
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=sact20

Download by: [USC University of Southern California] Date: 01 December 2016, At: 22:01

Scandinavian Actuarial Journal

ISSN: 0346-1238 (Print) 1651-2030 (Online) Journal homepage: http://www.tandfonline.com/loi/sact20

Principle of equivalent utility and universal
variable life insurance pricing

Jin Ma & Yuhua Yu

To cite this article: Jin Ma & Yuhua Yu (2006) Principle of equivalent utility and universal
variable life insurance pricing, Scandinavian Actuarial Journal, 2006:6, 311-337, DOI:
10.1080/03461230600986128

To link to this article:  http://dx.doi.org/10.1080/03461230600986128

Published online: 16 Feb 2007.

Submit your article to this journal 

Article views: 64

View related articles 

Citing articles: 1 View citing articles 

http://www.tandfonline.com/action/journalInformation?journalCode=sact20
http://www.tandfonline.com/loi/sact20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/03461230600986128
http://dx.doi.org/10.1080/03461230600986128
http://www.tandfonline.com/action/authorSubmission?journalCode=sact20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=sact20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/03461230600986128
http://www.tandfonline.com/doi/mlt/10.1080/03461230600986128
http://www.tandfonline.com/doi/citedby/10.1080/03461230600986128#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/03461230600986128#tabModule


Original Article

Principle of equivalent utility and universal variable life
insurance pricing

JIN MA and YUHUA YU

Department of Mathematics, Purdue University, West Lafayette, IN 47907-1395, USA

In this paper we study the pricing problem for a class of universal variable life (UVL) insurance

products, using the idea of principle of equivalent utility. As the main features of UVL products we

allow the (death) benefit to depend on certain indices or assets that are not necessarily tradable (e.g.,

pension plans), and we also consider the ‘‘multiple decrement’’ cases in which various status of the

insured are allowed and the benefit varies in accordance with the status. Following the general theory

of indifference pricing, we formulate the pricing problem as stochastic control problems, and derive the

corresponding HJB equations for the value functions. In the case of exponential utilities, we show that

the prices can be expressed explicitly in terms of the global, bounded solutions of a class of semilinear

parabolic PDEs with exponential growth. In the case of general insurance models where multiple

decrements and random time benefit payments are all allowed, we show that the price should be

determined by the solutions to a system of HJB equations, each component corresponds to the value

function of an optimization problem with the particular status of the insurer.

Keywords: Principle of equivalent utility; value functions; HJB equations; indifference pricing

1. Introduction

In recent years, especially during the bullish equity market and the low interest rate

environment of the 1990s, the sale of universal variable life insurance (UVL) has grown

substantially. Introduced in the 1950s in Holland, the variable life (VL) insurance initiated

the novel idea that would allow the insured to have a low-risk cash account and link the

death benefit to the returns of that account. The UVL insurance is a version of VL

insurance with further flexibility on the premiums. These special features endow the

traditional life insurance with investment growth potential, and thus turn it into a more

attractive financial product.

This new trend of ‘‘securitizing insurance products’’ (such as UVL) has brought up many

interesting theoretical problems in mathematics, economics and actuarial science. For

example, as the death benefit in a UVL contract depends on the policy account whose value is

affected by many factors including the investment performance and the withdrawal/addition

activities of the insured, the pricing of such aproduct becomes more complicated than that of

both traditional life insurance products and the usual contingent claims in finance theory. In

this paper we try to apply the so-called principle of equivalent utility to study such a pricing
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problem. We note that such a principle can be thought of as a special case of the indifference

pricing, first introduced by Hodges and Neuberger (1989), which has become one of the

important topics in the credit risk theory. The idea of pricing life insurance products via the

principle of equivalent utility was explored recently by Young, Zariphopoulou and others in

a sequence of papers (see, e.g., Jaimungal, 2004; Jaimungal & Nayak, 2005; Jaimungal &

Young, 2005; Young, 2003; Young & Zariphopoulou, 2002, 2004), mostly in the case of single

decrement (i.e., death is the only insurance risk). The general framework of the indifference

pricing problem as well as the dynamic utility optimization problem have also been studied

quite extensively, from various angles. We refer to Cvitanic et al. (2001), Delbaen et al. (2002),

Frittelli (2000), Musiela and Zariphopoulou (2004a,b), Owen (2002), Rouge and El Karoui

(2000) and Bielecki et al. (2004), to mention a few. Nevertheless, our UVL model has some

features that do not seem to have been covered by the existing results so far.

There are two main features in the UVL insurance models considered in this paper. First,

we allow the death benefits to depend on certain indices or benchmark assets that could be

non-tradable in the given market (e.g., a retirement fund). Thus, the arbitrage price at a given

time for such assets cannot be determined a priori in order to offset the possible insurance

risk, as was done in, say, Young & Zariphopoulou (2002). We will follow more general

strategy without using the knowledge of the arbitrage price of the death benefit at any time t,

and we show that such a strategy will actually produce the same solution if the benchmark

asset is tradable. We should mention that the indifference pricing with non-tradable assets

was considered recently by Musiela and Zariphopoulou (2004a,b), but our problem seems to

be more general. Another feature of our general insurance model is that it allows multiple

decrements, an important building block in insurance theory, and that benefits are payable at

the moment of decrements. In such a model benefit payments will depend on the cause of

termination of the status (such as disability, withdrawal, death and retirement), therefore it is

a mixture of continuous dynamics with a discrete Markov chain. To our best knowledge, the

indifference pricing for such a problem under general utility functions is novel. We should

remark here that due to the length of this paper, we do not pursue a complete solution for the

general insurance model. Instead, we provide a somewhat ad hoc result: we derive the HJB

equation, assuming that the value function is C1,2. We should note that even such a result is

not trivial, without detailed assumptions on the utility function. Of course, many questions

remain, and we hope to be able to address them in our future publications.

An important special case that has been studied extensively is when the utility function

is exponential. We provide a detailed analysis for such a case as well, assuming the general

benefit functions which could depend on the non-tradable assets. It turns out that in this

case the method of ‘‘separation of variables’’ (see, e.g., Young, 2003; Young &

Zariphopoulou, 2002) still works well, but the result will eventually depend on the

solvability of a semilinear (reaction-diffusion) partial differential equation with exponen-

tial growths on the reaction term. While such an equation is expected to have a finite time

blow-up in general, we show that in our case the global, bounded solution exists. The

closed form solutions of the pricing problems then follow.

The rest of the paper is organized as follows. In section 2 we formulate the problems

and set up the mathematical bases. In section 3 we study the simple UVL model, in which
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the death benefits are payable at the end of a fixed term. Two types of the strategies,

subject to whether the death benefits depend on the non-tradable assets, will be studied

separately. In section 4 we treat the special case where the utility function is exponential.

In section 5 we study the general insurance models involving multiple decrements.

2. Problem formulation

Throughout this paper we assume that all the randomness come from a common

complete probability space (V, /F , P). We assume that the probability space is rich enough

to carry a d�/1-dimensional Brownian motion (B; B̃)�f(Bt; B̃t):t]0g; which will be

thought of as the source of the randomness of a financial market where all the

investments under consideration will be made. For notational clarity we shall denote

FB�f/F/
B
t :t]0g; FB̃�f/F/

B̃
t :t]0g; to be the natural filtrations generated by B and B̃;

respectively, with usual P-augmentation so that they satisfy the usual hypotheses (cf. e.g.,

Protter, 1990). Throughout this paper we denote ½ �/ ½ to be the norm of a generic Euclidean

space, and � �/, �/� to be its inner product. Further, for any real-valued function F(t, x,

y,. . .), where x and y could be vectors, we denote Ft, Fx,. . ., etc., to be the partial

derivatives (gradients) with respect to the corresponding variables (vectors). The higher-

order derivatives are denoted similarly when there is no danger of confusion.

2.1. The life model

We first give a detailed mathematical description of the life models on which all our future

discussion will be based. We refer to the ubiquitous reference Bowers et al. (1997) for most

of the ideas and notations below.

2.1.1. Simple life model. In this case we assume that the only uncertainty comes from a

future life-time random variable, denoted by T(x), where x is the current age of the insured.

