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a b s t r a c t

In this paper we use an intensity-based framework to analyze and compute the correlated default
probabilities, both in finance and actuarial sciences, following the idea of ‘‘change of measure’’ initiated
by Collin-Dufresne et al. (2004). Our method is based on a representation theorem for joint survival
probability among an arbitrary number of defaults, which works particularly effectively for certain types
of correlated default models, including the counter-party risk models of Jarrow and Yu (2001) and related
problems such as the phenomenon of ‘‘flight to quality’’. The results are also useful in studying the recently
observed dependentmortality for married couples involving spousal bereavement. In particular we study
in details a problem of pricing Universal Variable Life (UVL) insurance products. The explicit formulae for
the joint-life status and last-survivor status (or equivalently, the probability distribution of first-to-default
and last-to-default in a multi-firm setting) enable us to derive the explicit solution to the indifference
pricing formula without using any advanced results in partial differential equations.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Determining and computing the joint distributions of corre-
lated default times in a multi-firm model has been a long standing
problem in the credit risk theory. Due to the lack of information on
the possible correlation among the parties involved, it is essentially
impossible to have a universally applicable method that could pre-
cisely describe and quantify the possible correlation among the
collection of defaults. As a consequence the price of the credit
derivatives, in which the correlation among the defaults is known
to present but cannot be analytically specified, are in general hard
to be accurately evaluated.

There have been several existing methods dealing with the
correlated defaults. Most notably are the copula method (cf.
e.g., Schonbucher and Schubert, 2001), and the intensity-based,
contagion models (cf. e.g., Collin-Dufresne et al., 2003, 2004;
Jarrow and Yu, 2001; Yu, 2003; Yu, 2007), as well as the idea of
‘‘frailties’’ (cf. e.g., Schonbucher (2003), Gourieroux andGagliardini
(2003), and Duffie et al. (2006)). Since the copula method is based
on a heavily ad hoc assumption on the joint distribution, and
the frailty models involve an unobservable factor process, there
seem to be limitations when the tractability and identifiability
are the main concerns. On the other hand, the accurate pricing
of financial products that contain a portfolio of correlated default
risks has become a ubiquitous priority in today’s financial industry.
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As a consequence, an effective method for identifying the joint
distribution (or joint survival probability) becomes fundamentally
important in the study of correlated default. We are therefore
interested in developing methods that could lead to computable,
or even explicit formulae of the joint distributions and/or joint
survival probabilities in the general multi-firm situations.

The intensity-based (or the reduced form) contagion models
have been studied quite extensively in recent years. Roughly
speaking, one assumes that there exists a certain explicit structure
among the default intensities of a group of interdependent firms,
and the default of one firm could directly affect the default of
its counter-parties, and/or even trigger a cascade of defaults in
the group. (cf. e.g., Jarrow and Yu, 2001; Yu, 2003; Yu, 2007).
While it is arguable whether the contagion model is more justified
than the other methods for the correlated defaults, the fact that
most of these works provide explicit solutions, at least in theory,
makes the method rather attractive. It should be noted, however,
that obtaining the explicit solution for counter-party risk is by
no means trivial. The ‘‘looping’’ structure of the intensities, and
the complexity of resulting system (of algebraic or differential
equations) often becomes the main obstacle for deriving the
analytical solution, even in the simplest two-firm case (see,
e.g., Jarrow and Yu, 2001). In a recent work Collin-Dufresne et al.
(2004) proposed a method of valuation of defaultable securities
using a ‘‘change of measure’’ technique, so that the new measure
only concentrates on the paths that do not default before the given
maturity. It turns out that such amethod has an obvious advantage.
That is, it ‘‘ignores’’ the events where the default happens before
the maturity, so that the so-called ‘‘no-jump’’ assumptions in
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many previous studied remains true under the new measure (cf.
e.g., Collin-Dufresne et al., 2003, 2004).

The main purpose of this paper is two-fold. First, we try to ex-
tend the idea of Collin-Dufresne et al. (2004) to a multi-firm set-
ting, and prove a general representation theorem. While such a
representation does not actually reduce the degree of difficulty in
computing the joint distribution, it nevertheless offers an oppor-
tunity for simplifying the computation, especially when the inten-
sities are assumed to take a certain form. It turns out that many
well-known counter-party intensities in the literature, especially
those emphasize defaults before maturity, can be naturally sim-
plified under the new probability measure. Thus the analytical
expressions of the joint distribution can be derived even in the sit-
uations where such expressions are otherwise considered impos-
sible.

The second purpose of this paper is to establish some connec-
tions between the correlated defaults and some actuarial prob-
lems involving correlated multiple lives. A particularly interesting
class of problems includes those involving bereaved spouses. In
fact, there has been a variety of research on excess mortality in
the literatures of demography, epidemiology and psychology. Par-
ticular of interest, where the framework of counterpart risk is po-
tentially useful, is the so-called bereaved partner. For example, it
is noted that there has been a tendency of high excess mortality
among the bereaved spouses/partners fromaccidental, violent, and
alcohol-related causes. Particulary, a short duration of bereave-
ment has greater excess mortality than a long one (cf. e.g., Mar-
tikainen and Valkonen (1996), Valkonen et al. (2004) and Hu and
Goldman (1990) for correlations of excess mortalities among vari-
ous groups with different ages andmarital status). Using the coun-
terparty risk framework we are able to find the joint density of the
bereaved couple where the marginal mortality follow the Gom-
pertz law. This, together with an indifference pricing method, en-
ables us to find the explicit expression of the price of a Universal
Variable Life (UVL) insurance product without using any advanced
theory of partial differential equations (cf. Ma and Yu, 2006).

The rest of the paper is organized as follows. In Section 2
we formulate the problem and provide the necessary preparation
for the default structure. In Section 3 we prove a representation
theorem for the joint survival probability. In Section 4 we use it to
study the counterparty risk models, and in Section 5 we apply the
result to the dependent mortality models. In Section 6 we study
the case of Flight-to-Quality, and finally in Section 7 we apply our
results to the UVL insurance pricing problems.

2. Problem formulation

Throughout this paper we assume that all the uncertainty
comes from a given filtered probability space (Ω, F , {Ft}, P),
and we assume that the probability P is a risk neutral measure
for a defaultable bond market, namely under P the discounted
underlying bond prices are martingales. We also assume that such
a probability measure P is actually unique, which amounts to
saying that the bond market is complete. We refer to Jarrow and
Yu (2001) for more details on such a probabilistic set-up.

Similar to Jarrow and Yu (2001) we assume that there exists an
Rd-value background (or factor) process Xt which represents the
exogenous state variables in the economy. Also, we shall consider
a group of I firms in themarket. These firms operate independently
and each has a possibility of default. We denote τ i to be the
default time of the i-th firm, and assume that there exists a certain
correlation among τ 1

· · · τ I that is to be specified. Denoting the
default process with respect to τ i by N i

t
△
= 1{τ i≤t}, we define the

filtration generated by factor process and the default processes by:

Ft
△
= F X

t ∨ F 1
t ∨ · · · ∨ F I

t , (2.1)
where F X
t

△
= σ(Xs, 0 ≤ s ≤ t) and F i

t = σ(N i
s, 0 ≤ s ≤ t)

represent the filtrations generated by Xt and N i
t ’s, respectively. We

also define the filtrations H i
t , i = 1, . . . , I , by

H i
t = F X

t ∨ F 1
t ∨ · · · ∨ F i−1

t ∨ F i+1
t ∨ · · · ∨ F I

t , (2.2)

which represent the information generated by the state variables
and the default processes of all but the i-th firm. Thus we have

Ft = H i
t ∨ F i

t .

There have been several essentially equivalent ways to define
the hazard process. Throughout this paper we shall follow the
definition by Bielecki et al. (2006) and/or Jeanblanc and Rutkowski
(2001): namely we start from the the conditional survival
probability S it = P{τ i > t|H i

t}, for t ∈ R+. Then it is clear that S i

is a nonnegative, boundedH i-supermartingale.We shall therefore
consider the right-continuous modification of S i.

Definition 2.1. Assumed that S it > 0, t ≥ 0, P-a.s. The H i-hazard

process of τ i is defined by H i
t

△
= − ln(S it), t ≥ 0. Equivalently,

S it = e−H i
t , for all t ≥ 0, P-a.s.

We note that the assumption that S it > 0 amounts to saying that τ i

cannot be a H i-stopping time. On the other hand, if we assume
further that H i is absolutely continuous and increasing, that is,
we assume that there exists a nonnegative H i

t-adapted stochastic
process λi

t such that H i
t =

 t
0 λi

s ds, t ≥ 0, then we have the
following expression:

S it = P{τ i > t|H i
t} = exp


−

∫ t

0
λi
sds


.

The process λi is called the intensity process of the default time τ i,
and it obviously holds that λi

tdt = −dS it/S
i
t , t ≥ 0, as it is often

seen in the literature (cf., e.g., Lando, 2004).
Our main task is to evaluate the conditional expectation given

the σ -field {Ft}. The following lemma is frequently cited, often
without proof.Weprovide a sketch of the proof for ready reference.

Lemma 2.2. For any F -measurable random variable Z we have, for
any t ≥ 0,

1{τ i>t}E{Z |Ft} = 1{τ i>t}
E{1{τ i>t}Z |H i

t}

E{1{τ i>t}|H
i
t}

. (2.3)

Proof. The proof is along the lines of that in, e.g., Jeanblanc and
Rutkowski (2001). We first define, for each t ≥ 0,

F ∗

t
△
= {A ∈ F |∃B ∈ H i

t , A ∩ {τ i > t} = B ∩ {τ i > t}}.

Then clearly F ∗
t is a sub-σ -field of F . We claim that it contains Ft ,

for t ≥ 0. Indeed, note thatFt = H i
t∨F i

t = σ {H i
t , {τ

i
≤ s}, s ≤ t},

it suffice to show that if either A ∈ H i
t or A = {τ i

≤ s} for some
s ≤ t , then there existsB ∈ H i

t such thatA∩{τ i > t} = B∩{τ i > t}.
But in the former case we can choose B = A, and in in the latter we
simply set B = ∅, proving the claim.

A simple application of Monotone Class Theorem then leads to
that, for any F -measurable random variable Z and t ≥ 0, one can
find some H i

t-measurable random variable X such that

E{1{τ i>t}Z |Ft} = 1{τ i>t}E{Z |Ft} = 1{τ i>t}X .

Taking conditional expectation E{· |H i
t} on both sides above and

using the measurability of X we can solve X and obtain (2.3)
immediately. �

A direct consequence of Lemma 2.2 we now derive the condi-
tional survival probabilities with respect to the filtrationFt . To this
end we first note that
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P{τ i > T |Ft} = 1{τ i>t}E{1{τ i>T }|Ft}.

Thus, applying Lemma 2.2 we have

P{τ i > T |Ft} = 1{τ i>t}
E[1{τ i>T }|H

i
t}

E{1{τ i>t}|H
i
t}

. (2.4)

Now, note that

E{1{τ i>T }|H
i
t}

= E

P{τ i > T |H i

T }|H
i
t


= E


exp


−

∫ T

0
λi
sds
H i

t


= exp


−

∫ t

0
λi
sds


E

exp


−

∫ T

t
λi
sds
H i

t


.

Since E{1{τ i>t}|H
i
t} = exp(−

 t
0 λi

sds) by definition, (2.4) becomes

P{τ i > T |Ft} = 1{τ i>t}E

exp


−

∫ T

t
λi
sds
H i

t


.

