ast is of class (\Psi ). Suppose that u\ast is not a
supersolution; then there exists \theta 0 = (s0, x0, w0) \in D\delta and \varphi \in \BbbC 1,2,2

0 (D\delta ) such that
0 = [u\ast  - \varphi ](\theta 0) < [u\ast  - \varphi ](\theta ) for all \theta \in D\delta , but

\partial t\varphi (\theta 0) + sup
\gamma \in [0,1],a\in [0,M ]

Hn(\theta 0, u\ast ,\nabla \varphi ,\varphi xx, \varphi ww, I
\delta [\varphi ], \gamma , a) =: \varepsilon 0 > 0.

By continuity, we can then find \eta 0 > 0 such that, for any \theta \in B\eta 0
(\theta 0) \subset D\delta ,

\partial t\varphi (\theta ) + sup
\gamma \in [0,1],a\in [0,M ]

Hn(\theta , u\ast ,\nabla \varphi ,\varphi xx, \varphi ww, I
\delta [\varphi ], \gamma , a) > \varepsilon 0/4.(3.12)

We shall argue that (3.12) means that one can construct a subsolution \psi \ast \in F such
that \psi \ast (\theta 0) > u(\theta 0), which would contradict the definition of u. To this end, note
that being of class (\Psi ) u\ast is increasing in x. Thus for 0 < \varepsilon 1 <

\varepsilon 0
2 , we can modify \varphi 

slightly so that on B\eta 0
(\theta 0) (or choose a smaller ball if necessary) \varphi is increasing in x,

but it is decreasing in x for x sufficiently large such that

inf
\theta \in Bc

\eta 0
(\theta 0)\cap D\delta 

\{ u\ast (\theta ) - \varphi (\theta )\} \geq \varepsilon 1 > 0.(3.13)

Note that, by definition of u, we have \varphi \leq u\ast \leq \=\psi in D\delta . We claim that \varphi (\theta 0) < \=\psi (\theta 0).
Indeed, if \varphi (\theta 0) = u\ast (\theta 0) = \=\psi (\theta 0), then \=\psi  - \varphi has a strict minimum at \theta 0. Since \=\psi is
a viscosity supersolution (3.4) on D\delta , we have

\partial t\varphi (\theta 0) + sup
\gamma \in [0,1],a\in [0,M ]

Hn(\theta 0, \varphi ,\nabla \varphi , \partial xx\varphi , \partial ww\varphi , I
\delta [\varphi ], \gamma , a) \leq 0,

contradicting (3.12). Therefore, by continuity of \=\psi and \varphi , we can find 0 < \eta 2 < \eta 0
and \varepsilon 2 > 0 such that \varphi (\theta ) < \=\psi (\theta )  - \varepsilon 2, \theta \in B\eta 2

(\theta 0). Note that u\ast  - \varphi has a strict
minimum at \theta 0; we have

\Delta r := inf
\theta \in Bc

r(\theta 0)\cap D\delta 

\{ u\ast (\theta ) - \varphi (\theta )\} = inf
\theta \in Bc

r(\theta 0)\cap D\delta 

\{ u\ast (\theta ) - \varphi (\theta )\} > 0, r > 0.(3.14)

Let us now fix r0 \in (0, \eta 2). Recall that we have modified \varphi so that for some \^x > 0
large enough, it is decreasing in x, for x > \^x. We assume without loss of generality
that \^x > x0 + r0. Define E\delta (\^x) := \{ \^\theta := (s, \^x,w) : 0 \leq s < T + \delta , - \delta < w < s + \delta \} .
Clearly, E\delta (\^x) \subset Bc

r0 \cap D\delta ; thus by (3.14) we have u\ast (\^\theta ) - \varphi (\^\theta ) \geq \Delta r0 for \^\theta \in E\delta (\^x).

Now for fixed \^\theta 1 = (s1, \^x,w1) \in E\delta (\^x), by definition of u\ast we can choose \^v1 \in F

such that \^v1(\^\theta 1) - \varphi (\^\theta 1) \geq 
3\Delta r0

4 . But since \^v1 \in F (whence increasing in x) and \varphi is
decreasing in x for x > \^x, we have

\^v1(s1, x, w1) - \varphi (s1, x, w1) \geq \^v1(\^\theta 1) - \varphi (\^\theta 1) \geq 
3\Delta r0

4
for x \geq \^x.(3.15)

On the other hand, by continuity of (\^v1  - \varphi )(\cdot , \^x, \cdot ), there exists \^\eta 1 > 0 such that

inf
(s,w)\in \=B\^\eta 1

(s1,w1)\cap \=E\delta (\^x)
\{ \^v1(s, \^x,w) - \varphi (s, \^x,w)\} \geq \Delta r0

2
.(3.16)

Note that \=E\delta (\^x) is compact; there exists a finite set \{ (sj , wj)\} m0
j=1 \subset \=E\delta (\^x), together

with \^vj \in F and constants \^\eta j > 0, j = 1, . . . ,m0, such that \=E\delta (\^x) \subset \cup mr
j=1

\=B\^\eta j
(sj , wj),
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and both (3.15) and (3.16) hold for each j. Now let us define \ell 0(\theta ) = sup1\leq j\leq m0
\^vj(\theta ),

\theta \in D\delta . Then one can check, as before, that \ell 0 \in \scrF and is increasing with x on D\delta .
Furthermore, since each \^vj satisfies (3.15) and (3.16), it is readily seen that

inf
(s,x,w)\in D\delta \setminus D\delta ,\^x

\{ \ell 0(s, x, w) - \varphi (s, x, w)\} \geq \Delta r0

2
,(3.17)

where D\delta ,\^x := \{ (s, x, w) : 0 < s < T + \delta , - \delta < x < \^x, - \delta < w < s+ \delta \} .
Now let us consider the set \=D\delta ,\^x\setminus Br0(\theta 0). By (3.14) we have u\ast (\theta ) - \varphi (\theta ) \geq \Delta r0

for all \theta \in \=D\delta ,\^x \setminus Br0(\theta 0). Since \=D\delta ,\^x\setminus Br0(\theta 0) is compact, we can repeat the same
argument as before to obtain a \ell 1 \in F so that

inf
(s,x,w)\in D\delta ,\^x\setminus Br0

(\theta 0)
\{ \ell 1(s, x, w) - \varphi (s, x, w)\} \geq \Delta r0

2
.(3.18)

Let 0 < \alpha 0 < min\{ \varepsilon 2
\Delta r0

, 12\} , and define

U(\theta ) :=

\biggl\{ 
max\{ \varphi (\theta ) + \alpha 0\Delta r0 , \ell 0(\theta ), \ell 1(\theta )\} if \theta \in Br0(\theta 0),
max\{ \ell 0(\theta ), \ell 1(\theta )\} if \theta \in Bc

r0(\theta 0) \cap D\delta .
(3.19)

Then, by the choice of r0 and \alpha 0, we have \psi \leq U \leq \=\psi in D\delta , and

U(\theta 0) \geq \varphi (\theta 0) + \alpha 0\Delta r0 > \varphi (\theta 0) = u\ast (\theta 0).(3.20)

We claim that U is a viscosity subsolution of class (\Psi ) to (3.4) in D\delta , which would
be a contradiction to the the definition of u\ast and prove the theorem.

To this end, for any \=\theta := (t, y, v) \in D\delta , suppose that there is a function \phi \in 
\BbbC 1,2,2

0 (D\delta ) such that 0 = U(\=\theta )  - \phi (\=\theta ) is a strict maximum over D\delta . Consider two
possible cases Case 1: U(\=\theta ) = \ell 0(\=\theta ) or \ell 1(\=\theta ). We shall only consider the case
U(\=\theta ) = \ell 0(\=\theta ), as the other case is similar. Since \ell 0 \leq U \leq \phi on D\delta , \ell 0  - \phi has
a maximum at \=\theta . Recall again that, as the ``sup"" of subsolutions, \ell 0 is a viscosity
subsolution of (3.4) on D\delta as well; hence we have

\partial t\phi (\=\theta ) + sup
\gamma \in [0,1],a\in [0,M ]

Hn(\=\theta , \phi ,\nabla \phi , \phi xx, \phi ww, I
\delta [\phi ], \gamma , a) \geq 0.(3.21)

Case 2: U(\=\theta ) = \varphi (\=\theta )+\alpha 0\Delta r0 . In this case we must have \=\theta \in Br0(\theta 0) by definition
of U . But since \varphi + \alpha 0\Delta r0 \leq U \leq \phi in Br0(\theta 0) by our choices of r0 and \alpha 0, we have
\varphi + \alpha 0\Delta r0  - \phi \leq 0 in Br0(\theta 0). On the other hand, note that \phi \geq U = max\{ \ell 0, \ell 1\} in
Bc

r0(\theta 0) \cap D\delta ; we conclude that

\varphi + \alpha 0\Delta r0  - \phi \leq \varphi + \alpha 0\Delta r0  - max\{ \ell 0, \ell 1\} \leq  - \Delta r0

2
+ \alpha 0\Delta r0 \leq 0

in Bc
r0(\theta 0) \cap D\delta . That is, \varphi + \alpha 0\Delta r0  - \phi has a maximum at \=\theta \in Br0(\theta 0) \subset B\eta 1

(\theta 0).
Then, by (3.12), choosing \alpha 0 sufficiently small if necessary we have

\partial t\phi (\=\theta ) + sup
\gamma \in [0,1]
a\in [0,M]

Hn(\=\theta , \phi ,\nabla \phi , \phi xx, \phi ww, I
\delta [\phi ], \gamma , a)(3.22)

\geq \partial t\varphi (\=\theta ) + sup
\gamma \in [0,1]
a\in [0,M]

Hn(\=\theta , \varphi + \alpha 0\Delta r0 ,\nabla \varphi ,\varphi xx, \varphi ww, I
\delta [\varphi + \alpha 0\Delta r0 ], \gamma , a) \geq 0.