More precisely, T(x) is the time to death from the present time, and we assume that it is

independent of the Brownian motion (B; B̃): The random variable T(x) is characterized by

the ‘‘survival function’’ Gx(t)bPfT(x)�tg; t]/0. Further, define Xtb1fT(x)5tg; t]/0, and

let FX�/{/F t
X}t]0 with F/

X
t bsfXs; 05s5tg: We define a new filtration

F�FB�FB̃�FX �fFB
t �F B̃

t �FX
t :t]0g:

Clearly, under such a setting B is still an F-Brownian motion, and the random time T(x)

becomes an F-stopping time.

Next, following the conventional actuarial terms we define the ‘‘survival probability’’ of

the life (x) by tpx�/P{T(x)�/t}, and denote tqx�/1�/tpx. The force of mortality is then

defined by

lx(t)� lim
h00

h
qx�t

h
: (2:1)
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2.1.2. General life model. A more general model of life will be considered in the last part

of this paper, which will be referred to as a ‘‘general life insurance model’’ (see, e.g.,

Norberg, 1992). In that model we shall allow ‘‘multiple decrement’’, and that benefit will

be payable at a random time, such as ‘‘the moment of death’’, instead of a fixed terminal

time T. Moreover, the payments may depend on the different status as well as the

transitions between them. Typical examples of status include, but are not limited to: short/

long term disabilities, withdrawal, retirement, and of course, death.

To describe such a model we need to modify the ‘‘state process’’ {Xt}t]0 defined in the

simple life model. Suppose that the policy starts at time 0 for a person aged x, we now

assume that X is a Markov chain with a finite state space {0, 1,. . .,m}, representing the

numerical code of the status at time t. We specify i�/1 to be a (absorbing) ‘‘cemetary

state’’, representing ‘‘death’’, and X0�/0 to be the initial state.

Now denote I i
t �1fXt�ig; and define the counting process:

Nij
t b#ftransitions of X from state i to j during [0; t]g: (2:2)

Also, for each t we define a stopping time tt�/inf{s]/t:Xs"/Xt}. Namely, tt is the first

transition time of X after t. We then define, for i�/0,. . .,m,

ti
t�

tt; if Xtt
� i

�; otherwise

�
(2:3)

Using these stopping times we define the following conditional probabilities:

tp̄
i
sbPfts�t½Xs� ig; t q̄ij

s bPftj
s�ts5t½Xs� ig; s5t; i; j � f0; . . . ;mg: (2:4)

Clearly, by definition of state i�/1 we have tp̄
1
s �1; tq̄

1j
s �0; for all j"/1; and

tp̄
i
s�

X
j"i

t q̄ij
s �1; � i�0; 1; � � � ;m; 05sBt: (2:5)

Similar to (2.1), we define the ‘‘force of decrement of status i due to cause j’’ as

l̄
ij
t b lim

h00

t�h
q̄

ij
t

h
; i; j�0; 1; . . . ;m: (2:6)

We should note that, being a Markov chain, process X has its transition probability

tq
ij
s �PfXt� j½Xs� ig and the corresponding transition intensity

lij
t b lim

h¡0

t�h
q

ij
t

h
; i" j: (2:7)

The following results are not surprising; we prove them for completeness.

LEMMA 2.1. Let fl̄ ij
� g

m
i;j�0 be the force of decrements defined by (2.6), and flij

� g
m
i;j�0 the

transition density of X defined by (2.7). Then

i. /tq̄
ij
s �f

t

s t p̄
i
sl̄

ij
r dr;

ii. /l̄
ij
t �lij

t ; for all t]/0, i, j�/0, 1,. . .,m;

iii. /limt¡s

1 �t p̄i
s

t � s
�aj"i l

ij
s ; for all s]/0.
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Proof. (i) For fixed s5/t, and i, j, let us denote the following sets:

A�f�t � (t; t�h];Xt� j;Xu� i;�u � [t; t)g;
B�fXu� i;�u � [s; t]g; C�fXs� ig:

Then, it is readily seen that B⁄/C, PfB½Cg�t p̄i
s; and

PfASB½Cg�PftBtj
s5t�h½X (s)� ig�t�h q̄ij

s �t q̄ij
s :

Further, by the Markovian property of X one can also check that PfA½Bg�t�h q̄
ij
t :

Consequently,

l̄
ij
t � lim

h00

1

h t�h q̄ij
t � lim

h00

1

h
PfA½Bg� lim

h00

PfASB½Cg
hPfB½Cg

�
1

tp̄
i
s

lim
h00

1

h
(t�hq̄ij

s �t q̄ij
s )�

1

tp̄
i
s

d

dt
t q̄ij

s :

This proves (i).

(ii) As ftk
s �r; Xs� ig�fXs� i; Xr�k; Xu� i;�u � [s; r)g; for i, k�/0, and r]/s,

using the Markov property one shows that PfXt� j½tk
s �r; Xs� ig�t qkj

r ; for sB/rB/t.

Next, recalling that Pftk
s 5r½Xs� ig�r q̄ik

s ; and applying (i), we have

tq
ij
s �PfXt� j½Xs� ig�

X
k"i
g

t

s

PfXt� jjtk
s �r;Xs� igd[rq̄

ik
s ]�g

t

s

X
k"i

t qkj
r r p̄i

sl̄
ik
r dr:

Finally, using the facts that tq
kj
t �1fk�jg and tp̄

i
t�1; we obtain that

lij
t �

d

dh
t�hqij

t j
h�0

�
�X

k"i

t�h p̄i
tl̄

ik
t�h t�h qkj

t

�g
t�h

t

X
k"i

r p̄i
sl̄

ik
r

d

dh
[t�hqkj

r ]dr

�j
h�0

� l̄
ij
t ; t]0:

(iii) This follows from (2.5), (i) and (ii). I

Finally, we remark that if m�/1, then there are only two states: life or death. In this case

the state process X becomes the one in the simple life model, and the general life model

obviously reduces to the simple life model with t1
0�T(x); though slightly different

notations from the simple life model are used here:

tp̄
0
s �t�s px�s; t q01

s �t�s qx�s:

Furthermore, with a slight abuse of notation, we shall use the same notation F for the

filtration FX �FB�FB̃ in all cases, as long as the context is clear.

2.2. The death benefits

A fundamental part of the UVL is that the death benefit is linked to an investment

opportunity. We formulate this fact by assuming that the death benefit at any time t is

given by

bt�g(t;S1
� ; � � � ;Sd

� ;Z�)�g(t;S�;Z�); (2:8)

where g:[0;�)�C([0;�); IRd�1)	(0;�) is some functional that is progressively

measurable, and St
i, i�/1,. . .,d and Z are the prices of d�/1-risky assets at time t, and
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St
0 is the value of a riskless asset at time t. We assume that the risky assets S are liquid in a

given market, but Z is a non-tradable asset.

To be more specific, let us use the following general set-up for the market: we assume

that the dynamics of the prices S1,. . .,Sd, Z and S0 are described by the following

stochastic differential equations (SDEs): for t]/0,

dS0
t �rtS

0
t dt; S0

0 �s0;

dSi
t�Si

tfmi
tdt�

Xd

j�1

sij
t dBj

tg; Si
0�si; i�1; � � � ; d;

dZt�ZtfmZ
t dt��sZ

t ; dBt��s̃tdB̃tg; Z0�z:

8>>><
>>>:

(2:9)

where B̃ is another Brownian motion, independent of B. We shall assume that the

investment can be made in the market S�(S0;S1; � � � ;Sd ); and we denote pt
i, i�/1,. . .,d to

be the amount of money invested in the i-th stock. Let Wt be the total investment income

(wealth) at time t; we then assume that all the rest of the money pt
0�/Wt�/Si�1

d pt
i is put

into the money market. Assuming that that the portfolio p is ‘‘self-financing’’, it is known

(cf. e.g., Karatzas & Shreve, 1988) that the wealth process W satisfies the following SDE:

denoting 1̃b(1; . . . ; 1)T ;

dWt�rtWtdt�hpt;mt�rt1̃idt�hpt;stdBti: (2:10)

Given the nature of a UVL insurance, one can often require that the death benefit is no

less than a guaranteed return. Simple examples of such a case are

i. /g(t;S:;Z:)�Si
t�Si

0; t]0; for some i;

ii. /g(t;S�;Z�)�Zt�Z0; t]/0;

iii. /g(t;S�;Z�)�Zt�er̄tz; t]/0.