Finally, we point out an important fact regarding the hazard
process H i. That is, it can be related to the nondecreasing default
processes N i

t = 1{τ i≤t} as its compensator. More precisely,

M i
t

△
= N i

t − H i
t∧τ i = 1{τ i≤t} −

∫ t

0
1{τ i>s}λ

i
sds, t ≥ 0, (2.5)

are {Ft}-martingales, for i = 1, . . . , I (cf., e.g., Bremaud, 1981).
Consequently we often say that 1{τ i≤t} admits an Ft-intensity
λi
t , and (2.5) is often referred to as martingale characterization of

intensity λi.
We conclude this section by making the following Standing

Assumptions of the intensity processes {λi
t}

I
i=1.

(H1) λi
t satisfy the following condition:

E


exp


2
∫ t

0

I−
i=1

λi
sds


< ∞, ∀t < ∞.

(H2) For each i, P{τ i > 0} = 1. Furthermore, there are no
simultaneous defaults among the I firms. In other words, it
holds that P{τ i

≠ τ j
} = 1, whenever i ≠ j.

3. Representation of joint survival probability

In this section we give the main representation result for the
joint survival probability

P{τ 1 > t1, τ 2 > t2, . . . , τ I > tI}, (t1, . . . , tI) ∈ RI
+
.

We follow the idea of change of measure proposed in Collin-
Dufresne et al. (2004). To be more precise, we define, for i =

1, . . . , I , Γ i
t

△
= exp{

 t
0 λi

sds}, and

Z i
t

△
= 1{τ i>t}Γ

i
t = 1{τ i>t} exp

∫ t

0
λi
sds


. (3.1)

Clearly, Γ i’s are nonnegative, {H i
t}-adapted process satisfying

Γ i
0 = 1, for all i.We shall use the processes Z i’s to construct a family

of probability measures that will facilitate the computation of the
joint default probability. The following result is crucial.

Proposition 3.1. Assume (H1) and (H2). Then, for k = 1, . . . , I , the
processes

k∏
i=1

Z i
t

△
=

k∏
i=1

1{τ i>t}Γ
i
t , t ≥ 0 (3.2)

are all {Ft}-martingales.
Proof. We first show that Z i
t ’s are martingales for i = 1, . . . , I .

Note that for t ≥ swe have

E{Z i
t |Fs} = E{1{τ i>t}Γ

i
t |Fs} = 1{τ i>s}E{1{τ i>t}Γ

i
t |Fs}. (3.3)

Applying Lemma 2.2 we see that

1{τ i>s}E{1{τ i>t}Γ
i
t |Fs}

= 1{τ i>s}
E{1{τ i>t}Γ

i
t |H

i
t}

E{1{τ i>s}|H
i
s}

= 1{τ i>s}
E{1{τ i>t}Γ

i
t |H

i
s}

exp

−
 s
0 λi

sds


= 1{τ i>s}Γ
i
s E{1{τ i>t}Γ

i
t |H

i
s} = Z i

sE{1{τ i>t}Γ
i
t |H

i
s}.

Note that E{1{τ i>t}Γ
i
t |H

i
s} = E{E{1{τ i>t}|H

i
t}Γ

i
t |H

i
s} = 1. Thus,

we derive from (3.3) that E{Z i
t |Fs} = Z i

s . Namely Z i is an {Ft}-
martingale.

We now prove (3.2) by induction. Sincewe have just proved the
case k = 1, we shall assume that

∏k
i=1 Z

i
t is amartingale, and prove

that
∏k+1

i=1 Z i
t is a martingale as well. To simplify notation, let us set∏k

i=1 Z
i
t

△
= Z̃k

t so that
∏k+1

i=1 Z i
t = Z̃k

t Z
k+1
t . Applying Itô’s formula we

have

Z̃k
t Z

k+1
t =

∫ t

0+

Z̃k
s−dZ

k+1
s +

∫ t

0+

Zk+1
s− dZ̃k

s + [Z̃k, Zk+1
]t . (3.4)

Note that Z̃k and Zk+1 are both of finite variation paths, and the
inductional hypothesis and (H1) imply that both Z̃k and Zk+1 are
quadratic pure jumpmartingales (see Protter, 2004). Therefore we
have

[Z̃k, Zk+1
]t = Z̃k

0Z
k+1
0 +

−
0<s≤t

∆Z̃k
s ∆Zk+1

s .

Furthermore, the assumption (H2) ensures that
∑

0<s≤t ∆Z̃k
s ∆Zk+1

s
= 0. Thus (3.4) becomes

Z̃k
t Z

k+1
t =

∫ t

0+

Z̃k
s−dZ

k+1
s +

∫ t

0+

Zk+1
s− dZ̃k

s + Z̃k
0Z

k+1
0 .

In other words, Z̃k
t Z

k+1
t is a local martingale. But (H1) further

guarantees that Z̃k
t Z

k+1
t is a true martingale, proving the proposi-

tion. �

Since Z i’s are martingales with Z i
0 = 1, we can define probabil-

ity measures Pi’s that are absolutely continuous with respect to P
by

dPi

dP


FT

△
= Z i

T = 1{τ i>T } exp
∫ T

0
λi
sds


, i = 1, . . . , I. (3.5)

Similarly, for each k = 2, . . . , I we can define

dP1,...,k

dP


FT

△
= Z̃k

T =

k∏
i=1

Z i
T .

Then, for any P1,...,k-integrable random variable X and k = 1, . . . , I
it holds that

E{Z1
T Z

2
T . . . Zk

TX} = EP1,...,k
{X}

△
= E1,...,k

{X}.

Furthermore, using the martingale property of Z̃k
t we see that for

each k and any A ∈ Ft , it holds that

E{1AZ̃k
t E1,...,k

{X |Ft}}

= E{1AE{Z̃k
T |Ft}E1,...,k

{X |Ft}} = E{1AZ̃k
TE1,...,k

{X |Ft}}

= E1,...,k
{1AE1,...,k

{X |Ft}} = E1,...,k
{1AX} = E{1AZ̃k

TX}

= E{1AE{Z̃k
TX |Ft}}.
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This easily leads to the following identity:

E{Z1
T Z

2
T . . . Zk

TX |Ft} = Z1
t Z

2
t . . . Zk

t E1,...,k
{X |Ft},

P − a.s., (3.6)

for any 0 ≤ t ≤ T and k = 1, . . . , I .
We are now ready to study the representation of joint survival

probability P{τ 1 > t1, τ 2 > t2, . . . , τ I > tI}. We begin by
considering the two-firm case. Assume that t1 ≤ t2, we can apply
(3.6) to get

P{τ 1 > t1, τ 2 > t2} = E{1{τ1>t1}1{τ2>t2}}

= E

1{τ1>t1}E


Z2
t2 exp


−

∫ t2

0
λ2
s ds
Ft1


= E


1{τ1>t1}Z

2
t1EP2


exp


−

∫ t2

0
λ2
s ds
Ft1


= E


Z1
t1Z

2
t1EP2


exp


−

∫ t1

0
λ1
s ds


× exp

−

∫ t2

0
λ2
s ds
Ft1


= E1,2


EP2


exp


−

∫ t1

0
λ1
s ds


× exp

−

∫ t2

0
λ2
s ds
Ft1


. (3.7)

In particular, if t1 = t2 = t , then we have

P{τ 1 > t, τ 2 > t} = E1,2

exp

∫ t

0
(λ1

s + λ2
s )ds


.

We can easily iterate the above procedure to obtain the general
representation of joint survival probability of I firms, which we
summarize in the following theorem.

Theorem 3.2. Assume (H1) and (H2). Then,
(i) For any 0 ≤ t1 ≤ t2 ≤ · · · ≤ tI < ∞, it holds that

P{τ 1 > t1, τ 2 > t2, . . . , τ I > tI}

= E1,...,I


E2,...,I

· · ·


EPI


exp


−

∫ t1

0
λ1
s ds


× exp

−

∫ t2

0
λ2
s ds


· · · exp

−

∫ tI

0
λI
sds
FtI−1


×

FtI−2


· · ·

Ft1


; (3.8)

(ii) For any t ≥ 0 it holds that

P{τ 1 > t, τ 2 > t, . . . , τ I > t}

= E1,...,I

exp


−

∫ t

0
(λ1

s + λ2
s + · · · + λI

s)ds


; (3.9)

(iii) For any 0 ≤ t ≤ T , it holds that

P{τ 1 > T , τ 2 > T , . . . , τ I > T |Ft}

= 1{τ1>t}1{τ2>t} · · · 1{τ I>t}E
1,...,I

×


exp


−

∫ T

t
(λ1

s + λ2
s + · · · + λI

s)ds
Ft


. (3.10)

Proof. (i) Again, we prove the assertion by induction. The case
when k = 2 is proved in (3.7).We shall prove the induction step by
looking at case k = 3, since the argument is completely the same
for general k.
Similar to (3.7) we have

P{τ 1 > t1, τ 2 > t2, τ 3 > t3} = E

1{τ1>t1}1{τ2>t2}1{τ1>t3}


= E


1{τ1>t1}1{τ2>t2}E


Z3
t3 exp


−

∫ t3

0
λ3
s ds
Ft2


= E


1{τ1>t1}E


1{τ2>t2}Z

3
t2EP3


exp


−

∫ t3

0
λ3
s ds


×

Ft2

Ft1


= E


1{τ1>t1}E


Z2
t2Z

3
t2EP3


exp


−

∫ t2

0
λ2
s ds


× exp


−

∫ t3

0
λ3
s ds
Ft2

Ft1


= E


1{τ1>t1}Z

2
t1Z

3
t1E2,3


EP3


exp

∫ t2

0
λ2
s ds


× exp

−

∫ t3

0
λ3
s ds
Ft2

Ft1


= E


Z1
t1Z

2
t1Z

3
t1E2,3


EP3


exp


−

∫ t1

0
λ1
s ds


× exp

−

∫ t2

0
λ2
s ds

exp


−

∫ t3

0
λ3
s ds
Ft2

Ft1


= E1,2,3


E2,3


EP3


exp


−

∫ t1

0
λ1
s ds

exp

∫ t2

0
λ2
s ds


× exp

−

∫ t3

0
λ3
s ds
Ft2

Ft1


.

By the induction hypothesis, one can complete the proof.
(ii) From part (i) we see that, if t1 = t2 = · · · = tI = t , then

P{τ 1 > t, τ 2 > t, . . . , τ I > t}

= E1,2,...,I


E2,3,...,I

· · ·


EPI

{exp {

−

∫ t

0
(λ1

s + λ2
s + · · · + λI

s)ds
Ft

Ft


· · ·

Ft


.

Since exp{−
 t
0 (λ1

s + λ2
s + · · · + λI

s)ds} is Ft-measurable, by
moving exp{−

 t
0 (λ1

s + λ2
s + · · · + λI

s)ds} outside the conditional
expectations, we see that all the conditional expectations will
disappear, proving (3.9).

(iii) It follows from (3.6) and (3.8) that

P{τ 1 > T , τ 2 > T , . . . , τ I > T |Ft}

= E

Z1
T Z

2
T . . . Z I

T exp

−

∫ T

0
(λ1

s + λ2
s + · · · + λI

s)ds
Ft


= Z1

t Z
2
t . . . Z I

t E
1,...,I


exp


−

∫ T

0
(λ1

s + λ2
s + · · · + λI

s)ds
Ft


= 1{τ1>t}1{τ2>t} · · · 1{τ I>t}E

1,...,I

×


exp


−

∫ T

t
(λ1

s + λ2
s + · · · + λI

s)ds
Ft


.