Combining (3.21) and (3.22) we conclude that U is a viscosity subsolution of class
(\Psi ) to (3.4) in D\delta , and U(\theta 0) > u(\theta 0), a contradiction. This proves the theorem.
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Let us now denote the solution to (3.4) by V n,\delta . We shall argue that such a
viscosity solution is unique and is actually a classical solution. The proof of uniqueness
will depend on the comparison theorem as usual, and in this case it can be argued
along the same lines of that in [7], except for some slight modifications. We shall only
state the result and omit the proof, so as to keep the paper in a proper length.

Theorem 3.5 (comparison principle). Let \=u be a viscosity supersolution and u
be a viscosity subsolution of (3.4) on D\delta , and both are of class (\Psi ). Then u \leq \=u on
D\delta . Consequently, u\ast = u\ast =: u defined by (3.11) is a unique continuous viscosity
solution of class (\Psi ) to (3.4).

Remark 3.6. We recall that in [7] we proved the existence and uniqueness of
the constrained viscosity solution. But the proof of the existence was essentially
based on verifying that the value function is the desired viscosity solution. This fact
sometimes causes logical confusion, since a ``practical"" version of the value function
is actually the solution to the HJB equation. Thus is it often desirable, especially
when an optimal strategy is based on the value function, to be able to ``construct"" a
constrained viscosity solution to the original problem, which we now describe. First
note that by uniqueness we need only show that we can construct a constrained
viscosity subsolution u\ast . Similar to the viscosity solution of class (\Psi ), we consider
the class of constrained viscosity solution v to (2.9) such that (i) v(T, x, w) = 0; (ii)
x \mapsto \rightarrow v(t, x, w) is increasing for \theta = (t, x, w) \in D; and (iii) v(t, x, w) is bounded on
D and  - Q2T \leq v(\theta ) \leq (2 + Q1)T , \theta \in D, for some Q1, Q2 > 0. We shall call such
viscosity solutions of class (Q). Now let dD(\theta ) := inf\eta \in D | \eta  - \theta | be the distance between
\theta and the set D . One can easily check that the functions \=\Upsilon (\theta ) = 2dD(\theta ) +Q1(T  - s)
and \Upsilon (\theta ) = dD(\theta ) - Q2(T  - s), \theta \in D, where

Q1 = max\{ 2 +M, 2(p+ \mu T )\} ; Q2 =

\biggl[ 
c+ sup

0\leq w\leq T

\bigm| \bigm| \bigm| f(w)
F (w)

\bigm| \bigm| \bigm| \biggr] T + 1,(3.23)

are, respectively, the viscosity supersolution on D and subsolutions on D\ast to (2.9) of
class (Q) with constants (Q1, Q2). Furthermore, \Upsilon \leq \=\Upsilon on D. Now let M be the set
of all viscosity subsolution u of (2.9) on D\ast of class (Q) such that \Upsilon \leq u \leq \=\Upsilon , and
define u(s, x, w) := supu\in M u(s, x, w). Then similar to Theorem 3.4 one can show
that u\ast , defined by

u\ast (s, x, w) = lim
r \downarrow 0

\Bigl\{ 
u(t, y, v); (t, y, v) \in D,

\sqrt{} 
| t - s| + | y  - x| 2 + | v  - w| 2 \leq r

\Bigr\} 
,

(3.24)

is a (constrained) viscosity subsolution of (2.9) on D\ast , of class (Q). In particular, by
uniqueness ([7]), u\ast = V , the value function of the original optimal dividend problem.

4. The regularity and convergence of \{ \bfitV \bfitn ,\bfitdelta \} . We now turn our attention
to the family \{ V n,\delta \} n\geq 1,\delta >0, the solutions to the auxiliary equations (3.4). We shall
argue that each V n,\delta has desired the regularity and that V n,\delta \rightarrow V , the original
value function in a satisfactory way, as n \rightarrow \infty and \delta \rightarrow 0. We first look at the
regularity issue. To begin with, we note that if u is a viscosity solution of (3.4) on
D\delta , and we consider the change of variable, y := ln(1 + x + \delta ), x \geq  - \delta , and define
v(s, y, w) := u(s, ey  - 1 - \delta , w), then it is easy to verify that v is viscosity solution of
the PIDE:

vt(\theta ) + sup
\gamma \in [0,1],a\in [0,M ]

G n
\bigl( 
\theta , v, vy, vw, vyy, vww, I

\delta [v], \gamma , a
\bigr) 
= 0 on B\delta ,(4.1)
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where \theta = (s, y, w), B\delta := \{ \theta = (s, y, w) : 0 \leq s < T + \delta , y > 0, - \delta < w < s+ \delta \} , and

G n(\theta , v, vy, vw, vyy, vww, I
\delta [v], \gamma , a)

(4.2)

:=

\Biggl[ 
\varepsilon ne

 - 2y

2
+
\sigma 2\gamma 2

2

\biggl( 
ey  - \delta  - 1

ey

\biggr) 2
\Biggr] 
vyy(\theta ) +

\varepsilon n
2
vww(\theta )

+

\Biggl[ 
pe - y  - \varepsilon n

2
e - 2y  - \sigma 2\gamma 2

2

\biggl( 
ey  - \delta  - 1

ey

\biggr) 2

+ (r + (\mu  - r)\gamma )
ey  - \delta  - 1

ey

\Biggr] 
vy(\theta )

+ a(1 - e - yvy(\theta )) + vw(\theta ) - cv(\theta ) +
f(w)

F (w)
I\delta [v].

It is worth noting that the main difference between (4.1) and (3.4) is that all the
coefficients of (4.1) are bounded and continuous, and for each fixed n \geq 1 and \delta > 0,
the function G n is uniformly elliptic. Therefore, a straightforward application of a
combination of [8, Lemma 2.9, Corollary 2.12, and Theorem 9.1] (see also [19] and
[20, Theorem 1.1]) leads to the following result.

Theorem 4.1. Assume Hypothesis 3.1. Let u be the unique viscosity solution
of class ( \~\Psi ) to (4.1) with \~\Psi (s, y, w) := \Psi (s, ey  - 1  - \delta , w), (s, y, w) \in D\delta . Then,
u \in \BbbC 2+\alpha 

loc (D\delta )
1 in the sense that for any compact set D

\prime \subset D\delta , there exists a constant
C > 0 such that \| u\| C2+\alpha (D\prime ) \leq C, where C > 0 depends on the uniform constants in
Hypothesis 3.1 and the time duration T > 0.

Remark 4.2. A direct consequence of Theorem 4.1 is that the unique viscosity
solution V n,\delta to the PIDE (3.4) in Theorem 3.5 has the same regularity for each fixed
n \geq 1 and \delta > 0. This fact will be important for the construction of \varepsilon -optimal control
in the sections to follow.

In the rest of the section we shall focus on an important and more involved issue:
the convergence of the family \{ V n,\delta \} as n\rightarrow \infty and \delta \rightarrow 0. We shall first look at the
limit as n\rightarrow \infty (or as \varepsilon n \rightarrow 0). Naturally, let us consider an intermediate PIDE:

Vt(\theta ) + sup
\gamma \in [0,1],a\in [0,M ]

H(\theta , V,\nabla V, Vxx, Vww, I
\delta [V ], \gamma , a) = 0, \theta \in D\delta ,(4.3)

where H is defined by (2.6). Following the same argument as that in section 2, we
now argue that (4.3) admits a unique viscosity solution of class (\Psi ). To see this, for
any (t, y, v) \in D\delta , let

\~V\delta (t, y, v) := lim
k\rightarrow \infty 

sup\{ V n,\delta (\theta ) : n \geq k, \theta \in \=B1/k(t, y, v) \cap \=D\delta \} and

\~V \delta (t, y, v) := lim
k\rightarrow \infty 

inf\{ V n,\delta (\theta ) : n \geq k, \theta \in \=B1/k(t, y, v) \cap \=D\delta \} ,

where Br(t, y, v) is the open ball with radius r centered at (t, y, v) and V n,\delta 's are the
viscosity solutions of class (\Psi ) to PIDE (3.4).

Lemma 4.3. For any \Psi satisfying Hypothesis 3.1, the function \~V\delta (resp., \~V \delta ) is
a viscosity subsolution (resp., supersolution) of class (\Psi ) on D\delta to (4.3).

1A function u \in \BbbC 1+\alpha 
loc ([0, T ] \times \BbbR ) means u \in L\infty ([0, T ] \times \BbbR ) and Du \in \BbbC \alpha 

loc([0, T ] \times \BbbR ); u \in 
\BbbC 2+\alpha 
loc ([0, T ]\times \BbbR ) means Du \in \BbbC 1+\alpha 

loc ([0, T ]\times \BbbR ) and ut, D2u \in \BbbC \alpha 
loc([0, T ]\times \BbbR ).
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4602 LIHUA BAI AND JIN MA

Proof. We shall discuss only \~V\delta as the proof for \~V \delta is similar. First, it is easy
to see that \~V\delta is of class (\Psi ) since all V n,\delta 's are uniformly bounded, uniformly in
n, \delta . Next, suppose that for some \theta 0 := (t0, y0, v0) \in D\delta , 0 = [ \~V\delta  - \varphi ](\theta 0) is a (strict)
maximum of \~V\delta  - \varphi over D\delta , where \varphi \in C1,2,2(D\delta ). For any N > y0 we define
D\delta ,N = [0, T + \delta ] \times [ - \delta ,N ] \times [ - \delta , s + \delta ] so that \theta 0 \in D\delta ,N . Since \theta 0 is the strict

maximum of \~V\delta  - \varphi , for \varepsilon > 0, there exists a modulus of continuity \omega 1(\cdot ) such that

sup
\theta \in Bc

\varepsilon (\theta 0)\cap D\delta ,N

( \~V\delta (\theta ) - \varphi (\theta )) \leq  - \omega 1(\varepsilon ) < 0.