In case (iii), the asset Z can be thought of as a retirement fund, and r̄ could then be a

certain growth rate which can be chosen simply as the market interest rate or any

contractually prescribed rate. Such a form of benefit covers a wide range of rate of return

guarantees; we refer to Milevsky & Posner (2001) and Miltersen & Persson (2006), etc.,

for the case of one period models. Obviously, one can design various products using the

combinations of S, Z, and some guaranteed returns so as to make the insurance product

more attractive, especially in a bullish stock market.

In the rest of the paper we shall denote A to be the set of all (portfolio) processes p�/

(pt:t]/0} that are FB�FB̃-adapted, and that

Eg
T

0

½pt½
2dtB�: (2:11)

We will call A the set of ‘‘admissible strategies’’, as usual.
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2.3. Principle of equivalent utility

We are now ready to formulate the main problem of the paper. Let u be a given utility

function, that is, it is a non-decreasing, concave function, and we assume that it is smooth

for technical simplicity. We shall first consider the contract such that the death benefit is

payable at the end of a prescribed terminal time T, with the benefit function being of the

form g(T, ST, ZT)XT. Let us further assume that the insurance company measures its

performance by the simple rule of ‘‘expected utility’’, that is, by the following ‘‘cost

functional’’:

J(t;w; s; z;p)bEt;w;s;zfu(W p
T �g(T ;ST ;ZT )XT )g; (2:12)

where Wp is the solution to (2.10) with given portfolio p, and Et,w,s,z{ �/} denotes the

conditional expectation E{ �/½Wt�/w, St�/s, Zt�/z}, for t]/0, w � IR; s � IRd
� and z]/0. Of

course, if the benefit is not paid (namely, either the insurance was not sold or the death

does not occur before time T, namely T(x)�/T, P-a.s.), then bT�/g(T, ST, ZT)XT�/0, P-a.s.

In this case the cost functional becomes

J0(t;w;p)bEt;wfu(W p
T )g; (2:13)

and the optimization problem is reduced to a standard utility maximization problem in

finance. Another special case is when g�/g(ST), namely the death benefit does not involve

any non-tradable asset. In this case we denote the cost functional to be

J

�

(t;w; s;p)bEt;w;sfu(W p
T �g(T ;ST )XT )g: (2:14)

We remark that the cases when g�/1 or Xt�/1 were studied in Young & Zariphopoulou

(2002). But with the combination of the benefit payment function g and the status

process, we will be able to treat some more general cases.

Let us now consider the ‘‘value functions’’ of the following optimization problems:

V 0(t;w)�sup
p �A

J0(t;w;p); (2:15)

V (t;w; s)�sup
p �A

Ĵ(t;w; s;p); (2:16)

U(t;w; s; z)�sup
p �A

J(t;w; s; z;p): (2:17)

The principle of equivalent utility can be described as follows.

For any given benefit function g:IRd�1	IR� and any given initial state (S0, Z0, W0)�/

(s, z, w), we define the ‘‘fair price’’ at time t of a UVL insurance with death benefit g(ST,

ZT) payable at time T�/t to be a lump-sum p*]/0 such that

p�� inffp:V 0(t;w)5U(t;w�p; s; z); �(t;w; s; z)g: (2:18)

The definition of the fair price can be understood in the a slightly different way. For any

given initial state (s, z), let us call a price p]/0 ‘‘(s, z)-acceptable’’ if

V 0(t;w)5U(t;w�p; s; z); �(t;w) � [0;T ]�IR: (2:19)

Obviously, a reasonable insurer would always look for an ‘‘acceptable’’ price to sell an

insurance product, as it gives him/her incentive (in terms of a higher expected utility in
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this case) than doing nothing, assuming that he/she is confident to perform optimally in

investment. On the other hand, if we denote P/s;z to be the set of all (s, z)-acceptable

premiums, then (2.9) states that p*�/inf P/s;z; a rather standard way of defining a fair price

(compare, e.g., to the fair/hedging price of a contingent claim). The following lemma links

the fair price to the principle of equivalent utility.

LEMMA 2.2. Suppose that for given (t, s, z) the mapping w	U(t;�; s; z) is continuous and

that P/s;z"¥: Then the fair price p+�p�(s; z) defined by (2.18) satisfies

V 0(t;w)�U(t;w�p�; s; z); �(t;w): (2:20)

Proof. First note that g(ST ;ZT )XT ]0; a.s. The monotonicity of u then implies that

u(W p
T �g(ST ;ZT )YT )5u(W p

T ); and thus

U(t;w; s; z)5V 0(t;w): (2:21)

On the other hand, as the wealth process W follows a linear SDE, a simple application

of comparison theorem leads to the following: for given portfolio p �/A/; the terminal

wealth WT
p increases as the initial endowment W0

p increases. Therefore, U(t, w�/p, s, z) is

increasing in p. Now, using the definition of P/s;z and its non-emptiness, as well as the

continuity of U, one can check that

V 0(t;w)5 inf
p �Ps;z

U(t;w�p; s; z)�U(t;w�p�; s; z): (2:22)

Combining (2.22) and (2.21), and using the continuity of U again we can find 05/p**5/

p* such that

V 0(t;w)�U(t;w�p��; s; z);

thanks to the Mean Value Theorem. But by definition of P/s;z; we must have p�� � /P/s;z; and

thus p*�/p** by the definition of p*. This proves (2.20). I

REMARK 2.3. Equation (2.20) is exactly the ‘‘principle of equivalent utility’’ for

determining the price p*, first initiated in Hodges and Neuberger (1989). Lemma 2 only

provides a slightly different perspective.

REMARK 2.4. The assumptions of Lemma 2 are extremely mild. In fact, the continuity

of the value function U in w is almost always true. The only technical requirement is the

non-emptiness of the set Ps,z. But this assumption can be easily removed if the utility

function u satisfies limw0�u(w)�/�/�, or in the case of exponential utility. Indeed, in the

former case, by virtue of monotone convergence, we have

lim
w0�

U(t;w�p; s; z)

] lim
p0�

Et;w�p;s;z

�
u

�
(w�p)eg

T

t rsds�g(ST ;ZT )XT

	�
(p�0)

�Et;s;z

�
lim

p0�
u

�
(w�p)eg

T

t rsds�g(ST ;ZT )XT

	�

�Et;s;z

�
lim

p0�
u(w)

�
��:
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Therefore P/s;z is always non-empty. In the case of exponential utility, say, u(w)��1

a
e�aw;

we can still show that P/s;z is non-empty. Indeed, it was shown in Young and

Zariphopoulou (2002) that, in such a case, V0(t, w) is strictly negative, therefore

V 0(t;w)B0� lim
w0�

u(w)5 lim
p0�

U(t;w�p; s; z);

and (2.22) follows.

To conclude this section we give the Standing Assumptions for the rest of the paper:

(H1) All the market parameters m, s and r are deterministic, continuous functions of t.

Furthermore, the volatility matrix s is ‘‘non-degenerate’’ in the sense that there exists a

c0�/0, such that

jTsts
T
t j]c0½j½

2; �j � IRn; t � [0;T ]:

(H2) The death benefit function g:/[0;T ]�IRd �IR	IR� is bounded, and continu-

ously differentiable, with bounded derivatives.

3. The simple UVL models

In this and the next section we consider the simplest UVL insurance models in which the

only uncertainty for the termination (or decrement) is death. We shall first derive the

corresponding HJB equations via two different pricing strategies, depending on the

structure of the death benefits. In the next section we shall derive more explicit solutions

in the case of exponential utility. To simplify presentations, we shall assume d�/1

throughout the section. However, we should note that all the analysis can be generalized

to higher dimensional cases without substantial difficulties. As the benefit is paid at a

fixed time, we will drop T in the benefit function g.

To begin with, let us consider an intermediate stochastic control problem with the cost

functional being

J̃(t;w; s; z;p)bEt;w;s;zfu(W p
T �g(ST ;ZT ))g; (3:1)

Namely, we assume that the death has occurred before T, hence XT�/1. The utility

maximization problem is then reduced to a standard stochastic control problem.