Note that Z i
t = 1{τ i>t} exp{

 t
0 λi

sds}. The third equality follows from
moving exp{

 t
0 λi

sds} into the conditional expectation. �

4. Counter-party risk models

In Jarrow and Yu (2001) the problem of counter-party risk was
investigated under the assumption that default correlation takes
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the following form:

λA
t = a0 + 1{τB≤t}a1, λB

t = b0 + 1{τA≤t}b1. (4.1)

where A and B represent two firms, and ai and bi, i = 0, 1
are constants. In this section we shall extend this looping default
structure to the more general setting.

4.1. Two firm case

We first consider the case when I = 2. In light of (4.1), we
consider the following general model:

λA
t = a0(t) + 1{τB≤t}a1(t − τ B),

λB
t = b0(t) + 1{τA≤t}b1(t − τ A),

(4.2)

where a0, a1, b0, and b1 are deterministic functions. We shall need
the following extra assumptions:

(H3) (i) a0 and b0 are positive functions;
(ii) a1 and b1 are either positive and decreasing or negative

and increasing, such that
lim
t→∞

a1(t) = 0 lim
t→∞

b1(t) = 0. (4.3)

(ii) Both λA
t and λB

t are positive processes.

We remark that (4.2) and (H3) amount to saying that one
firm’s intensity will have a jump when the other firm defaults,
but the impact of the default will gradually vanish as time passes.
Moreover, the positivity of a1 or b1 means that the two companies
have a certain partnership, whereas the negativity indicates that
they are competitors. It should also be noted that the assumption
(ii) in (H3) is not needed for the proof of Proposition 4.1.

We now apply the result in the previous section to derive a
relatively closed form of the joint survival probability.

Proposition 4.1. Assume (H1)–(H3). Then the joint survival proba-
bility P{τ A > t1, τ B > t2} is given by

P{τ A > t1, τ B > t2}

=



c(t1, t2)
∫ t2

t1
a0(x)e

−
 t2
x b1(s−x)ds−

 x
t1

a0(s)dsdx

+

∫
∞

t2
a0(x)e

−
 x
t1

a0(s)dsdx


t1 ≤ t2;

c(t1, t2)
∫ t1

t2
b0(x)e

−
 t1
x a1(s−x)ds−

 x
t2

b0(s)dsdx

+

∫
∞

t1
b0(x)e

−
 x
t2

b0(s)dsdx


t1 > t2

where c(t1, t2) = exp{−
 t1
0 a0(s)ds −

 t2
0 b0(s)ds}.

Proof. We shall check only t1 ≤ t2. Recall the process Γt
△
=

exp{
 t
0 λsds}, λ = λA, λB, respectively. Applying the change of

measure, we have

P{τ A > t1, τ B > t2}

= E
[
1{τA>t1}1{τB>t2}Γ

B
t2 exp


−

∫ t2

0
λB
sds
]

= EB
[
1{τA>t1} exp


−

∫ t2

0


b0(s) + 1{τA≤s}b1(s − τ A)


ds
]

= e−
 t2
0 b0(s)dsEB

[
1{τA>t1} exp


−

∫ t2

τA
b1(s − τ A)ds

]
= e−

 t2
0 b0(s)ds

∫ t2

t1
e−

 t2
x b1(s−x)dsPB

{τ A
∈ dx}

+

∫
∞

t2
PB

{τ A
∈ dx}



= e−
 t2
0 b0(s)ds

∫ t2

t1
e−

 t2
x b1(s−x)dsa0(x)e−

 x
0 a0(s)dsdx

+

∫
∞

t2
a0(x)e−

 x
0 a0(s)dsdx


= c(t1, t2)

∫ t2

t1
a0(x)e

−
 t2
x b1(s−x)ds−

 x
t1

a0(s)dsdx

+

∫
∞

t2
a0(x)e

−
 x
t1

a0(s)dsdx


.

In the second last equality above, we used the fact that λA
s = a0(s)

under PA,B, and consequently PB(τ A > x) = e−
 x
0 a0(s)ds. The case

for t2 < t1 can be argued in a similar way. �

We remark that once the joint survival probability is obtained,
themarginal survival probabilities can be derived by simply setting
t1 = 0 or t2 = 0, respectively. Furthermore, the relation

P{τ A
≤ t1, τ B

≤ t2}
= 1 − P{τ A > t1} − P{τ B > t2} + P{τ A > t1, τ B > t2}

gives the joint default probability.
We now give two specific examples where the closed-form

formulae can be obtained.

Example 4.2. Assume that a1(t), b1(t) ∼ (cet +1)−1, where c > 0
is such that (4.3) holds. More precisely, we assume that

λA
t = a0 + 1{τB≤t}

n

a1e(t−τB) + 1
λB
t = b0 + 1{τA≤t}

m

b1e(t−τA) + 1
,

where m and n are positive integers. We note that when a1 =

b1 = 0, then one can allow m and n to take any values in R, as
long as both λA

t and λB
t are positive. This then leads to the two firm

counterparty-risk model of Jarrow and Yu (2001).
Applying Proposition 4.1 we see that for t1 ≤ t2, it holds that

P{τ A > t1, τ B > t2}

= c(t1, t2)
∫ t2

t1
a0(x)e

−
 t2
x b1(s−x)ds−

 x
t1

a0(s)dsdx

+

∫
∞

t2
a0(x)e

−
 x
t1

a0(s)dsdx


= e−a0t1−b0t2

∫ t2

t1
a0e

m{ln(
b1+e−(t2−x)

b1+1 )}−a0(x−t1)dx

+

∫
∞

t2
a0e−a0(x−t1)dx


=

a0e−b0t2

(b1 + 1)m

∫ t2

t1
{b1 + e−(t2−x)

}
me−a0xdx

+ a0e−b0t2

∫
∞

t2
e−a0xdx

=
a0e−b0t2

(b1 + 1)m

∫ t2

t1

m−
k=0

m
k


bm−k
1

× e−kt2−(a0−k)xdx + e−(a0+b0)t2dx

=
a0e−b0t2

(b1 + 1)m

m−
k=0

m
k

 bm−k
1 e−kt2

a0 − k
[e−(a0−k)t1 − e−(a0−k)t2 ]

+ e−(a0+b0)t2 . (4.4)

Arguing the case for t2 < t1 similarly we then obtain the formula
for the joint survival probability:
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P{τ A > t1, τ B > t2}

=



a0
(b1 + 1)m

m−
k=0

m
k

 bm−k
1 e−(b0+k)t2

a0 − k
× [e−(a0−k)t1 − e−(a0−k)t2 ] + e−(a0+b0)t2 t1 ≤ t2;
b0

(a1 + 1)n

n−
k=0

n
k

 an−k
1 e−(a0+k)t1

b0 − k
× [e−(b0−k)t2 − e−(b0−k)t1 ] + e−(a0+b0)t1 t1 > t2.

(4.5)

From (4.5) we can easily derive other statistics of the default
times τ A and τ B. For example, the joint density of the survival
probability and the marginal distributions of τ A and τ B are given
by, respectively:

f (t1, t2) =



a0
(b1 + 1)m

m−
k=0

m
k


(b0 + k)bm−k

1

× e−(a0−k)t1−(b0+k)t2 t1 ≤ t2;
b0

(a1 + 1)n

n−
k=0

n
k


(a0 + k)an−k

1

× e−(b0−k)t2−(a0+k)t1 t1 > t2,

and

FA(t1) = 1 −
b0

(a1 + 1)n

n−
k=0

n
k

 an−k
1

b0 − k

× [e−(a0+k)t1 − e−(a0+b0)t1 ] − e−(a0+b0)t1 ,

FB(t2) = 1 −
a0

(b1 + 1)m

m−
k=0

m
k

 bm−k
1

a0 − k

× [e−(b0+k)t2 − e−(a0+b0)t2 ] − e−(a0+b0)t2 . �

Example 4.3. Assume that a1, b1 ∼ (t + c)−1, where c > 0 is a
constant. More precisely, we assume that

λA
t = a0 + 1{τB≤t}

−n
(t − τ B) + a1

λB
t = b0 + 1{τA≤t}

−m
(t − τ A) + b1

,

where m and n are positive integers such that λA
t and λB

t are
positive.

In this case we can calculate the joint survival probability via
Proposition 4.1 to get:

P{τ A > t1, τ B > t2}

=



m−
k=0

(−1)k+1
mPk

ak0b
m
1

[bm−k
1 e−(a0+b0)t2 − (t2 − t1 + b1)m−k

× e−a0t1−b0t2 ] + e−(a0+b0)t2 t1 ≤ t2;
n−

k=0

(−1)k+1
nPk

bk0a
n
1

[an−k
1 e−(a0+b0)t1 − (t1 − t2 + a1)n−k

× e−a0t1−b0t2 ] + e−(a0+b0)t1 t1 > t2.

The joint density and themarginal distributions of default times τ A

and τ B are given by, respectively:

f (t1, t2) =



m−
k=0

(−1)k+1
mPk

ak0b
m
1

[(m − k)(m − k − 1) + (a0 − b0)

× (m − k)(t2 − t1 + b1) − a0b0(t2 − t1 + b1)2]
× (t2 − t1 + b1)m−k−2e−a0t1−b0t2 t1 < t2;

n−
k=0

(−1)k+1
nPk

bk0a
n
1

[(n − k)(n − k − 1) + (b0 − a0)

× (n − k)(t2 − t1 + a1) − a0b0(t2 − t1 + b1)2]
× (t2 − t1 + a1)n−k−2e−a0t1−b0t2 t1 > t2.
and

FA(t1) = 1 −

n−
k=0

(−1)k+1
nPk

bk0a
n
1

[an−k
1 e−(a0+b0)t1

−(t1 + a1)n−ke−a0t1 ] − e−(a0+b0)t1;

FB(t2) = 1 −

m−
k=0

(−1)k+1
mPk

ak0b
m
1

[bm−k
1 e−(a0+b0)t2

−(t2 + b1)m−ke−b0t2 ] − e−(a0+b0)t2 . �

4.2. Multiple firm case

Wenowextend the formulae of the joint default probability and
density function to themore generalmultiple firm case. To bemore
precise, let us assume that I > 2, and that the default intensities
are given by

λi
t = ai,0(t) +

I−
j=1

ai,j(t − τ j)1{τ j≤t}, i = 1, . . . , I, (4.6)

where ai,i = 0 and ai,j’s are deterministic functions satisfying (H3).
We try to find an internal relationship between the given default
intensities and their joint density function. To this end we first
introduce the following intensity dynamics:

λ
i,k
t = ai,0(t) +

k−
j=1

ai,j(t − τ̃ j)1{τ̃ j≤t}, i = 1, . . . , I, (4.7)

where 1 ≤ k ≤ I . We note that λ
i,k
t ’s do not jump at defaults by

τ̃ j for j ≥ k + 1. In fact, the random variables can be split into two
groups: {τ̃ 1, τ̃ 2, . . . , τ̃ k

} and {τ̃ k+1, τ̃ k+2, . . . , τ̃ I
}. The first group

has an impact on the second group, but not vice versa. In case of
k = 1, for example τ̃ 1 has a default intensity of a1,0(t) so that
P{τ̃ 1 < t} = 1 − e−

 t
0 a1,0(s)ds, which does not depend on τ̃ j

for j ≠ 1. However, τ̃ j’s rely on τ̃ 1 because a1,0(t) contributes to
P{τ̃ j < t} as can be seen in the two-firm case. In particular, λi,k

t ’s
are identical to λi

t ’s when k = I .
For 1 ≤ m ≤ I , let us denote f km(t1, t2, . . . , tm) to be the

joint density function of the default times τ̃ 1, τ̃ 2, . . . , τ̃m with the
intensity dynamics in (4.7). For instance, f 11 (t1) will be the density
function of τ̃ 1 with the intensity λ

1,1
t = a1,0(t). Thus, f 11 (t1) =

a1,0(t1)e−
 t1
0 a1,0(s)ds. It can be easily seen that f 22 (t1, t2) becomes

the joint density function of τ̃1 and τ̃2 with the intensity dynamics:

λ
1,2
t = a1,0(t) + a1,2(t − τ̃ 2)1{τ̃2≤t};

λ
2,2
t = a2,0(t) + a2,1(t − τ̃ 1)1{τ̃1≤t}.