Now for \=\theta := (t, y, v) \in D\delta ,N , by definition of \~V\delta , there exists k0 := k0(\=\theta ) = k0(\=\theta ; \varepsilon )
such that

sup
\theta \in \=B1/k0

(\=\theta )\cap \=D\delta 

V n,\delta (\theta ) - \~V\delta (\=\theta ) <
\omega 1(\varepsilon )

4
, n \geq k0.

Let us denote \omega \delta ,N
\varphi (\cdot ) to be the modulus of continuity of \varphi on D\delta ,N . Then, for \varepsilon > 0,

there exists \eta 0 := \eta 0(\varepsilon ) > 0 such that \omega \delta ,N
\varphi (\eta 0) < \omega 1(\varepsilon )/4. Thus, for \=\theta \in D\delta ,N\setminus B\varepsilon (\theta 0)

and n \geq k0(\=\theta ),

sup
\theta \in \=B 1

k0
\wedge \eta 0

(\=\theta )\cap \=D\delta 

(V n,\delta (\theta ) - \varphi (\theta ))

= sup
\theta \in \=B 1

k0
\wedge \eta 0

(\=\theta )\cap \=D\delta 

(V n,\delta (\theta ) - \~V\delta (\=\theta ) + \~V\delta (\=\theta ) - \varphi (\=\theta )+\varphi (\=\theta ) - \varphi (\theta ))

\leq \omega 1(\varepsilon )

4
 - \omega 1(\varepsilon ) + \omega \delta ,N

\varphi (\eta 0) \leq 
\omega 1(\varepsilon )

4
 - \omega 1(\varepsilon ) +

\omega 1(\varepsilon )

4
=  - \omega 1(\varepsilon )

2
.

Since Bc
\varepsilon (\theta 0)\cap D\delta ,N is compact and

\bigcup 
\=\theta \in D\delta ,N

B 1
k0(\=\theta )

\wedge \eta 0
(\=\theta ) \supset Bc

\varepsilon (\theta 0)\cap D\delta ,N , there

exist N1 > 0 and \theta i \in Bc
\varepsilon (\theta 0)\cap D\delta ,N , i = 1, 2, 3 . . . N1, such that

\bigcup N1

i=1B 1
k0(\theta i)

\wedge \eta 0
(\theta i) \supset 

Bc
\varepsilon (\theta 0) \cap D\delta ,N . Hence, for any n \geq max1\leq i\leq N1

k0(\theta i),

V n,\delta (\=\theta ) - \varphi (\=\theta ) \leq  - \omega 1(\varepsilon )

2
, \=\theta \in Bc

\varepsilon (\theta 0) \cap D\delta ,N .

Finally, let \{ \varepsilon \ell \} \ell \in \BbbN be a positive sequence such that \varepsilon \ell \downarrow 0 as \ell \rightarrow \infty . For each \ell > 0,
let \=\theta \ell \in Bc

\varepsilon 1(\theta 0) \cap D\delta ,N and n\ell \geq max\{ max1\leq i\leq N1(\varepsilon \ell )k0(\theta i(\varepsilon \ell )),
1
\varepsilon \ell 
\} be such that

V n\ell ,\delta (\=\theta \ell ) - \varphi (\=\theta \ell ) = max
\=\theta \in \=D\delta 

(V n\ell ,\delta (\=\theta ) - \varphi (\=\theta )) >  - \omega 1(\varepsilon \ell )

2
.(4.4)

Next, denoting \varphi n\ell ,\delta (\theta ) := \varphi (\theta ) + V n\ell ,\delta (\=\theta \ell )  - \varphi (\=\theta \ell ), \theta \in D\delta , we see that \varphi n\ell ,\delta \in 
\BbbC 1,2,2(D\delta ) and 0 = V n\ell ,\delta (\=\theta \ell ) - \varphi n\ell ,\delta (\=\theta \ell ) = max\theta \in D\delta 

V n\ell ,\delta (\theta ) - \varphi n\ell ,\delta (\theta ), and therefore

\varphi t(\=\theta \ell ) + sup
\gamma \in [0,1],a\in [0,M ]

Hn\ell (\=\theta \ell , \varphi 
n\ell ,\delta ,\nabla \varphi ,\varphi xx, \varphi ww, I

\delta [\varphi nl,\delta ], \gamma , a) \geq 0.(4.5)

Letting \ell \rightarrow \infty in (4.4) and (4.5), we have

0 \leq lim
n\ell \rightarrow \infty 

V n\ell ,\delta (\=\theta \ell )

\leq lim
\varepsilon \ell \rightarrow 0

sup\{ V n,\delta (s, x, w) : n \geq 1

\varepsilon \ell 
, (s, x, w) \in \=B\varepsilon \ell (\theta 0) \cap \=D\delta \}  - \varphi (\theta 0)

= lim
k\rightarrow \infty 

sup\{ V n,\delta (s, x, w) : n \geq k, (s, x, w) \in \=B 1
k
(\theta 0) \cap \=D\delta \}  - \varphi (\theta 0)

= \~V\delta (\theta 0) - \varphi (\theta 0) = 0,
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and \varphi t(\theta 0) + sup\gamma \in [0,1],a\in [0,M ]H(\theta 0, \varphi ,\nabla \varphi ,\varphi xx, \varphi ww, I
\delta [\varphi ], \gamma , a) \geq 0. That is, \~V\delta is a

viscosity subsolution of (4.3).

We should note that Lemma 4.3 and the comparison principle (Theorem 3.5)
imply that \~V\delta \leq \~V \delta . On the other hand, by definitions of \~V\delta and \~V \delta , we also have
\~V\delta \geq \~V \delta . Thus we have \~V\delta = \~V \delta , and we shall denote it by V \delta . Clearly, V \delta \in \BbbC (D\delta ).

Next, we recall the value function V defined by (2.4). We know from [7] that
it is the unique constrained viscosity solution of (2.9), and from Remark 3.6 we see
that it can be constructed as u\ast defined by (3.24). In what follows we shall assume
that, modulo a further approximation, we can always find a function \Psi satisfying
Hypothesis 3.1 such that \Psi (\theta ) = u\ast (\theta ) = V (\theta ), \theta \in \partial D. We should note that if \Psi 
satisfies Hypothesis 3.1, then \Psi will be smooth and have \partial x\Psi > 1 on the boundary
\partial D. However, these two conditions are not necessarily satisfied by the value function
V . The following lemma is thus useful for our discussion.

Lemma 4.4. Let V be the value function defined by (2.4). Then there exist a
sequence of functions \{ \Psi m\} m\geq 1 satisfying Hypothesis 3.1 and continuous viscosity
solutions vm of\biggl\{ 

vt(s, x, w) + L [v](s, x, w) = 0, (s, x, w) \in D ,
v(s, x, w) = \Psi m(s, x, w), (s, x, w) \in \partial D

(4.6)

such that
(i) limm\rightarrow \infty sup\theta \in \partial D | \Psi m(\theta ) - V (\theta )| = 0 and
(ii) limm\rightarrow \infty \| vm  - V \| L\infty (D) \rightarrow 0.

Proof. Let V be the (viscosity) solution to (2.9) and \varphi m : D \mapsto \rightarrow \BbbR the standard
mollifiers of V . Then, since V is continuous, we have limm\rightarrow \infty \| \varphi m  - V \| L\infty (D) = 0.
Next, we define

\Psi m(\theta ) = \varphi m(\theta ) + (2 +Nm)d(\theta , \partial Dm), \theta := (s, x, w) \in D,(4.7)

whereNm := sup(s,w)\in [0,T ]\times [0,s] | \partial x\varphi m(s, 0, w)| , and \{ Dm\} m\geq 1 is a sequence of smooth

area such that D \subset Dm, d(D,Dm) < \delta m := 1
m(2+Nm) , and Dm is parallel to the plane

\{ (s, x, w), - \delta m \leq s \leq T +\delta m, x = 0, - \delta m \leq w \leq s+\delta m\} . It is then easy to check that
sup\theta \in \partial D | (2 +Nm)d(\theta , \partial Dm)| \leq 2

m and \partial x\Psi m(s, 0, w) = \partial xfm(s, 0, w) + (2 +Nm) \geq 
 - Nm + 2 +Nm = 2. Consequently, one can further check that, by defining \Psi m \equiv 0
on Dc

1, all \Psi m's satisfy Hypothesis 3.1. Now let vm be the unique viscosity solution
of (2.9) on D with vm = \Psi m on \partial D. Then by definition (4.7) we can easily check
that am := sup\theta \in \partial D | vm(\theta )  - V (\theta )| = sup\theta \in \partial D | \Psi m(\theta )  - V (\theta )| \rightarrow 0 as m \rightarrow \infty and
vm  - am \leq V \leq vm + am on \partial D. Since vm  - am and vm + am are the viscosity
subsolution and supersolution of (2.9) on D , respectively, by the comparison theorem
we can then deduce that limm\rightarrow \infty \| vm  - V \| L\infty (D) \rightarrow 0, proving the lemma.

We can now prove the main result of this section.

Theorem 4.5. Let V be the value function defined by (2.4). Then for any \varepsilon > 0,
there exists n \in \BbbN , and \delta > 0, depending only on \varepsilon , such that \| V n,\delta  - V \| L\infty (D) < \varepsilon ,

where V n,\delta \in \BbbC 2+\alpha (D\delta ) is a (viscosity) solution to (3.4) of class (\Psi ) for some function
\Psi satisfying Hypothesis 3.1.