Therefore, denoting the value function to be:

Ũ(t;w; s; z)�sup
p �A

J̃(t;w; s; z;p); (3:2)

it is well known that Ũ is at least the unique viscosity solution to the following HJB

equation (cf, Fleming & Rishel, 1975):
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0�Ũ t�max
p

�
1

2
s2p2Ũww�p[s2sŨws�sZzsŨwz�(m�r)Ũw]

�

�
1

2
s2s2Ũ ss�

1

2
(s̃2�sZ2

)z2Ũ zz�ssZszŨ sz�rwŨw�msŨ s�mZzŨ z;

Ũ(w;T ; s; z)�u(w�g(s; z)):

8>>>>><
>>>>>:

(3:3)

To derive the HJB equation for the original optimization problem, we first argue

heuristically. By virtue of the Bellman Principle (of dynamic programming, cf. Fleming &

Rishel, 1975), and using the total probability formula we have, for any h�/0 and any

admissible portfolio p � /A/;

U(w; t; s; z)]Et;x;s;zfU(t�h;W p
t�h;St�h;Zt�h)g

�Et;w;s;zfU(Wp
t�h; t�h;St�h;Zt�h)½T(x)�t�hgPfT(x)�t�hg

�Et;w;s;zfU(W p
t�h; t�h;St�h;Zt�h)½T(x)5t�hgPfT(x)5t�hg

�Et;w;s;zfU(Wp
t�h; t�h;St�h;Zt�h)ghpx�t

�Et;w;s;zfŨ(W p
t�h; t�h;St�h;Zt�h)ghqx�t:

(3:4)

Recall that T(x) is the future-life-time random variable given current age x, which is

independent of the processes (Wp, S, Z), and that, given T(x)5/t�/h, the optimization

problem (2.17) on [t�/h, T] is the same as (3.2).

Suppose now that both value functions U and Ũ are smooth. Applying Itô’s formula to

U(t, Wt, St, Zt) and Ũ(t;Wt;St;Zt); respectively, and noting that hpx�t�h qx�t�1; one

shows that (suppressing variables)

[U(t;w; s; z)�Ũ(t;w; s; z)]hqx�t

]Et;w;s;z

�
g

t�h

t

(Ut�(rW �p(m�r)Uw)�sUsm�zUzm
Z�

1

2
s2(Uwwp

2�s2Uss)

�
1

2
z2Uzz(s̃

2�sZ2

)�sUwsps
2�zUwzpss

Z�zsUszss
Z

	
du

�
h

px�t

�Et;w;s;z

�
g

t�h

t

. . . dughqx�t:

(3:5)

In the above the integrand of the last integral is similar to that of the first one with U

being replaced by Ũ : Now we divide both sides of (3.5) by h and let h0/0. Noting that

0px�t�1 and hqx�t=h 0 lx(t); we obtain the following HJB equation for U:

0�Ut�max
p

[(m�r)pUw�
1

2
s2p2Uww�(UwsSs

2�UwzZsZs)p]

�rwUw�sUsm�zUzm
Z�

1

2
s2s2Uss�

1

2
z2Uzz(s̃

2�sZ2)

�szUszss
Z�lx(t)(Ũ�U)

U(T ;w; s; z)�u(w);

8>>>>>>>>><
>>>>>>>>>:

(3:6)

where Ũ satisfies (3.3).
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3.1. The special case: g(s, z)�/g(s)

First note that if g�/g(ST), then the non-tradable asset Z does not appear in the previous

argument, and (3.6) is reduced to

0�Ut�max
p



(m�r)pUw�

1

2
s2p2Uww�(s2sUws)p

�
�

1

2
s2s2Uss

�rwUw�smUs�lx(t)(Ũ�U)�0;

U(T ;w; s)�u(w);

8>>><
>>>:

(3:7)

and (3.3) is reduced to:

0�Ũ t�max
p



(m�r)pŨw�

1

2
s2p2Ũww�(s2sŨws)p

�

�
1

2
s2s2Ũ ss�rwŨw�msŨ s

Ũ(T ;w; s)�u(w�g(s))

8>>>>><
>>>>>:

(3:8)

We should note that the arguments above actually reflect the following strategy: if death

occurs before t�/h became known, then one would simply carry out the optimization

problem knowing that the terminal wealth will be deducted by the amount of g(ST, ZT) at

time T. Such a strategy is simple, and works well in the case when the non-tradable assets

are involved, as the risk g(ST, ZT) is not ‘‘hedgable’’ in general. In the special case when

the death benefit takes the form g(St), however, the situation is slightly different. In fact, if

the market is complete, then considering the benefit payment as a contingent claim, one

can actually find out its current market price with which the payment amount g(ST) can

be replicated. One can then simply set aside the current price of the benefit payment, and

proceed the optimization problem as if there is no insurance risk involved at all. Such a

strategy was actually used in, for example, Young (2003) and Young and Zariphopoulou

(2002) in a similar situation (when no non-tradable assets were involved). In what follows

we give a brief sketch of the argument, and show that the two strategies will actually

produce the same result.

First recall value function V0 defined by (2.15). Assuming that all the market

parameters r; m and s are deterministic, continuous functions, then it is well known

that the value function V0 is C1;2([0;T ])�IRd ; and it satisfies the following HJB equation

(cf. e.g., Young & Zariphopoulou, 2002):

0�V 0
t �max

p

�
1

2
½sTp½2V 0

ww�p(m�r)V 0
w

�
�rwV 0

w;

V 0(T ;w)�u(w):

8<
: (3:9)

Next, we consider the value function V, defined by (2.16). Applying the Bellman Principle

and the total probability formula again, we can show that a counterpart of (3.4) holds:

V (t;w; s)]Et;w;sfV (t�h;Wt�h;St�h)ghpx�t

�Et;w;sfV 0(t�h;Wt�h�c(t�h;St�h))ghqx�t; (3:10)
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where c(t, s) is the market price of the contingent claim g(ST). We note that in the above

we used the fact that, by deducting c(t�h; St�h) from the wealth at t�/h and carrying out

the future optimization problem without the insurance risk, the value function becomes

V 0(t�h; Wt�h�c(t�h; St�h)) (compared to Ũ in (3.4)!).

Now repeating the same argument as before, assuming that V and V0 and c are all

smooth, and using the fact that c(�;�) satisfies the Black-Scholes PDE (see, e.g., Young &

Zariphopoulou, 2002), it is fairly easily checked that V satisfies the following HJB

equation (suppressing all variables for V):

0�Vt�max
p

�
1

2
s2p2Vww�(m�r)pVw�s2psVws

�
�rwVw�msVs

�
1

2
s2s2Vss�lx(t)(V 0(t;w�c(t; s))�V )

V (T ;w; s)�u(w)

8>>>>>><
>>>>>>:

(3:11)

At this point it should be clear that strategy will not work in general as the arbitrage

price c(t, s) is not uniquely determined if the payoff contains the non-tradable asset ZT!

One should also note that the two different strategies yield almost the same HJB

equations (3.7) and (3.11), the only difference is that the last term Ũ(t;w; s) in (3.7) is

replaced by V 0(t;w�c(t; s)) in (3.11). The following result nevertheless shows that the two

strategies are actually the same, that is, U(t;w; s)�V (t;w; s); for all (t, w, s).

THEOREM 3.1. Assume (H1), and assume that the benefit function g�/g(s). Then, it holds

that V(t, w, s)�/U(t, w, s), for all (t;w; s) � [0;T ]�IR��IR�:

Proof. Comparing (3.11) and (3.6), it is clear that we need only verify that Ũ(t;w; s)�
V 0(t;w�c(t; s));�(t;w; s):

To this end, let us first recall from (2.10) that for the given initial state w and the

portfolio p, the wealth process satisfies the SDE

Wt�w�g
t

0

(ruWu��pu;mu�ru1�)du�g
t

0

�pu;sudBu�; (3:12)

and we denote the solution by Ww,p to specify the dependence on w and p.

It is by now well known (see, e.g., Ma & Yong, 1999) that under (H1) the Black-Schole

price c(�;�) for the contingent claim g(ST) satisfies the Black-Scholes PDE:

@c

@t
�rts

@c

@s
�

1

2
s2

t s2 @
2c

@s2
�rtc(t; s)�0;

c(T ; s)�g(s);

8<
: (3:13)

and the process Ytbc(t;St); t]/0, can be expressed as the unique solution to the

following Backward Stochastic Differential Equation (BSDE):

dYt�rtYtdt��p0
t ;mt�rt1�dt��p0

t ;stdBt�;
YT �g(ST );

�
(3:14)

where p0 �/A/ is the hedging strategy of the claim g(ST).
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Let us now define a mapping T /: /A /	/A/ by T(p)�p?bp�p0; p �/A/: Then clearly T / is

one-to-one mapping, so that T /(/A/)�/A/: Furthermore, the linearity of equation (3.12)

and the uniqueness of the solution to SDE implies that W w;p?
t �Yt�W

w�c(0;s);p
t ; for all

t �/[0, T]. In particular, at terminal time T, this becomes

W
w�c(0;s);p
T �W w;p?