Our goal is here to find f II (t1, t2, . . . , tI) representing the joint
density function of τ 1, τ 2, . . . , τ I with the default intensities in
(4.6).We shall obtain a relation between f kk and f k+1

k+1 . For notational
convenience f kk will be denoted by fk unless the notation becomes
confusing.

Proposition 4.4. Assume that {λ
i,k
t }

I
i=1 are given by (4.7), and

assume that (H3) is in force. Then the following recursive relation
holds:

fk+1(t1, t2, . . . , tk+1) =


k−

j=0

ak+1,j(tk+1 − tj)



× exp


−

k−
j=0

∫ tk+1

tj
ak+1,j(s − tj)ds


fk(t1, t2, . . . , tk),

(4.8)

where 0 = t0 < t1 < t2 < · · · < tk+1.
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Proof. We first assume that t1 < t2 < · · · < tk+1. Given
{λ

i,k+1
t }

I
i=1 by (4.7), we denote the joint distribution of τ̃ 1, . . . , τ̃ k+1

by Fk+1(t1, . . . , tk+1)
△
= P{τ̃ 1

≤ t1, . . . , τ̃ k+1
≤ tk+1). Note that

Fk+1(t1, . . . , tk+1) = P{τ̃ 1
≤ t1, τ̃ 2

≤ t2, . . . , τ̃ k
≤ tk}

− E{1{τ̃1≤t1}1{τ̃2≤t2} · · · 1{τ̃ k≤tk}1{τ̃ k+1>tk+1}
}.

Now we apply the change of measure as in the previous sections
to get

E{1{τ̃1≤t1}1{τ̃2≤t2} · · · 1{τ̃ k≤tk}1{τ̃ k+1>tk+1}
}

= EPk+1

1{τ̃1≤t1}1{τ̃2≤t2} · · · 1{τ̃ k≤tk} exp


−

∫ tk+1

0
λk+1,k+1
s ds


= EPk+1


1{τ̃1≤t1}1{τ̃2≤t2} · · · 1{τ̃ k≤tk}

× exp


−

k−
j=0

∫ tk+1

τ̃ j
ak+1,j(s − τ̃ j)ds



=

∫ t1

0

∫ t2

0
· · ·

∫ tk

0
exp


−

k−
j=0

∫ tk+1

uj
ak+1,j(s − uj)ds


× fk(u1, u2, . . . , um)du1du2 . . . dum,

where τ̃ 0
≡ 0 and the last equality follows from the fact that under

themeasurePk+1λ
i,k+1
t = λ

i,k
t for t ≤ tk+1 and i = 1, . . . , k. Denote

Gk+1(t1, . . . , tk+1)
△
= P{τ̃ 1

≤ t1, . . . , τ̃ k
≤ tk, τ̃ k+1 > tk+1}. Then,

it holds that

∂kG(t1, t2, . . . , tk+1)

∂t1∂t2 . . . ∂tk

= exp


−

k−
j=0

∫ tk+1

tj
ak+1,j(s − tj)ds


fk(t1, t2, . . . , tk).

(4.9)

Since we have

∂k+1F(t1, t2, . . . , tk+1)

∂t1∂t2 . . . ∂tk+1
= −

∂k+1G(t1, t2, . . . , tk+1)

∂t1∂t2 . . . ∂tk+1
,

−fk+1(t1, t2, . . . , tk+1) is equal to the derivative of (4.9) with
respect to tk+1. �

We now consider the general case. In light of the two-firm case,
we shall extend the domain of joint density function from the
simplex D

△
= {(t1, t2, . . . , tI) ∈ RI

+
: t1 < t2 < · · · < tI} to

the whole RI
+
. To this end, we partition the space RI

+
as follows.

Let σ be a permutation of {1, . . . , I} (we shall simply denote σ(x)
by (x) if the context is clear), and denote P(I) to be all such
permutations. Clearly |P(I)| = I!. For each σ ∈ P(I), we denote
the corresponding rearrangement of (t1, . . . , tI) by (t(1), . . . , t(I)),
and denote

D(σ ) △
= {(t1, t2, . . . , tI) ∈ RI

+
: t(1) < t(2) < · · · < t(I)},

σ ∈ P(I).

Clearly, the space RI
+

is partitioned into I! disjoint regions D(σ ),
σ ∈ P(I).We assume that all τ i’s are continuous randomvariables
so that the probability P{τ i

= τ j
} = 0, if j ≠ j. Therefore we need

only consider the case when none of the two times of t1, t2, . . . , tI
is equal. We now extend the joint density function fI to the whole
space, and denote it by gI(t1, t2, . . . , tI), (t1, t2, . . . , tI) ∈ RI

+
.

For any σ ∈ P(I), we permute the default times accordingly,
and denote them by (τ (1), . . . , τ (I)). We then define the corre-
sponding intensities, denoted by (λ

(1)
t , . . . , λ

(I)
t ), as follows

λ
(i)
t = a(i),0(t) +

I−
j=1

a(i),(j)(t − τ (j))1{τ (j)≤t}, i = 1, . . . , I, (4.10)

where (i) and (j) are the images of i and j under the permutation
σ , respectively. Now, for each σ ∈ P(I) we can apply Proposi-
tion 4.4 on the region D(σ ), with (λ1

t , . . . , λ
I
t) being replaced by

(λ
(1)
t , . . . , λ

(I)
t ), to obtain the joint density function on D(σ ), which

we denote by f (σ )
I . We can then define

gI(t1, t2, . . . , tI) = f (σ )
I (t(1), t(2), . . . , t(I)),

if (t1, t2, . . . , tI) ∈ D(σ ), σ ∈ P(I). (4.11)
It is noweasy to check that gI is indeed the joint density function

of τ 1, . . . , τ I . In other words, we have proved the following result
for the joint density function on the whole space.

Proposition 4.5. Assume (H1)–(H3). The joint distribution of τ1, τ2,
. . . , τI can be expressed as

P{τ 1
≤ t1, τ 2

≤ t2, . . . , τ I
≤ tI}

=

∫ t1

0

∫ t2

0
· · ·

∫ tI

0
gI(u1, u2, . . . , uI)du1du2 · · · duI

=

−
σ∈P(I)

∫
· · ·

∫
D(σ )∩RI

f (σ )
I (u(1), u(2), . . . , u(I))

× du(1)du(2) · · · du(I),

where gI and f (σ )
I ’s are defined by (4.10)–(4.11), (u(1), u(2), . . . , u(I))

is the reordering of (u1, u2, . . . , uI) under the permutation σ ∈

P(I), and RI
△
= [0, t1] × · · · × [0, tI ]. �

To conclude this section we look at a special case where the
joint density function could be written down more explicitly. We
assume that

ai,j(t) =
ai,j

ci,jet + 1
, t ≥ 0, i = 1, . . . , I, j = 0, . . . , I.

We assume further that ai,i = 0, and ci,0 = 0 so that ai,0(t) = ai,0.
Then by Proposition 4.4, we see that for any 1 ≤ k ≤ I , it holds that

fk+1(t1, t2, . . . , tk+1) =


k−

j=0

ak+1,j

ck+1,je(tk+1−tj) + 1



×

k∏
j=0


ck+1,j + e−(tk+1−tj)

ck+1,j + 1

ak+1,j

fk(t1, t2, . . . , tk),

and f1(t1) = a1,0e−a1,0t1 . In particular, if ci,j ≡ 0 for all i and j, then
aij(t) = aij so that we have amore explicit form of the joint density
function:
fI(t1, t2, . . . , tI)

=

I∏
i=1




i−1−
j=0

ai,j


e
−


I−i∑
k=0

aI−i+1,k−
i∑

k=2
aI−k+2,I−i+1


tI−i+1


where t1 < t2 < · · · < tI . The general version of joint density
function is then given by

f (σ )
I (t(1), t(2), . . . , t(I))

=

I∏
i=1




i−1−
j=0

a(i),(j)


e
−


I−i∑
k=0

a(I−i+1),(k)−
i∑

k=2
a(I−k+2),(I−i+1)


t(I−i+1)


where f (σ )

I is defined on D(σ )
= {(t1, t2, . . . , tI) ∈ RI

+
: t(1) <

t(2) < · · · < t(I)} for each σ ∈ P(I).
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5. Dependent mortality models

In this sectionwe turn our attention to the potential application
of the correlated intensity model to problems in actuarial science.
One such problem is to price insurance products involvingmultiple
lives. The most commonly seen examples would be the pension
plan where the multiple life status plays a decisive role. Although
the study ofmore generalmodels is possible,wewould like to focus
on the case for married couples, because some recently discovered
empirical evidence (cf. e.g., Hu and Goldman (1990), Martikainen
and Valkonen (1996), and Valkonen et al. (2004), tomention a few)
indicates that the structure of the correlated intensities could fit
well in these situations. We should note that the results in this
section could also be applied to any two-firmmodels. In these cases
they will be the natural extensions of the results in Jarrow and Yu
(2001).

We begin by describing the so-called baseline mortality of a
certain group of lives. We denote Txi , i = 1, . . . , I , to be the
future life time random variables, which represents the remaining
lifetimes of these individuals with current age xi’s, respectively.
The force of mortality of each life, denoted by λxi , i = 1, . . . , I , is
defined by

P{Txi > t} = exp

−

∫ t

0
λxi(s)ds


, i = 1, . . . , I.

It is clear that if we compare the future life time random variable
to the default time, then the force of mortality should be the same
as default intensity.

5.1. Dependent mortality of married couple

We now assume that I = 2, and the two lives under consider-
ation are actually a married couple. Moreover, for technical con-
venience in what follows we assume that the baseline mortality of
both individuals follows theGompertz’s law (cf. Bower et al., 1997).
That is, we assume that

λx1(t) = h1eg1(x1+t), λx2(t) = h2eg2(x2+t),

where hi > 0 and gi > 0 are theGompertz parameters, for i = 1, 2.
Our main assumption for actual mortalities of the married

couple, denoted by µxi , i = 1, 2, is that they are correlated in the
following way: of the mortality intensity correlation of x1 and x2
given as

µ
x1
t = λx1(t) + 1{Tx2≤t}γx1(t − Tx2)

µ
x2
t = λx2(t) + 1{Tx1≤t}γx2(t − Tx1)

(5.1)

where γxi , i = 1, 2, are deterministic functions such that the force
of mortality µ

xi
t ’s are positive for all t > 0.

We first give a easy result on the joint survival probability. We
note that such a result seems to be new in the actuarial context.