Proof. In light of Lemma 4.4, we can assume without loss of generality that we
can find \Psi satisfying Hypothesis 3.1 such that \Psi = u\ast = V on \partial D. (Otherwise for any
\varepsilon > 0 we can first choose \Psi m so that it satisfies Hypothesis 3.1, and the corresponding
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4604 LIHUA BAI AND JIN MA

viscosity solution vm satisfies \Psi m = vm on \partial D, and \| vm  - V \| L\infty (D) < \varepsilon /3, and then
prove the theorem for \Psi m and vm.) For convenience we shall also define u\ast (\theta ) = \Psi (\theta )
for \theta \in D\ast ,c

\delta (see (3.2)).
Now let V n,\delta be the solutions of (3.4) of class (\Psi ). We first show that

lim
n\rightarrow \infty 

\| V n,\delta  - V \delta \| L\infty (D\delta ) = 0.

Indeed, if not, then there exist \varepsilon 0 > 0, \{ nk\} k\in \BbbN \subset \BbbN , and \{ \theta k := (tk, xk, wk)\} k\in \BbbN \subset D\delta 

such that nk \uparrow \infty as k \rightarrow \infty and

| V nk,\delta (tk, xk, wk) - V \delta (tk, xk, wk)| > \varepsilon 0.

By definition of \=D\delta we see that, taking a subsequence if necessary, we can assume that
there exists \theta 0 := (t0, x0, w0) \in \=D\delta (allowing x0 = +\infty ) such that \theta k \rightarrow \theta 0. Now let
k \rightarrow \infty . If x0 < +\infty , then we have \~V\delta (\theta 0) - V \delta (\theta 0) \geq \varepsilon 0 or \~V \delta (\theta 0) - V \delta (\theta 0) \leq  - \varepsilon 0,
which contradicts the fact that \~V\delta = \~V \delta = V \delta in D\delta . If x0 = +\infty , then we have
\~V\delta (t0, N,w0)  - V \delta (t0, N,w0) \geq \varepsilon 0 or \~V \delta (t0, N,w0)  - V \delta (t0, N,w0) \leq  - \varepsilon 0 for some
N > 0, also a contradiction. This proves the claim.

Next, let us denote a\delta := sup\theta \in D\delta \setminus D | V \delta (\theta ) - V (\theta )| . Then, noting that \Psi = V = u

on \partial D\delta , for \=\theta = (t, y, v) \in \partial D\delta , we have

a\delta = sup
\theta \in D\delta \setminus D

| V \delta (\theta ) - \psi (\=\theta ) + \psi (\=\theta ) - V (\theta )| \leq sup
\theta \in D\delta \setminus D

[| V \delta (\theta ) - V \delta (\=\theta )| + | \psi (\=\theta ) - \psi (\theta )| ]

\leq sup
\theta \in D\delta \setminus D

[\omega (| \theta  - \=\theta | ) + | \psi (\=\theta ) - \psi (\theta )| ] = o\delta (1) as \delta \rightarrow 0.

Here \omega (\cdot ) is the modulus of continuity of V n,\delta (which can be chosen to be independent
of \delta (!)). Furthermore, it is easy to verify that V \delta  - a\delta and V \delta + a\delta are viscosity
subsolution and viscosity supersolution of (4.3), respectively, and V \delta  - a\delta \leq V \leq V \delta +
a\delta on \partial D. It then follows from the comparison principle that \| V \delta  - V \| L\infty (D) = o\delta (1)
as \delta \rightarrow 0.

Combining the above, for \varepsilon > 0, we can first choose \delta = \delta (\varepsilon ) > 0 so that
\| V \delta  - V \| L\infty (D) < \varepsilon /2 and then choose n = n(\delta (\varepsilon )) \in \BbbN such that \| V n,\delta  - V \delta \| L\infty (D) \leq 
\| V n,\delta  - V \delta \| L\infty (D\delta ) < \varepsilon /2. We note that V n,\delta \in \BbbC 2+\alpha 

loc (D\delta ), thanks to Theorem 4.1
and Remark 4.2. The proof is now complete.

5. Construction of \bfitvarepsilon -optimal strategy. We are now ready to construct
the desired \varepsilon -optimal strategy. The idea is simple: for each \varepsilon > 0, we choose an
approximating solution V n,\delta , guaranteed by Theorem 4.5, and define a strategy in
the form of (1.3). It is then reasonable to believe that such a strategy should be
\varepsilon -optimal.

To be more precise, let \{ \varepsilon k\} be any sequence such that \varepsilon k \downarrow 0 as k \rightarrow \infty , and let
V k := V nk,\delta k \in \BbbC 2

loc(D\delta k) be the corresponding solutions of (3.4) as those in Theorem
4.5. That is,

\| V nk,\delta k  - V \| L\infty (D) < \varepsilon k \rightarrow 0 as k \rightarrow \infty .(5.1)

Since V (\theta ) \equiv 0 for \theta \in Dc, we can and shall assume that V k(\theta ) \equiv 0 for \theta \in Dc for all
k. Furthermore, since each V n,\delta is of class (\Psi ) for some \Psi satisfying Hypothesis 3.1,

we can assume V n,\delta 
x+ (s, - \delta , w) > 1. Therefore V k

x+(s, 0, w) > 1 for large k.
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We now make the candidate optimal strategy (1.3) more specific. Consider the
sequence of strategies \{ (\gamma k, ak)\} k\in \BbbN :\Biggl\{ 

\gamma kt := 1\{ V k
xx(t,Xt,Wt)\geq 0\} + (\Gamma k(t,Xt,Wt) \wedge 1)1\{ V k

xx(t,Xt,Wt)<0\} ,

akt := \Xi k(t,Xt,Wt),
(5.2)

where for each k \in \BbbN and (t, x, w) \in D,

\Gamma k(s, x, w) := - (\mu  - r)V k
x (s, x, w)

\sigma 2xV k
xx(s, x, w)

;

\Xi k(t, x, w) :=M1\{ V k
x (s,x,w)<1\} + p1\{ V k

x (s,x,w)=1\} ,

(5.3)

and (Xk,W ) is the, say, weak solution to the closed-loop dynamics of the reserve
(recall (2.2)), defined on some probability space (\Omega ,\scrF ,\BbbP ,\BbbF ):\Biggl\{ 

dXt = bk(t,Xt,Wt)dt+ \sigma k(t,Xt,Wt)dBt  - dQs,w
t , Xs = x;

Wt = w + (t - s) - (\sigma Nt  - \sigma Ns), 0 \leq s \leq t \leq T.
(5.4)

Here, denoting \theta := (s, x, w) \in D, we have (noting that V k
x (\theta ) > 0 for \theta \in D)

bk(\theta ) :=

\Biggl\{ 
p+ rx - (\mu  - r)\Gamma k(\theta )x - \Xi k(\theta ), 0 < \Gamma k(\theta ) \leq 1,

p+ \mu x - \Xi k(\theta ) otherwise;
(5.5)

\sigma k(\theta ) :=

\Biggl\{ 
\sigma x\Gamma k(\theta ), 0 < \Gamma k(\theta ) \leq 1,

\sigma x otherwise.
(5.6)

We observe that the function \Gamma k in (5.3) is continuous. In fact, by a further ap-
proximation (cf. [13]) if necessary, we can even assume further that \Gamma k is Lipschitz
continuous (with Lipschitz constant depending on k). The function \Xi k, on the other
hand, presents some ``barrier"" nature, and its discontinuity in the state variable x
causes some main difficulties in the closed-loop analysis.

In the rest of the paper we shall verify two main results: (i) the closed-loop system
(5.4) is well-posed, and (ii) (\gamma k, ak) provides an \varepsilon -optimal strategy for k large. We
note that the discontinuous nature of the function \Xi k, as well as the presence of jumps,
makes finding the strong solution to SDE (5.4) a rather involved task. Our plan of
attack is the following. We shall begin by looking at the weak solution to (5.4). Then
using the fact that the SDE is one-dimensional, we shall argue that the weak solution
is actually strong and is pathwise unique, up to the ruin time \tau = inf\{ t > 0, Xt < 0\} ,
following a scheme initiated by [10] (see also [6, 15]).

To this end, let us modify the function \sigma k slightly: for m \in \BbbN , we consider
\varphi m(x) = 1

m \vee x \wedge m and define \sigma m,k(\theta ) := \sigma \varphi m(x)\Gamma k(\theta ), \theta \in D. Since both \varphi m and
\Gamma k are bounded and Lipschitz, so is \sigma m,k. Furthermore, it is readily seen that for
some constant cm > 0, one has

0 < cm \leq \sigma m,k(\theta ) \leq \sigma (x \wedge m), \theta := (s, x, w) \in D.(5.7)

To continue our discussion we shall now consider the canonical space. Let \Omega 1 =
\BbbC ([0, T ]), the space of all continuous functions, null at zero, and endowed with the

usual sup-norm. Let \scrF 1
t

\bigtriangleup 
= \sigma \{ \omega (\cdot \wedge t)| \omega \in \Omega 1\} , t \geq 0, \scrF 1 \bigtriangleup 

= \scrF 1
T , \BbbF 1 = \{ \scrF 1

t \} t\in [0,T ], and

\BbbP 0 be the Wiener measure on (\Omega 1,\scrF 1) so that the canonical process Bt(\omega )
\bigtriangleup 
= \omega 1(t),
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4606 LIHUA BAI AND JIN MA

(t, \omega 1) \in [0, T ] \times \Omega 1 is a (\BbbP 0,\BbbF 1)-Brownian motion. Let \Omega 2 = \BbbD ([0, T ]), the space of
all real-valued, c\`adl\`ag (right-continuous with left limit) functions, endowed with the

Skorohod topology, and similarly define \BbbF 2 = \{ \scrF 2
t \} t\in [0,T ] and \scrF 2 \bigtriangleup 

= \scrF 2
T . Let \BbbP Q be

the law of the renewal claim process Q on \BbbD ([0, T ]) so that the coordinate process
Qt(\omega 

2) = \omega 2(t), (t, \omega 2) \in [0, T ]\times \Omega 2. Now we consider the product space:

\Omega 
\bigtriangleup 
= \Omega 1 \times \Omega 2; \scrF \bigtriangleup 

= \scrF 1 \otimes \scrF 2; \BbbP \bigtriangleup 
= \BbbP 0 \otimes \BbbP Q; \scrF t

\bigtriangleup 
= \scrF 1

t \otimes \scrF 2
t , t \in [0, T ].(5.8)

We now consider the following SDE on the canonical space (\Omega 1,\scrF 1,\BbbP 0;\BbbF 1):\Biggl\{ 
dXt = \sigma m,k(t,Xt,Wt)dBt  - dQt, X0 = x;

Wt = t - \sigma Nt
,

t \in [0, T ].(5.9)

We have the following result.