T �g(ST ); �p �A:

Finally, by the definition of the value functions V0 and Ũ we have

V 0(0;w�c(0; s))�sup
p �A

E0;wfu(W
w�c(0;s);p
T )g

�sup
p�A

E0;wfu(W
w;T(p)
T �g(ST ))g

� sup
p? �A

E0;wfu(W w;p?
T �g(ST ))g�Ũ(0;w; s);

proving the theorem. I

4. The case of exponential utility

In this section we consider a special type of utility function � the exponential utility. Such

a utility function has been widely used in practice, especially in actuarial mathematics. In

fact, the premium principle given by (2.20) has been known to have certain very desirable

properties if and only if the utility function is exponential (cf. e.g., Gerber, 1979). We

should note that the discussion in this section could be considered as a generalized version

of the examples in Young (2003) and Young and Zariphopoulou (2002), but as we shall

see, the presence of the non-tradable assets does make the problem a little more involved.

Let us be more specific. In what follows we shall assume that the utility function takes

the form

u(w)b�
1

a
e�aw; w � IR: (4:1)

Then, recall from Young and Zariphopoulou (2002) that in this particular case the HJB

equation (3.9) has the following explicit solution.

V 0(t; w)��
1

a
expf�awer(T�t)�

(m� r)2

2s2
(T�t)g (4:2)

Our discussion below will depend heavily on some classical results in non-linear PDEs,

which can be found in, e.g., Ladyzenskaja (1968). We state a lemma, which is essentially

Theorem VI-8.1 of Ladyzenskaja (1968), modified to a simpler form but sufficient for our

purpose. Consider the following second-order quasilinear PDE with divergence form:

Lu�ut�
Xn

i�1

@

@yi

ai(t; y; u;Dyu)�a(t; y; u;Dyu)�0; (t; y) � (0;T ]�IRn;

u(0; y)�8 (y); y � IRn:

8>><
>>:

(4:3)
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LEMMA 4.1. Suppose that the following conditions hold for the coefficients a, (a1,. . .,an)

and 8:

i. The function 8(y) is smooth in IRn; and such that 058 (y)5M; for all y � IRn;

ii. There exist constants b1, b2]/0, such that for any t �/(0, T] and y, u and p � IRn; the

following inequality holds:

u

�
a(y; t; u; p)�

X
i

�
@ai

@u
pi�

@ai

@yi

	�j
p�0

]�b1u2�b2
2: (4:4)

iii. The function a(t, y, u, p) is smooth, and there exist constants 0B/nB/m such that the

following inequalities hold, for any ½y½5N; ½u½5MN and i, j�/1,. . .n:

n½j½25
X

i;j

@ai

@pj

jijj 5m½j½2; �j � IRn; (4:5)

and

X
i

�
½ai ½�j @ai

@u j	(1� ½p½)�
X

i;j
j @ai

@yj
j�½a½5m(1� ½p½)2: (4:6)

iv. for any ½y½5N; ½u½5MN and ½p½5M?N ; the functions ai, a, and their partial derivatives
@ai

@pj
; @ai

@u
and @ai

@yj
are all Lipschitz continuous with respect to (t, y, u, p).

Then the Cauchy problem (4.3) has at least one classical solution. Furthermore, the

solution is bounded. I

We shall discuss two cases of benefit functions separately.

4.1. The case g�/g(s)

This case was studied also in Young (2003). As we mentioned before, in this case the

contingent claim g(ST) is hedgable, and its price c(�;�) satisfies the Black-Scholes PDE

(3.13); the optimal price of the UVL is relatively easier to obtain. We have the following

theorem.

THEOREM 4.2. Assume (H1), and assume that utility function u takes the form (4.1).

Suppose also that the benefit function g�/g(s), s]/0, and that the force of mortality lx(t),

t]/0, are both bounded and deterministic. Then, the solution to (3.11) can be written as

V (t;w; s)�V 0(t;w)expfac(t; s)er(T�t)�h(t; s)g; (4:7)

where c(�;�) is the classical solution to the Black-Scholes equation (3.13), and h(�;�) is the

classical solution to the following reaction-diffusion system:
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0�ht�srhs�
1

2
s2s2hss�lx(t)(eh�1)

h(T ; s)�ag(s)

8<
: (4:8)

Furthermore, the optimal premium of the UVL insurance is given by

p�c(0; s)�
h(0; s)

a
e�rT : (4:9)

Proof. First note that the solution to the HJB equation (3.11) is unique (at least in the

viscosity sense); we need only show that a classical solution to (3.11) exists.

To this end, recall that the value function V0(t, w), given explicitly by (4.2), is a smooth

function, concave in w, and it satisfies the PDE:

0�V 0
t �

(m� r)2V 02
w

2s2V 0
ww

�rwV 0
w

V 0(T ;w; s)�u(w):

8><
>: (4:10)

We shall look for a classical solution of (3.11) with the special form: V (t;w; s)�
V 0(t;w)F(t; s): Note that any solution of such a form will be concave (and C2) in w, thus

we can solve the maximum in (3.11) by choosing

p���
(m� r)Vw � s2sVws

s2Vww

;

and the equation (3.11) becomes

0�Vt�
((m� r)Vw � s2sVws)

2

2s2Vww

�rwVw�msVs�
1

2
s2s2Vss�lx(V 0(t;w�c(t; s))�V )

V (T ;w; s)�u(w):

8<
: (4:11)

Plugging in V�/V0F we obtained from (4.11) that

0�F
�

V 0
t �

(m� r)2V 02

w

2s2V 0
ww

�rwV 0
w

�
�V 0

�
Ft�smFs�

1

2
s2s2Fss

	

�l(t)

�
V 0(t;w�c(t; s))�V 0FÞ�V 02

w

V 0
ww

(m�r)sFs�
s2s2F2

s

2V 0
wwF

	

In the above, the first f� � �g vanishes because of (4.10). Also, using the explicit form (4.2)

of V0, and with some straightforward computation we deduce that F must satisfy the

following PDE:

Ft�rsFs�
1

2
s2s2

�
Fss�

F2
s

F

	
�lx(t)(expfc(t; s)aer(T�t)g�F)�0;

F(T ; s)�1:

8<
: (4:12)

We now show that Equation (4.12) has a classical solution. To see this, we first consider

the transformation: h(t; s)�c(t; s)aer(T�t)�lnF(t; s); (t; s) � [0;T ]�IR: Then it is readily

seen that (suppressing variables):
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ht�ctaer(T�t)�carer(T�r)�
Ft

F
; hs�csaer(T�t)�

Fs

F
;

hss�cssaer(T�t)�
Fss

F
�

(Fs)
2

F2
:

Using these relations one easily verifies that h satisfies the PDE:

0�aer(T�t)

�
ct�rscs�

1

2
s2s2css�rc

	
�ht�srhs�

1

2
s2s2hss�lx(t)(eh�1)

h(T ; s)�ac(T ; s)

8<
: (4:13)

Since c(�; �) solves the Black-Scholes PDE (3.13), (4.13) becomes (4.8).

Furthermore, if we make the change of variables: v�/log s and t�/T�/t in (4.8), and

denote ĥ(t; v)�h(T�t; ev); then ĥ satisfies the following ‘‘reaction-diffusion’’ equation:

ht�
�

r�
1

2
s2

	
hv�

1

2
s2hvv�lx(T�t)(eh�1)�0

h(0; v)�ag(ev)

8<
: (4:14)

Thus it suffices to prove that Equation (4.14) has a classical solution. To see this we shall

apply Lemma 1. Indeed, note that equation (4.14) is a special case of (4.3) with

a1(t; y; u; p)b
1

2
s2p; a(y; t; u; p)b

�
1

2
s2�r

	
p�lx(T�t)(eu�1):

It can be easily verified that all assumptions of Lemma 4.1, except for (4.4), are trivially

satisfied. To verify (4.4) we note that with the coefficients a1 and a defined above, the left-

hand side of (4.4) is reduced to lx(T�t)u(eu�1); which is always non-negative as lx]/0

and the function u(eu�1)]0 for all u � IR: Thus (4.4) holds with b1�/b2�/0.