Proposition 5.1. Suppose that the forces ofmortalities of themarried
couple are give by (5.1), and assume further that the functions γxi ,
i = 1, 2, take the following form:

γx1(t) =
n1

r1et + 1
, γx2(t) =

n2

r2et + 1
,

where r1, r2 are positive constant and n1, n2 are positive integers. Then
the joint survival probability of Tx1 and Tx2 is given by

P{Tx1 > t1, Tx2 > t2}
=



c(t1, t2)
(r2 + 1)n2

n2−
k=0

n2

k

 h1

g1
rn2−k
2 e−k(t2+x1)+

h1
g1

eg1(x1+t1)

×


∆1

k


λx1(t2)

h1


− ∆1

k


λx1(t1)

h1


+ c(t2, t2) t1 ≤ t2;

c(t1, t2)
(r1 + 1)n1

n1−
k=0

n1

k

 h2

g2
rn1−k
1 e−k(t1+x2)+

h2
g2

eg2(x2+t2)

×


∆2

k


λx2(t1)

h2


− ∆2

k


λx2(t2)

h2


+ c(t1, t1) t1 > t2,

(5.2)

where ∆i
k(t) =

 t
0 y

k
gi e−

hi
gi
ydy for i = 1, 2 and

c(t1, t2) = exp

−

h1

g1
[eg1(x1+t1) − eg1x1 ] −

h2

g2
[eg2(x2+t2) − eg2x2 ]


.

Proof. The proof is a direct application of the two-firm case in
the counter-party risk model. Indeed, applying Proposition 4.1, or
more precisely, applying (4.4)with τ A

= Tx1 and τ B
= Tx2 wehave,

for t1 ≤ t2,

P{Tx1 > t1, Tx2 > t2}

= c(t1, t2)
∫ t2

t1
λx1(x) e

−
 t2
x γx2 (s−x)ds−

 x
t1

λx1 (s)dsdx

+

∫
∞

t2
λx1(x)e

−
 x
t1

λx1 (s)dsdx


= c(t1, t2)
∫ t2

t1

[
r2 + e−(t2−x)

r2 + 1

]n2
λx1(x)e

−
 x
t1

λx1 (s)dsdx

+ c(t1, t2)

−e−

 x
t1

λx1 (s)ds
∞

t2

=
c(t1, t2)

(r2 + 1)n2

∫ t2

t1
[r2 + e−(t2−x)

]
n2h1

× eg1(x1+x)− h1
g1

[eg1(x1+x)
−eg1(x1+t1)

]dx + c(t1, t2)e
−
 t2
t1

λx1 (s)ds

=
c(t1, t2)

(r2 + 1)n2

n2−
k=0

n2

k


h1r

n2−k
2 e−kt2+g1x1+

h1
g1

eg1(x1+t1)

×

∫ t2

t1
e(k+g1)x−

h1
g1

eg1(x1+x)
dx + c(t2, t2)

=
c(t1, t2)

(r2 + 1)n2

n2−
k=0

n2

k

 h1

g1
rn2−k
2 e−k(t2+x1)+

h1
g1

eg1(x1+t1)

×

∫ eg1(x1+t2)

eg1(x1+t1)
y

k
g1 e−

h1
g1

ydy + c(t2, t2)

=
c(t1, t2)

(r2 + 1)n2

n2−
k=0

n2

k

 h1

g1
rn2−k
2 e−k(t2+x1)+

h1
g1

eg1(x1+t1)

×

∆1

k(e
g1(x1+t2)) − ∆1

k(e
g1(x1+t1))


+ c(t2, t2)

where ∆1
k(t) =

 t
0 y

k
g1 e−

h1
g1

ydy; and

c(t1, t2) = exp

−

∫ t1

0
λx1(s)ds −

∫ t2

0
λx2(s)ds


= exp


−

h1

g1
[eg1(x1+t1) − eg1x1 ] −

h2

g2
[eg2(x2+t2) − eg2x2 ]


,

proving (5.2) for the case t1 < t2. Similarly, for t2 ≤ t1 we have

P{τ A > t1, τ B > t2} =
c(t1, t2)

(r1 + 1)n1

n1−
k=0

n1

k

 h2

g2

× rn1−k
1 e−k(t1+x2)+

h2
g2

eg2(x2+t2) 
∆2

k(e
g2(x2+t1)) − ∆2

k(e
g2(x2+t2))
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+ c(t1, t2),

where ∆2
k(t) =

 t
0 y

k
g2 e−

h2
g2

ydy. Note that when t1 = t2 = t , we
have P{τ A > t, τ B > t} = c(t, t). This completes the proof. �

Having obtained the joint probability at hand, we now turn our
attention to the two important elements in the multi-life models:
the joint-life status and the last survivor status. We recall that if Tx1 ,
Tx2 , . . . , Txn be n future life time random variables, then their joint-
life status and last-survivor status are given by, respectively:

Tm = Tx1,...,xn
△
= min{Tx1 , Tx2 , . . . , Txn},

TM = Tx1,...,xn
△
= max{Tx1 , Tx2 , · · · , Txn}.

Clearly, the joint-life status and the last survivor status are,
respectively, the smallest and the largest order statistics of the n
lives. In the default risk literature, Tm is often called the first-to-
default time, and TM the last-to-default time, for obvious reasons.

The dependentmortality of themarried couple could be consid-
ered as a special two firm case, which could be treatedmore specif-
ically. We first observe the following relationships among Tx1 , Tx2 ,
Tm, and TM :
TM + Tm = Tx1 + Tx2 , TMTm = Tx1Tx2 .
Furthermore, note that
{Tx1 ≤ t} ∩ {Tx2 ≤ t} = {TM ≤ t},
{Tx1 ≤ t} ∪ {Tx2 ≤ t} = {Tm ≤ t}.
Thus, denoting FTxi , i = 1, 2, Fm and FM to be the distribution func-
tion of Tm, TM , Tx1 , and Tx2 , respectively, we have
FM(t) + Fm(t) = FTx1 (t) + FTx2 (t), t ≥ 0.

Consequently, given that we know the marginal distributions Fxi ,
i = 1, 2, we can derive FM if we can calculate Fm, and vice versa.
For example, assume that similar to the counterparty risks studied
in the previous sections, the force of mortalities of the couple, de-
noted by µx1 and µx2 , respectively, satisfy the following relations:

µx1(t) = a0 + 1{Tx2≤t}
n

a1e(t−Tx2 )
+ 1

;

µx2(t) = b0 + 1{Tx1≤t}
m

b1e(t−Tx1 )
+ 1

.

Then, borrowing the formula (5.5) to be proved in the next subsec-
tion, we see that
Fm(t) = 1 − P{Tm > t} = 1 − e−(a0+b0)t .

Consequently we obtain
FM(t) = FTx1 (t) + FTx2 (t) − Fm(t)

= 1 −
b0

(a1 + 1)n

n−
k=0

n
k

 an−k
1

b0 − k
[e−(a0+k)t

− e−(a0+b0)t ] − e−(a0+b0)t + 1 −
a0

(b1 + 1)m

×

m−
k=0

m
k

 bm−k
1

a0 − k
[e−(b0+k)t

− e−(a0+b0)t ]

− e−(a0+b0)t − 1 + e−(a0+b0)t . (5.3)
Finally, taking the derivative we can obtain the density of TM :

fM(t) =
b0

(a1 + 1)n

n−
k=0

n
k

 an−k
1

b0 − k
[(a0 + k)e−(a0+k)t

−(a0 + b0)e−(a0+b0)t ] +
a0

(b1 + 1)m

m−
k=0

m
k

 bm−k
1

a0 − k

× [(b0 + k)e−(b0+k)t
− (a0 + b0)e−(a0+b0)t ]

+ (a0 + b0)e−(a0+b0)t . (5.4)
Wenote that the formulae (5.3) and (5.4) are also valid for the last-
to-default time (or the second-to-default time) in a two-firm coun-
terparty risk models.

5.2. Joint-life status in multi-life model

We now turn our attention to the joint-life status for multiple
lifemodels. Since this casewill naturally correspond to the first-to-
default time for a multiple-firm counterparty risk model, we shall
return to the language in Section 4 to make the arguments more
coherent, and thus our results will be more general. The joint-life
status of themarried couplewill simply be the special casewith I =

2. It should be worth noting that the first-to-default time is usually
the starting point of the chain of events in a mutually dependent
economy, and it is often used as a main factor to characterize the
default dependence, for instance, for a group of high quality credits
(cf., e.g., Yu, 2007).

We begin by assuming that there are I firms in an economy (or
I lives), and their default intensities (or force of mortalities) have
the following relationship:

λi
t = ai0(t) +

−
k≠i

aik(t)1{τ k≤t}

= ai0(t) +

−
k≠i

aik(t)N
i
s, i = 1, . . . , I,

where ai0’s and aik’s are {F X
t }-adapted and {H i

t}-adapted processes,
respectively, and both are positive processes so that the intensities
λi
t are positive processes satisfying (H1). The survival probability

of the first-to-default time, defined by τm
△
= min{τ 1, τ 2, . . . , τ I

},
can be expressed as

P{τm > t} = P{τ 1 > t, τ 2 > t, . . . , τ I > t}.

Applying (3.9) we obtain that

P{τm > t} = P{τ 1 > t, τ 2 > t, . . . , τ I > t}

= E1,2,...,I

exp


−

∫ t

0
(λ1

s + λ2
s + · · · + λI

s)ds


= E1,2,...,I

exp


−

∫ t

0
[a10(s) + a20(s) + · · · + aI0(s)]ds


.

The third equality in the above follows from the fact that 1{τ i≤s} =

0 for s ≤ t under the probability measure P1,2,...,I .
In the special case when ai0’s are all deterministic, the

calculation becomes even simpler:

P{τm > t} = exp

−

∫ t

0
[a10(s) + a20(s) + · · · + aI0(s)]ds


. (5.5)

Thus the density function of the first-to-default time τm will simply
be

fm(t) = −
d
dt

P{τm > t}

=


I−

i=1

ai0(t)


exp


−

∫ t

0


I−

i=1

ai0(s)


ds


.

It is worth noting that in this simple case, the distribution of the
first-to-default time τm is not affected by the default processesN i’s.

Next, we consider the conditional survival probability of τm,
given Ft . Applying (3.10) we have

P{τm > T |Ft} = P{τ 1 > T , τ 2 > T , . . . , τ I > T |Ft}

= 1
{τ1

t >t}1{τ2
t >t} · · · 1

{τ I
t >t}E

1,2,...,I

exp


−

∫ T

t
[λ1

s
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+ λ2
s + · · · + λI

s]ds
Ft


= 1{τm>t}E1,2,...,I


exp


−

∫ T

t
[a10(s)

+ a20(s) + · · · + aI0(s)]ds
Ft


.

Again, the third equality holds because 1{τ i≤s} = 0 for t ≤ s ≤ T
under the probability measure P1,2,...,I . Furthermore, in the special
cases where ai0’s are all deterministic, we have

P{τm > T |Ft}

= 1{τm>t} exp

−

∫ T

t
[a10(s) + a20(s) + · · · + aI0(s)]ds


.

In the rest of the section we apply Theorem 3.2 to the afore-
mentioned special case where the first-to-default time is the main
reason of correlation among the defaults. Such a casewas proposed
in Yu (2007), while considering a population of high quality credits
with relatively infrequent defaults. We note that in Yu (2007) the
following type of intensities were considered:

λi
t

△
= (a1 + a21{τm≤t})1{τ i>t}, t ≥ 0, i = 1, . . . , n,

where τm = min{τ 1, τ 2, . . . , τ I
}. Let us extend the model slightly

by allowing each firm to have its own coefficients a1 and a2. That
is, in what follows we assume that

λi
t1{τ i>t} = (ai + bi1{τm≤t})1{τ i>t}, i = 1, . . . , I.