Proposition 5.1. Under Hypothesis 2.1, the SDE (5.9) has a strong solution.

Proof. We write the element of \Omega as \omega = (\omega 1, \omega 2) \in \Omega . Then, the two marginal

coordinate processes are defined by Bt(\omega )
\bigtriangleup 
= \omega 1(t), Qt(\omega )

\bigtriangleup 
= \omega 2(t), (t, \omega )\times [0, T ]\times \Omega .

Then under our hypotheses B and Q are independent, and the process Qt(\omega ) = \omega 2(t)
is piecewise constant jumping at 0 < \sigma 1(\omega 

2) < \cdot \cdot \cdot < \sigma NT (\omega 2)(\omega 
2) < T , where Nt(\omega 

2)
denotes the number of jumps of Q up to time t and hence is a renewal counting
process. We then define Wt(\omega ) = t - \sigma Nt(\omega 2)(\omega 

2), t \geq 0.
Now on the canonical process, for \BbbP Q-a.s. \omega 2 \in \Omega 2 we define

\~\sigma m,k,\omega 2

(t, x) := \sigma m,k(t, x - \omega 2(t), t - \sigma Nt(\omega 2)(\omega 
2)), (t, x) \in [0, T ]\times \BbbR ,(5.10)

and consider the SDE on the space (\Omega 1,\scrF 1,\BbbP 0;\BbbF 1):

d \~Xt = \~\sigma \omega 2,m,k(t, \~Xt)dBt, \~X0 = x, t \in [0, T ].(5.11)

Clearly, by definition (5.10) and the facts (5.7) and that \sigma m,k is Lipschitz, SDE (5.11)

has a unique strong solution \~X\omega 2

t := \~Xt(\cdot , \omega 2) on (\Omega 1,\scrF 1,\BbbP 0;\BbbF 1) for \BbbP Q-a.s. \omega 2 \in \Omega 2.
Consequently, by (5.10), if we define X := \~X  - Q and Wt = t  - \sigma Nt , then (X,W )
satisfies (5.9).

The uniqueness of the solution (X,W ) follows from that of \~X as Q is a coordinate
process, completing the proof.

Now let (X,W ) be a strong solution of (5.9) on (\Omega ,\scrF ,\BbbP ), and denote it by
(Xm,k,W ) if the dependence on m, k is important. Clearly, for fixed \omega 2 \in \Omega 2,

Xm,k
t (\omega ) = \~X\omega 2

t  - \omega 2(t). It is well-known (cf., e.g., [3] and [11]) that the solution \~X\omega 2

of (5.11) has a transition density, denoted by p\omega 
2

(t, y; s, x) to indicate its dependence
on \omega 2, and it satisfies

p\omega 
2

(t, y; s, x) \leq M0| t - s|  - 1
2 exp

\biggl\{ 
 - \Lambda (y  - x)2

t - s

\biggr\} 
, s \leq t, x, y \in \BbbR ,(5.12)

where constants M0 and \Lambda depend only on m, k but are independent of \omega 2. Conse-
quently, for fixed \omega 2 \in \Omega 2, Xm,k(\cdot , \omega 2) has the density function p\omega 

2

(t, y + \omega 2(t); s, x)
under \BbbP 0. Furthermore, by renewal theory (see, e.g., [18]), the random variable \sigma Nt

has a density function

f\sigma Nt
(u) = \=F (t - u)m\prime (u) = \=F (t - u)

\infty \sum 
n=1

fn(u), t \geq u \geq 0,(5.13)
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where m(t) = \BbbE [Nt] =
\sum \infty 

n=1 Fn(t), F is the law of the waiting time Ti's, Fn is the n-
fold convolution of F with itself, and fn is corresponding density function. Therefore,
we can write down the joint distribution of (Xm,k

t , \sigma Nt
):

\BbbP (Xm,k
t \in A, \sigma Nt

\in B) =

\int 
\Omega 1

\int 
\Omega 2

1\{ Xm,k
t (\omega 1,\omega 2)\in A\} 1\{ \sigma Nt (\omega 

2)\in B\} \BbbP 0(d\omega 1)\BbbP Q(d\omega 2)

=

\int 
\Omega 2

\biggl[ \int 
A

p\omega 
2

(t, y + \omega 2(t); s, x)dy

\biggr] 
1\{ \sigma Nt (\omega 

2)\in B\} \BbbP Q(d\omega 2).(5.14)

In what follows we shall make use of an extra assumption on the jump times \sigma Nt
.

Hypothesis 5.2. There exists a constant \gamma 
\prime 
> 1 such that\int T

0

\int t

0

t
1 - \gamma \prime 

2 f\gamma 
\prime 

\sigma Nt
(u)dudt < +\infty .(5.15)

Remark 5.3. We remark that the Assumption 5.2 is merely technical, but it covers
a large class of cases that are commonly seen in applications. In particular, we

note that if we take 3 - \gamma 
\prime 

2 >  - 1, then \gamma 
\prime 
< 5. Furthermore, if Ti is of exponential

distribution with \lambda (that is, the renewal process N becomes Poisson), then m(t) =
\BbbE N(t) = \lambda t and f\sigma Nt

(u) = \lambda e - \lambda (t - u). Then,\int T

0

\int t

0

t
1 - \gamma \prime 

2 f\gamma 
\prime 

\sigma Nt
(u)dudt =

\int T

0

\int t

0

t
1 - \gamma \prime 

2 (\lambda e - \lambda (t - u))\gamma 
\prime 
dudt

\leq 
\int T

0

\int t

0

t
1 - \gamma \prime 

2 \lambda \gamma 
\prime 
dudt =

2\lambda \gamma 
\prime 

5 - \gamma \prime T
5 - \gamma \prime 

2 .

Also, if Ti \sim Erlang(k,\lambda ), that is, F (u, k, \lambda ) = 1  - \Sigma k - 1
i=0

1
i!e

 - \lambda x(\lambda x)i, as we often see
in the Sparre Andersen models, then

\sum \infty 
n=1 fn(u, k, \lambda ) \leq 

\sum \infty 
n=1 fn(u, 1, \lambda ) = \lambda , and

one can check that \int T

0

\int t

0

t
1 - \gamma \prime 

2 f\gamma 
\prime 

\sigma Nt
(u)dudt \leq 2\lambda \gamma 

\prime 

5 - \gamma \prime T
5 - \gamma \prime 

2 .

In both cases Hypothesis 5.2 holds.

6. Strong well-posedness of the closed-loop system. We now ready to
study the existence and (pathwise) uniqueness of the closed-loop system (5.4). Again,
for each m \in \BbbN we consider the ``truncated"" version of bk: bm,k(t, x, w) := \beta k(t, - m\vee 
x \wedge m,w). Then bm,k is a bounded and measurable function. Let (Xm,k,W ) be the
strong solution of (5.9) on (\Omega 1,\BbbF 1,\BbbP 0), and for \omega 2 \in \Omega 2, define

\theta m,k
t (\cdot , \omega 2) :=

bm,k(t,Xm,k
t (\cdot , \omega 2), t - \sigma Nt(\omega 2)(\omega 

2))

\sigma m,k(t,Xm,k
t (\cdot , \omega 2), t - \sigma Nt(\omega 2)(\omega 2))

.(6.1)

Since bm,k is bounded, by (5.7) we see that, modulo a \BbbP Q-null set N2 \subset \Omega 2, \theta m,k(\cdot , \omega 2)
is a bounded, \BbbF 1-adapted process, for all \omega 2 \in \Omega 2 \setminus N2. We can then define the
following exponential martingale on (\Omega 1,\scrF 1,\BbbP 0;\BbbF 1):

Lm,k
t (\cdot , \omega 2) := exp

\biggl\{ \int t

0

\theta m,k
s (\cdot , \omega 2)dBs  - 

1

2

\int t

0

| \theta m,k
s (\cdot , \omega 2)| 2ds

\biggr\} 
, \omega 2 /\in N2,(6.2)
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and a new probability measure \~\BbbP m,k on (\Omega ,\scrF ) by

\~\BbbP m,k(A1\times A2) :=

\int 
A2

\int 
A1

Lm,k
T (\omega 1, \omega 2)\BbbP 0(d\omega 1)\BbbP Q(d\omega 2), A1 \in \scrF 1, A2 \in \scrF 2.(6.3)

Then, it is readily seen that, under \~\BbbP m,k, \~Bm,k
t := Bt  - 

\int t

0
\theta m,k
s ds, t \in [0, T ], is a

Brownian motion, still independent of Q, and on the space (\Omega ,\scrF , \~\BbbP m,k), (Xm,k,W )
satisfies, for t \in [0, T ],\Biggl\{ 

dXm,k
t = bm,k(t,Xm,k

t ,Wt)dt+ \sigma m,k(t,Xm,k
t ,Wt)d \~B

m,k
t  - dQt, X

m,k
0 = x,

Wt = t - \sigma Nt
.