Consequently, applying Lemma 4.1 we see that there exists a bounded classical solution

ĥ to (4.14), hence h(t; s)b ĥ(T�t; log s) is a solution to (4.8), and

V (t;w; s)�V 0(t;w)F(t; s)�V 0(t;w)expfac(t; s)er(T�t)�h(t; s)g

is a classical solution to (3.11), proving the first part of the theorem.

To conclude the proof, we recall that by the principle of equivalent utility, the optimal

premium is defined by: V0(0, w)�/V(0, w�/p, s). By virtue of Theorem 4.2, this relation

becomes:

V 0(0;w)�V 0(0;w�p)expfac(0; s)erT �h(0; s)g: (4:15)

Now the conclusion follows from the explicit form (4.2) of V0(0, w), and some fairly

simple calculations. We leave the details to the interested reader, and the proof is now

complete. I

REMARK 4.3. (i) We note that if the force of mortality lx(t)�/0, that is, the death never

occurs, then it is easily checked that h(t; s)�ac(t; s)er(T�t) satisfies (4.8), thus p�/0 by

(4.9), as it should be.

(ii) The existence of the bounded solution to (4.8) might be a little surprising, as it is a

semilinear parabolic PDE with exponential growth, which in general may have a finite
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time blow-up. The particular form of the non-linear term plays an important role. For a

more convincing example, assuming r�/s�/0, and g�/KB/�, then it can be checked that

h(t)��logf1�(1�e�aK )e�f
t

0
lx(T�u)dug is a solution to (4.8), which is obviously

bounded.

4.2. The case g�/g(s, z)

In this case the explicit formula for the price of UVL is a little more complicated, due to

the presence of the non-tradable asset Z in the death benefit (hence the contingent claim

g(ST, ZT) is no longer hedgable in general). But we can still proceed along the same line as

before, and possibly with slightly different notations, we have the following theorem.

THEOREM 4.4. Assume that the utility function is of the form u(w)��1
a
e�aw: Assume also

that the benefit function g(�;�) and the force of mortality lx( � ) are both smooth and bounded.

Then the optimal premium can be written as

p(t; s; z)�
1

a
e�r(T�t)h(T�t; log s; log z); (4:16)

where h is a bounded, classical solution to the PDE

ht�
1

2
s̃2h2

y2
�

1

2
s2hy1y1

�
1

2
(s̃2�sz2)hy2y2

�sszhy1y2
�

�
r�

1

2
s2

	
hy1

�
�
mz�

m� r

s
sz�

s̃2 � sz2

2

	
hy2

�lx(T�t)(eh̃�h�1)�0;

h(0; y1; y2)�0;

8>>>>><
>>>>>:

(4:17)

and h̃ is a bounded, classical solution to the PDE:

h̃t�
1

2
s̃2h̃2

y2
�

1

2
s2h̃y1y1

�
1

2
(s̃2�sz2)h̃y2y2

�sszh̃y1y2

�
�

r�
1

2
s2

	
h̃y1

�
�
mz�

m� r

s
sz�

s̃2 � sz2

2

	
h̃y2

�0;

h̃(0; y1; y2)�ag(ey1 ; ey2 )

8>>>>><
>>>>>:

(4:18)

Proof. The idea of the proof is similar to that of Theorem 4.2. But this time we seek

solutions of (3.3) and (3.6) with u(w)��1
a
e�aw such that they are of the special forms

Ũ(t;w; s; z)�V 0(t;w)eh̃(T�t;ln s;ln z); and U(t;w; s; z)�V 0(t;w)eh(T�t;ln s;ln z);

respectively. Following the same arguments as in Theorem 4.2, one shows that h̃(t; s; z)

and h(t, s, z) will have to solve the reaction-diffusion equations (4.18) and (4.17),

respectively, after a change of variables t�/T�/t, y1�/ln s and y2�/ln z. Thus it remains to

be verified that (4.17) and (4.18) both have (bounded) classical solutions, for which we

shall make use of Lemma 1 again.
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First let us consider (4.18). Define

ã1(t; y; h; p)�
1

2
s2p1�

1

2
sszp2

ã2(t; y; h; p)�
1

2
sszp1�

1

2
(s̃2�sz2

)p2

ã(t; y; h; p)�
�

1

2
s2�r

	
p1�

�
s̃2 � sz2

2
�

m� r

s
sz�mz

	
p2�

1

2
s̃2p2

2:

8>>>>>>>><
>>>>>>>>:

(4:19)

Conditions (i) and (iv) of Lemma 1 are obviously satisfied. For condition (ii) we note that

@ãi

@h
�0; and

@ãi

@yj

�0: Thus

h̃�
�

ã(y; t; h̃; p)�
X

i

�
@ãi

@h
pi�

@ãi

@yi

	�j
p�0

�0]�b1h̃2�b2 (4:20)

holds for any constants b1, b2]/0, whence (4.4). Moreover, if we define ãij b
@ãi

@pj

; then

(ãij)�

1

2
s2 1

2
ssz

1

2
ssz 1

2
(s̃2�sz2

);

0
BBB@

1
CCCA (4:21)

then clearly (ãij) is positive definite, and �/N�/0 and ½yi½5N and ½h½5MN ; one has

X
i

�
½ai½�j @ai

@u j	(1� ½p½)�
X

i;j
j @ai

@yj
j�½a½

�((a11�a21)½p1½�(a12�a22)½p2½)(1� ½p½)�j�1

2
s2�r

	
p1

�
�
s̃2 � sz2

2
�

m� r

s
sz�mz

	
p2�

1

2
s̃2p2

2j5m(1� ½p½)2: (4:22)

Thus (iv) of Lemma 4.1 holds as well, and consequently (4.18) has a bounded classical

solution h̃:

We now consider (4.17). In this case we define ai� ãi and

a(t; y; h; p)�
�

1

2
s2�r

	
p1�

�
s̃2 � sz2

2
�

m� r

s
sz�mz

	
p2�

1

2
s̃2p2

2�lx(T�t)(eh̃�h�1):

Again, all conditions of Lemma 1 can be easily verified, except for (4.4). But we note that

in this case the left-hand side of (4.4) is reduced to�lx(t)(eh̃(t;s;z)�h�1)h; which is clearly

positive when h 09�; as lx( � )]0: The boundedness of h̃ then implies that

�lx(t)(eh̃(t;s;z)�h�1)h]�b2; �(t; s; z); �h; (4:23)

for some constant b2�/0. To wit, (4.4) holds again with b1�/0. We can then conclude

again that (4.17) admits a bounded classical solution.
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Finally, the explicit solution for the price p (4.16) follows from the principle of

equivalent utility and solving the equation V 0(t;w)�U(t;w�p; s; z): The proof is now

complete. I

5. General life insurance models

In this section, we generalize the insurance model to include the contracts with multiple

decrements and random payment times, and derive the HJB equation in this general

setting. To be more precise, we shall assume that the payments depend on the different

status of the insured and the transition between the status, and also allow the benefit to be

paid at a random time (such as the moment of death), instead of paying at a pre-

determined time T : We note that the term ‘‘general life insurance’’ has been used in most

life or pension treaties (see, e.g., Norberg, 1992).

5.1. Properties of payment process and wealth process

Let us begin by recalling some notations from Section 2. Assume that there are m possible

status, characterized by the status process X�/{Xt}t]0, which is assumed to be càdlàg and

taking values in {0, 1,. . .,m}. We denote I i
t �1fXt�ig; t]/0, i�/0,. . .,m;

Nij
t �#ftransitions from i to j during time interval [0; t]g:

Recall from Lemma 2.1 that the intensity lij of X is the same as the ‘‘force of decrement’’,

and a combination of (2.5) and Lemma 2.1-(i) shows that for h�/0, i, j�/0,. . .,m,

t�hp̄i
t�exp

�
�g

t�h

t

X
j"i

lij
s ds

�
; t�h pij

t �g
t�h

t

tp̄i
tl

ij
tdt: (5:1)

Further, recall that the filtration F�f/F/tgt]0bf/F/
X
t �/F/

B
t �/F/

B̃
t gt]0:

In our general life insurance problem we consider two types of payments: one is in the

form of ‘‘life-annuity’’ and the other in the form of ‘‘life-insurance". More precisely, we

shall consider a (cumulative) payment process of the following form:

At�
X

i
g

t

0

I i
ubi(u;Su;Zu)du�

X
i"j
g

t

0

bij(u;Su;Zu)dNij
u ; t]0; (5:2)

where bi(t, s, z) is the rate of net payment of life annuity at state i, given St�/s, Zt�/z and

bij(t, s, z) is the rate of net payment of life insurance upon transition from state i to state j,

given St�/s and Zt�/z. Clearly, the process At is F-adapted and càdlàg. In fact, as an

accumulated payment up to time t, it is non-decreasing.