We observe that, if we denote τ−i
m = min{τ 1, . . . , τ i−1, τ i+1,

. . . , τ I
} to be the first-to-default time among all but firm i, then

it is readily seen that

λi
t = ai + bi1{τ−i

m ≤t}.

We assume that ai and ai + bi are all positive so that the λi
t > 0 for

all t ≥ 0, and all i.
To obtain the marginal distribution of τ i, we claim that

P{τ i > t} =
(A − ai)e−(ai+bi)t − bie−At

A − ai − bi
,

where A =
∑I

k=1 ak.
To see this, we first apply Theorem 3.2-(ii) to get

P{τ i > t} = EPi

exp


−

∫ t

0
λi
sds


= EPi

exp


−

∫ t

0
(ai + bi1{τ−i

m ≤t})ds


= EPi

exp


(−ait − bi − (t − τ−i

m )1
{τ−i

m ≤t})


=

∫ t

0
e−ait−bi(t−x)Pi(τ−i

m ∈ dx) +

∫
∞

t
e−aitPi(τ−i

m ∈ dx)

= (A − ai)e−(ai+bi)t
∫ t

0
e[bi−(A−ai)]xdx + (A − ai)e−ait

×

∫
∞

t
e−(A−ai)xdx

= (A − ai)e−(ai+bi)t
e[bi−(A−ai)]t − 1
bi − (A − ai)

+ (A − ai)e−ait
e−(A−ai)t

A − ai

=
A − ai

bi − (A − ai)
[e−At

− e−(ai+bi)t ] + e−At

=
(A − ai)e−(ai+bi)t − bie−At

A − ai − bi
.

In the above, the fifth equality follows from Pi(τ−i
m ∈ dx) =

(A − ai)e−(A−ai)xdx since EPi
[1

{τ−i
m >x}] = e−(A−ai)x.

Clearly, the marginal density function of τ i can be obtained by
simply differentiating the expression above:

fi(t) =
(ai + bi)(A − ai)e−(ai+bi)t − biAe−At

A − ai − bi
.

In the special case where ai ≡ r , we have

P{τ i > t} =
(I − 1)re−(r+bi)t − bie−Irt

(I − 1)r − bi
. (5.6)

One can regard r as a constant interest rate so that the intensity of a
firm is influenced by an interest rate and an impact from a first-to-
default time among I firms except the firm. The marginal density
function of τ i is also given by

fi(t) =
(I − 1)r(r + bi)e−(r+bi)t − Irbie−Irt

(I − 1)r − bi
.

It is easy to see that as I → ∞, P(τ i > t) in (5.6) converges to
e−(r+bi)t . This means that enlarging the number of firms causes the
intensity of τ i to become r + bi. Yu (2007) states that as I increases
the first default occurs sooner so that τ i is equal to zero and the
intensity of τ i is equal to r+bi almost surely in the limit of I → ∞.

6. Flight to quality

The term ‘‘flight to quality’’ refers to the phenomenon that
investors move their capital away from riskier investments to the
safest possible investment vehicles, e.g., treasury bonds. There is
ample evidence of such actions in the current economic downturn.
In this section we apply the results in the previous sections to
give some quantitative description of the impact of such a flight
on the term structure of interest rates in the bond market, and
consequently the prices of treasury bonds. Our discussion will be
based on the model suggested by Collin-Dufresne et al. (2003)
and Collin-Dufresne et al. (2004), with modifications using the
results established in this paper.

In Collin-Dufresne et al. (2004) the flight to quality was
described by assuming that the risk-neutral dynamics of the risk-
free interest rate process is given by

rt = r0 + J1{τ≤t}, t ≥ 0, (6.1)

where τ is an exogenous default time, r0 ≥ 0, and J ≥ −r0.
Roughly speaking, the model suggests that the effect of a certain
default (or any event) is that the investorsmove into (or out of) the
bond market which triggers a sudden decrease (J > 0) or increase
(J < 0) of the interest rate. The requirement that r0 + J ≥ 0
is obvious. To guarantee that the default time is exogenous, it is
commonly assumed that τ is a totally inaccessible stopping time,
with a constant intensity λ.

We now look a little closer to this model. Let us assume that
there are actually I firms in the market, whose performance are
closely watched by the investors. We denote their default times
by τ i, i = 1, . . . , I , with intensities λi, respectively. It should be
reasonable to assume that it is not the default of any single firm
that triggers flight to quality, but rather the collective default of a
group (may assume all) of these firms that do. In other words, we
modify the definition of the interest rate process (6.1) as follows:

rt = r0 + J1{τM≤t}, t ≥ 0, (6.2)

where τM
△
= max{τ 1, . . . , τ I

} is the last-to-default time. Our
purpose is then to derive the pricing formula for the defaultable
zero-coupon bonds.
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We first recall the process N i
t

△
= 1{τ i≤t}, i = 1, . . . , I . It is

readily seen that (6.2) can be written as rt = r0 + J
∏I

i=1 N
i
t =

r(N1
t ,N

2
t , . . . ,N

I
t ). Now recall the general setup in Section 2, in

what follows we assume that the default-free interest rate takes
the following form:

rt = r0(Xt) + J
I∏

i=1

N i
t = r(Xt ,N1

t ,N
2
t , . . . ,N

I
t ),

where r0 is a deterministic function, and thus r is an {Ft}-adapted
process (see (2.1)).

The prices of a default-free zero-coupon bond and the default-
able zero-coupon bonds issued by firm i are thus given by, respec-
tively,

p(t, T ) = E

exp


−

∫ T

t
rsds

Ft


,

and

vi(t, T ) = E

exp


−

∫ T

t
rsds


1{τ i>T }

+ exp


−

∫ T

t
rsds


δi1{τ i≤T }

Ft


, (6.3)

where δi’s are the recovery rates of firm i, i = 1, . . . , I . Now if we
recall the definition (2.2) for the filtrations {H i

t}, i = 1, . . . , I and
denote r−i

s = r(Xs,N1
s , . . . ,N

i−1
s , 0,N i+1

s . . . ,N I
s ), then

rt 1{τ i>T } = r(Xt ,N1
t , . . . ,N

i−1
t , 0,N i+1

t . . . ,N I
t )1{τ i>T }, t ≤ T

and one can easily derive the following:

E

exp


−

∫ T

t
rsds


1{τ i>T }

Ft



= 1{τ i>t}

E

exp


−
 T
t rsds


1{τ i>T }|H

i
t


E{1{τ i>t}|H

i
t}

= 1{τ i>t}

E

exp


−
 T
t r−i

s ds


E

1{τ i>T }|H

i
T

H i
t


E{1{τ i>t}|H

i
t}

= 1{τ i>t}

E

exp


−
 T
t r−i

s ds

exp


−
 T
0 λi

sds
H i

t


exp


−
 t
0 λi

sds


= 1{τ i>t}E

exp


−

∫ T

t
(r−i

s + λi
s)ds

H i
t


. (6.4)

In the above, the second equality is due to the fact that
exp(−

 T
t r−i

s ds) isH i
T -measurable. Consequently, combining (6.3)

and (6.4) we see that the prices of zero-coupon bonds with matu-
rity T issued by firm i at time t are given by

vi(t, T ) = δip(t, T ) + (1 − δi)1{τ i>t}

× E

exp


−

∫ T

t
(r−i

s + λi
s)ds

H i
t


, i = 1, . . . , I. (6.5)

Using the representation theorem developed in Section 3 we
can write the pricing formulae (6.5) in a different way. Indeed, if
we define Z i

t = 1{τ i>t} exp{
 t
0 λi

sds} and dPi
= Z i

TdP (recall (3.1)
and (3.5)), then we have

E

exp


−

∫ T

t
rsds


1{τ i>T }

Ft


= E


Z i
T exp


−

∫ T

t
rsds


exp


−

∫ T

0
λi
sds
Ft



= Z i
tE

Pi

exp


−

∫ T

t
rsds


exp


−

∫ T

0
λi
sds
Ft


= 1{τ i>t}E

Pi

exp


−

∫ T

t
(rs + λi

s)ds
Ft


. (6.6)

We remark that under Pi one has

1{τ i>t}E
Pi

exp


−

∫ T

t
(rs + λi

s)ds
Ft


= 1{τ i>t}E

Pi

exp


−

∫ T

t
(r−i

s + λi
s)ds

Ft


.

Thus the price formula (6.5) can be written as

vi(t, T ) = δip(t, T ) + (1 − δi)1{τ i>t}

× EPi

exp


−

∫ T

t
(rs + λi

s)ds
Ft


, i = 1, . . . , I.

In the rest of the section we specify the parameters to calculate
the prices of the defaultable zero coupon bond in the case of flight
to quality. For simplicity we shall consider the two-firm case (I =

2). Assume that the default intensities of the two firms A and B are
given by

λ1
t = a0 + 1{τ2≤t}

n

a1e(t−τ2) + 1
,

λ2
t = b0 + 1{τ1≤t}

m

b1e(t−τ1) + 1
;

and we assume that the interest rate of the defaultable bond is
given

rt = r0 + J1{τM≤t} = r0 + JN1
t N

2
t , t ≥ 0,

where τM = max{τ 1, τ 2
}, and r0 is a constant.

We begin by looking at the default-free zero-coupon bond price
p(t, T ). We first note that in this it holds that

p(t, T ) = E

exp


−

∫ T

t
rsds

Ft


= 1{τM≤t}e−(r0+J)(T−t)

+ 1{τM>t}

× E

exp


−

∫ T

t
(r0 + J1{τM≤s})ds

Ft


= 1{τM≤t}e−(r0+J)(T−t)

+ 1{τM>t}

× E

exp


−r0(T − t) − J(T − τM)1{t<τM≤T }

Ft


= 1{τM≤t}e−(r0+J)(T−t)
+ 1{τM>t}

×

∫ T

t
e−r0(T−t)−J(T−u)P{τM ∈ du|Ft}

+ 1{τM>t}

∫
∞

T
e−r0(T−t)P{τM ∈ du|Ft}. (6.7)

Here P(τM > du|Ft) denotes the condition distribution of τM given
Ft . Note that 1{τM>u} = 1{τ1>u} + 1{τ2>u} − 1{τ1>u}1{τ2>u}, we have

P{τM > u|Ft} = E{1{τ1>u}|Ft} + E{1{τ2>u}|Ft}

− E{1{τ1>u}1{τ2>x}|Ft}. (6.8)

Applying Theorem3.2-(iii) and using the arguments in Example 4.2
we can derive

P{τ 1 > u|Ft} = E{1{τ1>u}|Ft}

= 1{τ1>t}E
P1

exp


−

∫ u

t
λ1
s ds
Ft
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= 1{τ1>t}1{τ2≤t}e
−a0(u−t)


a1 + e−(u−τ2)

a1 + e−(t−τ2)

n

+ 1{τ1>t}1{τ2>t}
b0

(a1 + 1)n

n−
k=0

n
k

 an−k
1

b0 − k

× [e−(a0+k)(u−t)
− e−(a0+b0)(u−t)

]

+ 1{τ1>t}1{τ2>t}e
−(a0+b0)(u−t). (6.9)

Here we used the fact that for any fixed u ≥ t , the random

variable 1{τ2≤t}e
−a0(u−t)

[
a1+e−(u−τ2)

a1+e−(t−τ2)
]
n is Ft-measurable (hence the

conditional expectation with respect to Ft disappears). Similarly,
we can calculate P{τ 2 > u|Ft} correspondingly. Moreover, note
that λ1

s = a0 and λ2
s = b0 for s ≤ u ≤ T under the measure P1,2,

we have

E[1{τ1>u}1{τ2>u}|Ft ]