(6.4)

In other words, (\Omega ,\scrF , \~\BbbP m,k, \~Bm,k, Xm,k,W ) is a weak solution to a truncated version
of (5.4). Our task in this subsection is to show that this weak solution can actually be
strong and that it is pathwise unique. Furthermore, we shall argue that, as m\rightarrow \infty ,
the sequence \{ Xm,k\} would converge to a process Xk, which satisfies the SDE (5.4)
on the interval [0, \tau k), where \tau k := inf\{ t > 0 : Xk

t < 0\} . This is clearly sufficient for
our purpose.

We should note that since the coefficient bm,k is discontinuous, the pathwise
unique strong solution is only possible because the SDE (5.4) is one-dimensional. Our
argument borrows the idea initiated in [10] (see also, e.g., [6]), using the so-called
Krylov estimate (cf. [12]). To this end, let us begin with some observations. Let
(Xm,k,W,B) be any weak solution of SDE (6.4) defined on some filtered probability
space (\Omega ,\scrF ,\BbbP ;\BbbF ); we may assume that (\Omega ,\scrF ) is the canonical space defined before,
except that \BbbP is any probability measure, and \BbbF is augmented by all the \BbbP -null sets.
Recalling \theta and M defined by (6.1) and (6.2), respectively, define \=\theta :=  - \theta and \=L :=

L - 1. Note that the process \theta actually depends on \omega 2; namely, we should have \theta = \theta \omega 
2

for \omega 2 \in \Omega 2 and hence L = L\omega 2

as well. We now define, for fixed \omega 2, a new probability

measure d\BbbP 0,\omega 2

d\BbbP 
\bigm| \bigm| 
\scrF 1

T

= \=L\omega 2

T on (\Omega 1,\scrF 1), so that B0
t := Bt  - 

\int t

0
\=\theta \omega 

2

s ds, t \geq 0, is a

Brownian motion on (\Omega 1,\scrF 1,\BbbP 0,\omega 2

). We next define a new probability measure \=\BbbP on
(\Omega ,\scrF ) such that for A \in \scrF 1, B \in \scrF 2,

\=\BbbP (A\times B) =

\int 
B

\int 
A

\BbbP 0,\omega 2

(d\omega 1)\BbbP Q(d\omega 2) =

\int 
B

\int 
A

\=L\omega 2

T (\omega 1)\BbbP (d\omega 1 \otimes d\omega 2).(6.5)

Then it is readily seen that \=Lt(\omega ) = \=Lt(\omega 
1, \omega 2) := [L\omega 2

] - 1(\omega 1), t \in [0, T ] is a martin-

gale under \=\BbbP , d\=\BbbP 
d\BbbP 
\bigm| \bigm| 
\scrF T

= \=LT , and (Xm,k,W,B0) solves SDE (5.9) on the space (\Omega ,\scrF , \=\BbbP ).
We are now ready to prove the following Krylov estimate.

Lemma 6.1. Assume Hypothesis 2.1 and Hypothesis 5.2. Let Xm,k be a weak
solution of SDE (6.4). Then, for any bounded and measurable function g : [0, T ] \times 
[0,+\infty )\times [0, T ] \rightarrow \BbbR +, it holds that

\BbbE 
\int T

0

g(t,Xt,Wt)dt \leq G

\Biggl\{ \int T

0

\int 
\BbbR 

\int t

0

g\beta \gamma (t, y, t - u)dydudt

\Biggr\} 1/\beta \gamma 

.(6.6)

Here in the above G is a constant defined by

G = C(M0,\Lambda , \gamma 
\prime , \beta )\{ \=\BbbE \=L - \alpha 

T \} 1/\alpha 
\Biggl[ \int T

0

\int t

0

t
1 - \gamma \prime 

2 f\gamma 
\prime 

\sigma Nt
(u)dudt

\Biggr] 1
\beta \gamma \prime 

,(6.7)

where \=\BbbE = \BbbE \=\BbbP , and \=LT = d\=\BbbP 
d\BbbP ,

1
\alpha + 1

\beta = 1, and \gamma \prime is given in Hypothesis 5.2.
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Proof. Throughout this proof we fix m and k and thus omit them in the notation
for simplicity. For any bounded, nonnegative measurable function g : [0, T ]\times [0,+\infty )\times 
[0, T ] \rightarrow \BbbR + and any \beta > 1 we have

\=\BbbE 

\Biggl[ \int T

0

g\beta (t,Xt, t - \sigma Nt
)dt

\Biggr] 

=

\int T

0

\int 
\Omega 2

\biggl[ \int 
\BbbR 
g\beta (t, y, t - \sigma Nt

(\omega 2))p\omega 
2

(t, y + \omega 2(t), 0, x)dy

\biggr] 
\BbbP Q(d\omega 2)dt(6.8)

\leq 
\int T

0

\int 
\Omega 2

\biggl[ \int 
\BbbR 
g\beta (t, y, t - \sigma Nt

(\omega 2))M0| t|  - 
1
2 e

 - \Lambda (y+\omega 2(t) - x)2

t dy

\biggr] 
\BbbP Q(d\omega 2)dt.

Note that, by H\"older's inequality again, we have

\int 
\BbbR 
g\beta (t, y, t - \sigma Nt(\omega 

2))M0| t|  - 
1
2 exp

\biggl\{ 
 - \Lambda (y + \omega 2(t) - x)2

t

\biggr\} 
dy

(6.9)

\leq 
\biggl[ \int 

\BbbR 
g\beta \gamma (t, y, t - \sigma Nt(\omega 

2))dy

\biggr] 1
\gamma 

\Biggl[ \int 
\BbbR 

\biggl( 
M0| t|  - 

1
2 exp

\biggl\{ 
 - \Lambda (y + \omega 2(t) - x)2

t

\biggr\} \biggr) \gamma \prime 

dy

\Biggr] 1
\gamma \prime 

,

where 1/\gamma + 1/\gamma 
\prime 
= 1. By the direct calculation, we have\int 

\BbbR 

\biggl( 
M0| t|  - 

1
2 exp

\biggl\{ 
 - \Lambda (y + \omega 2(t) - x)2

t

\biggr\} \biggr) \gamma \prime 

dy \leq C(M0,\Lambda , \gamma 
\prime 
)| t| 

1 - \gamma 
\prime 

2 ,(6.10)

where C(M0,\Lambda , \gamma 
\prime ) is some constant depending only onM0, \Lambda , and \gamma 

\prime . Keeping (6.8),
(6.9), and (6.10) in mind, we have

\BbbE 
\biggl\{ \int T

0

g(t,Xt,Wt)dt

\biggr\} 
= \=\BbbE 

\biggl\{ 
\=L - 1
T

\int T

0

g(t,Xt,Wt)dt

\biggr\} 

\leq \{ \=\BbbE \=L - \alpha 
T \} 

1
\alpha 

\biggl\{ 
\=\BbbE 
\biggl[ \int T

0

g\beta (t,Xt, t - \sigma Nt)dt

\biggr] \biggr\} 1
\beta 

\leq \{ \=\BbbE \=L - \alpha 
T \} 

1
\alpha 

\Biggl\{ \int T

0

\int 
\Omega 2

\biggl[ \int 
\BbbR 
g\beta \gamma (t, y, t - \sigma Nt(\omega 

2))dy

\biggr] 1
\gamma 

C(M0,\Lambda , \gamma 
\prime )| t| 

1 - \gamma 
\prime 

2\gamma \prime \BbbP Q(d\omega 2)dt

\Biggr\} 1
\beta 

\leq C(M0,\Lambda , \gamma 
\prime , \beta )\{ \=\BbbE \=L - \alpha 

T \} 
1
\alpha 

\Biggl\{ \int T

0

\int t

0

\biggl[ \int 
\BbbR 
g\beta \gamma (t, y, t - u)dy

\biggr] 1
\gamma 

| t| 
1 - \gamma \prime 
2\gamma \prime f\sigma Nt

(u)dudt

\Biggr\} 1
\beta 

\leq G

\biggl[ \int T

0

\int t

0

\int 
\BbbR 
g\beta \gamma (t, y, t - u)dydudt

\biggr] 1
\beta \gamma 

,

where C(M0,\Lambda , \gamma 
\prime , \beta ) := C

1
\beta (M0,\Lambda , \gamma 

\prime ) and G is defined by (6.7). This proves (6.6),
whence the lemma.

We are now ready to prove that, for fixed m, k, SDE (6.4) actually has a pathwise

unique strong solution on the interval [0, \tau m,k), where \tau m,k := inf\{ t > 0 : Xm,k
t < 0\} .

For notational simplicity, we again fix m and k and denote b = bm,k and \sigma = \sigma m,k,
so that (6.4) now reads\biggl\{ 

dXt = b(t,Xt,Wt)dt+ \sigma (t,Xt,Wt)dBt  - dQt, X0 = x;
Wt = t - \sigma Nt

, t \in [0, T ].
(6.11)
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Recalling from (5.3) and (5.5) that the function b = bm,k is discontinuous but has a
linear growth,

| b(t, x, w)| \leq C(1 + | x| ), (t, x, w) \in [0, T ]\times \BbbR \times [0, T ](6.12)

for some constant C > 0 depending only on the coefficients but independent of m, k.
In what follows we shall allow such generic constant to vary from line to line.