Throughout this section we shall make use of the following assumption on the payment

rate functions:

(H3) The contractual payment rate functions bi, bij are continuous, and for some constant

C�/0, such that for all (t; s) � [0;T ]�IRd�1 and i, j�/1,. . ., k, it holds that
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05bi(t; s)5C(1� ½s½); 05bij(t; s)5C(1� ½s½): (5:3)

Given a payment process A, we see that the wealth process (2.10) should be modified to

the following:

dW p
t �rW p

t dt�pT
t (mt�rt1)dt�pT

t stdBt�dAt; t]0: (5:4)

We should point out that the non-tradability of the asset Z will not play any essential

role in our future discussions, so for notational simplicity from now on we shall consider

Z as the (d�/1)-th component of the vector S�(S1; � � � ;Sd ;Sd�1): If necessary, we shall

specify the non-tradability of Z by adding constraints on the portfolio p (such as

requiring that the (d�/1)-th component of pt � IRd�1 vanish). Consequently, from now on

we will write the SDE for the risky assets as

dSt�D[St]fmtdt�stdBtg; t]0: (5:5)

where D[s] denotes the diagonal matrix diag [s1; :::; sd�1]; and B is a d�/1-dimensional

Brownian motion. In what follows we shall denote, for fixed (t, w, s) and given portfolio p,

we denote Wt,w,p (resp. St,s) to be the solution to (3.12) (resp. (5.5)), such that Wt�/w

(resp. St�/s). We often simply denote (Wp;S)�(W t;w;p;St;s) if there is no danger of

confusion.

As the utility function under consideration is assumed to be a fairly general one without

any growth conditions, we shall make the following extra assumption on the set of

admissible strategies A so that the problem is technically tractable.

(H4) The set of functions fEf½p�½
4g;p �/A/g are uniformly integrable (in t �/[0, T]).

REMARK 5.1. It is immediately seen that (H4) is satisfied if we assume that all the

strategies are bounded (the case of compact control space). However, we should note that

this assumption is by no means necessary for our original optimization problem.

Let us now recall from Section 2 that the first transition time tt� inffs]t:Xs"Xtg
and tt

i defined by (2.3). Clearly, tt�t1
t ffl � � �ffltk

t : Furthermore, for any p �/A/ and h�/0,

M�/0, we define the stopping times: t̃pM b inffr]t:½Wp
r �W p

t ½� ½Sr�St½]Mg; and

tph;M bttffl t̃pM ffl(t�h): (5:6)

Next, let us denote the following subsets of V: for k�/0,. . .,m and p �/A/;

Lk;p
h;M bfv:tph;M(v)�t�h;Xt�kg;

Lk;i;p
h;M bfv:tph;M(v)�ti

t(v);Xt�kg;

L̃k;p

h;M bfv:tph;M(v)� t̃pM (v);Xt�kg: (5:7)

The following lemma is useful for our discussion. It is also interesting in its own

right.
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LEMMA 5.2. Assume (H1)�(H4), the following convergence holds uniformly for p �Au:

i. /limh00

1

h
PfL̃k;p

h;M ½Xt�k;Wt�w;St�sg�0;

ii. /limh00

1

h
PfLk;i;p

h;M ½Xt�k;Wt�w;St�sg�lki
t ;

iii. /limh00PfLk;p
h;M ½Xt�k;Wt�w;St�sg�1:

Proof. Let p �/A/ and assume that IpI�B�: To simplify notations we shall drop the

superscript ‘‘p’’ from all the notations in (5.6) and (5.7). Moreover, from now on we

denote all constants depending only on the coefficients m, s, bi and bij, etc. by a generic

one, C�/0, which is allowed to vary from line to line. Furthermore, in this proof we shall

always assume that Xt�/k, Wt�/w and St�/s, and simply denote the conditional

probabilities (resp. expectations) by P (resp. E) without further specification.

(i) Note that on the set L̃k

h;M one has

th;M � t̃M 5ttffl(t�h)�t1
t ffl � � �ffltm

t ffl(t�h):

Thus for v � [t; th;M); Xv remains in status k and W is continuous. In fact, on the set L̃k

h;M it

holds that Wv�W̃ (k)
v ; where W̃ (k) solves the SDE:

W̃ (k)
v �w�g

v

t

fruW̃ (k)
u ��pu;mu�ru1��bk(u;Su)gdu�g

v

t

�pu;sudBu�; v]t; (5:8)

and that L̃k

h;M⁄fsupt5u5t�h(½W̃ (k)
u �w½� ½Su�s½)]Mg: Therefore, we have

PfL̃k

h;Mg5P

�
sup

t5u5t�h

(½W̃ (k)
u �w½� ½Su�s½)]M

�

5P

�
sup

t5u5t�h

½W̃ (k)
u �w½]

M

2

�
�P

�
sup

t5u5t�h

½Su�s½]
M

2

�
�I1�I2; (5:9)

where I1 and I2 are defined in an obvious way. We shall estimate both terms on the right-

hand side above.

First, note that S satisfies the SDE (5.5). By a classic argument using Gronwall

inequality, one has sup05u5T E½Su½
2a5C; a�/1, for some constant C�/0. A simple

application of Chebyshev and Burkholder-Davis-Gundy inequality then yields that

I2�P

�
sup

t5u5t�h

½Su�s½]
M

2

�

5Pt

�
g

t�h

t

½D[Sr]mr½dr]
M

4

�
�Pt

�
sup

t5u5t�h
jg u

t

�srSr; dBr�j]M

4

�

5
C

M2a
Etjg t�h

t

(½mr½
2½Sr½

2� ½srSr½
2)drja5Cha

M2a
sup

05u5T

E½Su½
2a5

Cha

M2a
: (5:10)

To estimate I1, we denote bsbexpf�f
s

0
rudug and let Ŵ (k)

s �bsW̃
(k)
s ; then from (5.8) we

see that Ŵ (k) satisfies the SDE:
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Ŵ (k)
s �ŵ�g

s

t

buf�pu;mu�ru1��bk(u;Su)gdu�g
s

t

bu�pu;sudBu�: (5:11)

Note that 0B/bT5/bu5/1, and denote ŵ�btw; we have

I1�P

�
sup

t5u5t�h

jW̃ (k)
u �wj]M

2

�
�P

�
sup

t5u5t�h

jb�1
u Ŵ (k)

u �wj]M

2

�

5P

�
sup

t5u5t�h

jb�1
u Ŵ (k)

u �b�1
u ŵj� sup

t5u5t�h

jb�1
u ŵ�wj]M

2

5P

�
supt5u5t�hjŴ (k)

u �ŵj] M

2b�1
T

�2w

�
:

Now following a similar argument as before we obtain that

I15P

�
g

t�h

t

buj�pu;mu�ru1��bk(u;Su)jdu]
1

2

�
M

2b�1
T

�2w

	�

�P

�
sup

t5s5t�h
jg s

t

bu�pu;sudBu�j]1

2

�
M

2b�1
T

�2w

	�

5
C

(M � 4wb�1
T )2

�
Ejg t�h

t

½�pu;mu�ru1��bk
u ½du½2�Ejg t�h

t

bu�pu;sudBu�½
4

	

5
C

(M � 4wb�1
T )2

�
hg

t�h

t

E½pu½
2du�h2(1� sup

t5u5T

E½Su½
2)�E

�
g

t�h

t

½pu½
2du

�2	

5
Ch

(M � 4wb�1
T )2

�
g

t�h

t

E½pu½
2du�Ch�g

t�h

t

E½pu½
4du

	
:

(5:12)

Now for M]/8wbT
�1, combining (5.10) and (5.12), as well as assumption (H4), we

proved (i).

(ii) First observe that PftiBt�hg�PfL̃k

h;Mg5PfLki
h;Mg5PftiBt�hg: By (5.1) we

have 1
h

PftiBt�hg�1
ht�h

pki
t 0 lki

t : Moreover, 1
h
PfL̃k

h;Mg 0 0; thanks to (i), thus (ii)

follows immediately.