= 1{τ1>t}1{τ2>t}E
P1,2


exp


−

∫ u

t
(λ1

s + λ2
s )ds


= 1{τ1>t}1{τ2>t}e

−(a0+b0)(u−t). (6.10)

Combining (6.8)–(6.10) we obtain

P{τM > u|Ft}

= 1{τ1>t}1{τ2≤t}e
−a0(u−t)


a1 + e−(u−τ2)

a1 + e−(t−τ2)

n

+ 1{τ2>t}1{τ1≤t}e
−b0(u−t)


b1 + e−(u−τ1)

b1 + e−(t−τ1)

m

+ 1{τ1>t}1{τ2>t}
b0

(a1 + 1)n

n−
k=0

n
k

 an−k
1

b0 − k

× [e−(a0+k)(u−t)
− e−(a0+b0)(u−t)

]

+ 1{τ1>t}1{τ2>t}
a0

(b1 + 1)m

m−
k=0

m
k

 bm−k
1

a0 − k

× [e−(b0+k)(u−t)
− e−(a0+b0)(u−t)

]

+ 1{τ1>t}1{τ2>t}e
−(a0+b0)(u−t). (6.11)

Differentiating (6.11) with respect to uwe obtain−P{τM ∈ du|Ft}.
Plugging this into (6.7), and after some straightforward but tedious
integration, we obtain the price of the default-free zero-coupon
bond:

p(t, T ) = 1{τM≤t}e−(r0+J)(T−t)
+ 1{τM≥t}e−(r0+J)(T−t)

+ 1{τ1>t}1{τ2≤t}
J

[a1 + e−(t−τ2)]n

n−
k=0

n
k


×

an−k
1 e−k(t−τ2)

J − a0 − k
[e−(r0+a0+k)(T−t)

− e−(r0+J)(T−t)
]

+ 1{τ1≤t}1{τ2>t}
J

[b1 + e−(t−τ1)]m

m−
k=0

m
k


×

bm−k
1 e−k(t−τ1)

J − b0 − k
[e−(r0+b0+k)(T−t)

− e−(r0+J)(T−t)
]

+ 1{τ1>t}1{τ2>t}
Jb0

(a1 + 1)n

n−
k=0

n
k

 an−k
1

b0 − k

×

[
e−(r0+a0+k)(T−t)

− e−(r0+J)(T−t)

J − a0 − k

−
e−(r0+a0+b0)(T−t)

− e−(r0+J)(T−t)

J − a0 − b0

]

+ 1{τ1>t}1{τ2>t}
Ja0

(b1 + 1)m

m−
k=0

m
k

 bm−k
1

a0 − k

×

[
e−(r0+b0+k)(T−t)

− e−(r0+J)(T−t)

J − b0 − k

−
e−(r0+a0+b0)(T−t)

− e−(r0+J)(T−t)

J − a0 − b0

]
+ 1{τ1>t}1{τ2>t}

J
J − a0 − b0

× [e−(r0+a0+b0)(T−t)
− e−(r0+J)(T−t)

]. (6.12)

We now consider the zero-recovery zero-coupon bonds issued
by the two firms. In light of (6.6), and note that rs = r0 for t ≤ s ≤ T
since 1{τM≤s} = 0 on the sets {τ 1 > T } and {τ 2 > T }, we have

E

exp


−

∫ T

t
rsds


1{τ i>T }

Ft


= 1{τ i>t}E

Pi

exp

∫ T

t
(rs + λi

s)ds
Ft


= 1{τ i>t}e

−r0(T−t)EPi

exp


−

∫ T

t
λi
sds
Ft


.

Now similar to (6.9) we can compute 1{τ1>t}EP1
{exp{−

 T
t λ1

s ds}|
Ft} and obtain that

1{τ1>t}E
P1

exp


−

∫ T

t
(rs + λ1

s )ds
Ft


= 1{τ1>t}1{τ2≤t}e

−(r0+a0)(T−t)


a1 + e−(T−τ2)

a1 + e−(t−τ2)

n

+ 1{τ1>t}1{τ2>t}
b0

(a1 + 1)n

n−
k=0

n
k

 an−k
1

b0 − k

× [e−(r0+a0+k)(T−t)
− e−(r0+a0+b0)(T−t)

]

+ 1{τ1>t}1{τ2>t}e
−(r0+a0+b0)(T−t). (6.13)

The price of the zero-recovery defaultable bond issued by firm 2
can be derived similarly. We summarize our discussion into the
following main result of this section.

Theorem 6.1. Assume (H1)–(H2). Then the prices of the zero-coupon
bonds by each firm are given by

vi(t, T ) = δi p(t, T ) + (1 − δi)P i(t, T ), i = 1, 2,

where δi
∈ [0, 1], i = 1, 2 are the recovery rates, p(t, T ) is the price

of the default free zero-coupon bond, given by (6.12), and

P i(t, T )
△
= 1{τ i>t}E

Pi

exp


−

∫ T

t
(rs + λi

s)ds
Ft


is the price of the zero-recovery, defaultable zero-coupon bond issued
by firm i, and it is given by (6.13). �

7. Pricing of UVL insurance involving married couples

In this section we try to apply the results in dependent mortal-
ity, or more generally the representation theorem, to the problem
of pricing Universal Variable Life (UVL, for short) Insurance or an-
nuity, especially when the benefit is payable based on themultiple
survivorship of the insured, for instance, the married couples.

The UVL Insurance problem, as a special type of equity-linked
insurance problem, could be treated via the so-called Principle of
Equivalent Utility, and eventually become a problem of indifference
pricing. We refer to Young and Zariphopoulou (2002), Young
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(2003), Ma and Yu (2006), and Ludkovski and Young (2008), for
different visions on such problems. Our discussion will follow
the formulation of Ma and Yu (2006) closely, with necessary
modifications to fit the dependent life models. To our best
knowledge, such a problem has not been explored in the literature.

We begin by recalling briefly the formulation of UVL insurance
problem and the results regarding indifference pricing. Assume
that an investor is accessible to two assets in a liquid market,
one riskless and one risky, denote their prices by X0 and X1,
respectively.We assume that the dynamics of X0 and X1 follow the
stochastic differential equations: for t ≥ 0,
dX0

t = rX0
t dt, X0

0 = x0

dX1
t = µX1

t dt + σX1
t dBt , X1

0 = x1

where {Bt : t ≥ 0} is a Brownian motion. Let us denote by πt
the amount of money invested in the risky asset X1, and byWt the
total wealth of the investor, at time t . At each time t , the amount
π0
t = Wt −πt will be invested in the riskless asset. A self-financing

portfolio is defined by those π such that the corresponding wealth
process {Wt} satisfies the following dynamics:

dWt = rWtdt + (µ − r)πtdt + σπtdBt , t ≥ 0.

For the technical clarity we shall define A to be the set of all
admissible strategies π = {πt : t ≥ 0} that are {F X

t }-adapted
and E

 T
0 |πt |

2dt < ∞. We often denote the solution W = Wπ if
the control π needs to be emphasized.

To be consistent with Section 3 we now specify the filtrations.
Assume that there are two (possibly dependent) lives with current
ages x1 and x2, with future time random variables Txi , i = 1, 2,
respectively. Denote N i

t = 1{Txi≤t}, i = 1, 2. Then, the filtration
{Ft}t≥0 is defined by

Ft = F X
t ∨ F 1

t ∨ F 2
t , t ≥ 0,

where F X
t = σ {Xs, 0 ≤ s ≤ t} and F i

t = σ {N i
s, 0 ≤ s ≤ t}, t ≥ 0,

i = 1, 2. Assuming that σ > 0, then it is easy to see thatF X
t = F B

t ,
t ∈ [0, T ].

An UVL Insurance plan is as follows. Assume that the investor is
also the seller of a death benefit, defined as a lump-sum (e.g., $1)
payable at a terminal time T , contingent on the survivorship of, say,
a married couple. In what follows we denote K = {Kt : t ≥ 0} to
be a generic benefit process, and in particular we denote JLI to be
the benefit of $1 payable to a joint-life status, whereas SLI to be one
corresponding to a last-survivor status. More precisely,

JLIt = 1{Tx1x2≤t}, SLIt = 1{Tx1x2≤t}, t ≥ 0.

The seller is obliged to pay KT at time T , whenever the death
happens before T . The question is then how to price this insurance
contract, and we shall concentrate on the cases when K = JLI or
K = SLI .

To introduce the Principle of Equivalent Utility, let u be a given
utility function. For simplicity let us assume thatu is an exponential
utility function:

u(w) = −
1
α
e−αw, w ∈ R. (7.1)

The expected utility of the total wealth of the seller/investor is
therefore

J(t, w; π) , Et,w{u(Wπ
T − KT )}. (7.2)

Here Et,w{·} denotes the conditional expectation E{·|Wt =

w,N1
t = N2

t = 0}. If KT = JLIT , then KT = 1 unless both spouses
are alive at T . IfKT = SLIT , thenKT = 1 if both spouses are deceased
by T . Note that if KT = 0, then

J(t, w; π) = Et,w{u(Wπ
T )}

△
= J0(t, w; π), π ∈ A .
Thus the cost functional is the same as one in a standard utility
maximization problem in finance. Let us nowdistinguish these two
cases by considering two optimization problems:

V (t, w) = sup
π∈A

J0(t, w; π);

U(t, w) = sup
π∈A

J(t, w; π).

Assume now that the seller will charge the policy KT at time t = 0,
as a lump sum p > 0. Namely, one adds to the initial wealth w by
p. It is not hard to see, the fair (selling) price at each time t , denoted
by p∗

t should be

p∗

t = inf{p : V (t, w) ≤ U(t, w + p), ∀w}.

It can be shown (cf. Ma and Yu, 2006) that the fair price p∗
t satisfies

V (t, w) = U(t, w + p∗

t ), ∀w, t∗ ≥ 0. (7.3)

It has been observed (cf. Ma and Yu (2006) and Young and
Zariphopoulou (2002)) that in many cases the valued functions U
and V are related by U(t, w) = V (t, w)Φ(t, w), and Φ is often
more tractable than the value functions themselves. This often
leads quickly to an explicit solution. For example, in the case when
u is an exponential utility, then one can show that

V (t, w) = −
1
α
exp


−αwer(T−t)

−
(µ − r)2

2σ 2
(T − t)


by solving the corresponding HJB equation, and Φ(t, w) = ϕ(t),
which can be derived by solving an ordinary differential equation
(see Young and Zariphopoulou (2002) andMa and Yu (2006) for its
variation).

Extending the idea of ‘‘separation of variable’’, in what follows
we shall argue that U(t, w) = V (t, w)Φ(t, w) still holds in the
dependent married couple case, and try to derive Φ(t, w) in a
pure probabilistic way, using the formulae for the conditional joint
survival probabilities. Indeed, sinceWT and KT are independent, by
assuming (7.1) we can check that

J(t, w; π) = J0(t, w; π)Et,w{eαKT }, (t, w) ∈ [0, T ] × R+;

and therefore

U(t, w) = V (t, w)Et,w{eαKT }.

Note that we condition on survival of the policyholders regarding
J(t, w; π). Recall (7.2), we see that this implies that Et,w{eαKT } is
equivalent to E{eαKT |F 1

t ∨ F 2
t }, subject to N i

t = 0 for i = 1, 2.
Furthermore, note that eαKT and F X

t are independent, it is easy
to check that E{eαKT |Ft} = E{eαKT |F 1

t ∨ F 2
t }. For notational

convenience in the sequel we shall use the filtration Ft instead of
F 1

t ∨ F 2
t .