The scheme for constructing the strong solution for (6.11) goes as follows (see,
e.g., [10, 15] or [6]). For any N > 0 define bN (t, x, w) = b(t, x \wedge N \vee ( - N), w). Then
(6.12) implies that bN is a bounded measurable function. Let \rho be a smooth mollifier
with compact support in \BbbR such that

\int 
\BbbR \rho (z)dz = 1. For n = 1, 2 . . ., define

bN,j(t, x, w) = j

\int 
bN (t, z, w)\rho (j(x - z))dz;

then bN,j 's are smooth functions, having the same bound N , and satisfying the lin-
ear growth condition (6.12) with the same constant C > 0, and bN,j \rightarrow bN almost
everywhere on [0, T ]\times \BbbR \times [0, T ] as j \rightarrow \infty .

Next, for any K \in \BbbN and j \leq K we define \~bN,j,K
\bigtriangleup 
=

\bigwedge K
k=j bN,j and \~bN,j

\bigtriangleup 
=\bigwedge \infty 

k=j bN,j , where a \wedge b = min\{ a, b\} . Then clearly, each \~bN,j,K is continuous, and
uniformly Lipschitz in x, uniformly in (t, w). Furthermore, for almost all x, for any
(t, w), it holds that \~bN,j,K \downarrow \~bN,j as K \rightarrow \infty and \~bN,j \uparrow bN as j \rightarrow \infty . Now let us fix
N , j, and K and consider the following SDE:\biggl\{ 

dYt = \~bN,j,K(t, Yt,Wt)dt+ \sigma (t, Yt,Wt)dBt, Y0 = x;
Wt = t - \sigma Nt

, t \geq 0.
(6.13)

Clearly, (6.13) has a unique strong solution; denote it by \~Y N,j,K . By the standard
comparison theorem, we see that \{ \~Y N,j,K\} is decreasing with K, and thus we can

define \~Y N,j
t

\bigtriangleup 
= limK\rightarrow \infty \~Y N,j,K

t , t \in [0, T ], \BbbP -a.s. Since \~bN,j 's and \sigma are bounded, one

can easily check that \~Y N,j
t <\infty , \BbbP -a.s. We shall argue that the limiting process \~Y N,j

solves the SDE:\biggl\{ 
dYt = \~bN,j(t, Yt,Wt)dt+ \sigma (t, Yt,Wt)dBt, Y0 = x;
Wt = t - \sigma Nt

,
t \geq 0.(6.14)

To see this, we first need the following crucial lemma.

Lemma 6.2. Suppose that Hypothesis 2.1 and Hypothesis 5.2 are in force. Assume
also that \{ \^bK\} \infty n=1 are measurable functions defined on [0, T ] \times \BbbR \times [0, T ], bounded

uniformly in K, and there exists a measurable function \^b such that

lim
K\rightarrow \infty 

\^bK(s, x, w) = \^b(s, x, w) for a.e. (s, x, w) \in [0, T ]\times \BbbR \times [0, T ].

Suppose that for each K, ( \^Y K ,W ) is a strong solution of (6.13) with drift being

replaced by \^bK and that there exists \^Y such that for every t \in [0, T ], limK\rightarrow \infty \^Y K
t = \^Yt,

\BbbP -a.s. Then, it holds that

lim
K\rightarrow \infty 

\BbbE 

\Biggl[ \int T

0

| \^bK(t, \^Y K
t ,Wt) - \^b(t, \^Yt,Wt)| ds

\Biggr] 
= 0.(6.15)
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Proof. The proof of lemma follows the almost identical arguments of those in [15]
or [6], with the help of the Krylov estimate established in Lemma 6.1. We leave it to
the interested reader.

Let us fix N, j and denote \^bK = \~bN,j,K , \^Y K = \~Y N,j,K , K \in \BbbN , and \^b = \~bN,j ,
\^Y = \~Y N,j . Then Lemma 6.1 shows that, possibly along a subsequence and may
assume itself, we have

lim
K\rightarrow \infty 

\int t

0

\~bN,j,K(s, \~Y N,j,K
s ,Ws)ds=

\int t

0

\~bN,j(s, \~Y
N,j
s ,Ws)ds, t \in [0, T ],\BbbP -a.s.(6.16)

Furthermore, since \sigma is bounded and continuous, the bounded convergence theorem

yields that limK\rightarrow \infty \BbbE 
\bigl[ \bigm| \bigm| \int T

0
[\sigma (s, \~Y N,j,K

s ,Ws) - \sigma (s, \~Y N,j
s ,Ws)dBs

\bigm| \bigm| 2\bigr] = 0; thus along a
subsequence we have

lim
K\rightarrow \infty 

\int t

0

\sigma (s, \~Y N,j,K
s ,Ws)dBs =

\int t

0

\sigma (s, \~Y N,j
s ,Ws)dBs, t \in [0, T ],\BbbP -a.s.(6.17)

Since \~Y N,j,K solves SDE (6.13) and \~Y N,j,K \downarrow \~Y N,j , we conclude that \~Y N,j solves the
SDE (6.14).

Next, since \~Y N,j,K \leq \~Y N,i,K , for j \leq i \leq K, we see that \~Y N,j increases as j
increases; thus \~Y N,j

t \uparrow Y N
t , t \in [0, T ], \BbbP -almost surely, where Y N is some process with

Y N
t < \infty , t \in [0, T ], \BbbP -a.s. By the same argument as before, using Lemma 6.2 with

\^bj = bN,j , \^b = bN , and \^Y j = Y N,j , we can show that Y N solves the SDE:\biggl\{ 
dYt = bN (t, Yt,Wt)dt+ \sigma (t, Yt,Wt)dBt, Y0 = x;
Wt = t - \sigma Nt

,
t \in [0, T ].(6.18)

Moreover, we can show, as in [6], that Y N is pathwise unique. Let us now define \tau N =
inf\{ t : | Y N

t | \geq N\} \wedge T . Then on the interval [0, \tau N ], bN (t, Y N
t ,W ) = b(t, Y N

t ,W );
thus Y N is a unique strong solution to the SDE\biggl\{ 

dYt = b(t, Yt,Wt)dt+ \sigma (t, Yt,Wt)dBt, Y0 = x;
Wt = t - \sigma Nt ,

t \in [0, \tau N ].(6.19)

Now observe that if N1 > N2, we have \tau N1
\geq \tau N2

. Thus by uniqueness we have
Y N2
t = Y N1

t on the interval [0, \tau N2
]. We can now define a process Y such that Yt = Y N

t ,
t \in [0, \tau N ]. Then Y is well-defined on the interval [0, \tau ), where \tau = limN \uparrow \infty \tau N . Since
b is of linear growth and \sigma is bounded, it is not hard to show that \BbbE [supt\in [0,T ] | Y N

t | 2] <
\infty , which implies that \BbbP \{ | Yt| < \infty , t \in [0, \tau )\} = 1 and hence \tau = T , \BbbP -a.s. In other
words, Y is a unique strong solution to (6.19) on [0, T ].

We can now prove the main result of this section.

Theorem 6.3. Assume that the Hypothesis 2.1 and Hypothesis 5.2 are in force.
Then, for each k > 0, the closed-loop system (5.4) possesses a unique strong solution
(Xk,W ) on the random interval [0, \tau k), where \tau k = inf\{ t > 0 : Xk < 0\} \wedge T .

Proof. We begin by recalling the SDE (6.4). Without loss of generality we con-
sider only the case s = 0; that is, we write SDE (6.4) as\Biggl\{ 

dXt = bm,k(t,Xt,Wt)dt+ \sigma m,k(t,Xt,Wt)dBt  - dQt, X0 = x;

Wt = t - \sigma Nt ,
t \in [0, T ].(6.20)
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We shall follow the same argument as that in Proposition 5.1 to construct the strong
solution on the canonical space (\Omega 1,\scrF 1,\BbbP 0;\BbbF 1) defined by (5.8). For any \omega =

(\omega 1, \omega 2) \in \Omega , we write the coordinate processes as Bt(\omega )
\bigtriangleup 
= \omega 1(t), Qt(\omega )

\bigtriangleup 
= \omega 2(t),

(t, \omega )\times [0, T ]\times \Omega . Assuming that the process Qt(\omega ) = \omega 2(t) jumps at 0 < \sigma 1(\omega 
2) <

\cdot \cdot \cdot < \sigma NT (\omega 2)(\omega 
2) < T , where Nt(\omega 

2) denotes the number of jumps of Q up to time
t, we define Wt(\omega ) = t - \sigma Nt(\omega 2)(\omega 

2), t \geq 0.

Now for \BbbP Q-a.s. \omega 2 \in \Omega 2 we define \~bm,k,\omega 2

and \~\sigma m,k,\omega 2

by (5.10), respectively,
and consider the SDE on the space (\Omega 1,\scrF 1,\BbbP 0;\BbbF 1):

d \~Xt = b\omega 
2,m,k(t, \~Xt)ds+ \~\sigma \omega 2,m,k(t, \~Xt)dBt, X0 = x; t \in [0, T ],(6.21)

Clearly, this equation is the same as (6.19), and we have shown that it has a unique

strong solution on (\Omega 1,\scrF 1,\BbbP 0;\BbbF 1); denote it by \~Xm,k,\omega 2

t := \~Xm,k
t (\cdot , \omega 2) for \BbbP Q-a.s.

\omega 2 \in \Omega 2. We then define Xm,k := \~Xm,k  - Q and Wt = t  - \sigma Nt
; then (Xm,k,W ) is

the unique strong solution to (6.20).