Let us first observe the case when KT = JLIT . Then, we have

E{eαKT |Ft} = E{1{Tx1x2>T } + eα1{Tx1x2≤T }|Ft}

= eα
+ (1 − eα)E{1{Tx1x2>T }|Ft}

= eα
+ (1 − eα)E{1{Tx1>T }1{Tx2>T }|Ft}. (7.4)

In the case when KT = SLIT , we have

E{eαKT |Ft} = E{1{Tx1x2>T } + eα1{Tx1x2 ≤T }|Ft}

= eα
+ (1 − eα)E{1{Tx1x2>T }|Ft}

= eα
+ (1 − eα)E{1{Tx1>T } + 1{Tx2>T } − 1{Tx1>T }1{Tx2>T }|Ft}.

(7.5)

Thus, E{eαKT |Ft} will be completely analyzed if one examines
the conditional expectations: E{1{Tx1>T }|Ft}, E{1{Tx2>T }|Ft} and
E{1{Tx1>T }1{Tx2>T }|Ft}.
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Now following the ideas of the representation theorem, let us
define

Z i
t

△
= 1{Txi>t} exp

∫ t

0
µxi(s)ds


, i = 1, 2,

and define

dP i

dP


FT

△
= Z i

T , i = 1, 2;
dP1,2

dP


FT

△
= Z1

T Z
2
T .

Assume that the force of mortalities of the married couple are
similar to those in Section 5:

µxi(t) = λxi(t) + 1{Txj≤t}θxi(t − Txj), i, j = 1, 2; i ≠ j

where

λxi
△
= hiegi(xi+t)

; θxi(t − Txj)
△
=

ni

rie
(t−Txj ) + 1

,

i, j = 1, 2; i ≠ j.

To simplify notations let us recall the process Γ in Section 3. In the
present context we define:

Γ t
xi(s)

△
= exp


−

∫ t

s
µxi(r)dr


;

Λt
xi(s)

△
= exp


−

∫ t

s
λxi(r)dr


= e−

hi
gi

[egi(xi+t)
−egi(xi+s)

]
,

Θ t
xi,xj(s)

△
= exp


−

∫ t

s
θxi(r − Txj)dr


=


ri + e−(t−Txj )

ri + e−(s−Txj )

ni

,

s ≤ t, i, j = 1, 2, i ≠ j.

Our main result of this section is the following theorem.

Theorem 7.1. Assume (H2). Then, the indifference (selling) price of
problem (7.3) is given by

p∗

t =
1
α
e−r(T−t) logEt,w[eαKT ].

Proof. Applying (3.6) we have

E{1{Tx1>T }|Ft}

= E[Z1
T Γ T

x1(0)|Ft}

= Z1
t EP1

{Γ T
x1(0)|Ft} = 1{Tx1>t}EP1

{Γ T
x1(t)|Ft}

= 1{Tx1>t}Λ
T
x1(t)E

P1

1{Tx2≤t}Θ

T
x1,x2(t) + 1{Tx2>t}Θ

T
x1,x2(Tx2)|Ft


.

Since ΘT
x1,x2(t) is Ft-measurable, the first term becomes

1{Tx1>t}Λ
T
x1(t)E

P1
{1{Tx2≤t}Θ

T
x1,x2(t)|Ft}

= 1{Tx1>t}1{Tx2≤t}Λ
T
x1(t)Θ

T
x1,x2(t).

The second term becomes

1{Tx1>t}Λ
T
x1(t)E

P1

1{Tx2>t}Θ

T
x1,x2(Tx2)|Ft


= 1{Tx1>t}Λ

T
x1(t)E

P1

1{t<Tx2≤T }Θ

T
x1,x2(Tx2) + 1{Tx2>T }

Ft


= 1{Tx1>t}1{Tx2>t}Λ

T
x1(t)

∫ T

t

[
r1 + e−(T−u)

r1 + 1

]n1
× P1(Tx2 ∈ du|Ft) + P1(Tx2 > T |Ft)



= 1{Tx1>t}1{Tx2>t}Λ
T
x1(t)

∫ T

t

[
r1 + e−(T−u)

r1 + 1

]n1
× λx2(u)Λ

u
x2(t)du + ΛT

x2(t)



= 1{Tx1>t}1{Tx2>t}
ΛT

x1(t)

(r1 + 1)n1

n1−
k=0

n1

k

 h2

g2
rn1−k
1

× e−k(T+x2)+
h2
g2

eg2(x2+t) 
∆2

k(e
g2(x2+T )) − ∆2

k(e
g2(x2+t))


+ 1{Tx1>t}1{Tx2>t}Λ

T
x1(t)Λ

T
x2(t),

where ∆2
k(t) =

 t
0 y

k
g2 e−

h2
g2

y dy. In the above, the third equality is
due to the fact that

1{Tx1>t}1{Tx2>t}P1(Tx2 > u|Ft) = 1{Tx1>t}1{Tx2>t}e−
 u
t λx2 (s)ds

and the last equality follows from simple integration as in Propo-
sition 5.1. Therefore, we have

E{1{Tx1>T }|Ft}

= (1 − N1
t )N

2
t ΛT

x1(t)Θ
T
x1,x2(t) + (1 − N1

t )(1 − N2
t )Λ

T
x1(t)Λ

T
x2(t)

+

2∏
i=1


1 − N i

t

 ΛT
x1(t)

(r1 + 1)n1

n1−
k=0

n1

k

 h2

g2
rn1−k
1 e−k(T+x2)+

λx2 (t)
g2

×


∆2

k


λx2(T )

h2


− ∆2

k


λx2(t)
h2


. (7.6)

Similar to (7.6) we have

E{1{Tx2>T }|Ft}

= (1 − N2
t )N

1
t ΛT

x2(t)Θ
T
x2,x1(t) + (1 − N1

t )(1 − N2
t )Λ

T
x1(t)Λ

T
x2(t)

+

2∏
i=1


1 − N i

t

 ΛT
x2(t)

(r2 + 1)n2

n2−
k=0

n2

k

 h1

g1
rn2−k
2 e−k(T+x1)+

λx1 (t)
g1

×


∆1

k


λx1(T )

h1


− ∆1

k


λx1(t)
h1


. (7.7)

Applying Theorem 3.2 we have

E{1{Tx1>T }1{Tx2>T }|Ft}

= 1{Tx1>t}1{Tx2>t}EP1,2

exp


−

∫ T

t


µx1

s + µx2
s


ds
Ft


= 1{Tx1>t}1{Tx2>t}EP1,2


exp


−

∫ T

t


λx1(s) + λx2(s)


ds
Ft


= (1 − N1

t )(1 − N2
t )Λ

T
x1(t)Λ

T
x2(t) (7.8)

where the second equality follows from the fact that µ
xi
s = λxi(s)

for s ≤ T under the measure P1,2.

Finally, we can derive Et,w{eαKT } via E{eαKT |Ft}|N1
t =N2

t =0. In the
case when KT = JLIT recall that from (7.4) E{eαKT |Ft} = eα

+ (1−

eα)E{1{Tx1>T }1{Tx2>T }|Ft}. In (7.8) we can immediately obtain

E{1{Tx1>T }1{Tx2>T }|Ft}|N1
t =N2

t =0 = ΛT
x1(t)Λ

T
x2(t).
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Therefore we have

Et,w{eαKT } = eα
+ (1 − eα)ΛT

x1(t)Λ
T
x2(t).

In the case when KT = SLIT recall that from (7.5) E{eαKT |Ft} =

eα
+ (1− eα)E{1{Tx1>T } + 1{Tx2>T } − 1{Tx1>T }1{Tx2>T }|Ft}. Applying

E{eαKT |Ft}|N1
t =N2

t =0 in (7.6)–(7.8) we have

Et,w{eαKT } = eα
+ (1 − eα)

ΛT
x1(t)

(r1 + 1)n1

n1−
k=0

n1

k


×

h2

g2
rn1−k
1 e−k(T+x2)+

h2
g2

eg2(x2+t) 
∆2

k(e
g2(x2+T )) − ∆2

k(e
g2(x2+t))


+(1 − eα)

ΛT
x2(t)

(r2 + 1)n2

n2−
k=0

n2

k


×

h1

g1
rn2−k
2 e−k(T+x1)+

h1
g1

eg1(x1+t) 
∆1

k(e
g1(x1+T )) − ∆1

k(e
g1(x1+t))


+ (1 − eα)ΛT

x1(t)Λ
T
x2(t).

Wehave calculatedEt,w{eαKT } so thatU(t, w) = V (t, w)Et,w{eαKT }

is known. To find the fair price p∗
t satisfyingV (t, w) = U(t, w+p∗

t ),
we plug in w + p∗

t and have

U(t, w + p∗

t ) = V (t, w + p∗

t )Et,w{eαKT }

= exp(−αp∗

t e
r(T−t))V (t, w)Et,w{eαKT }.

Therefore, the fair price is finally given by

p∗

t =
1
α
e−r(T−t) logEt,w{eαKT }. �

To end this section we consider the so-called survival benefit,
using both joint-life status and last-survivor status of the married
couple. Denote Yt , t ≥ 0, to be the generic benefit process, and
SBFt = 1{Tx1x2≥t}, SBSt = 1{Tx1x2 ≥t}. Similar to the life insurance
case, the cost functional is given by

J(t, w; π)
△
= Et,w{u(Wπ

T − YT )}.

Again, sinceWT and YT are independent, we have

U(t, w) = V (t, w)Et,w{eαYT }.

In the case where YT = SBFT , we have

E{eαYT |Ft} = E{eα1{Tx1x2>T } + 1{Tx1x2≤T }|Ft}

= 1 + (eα
− 1)E{1{Tx1x2>T }|Ft}

= 1 + (eα
− 1)E{1{Tx1>T }1{Tx2>T }|Ft}.

Applying (7.8) we obtain

Et,w{eαYT } = 1 + (eα
− 1)ΛT

x1(t)Λ
T
x2(t).

In the case when YT = SBST , we have

E{eαKT |Ft} = E{eα1{Tx1x2>T } + 1{Tx1x2 ≤T }|Ft}

= 1 + (eα
− 1)E{1{Tx1x2>T }|Ft}

= 1 + (eα
− 1)E{1{Tx1>T } + 1{Tx2>T }

− 1{Tx1>T }1{Tx2>T }|Ft}.

Again applying E{eαKT |Ft}|N1
t =N2

t =0 in (7.6)–(7.8) we have
Et,w{eαKT } = 1 + (eα
− 1)

ΛT
x1(t)

(r1 + 1)n1

n1−
k=0

n1

k


×

h2

g2
rn1−k
1 e−k(T+x2)+

h2
g2

eg2(x2+t) 
∆2

k(e
g2(x2+T )) − ∆2

k(e
g2(x2+t))


+(eα

− 1)
ΛT

x2(t)

(r2 + 1)n2

n2−
k=0

n2

k


×

h1

g1
rn2−k
2 e−k(T+x1)+

h1
g1

eg1(x1+t) 
∆1

k(e
g1(x1+T )) − ∆1

k(e
g1(x1+t))


+(eα

− 1)ΛT
x1(t)Λ

T
x2(t).

Finally, the fair price of survival benefit is similarly given by

p∗

t =
1
α
e−r(T−t) logEt,w{eαYT }.
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