To complete the proof, let us define \tau m,k := inf\{ t > 0, Xm,k
t /\in [ 1m ,m]\} \wedge 

T . Again, observe that bm,k(t,Xm,k
t ,W ) = bk(t,Xm,k

t ,W ) and \sigma m,k(t,Xm,k
t ,W ) =

\sigma k(t,Xm,k
t ,W ). Thus (Xm,k,W ) is the unique strong solution of (5.4) on [0, \tau m,k].

Furthermore, note that if m1 > m2, then \tau m1,k \geq \tau m2,k. Thus by uniqueness we have

Xm2,k
t = Xm1,k

t on the interval [0, \tau m2 ]. Thus the process X
k defined by Xk

t = Xm,k
t ,

t \in [0, \tau m,k], is well-defined, and with the linear growth of bk and \sigma k, we see that

\BbbE [supt\in [0,T ] | X
m,k
t | 2] < \infty . We can then conclude that Xk is the unique strong solu-

tion of SDE (5.4) on the interval [0, \tau k), where \tau k = limm \uparrow \infty \tau m,k = inf\{ t > 0 : Xk <
0\} \wedge T .

7. Verification of the \bfitvarepsilon -optimality. Having proved the well-posedness of the
closed-loop system (5.4), we now verify that the strategy defined by (5.2) is indeed
\varepsilon -optimal. That is, it does produce the cost functional V nk,\delta k as desired. We should
note that the auxiliary PIDE (3.4) actually does not correspond to any variation of
the original control problem (2.2)--(2.4); the verification is not automatic.

Recall that our \varepsilon -optimal strategy is based on the approximating solution V n,\delta ,
guaranteed by Theorem 4.5. More precisely, let V k := V nk,\delta k \in \BbbC 2

loc([0, T ] \times \BbbR ) be
the solutions of (3.4) as those in Theorem 4.5 such that (5.1) holds. Namely,

\| V k  - V \| L\infty (D) < \varepsilon k \searrow 0 as k \rightarrow \infty .

Now let us define \^V k(s, x, w) = V k(s, x, w)1D(s, x, w). Then \^V k \in \BbbC 1,2,1(D), and it
follows from (5.1) that \| \^V k - V \| L\infty (D) \rightarrow 0 as k \rightarrow \infty . Furthermore, by the construc-

tion of V k, we see that V k
x+(s, - \delta , w) > 1, and hence \^V k

x+(s, 0, w) = V k
x+(s, 0, w) > 1

for k large enough. We should note that \^V k
x (s, x, w) = V k

x (s, x, w) > 0 for (s, x, w) \in D
always holds.

We now recall the strategy \pi k = (\gamma k, ak) defined by (5.2) and denote Xk as the
corresponding strong solution to (2.2), which exists on [0, \tau k), where \tau k := inf\{ t >
0 : Xk

t /\in [0,\infty )\} . It is useful to remember that \pi k is actually the maximizer of the
Hamiltonian (2.6), namely, it holds that

\gamma kt = argmax
\gamma \in [0,1]

\biggl[ 
1

2
\sigma 2\gamma 2(Xk

t )
2 \^V k

xx(t,X
k
t ,Wt) + (\mu  - r)\gamma Xk

t
\^V k
x (t,Xk

t ,Wt)

\biggr] 
.(7.1)
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In the rest of the section we shall consider, for s \in [0, T ], the closed-loop system (5.4)
on the interval [s, T ] and write it as\biggl\{ 

dXt = bk(t,Xt)dt+ \sigma k(t,Xt)dBt  - dQs,w
t ; Xs = x;

Wt = w + (t - s) - (\sigma Nt
 - \sigma Ns

),
t \in [s, T ],(7.2)

where bk(t, x) = (p - akt ) + [r + (\mu  - r)\gamma kt ]x; \sigma 
k(t, x) = \gamma kt x, and \pi 

k = (\gamma k, ak) is the
aforementioned approximating strategy. We denote the solution by Xk = Xk,s,x and
W =W s,w when the context is clear. For given (s, x, w) \in D we define \tau ks := inf\{ t >
s : Xk

t /\in [0,\infty )\} and denote \BbbE sxw[ \cdot ] := \BbbE [ \cdot | Xk
s = x,Ws = w].

To show that the strategy \pi k = (\gamma k, ak) does satisfy the \varepsilon -optimality we shall
argue that J(s, x, w;\pi k) satisfies, for \theta = (s, x, w) \in D, that J(\theta ;\pi k) \rightarrow V (\theta ) as k \rightarrow 
\infty . But note that J(\theta ;\pi k) = \BbbE \theta [

\int \tau k
s \wedge T

0
e - c(t - s)akt dt] and limk\rightarrow \infty \| V k - V \| L\infty (D) = 0;

the following theorem would suffice.

Theorem 7.1. Assume that Hypothesis 2.1and Hypothesis 5.2 are in force. Then,
uniformly for (s, x, w) \in D, it holds that

lim
k\rightarrow \infty 

\bigm| \bigm| \bigm| \bigm| \bigm| \BbbE sxw

\Biggl[ \int \tau k
s \wedge T

s

e - c(t - s)akt dt - \^V k(s, x, w)

\Biggr] \bigm| \bigm| \bigm| \bigm| \bigm| = 0.(7.3)

Proof. The proof is straightforward. Applying It\^o's formula from s to \tau ks \wedge T to
e - c(t - s) \^V k(t,Xk

t ,Wt) and then taking expectation on both sides we can easily derive

\BbbE 
\Bigl[ 
e - c(\tau k

s \wedge T - s) \^V k(\tau ks \wedge T,X\kappa 
\tau k
s \wedge T ,W\tau k

s \wedge T )
\Bigr] 

= \^V k(s, x, w) + \BbbE 

\Biggl[ \int \tau k
s \wedge T

s

e - c(t - s)
\Bigl[ 
 - c \^V k + \^V k

t + \^V k
w

+ [(p - akt ) + (r + (\mu  - r)\gamma kt )X
k
t ] \^V

k
x +

1

2
\sigma 2(\gamma kt )

2(Xk
t )

2 \^V k
xx

\Bigr] 
(t,Xk

t ,Wt)dt

\Biggr] 

+ \BbbE 

\Biggl\{ \int \tau k
s \wedge T

s

e - c(t - s) f(Wt)

F (Wt)

\Biggl[ \int Xk
t

0

\^V k(t,Xk
t  - u, 0)g(u)du - \^V k(t,Xk

t ,Wt)

\Biggr] 
dt

\Biggr\} 
.

Since \^V k(s, x, w) satisfies the HJB equation (4.3) and \pi k = (\gamma k, ak) is the maximizer
in terms of \^V k, a simple calculation shows that (suppressing variables)

 - c \^V k + \^V k
t + \^V k

w + [(p - akt ) + (r + (\mu  - r)\gamma kt )X
k
t ]

\^V k
x

+
1

2
\sigma 2(\gamma kt )

2(Xk
t )

2 \^V k
xx  - f(Wt)

F (Wt)
\^V k

=  - akt  - f(Wt)

F (Wt)

\int Xk
t +\delta k

0

V k(t,Xk
t  - u, - \delta k)g(u)du - \varepsilon k

2
\^V k
xx  - \varepsilon k

2
\^V k
ww.

Then we have

\BbbE 
\Bigl[ 
e - c(\tau k

s \wedge T - s) \^V k(\tau k
s \wedge T,X\kappa 

\tau k
s \wedge T ,W\tau k

s \wedge T )
\Bigr] 
 - \^V k(s, x, w) + \BbbE 

\Biggl[ \int \tau k
s \wedge T

s

e - c(t - s)ak
t dt

\Biggr] 

= \BbbE 

\Biggl\{ \int \tau k
s \wedge T

s

e - c(t - s) f(Wt)

F (Wt)
\times 

\Biggl[ \int Xk
t

0

[ \^V k(t,Xk
t  - u, 0) - V k(t,Xk

t  - u, - \delta k)]g(u)du

 - 
\int Xk

t +\delta k

Xk
t

V k(t,Xk
t  - u, - \delta k)g(u)du

\Biggr] \Biggr\} 
 - \varepsilon k

2
\BbbE 

\Biggl[ \int \tau k
s \wedge T

s

e - c(t - s) \^V k
xx(t,X

k
t ,Wt)dt

\Biggr] D
ow

nl
oa

de
d 

06
/0

3/
22

 to
 6

8.
18

1.
17

.1
24

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

4614 LIHUA BAI AND JIN MA

 - \varepsilon k
2
\BbbE 

\Biggl[ \int \tau k
s \wedge T

s

e - c(t - s) \^V k
ww(t,X

k
t ,Wt)dt

\Biggr] 

\leq C\delta k  - \varepsilon k
2
\BbbE 

\Biggl[ \int \tau k
s \wedge T

s

e - c(t - s)\bigl[ \^V k
xx(t,X

k
t ,Wt) + \^V k

ww(t,X
k
t ,Wt)

\bigr] 
dt

\Biggr] 
.

Finally, letting k \rightarrow \infty and noting that \delta k, \varepsilon k \rightarrow 0, (7.3) follows from the fact that

lim
k\rightarrow \infty 

\BbbE sxw

\bigl[ 
\^V k(\tau ks \wedge T,Xk

\tau k
s \wedge T ,W\tau k

s \wedge T )
\bigr] 
= lim

k\rightarrow \infty 
\BbbE sxw

\bigl[ 
1\{ \tau k

s \geq T\} \^V
k(T,Xk

T ,WT )
\bigr] 

= lim
k\rightarrow \infty 

\BbbE sxw

\bigl[ 
1\{ \tau k

s \geq T\} V (T,Xk
T ,WT )

\bigr] 
= 0.

This proves the theorem.
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