(iii) As PfLk;p
h;Mg�PfL̃k

h;Mg�ai"kPfLki
h;Mg�1; (iii) is a direct consequence of (i) and

(ii). I

5.2. Dynamic programming and HJB equation

We now turn our attention to the main result of the section, that is, to derive the HJB

equation for our general insurance model. We note that in this paper we only give the

sufficient conditions under which the HJB equation could be rigorously verified. A more

detailed study of the value function, the well-posedness of the HJB equation, and the fact

that the value function is, for instance, the viscosity solution to such a HJB equation will

be studied in a forthcoming paper (Ma & Yu, 2006).

To accommodate the various status we need to introduce some auxiliary value

functions. We shall define, for all (t; w; s) � [0; T ]�IR�IRd�1
� ; and k�/0,. . .,m,
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Uk(t;w; s)bsup
p �Au

Efu(W p
T )½Wt�w;St�s;Xt�kg: (5:13)

Also, let us denote, for 8 � C1;2([0;T ]�IRd�2);

L[8 ]� Lt;w;s[8 ]�
X

i

mi
ts

i8 si (t;w; s)�
X
i;j;k

sik
t s

jk
t sisj8 sisj (t;w; s)

�h8 s(t;w; s);D[s]mti�trfD[s](sts
T
t )D[s](D2

ss8 (t;w; s))g (5:14)

Further, for (t;w; s) � [0;T ]�IR�IRd�1; (8 ;c; p) � IR�(��; 0)�IRd�1; and k�/

0,1,. . .,m, we define

Hk(t;w; s;8 ;c; p;p)�
D 1

2
½stp½

2c�[hp;mt�rt1i�rtw�bk(t; s)]8

�hp;sts
T
t D[s]pi

Hk(t;w; s;8 ;c; p)�
D

supp Hk(t;w; s;8 ;c; p;p):

8>>><
>>>:

(5:15)

We should point out that the quadratic nature (in p) of the Hamiltonian in (5.15) and

the unrestricted choice of p implies that HkB/� if and only if c �/(�/�, 0). We thus have

the following theorem.

THEOREM 5.3. Assume (H1)�(H4). Assume also that for all k�/0, 1,. . .m the value

functions Uk � C1;2;2([0;T ]�IR�IRn): Then, for each k, Uk is strictly concave in w, and

U�(U0;U1; � � � ;Um) satisfies the following system of HJB equations:

0�Uk
t � L[Uk]�Hk(t;w; s;Uk

w;U
k
ww;U

k
ws)�

X
j"k

lkj
t (Uj(t;w�bkj; s)�Uk);

Uk(w;T ; s)�u(w); k�0; 1; � � � ;m:

8<
: (5:16)

Proof. We shall first show that (5.16) holds as an inequality and that all Uk’s are strictly

concave. To this end, we fix k and let pt�p � IRd�1; t]/0. To simplify notations, in what

follows we again drop all the superscript ‘‘p’’ from the notations, and denote Etf � g�
Et;w;s;kf � g: Applying the Bellman Principle to t(h, M), we have

Uk(t;w; s)]EtfUXt(h;M) (t(h;M);Wt(h;M);St(h;M))g

�EtfUk(t(h;M);Wt(h;M)�;St(h;M))g

�EtfUXt(h;M) (t(h;M);Wt(h;M);St(h;M))�Uk(t(h;M);Wt(h;M)�;St(h;M))g (5:17)

First applying Itô’s formula and then taking expectations, we see that the first term on

the right-hand side of (5.17) is (suppressing variables in U’s)

EtfUk(t(h;M);Wt(h;M)�;St(h;M))g

�Uk(t;w; s)�Et

�
g

t(h;M)

t

fUk
t � L[Uk]�

1

2
pT

u su½
2Uk

ww��pu;sus
T
u (D[Su]Uws)�

�(ruWu�bk(u;Su)��pu;mu�ru1�)Uk
wgdu�g

t(h;M)

t

�Uk
wpu�D[Su]Uk

s ;sudBu�g

�Uk(t;w; s)�Et

�
g

t(h;M)

t

fUk
t � L[Uk]� Hk(u;Su;Wu;U

k
w;U

k
ww;U

k
ws;p)dug: (5:18)

333Universal variable life insurance pricing



On the other hand, observe that Xt(h;M)� i if and only if v �Lk;i
h;M ; we see that

EtfUXt(h;M) (t(h;M);Wt(h;M);St(h;M))�Uk(t(h;M);Wt(h;M)�;St(h;M))g

�
X
i"k

EtfUi(ti;Wti��bki(ti;Sti�);Sti�)�Uk(ti;Wti�;Sti ):Lk;i
h;Mg: (5:19)

Plugging (5.18) and (5.19) into (5.17) we obtain that

0]Et

�
g

t(h;M)

t

fUk
t � L[Uk](u;Wu;Su)� Hk(u;Su;Wu;U

k
w;U

k
ww;U

k
ws:p)gdu

�

�
X
i"k

EtfUi(ti;Wti��bki(ti;Sti );Sti )�Uk(ti;Wti�;Sti ):Lk;i
h;Mg

�I1�I2; (5:20)

where I1 and I2 are defined in an obvious way. We claim that

lim
h00

I1

h
�Uk

t (t;w; s)� L[Uk](t;w; s)� Hk(t; s;w;Uk
w;U

k
ww;U

k
ws;p): (5:21)

Indeed, if we denote F [Uk](r)�Uk
t (r;Wr;Sr)�/L/[Uk](r;Wr;Sr)�Hk(r;Wr;Sr;U

k
w;

Uk
ww;U

k
ws:p) we have

j 1h I1�(Uk
t (t;w; s)� L[Uk](t;w; s)� Hk(t; s;w;Uk

w;U
k
ww;U

k
ws;p))j

�Et

�
1

hg
t�h

t

½1fr5t(h;M)gF [Uk](r)�F [Uk(t)½dr

�

5Et

�
sup

t5r5t�h

j1fr5t(h;M)gF [Uk](r)�F [Uk](t)j
�

5Et

�
sup

t5r5t(h;M)

½F [Uk](r)�F [Uk](t)½

�
�Etf½F [Uk](t)½:fLk

h;Mgcg:

As F [Uk](r) is bounded and converges to F [Uk](t); a.s., and limh00PfLk
h;Mg�1; we see

that the right-hand side above vanishes as h0/0, proving (5.21).

To estimate I2; we note that

EtfUi(ti;Wti��bki(ti;Sti );Sti )�Uk(ti;Wti� ;Sti ) : Lk;i
h;Mg

�
1

h
EtfUi(ti;Wti��bki(ti;Sti );Sti )�Ui(t;w�bki(t; s); s) : Lk;i

h;Mg

�
1

h
EtfUk(t;w; s)�Uk(ti;Wti� ;Sti ):Lk;i

h;Mg�
PfLk;i

h;Mg
h

� (Ui(t;w�bki(t; s)�s)�Uk(t;w; s)) (5:22)

By virtue of Lemma 5.2-(ii), the last term tends to lki(Ui(t; w�bki(t; s); s)�
Uk(t; w; s)) as h0/0. We claim that the first two expectations tend to 0 as h0/0. Indeed,

as Wt��W̃ t; we see that the first term can be estimated by
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lim
h00

1

h
jEtfUi(ti;Wti��bki(ti;Sti );Sti )�Ui(t;w�bki(t; s); s):Lk;i

h;Mgj

5 lim
h00

1

h
Etf½Ui(ti; W̃ ti �bki(ti;Sti );Sti )�Ui(t;w�bki(t; s); s)½1fLk;i

h;M
gg

5 lim
h00

Et

�
1fti5t�hg

h
sup

u � [t;t�h)

½Ui(u; W̃ u�bki(u;Su);Su)�Ui(t;w�bki(t; s); s)½

�

5 lim
h00

Pfti 5 t � hg
h

Et

�
sup

u � [t;t�h)

½Ui(u; W̃ u�bki(u;Su);Su)�Ui(t;w�bki(t; s); s)½

�

�lki lim
h00

Et

�
sup

u � [t;t�h)

½Ui(u; W̃ u�bki(u;Su);Su)�Ui(t;w�bki(t; s); s)½

�
:

In the above, the last inequality is due to the independence of ti and (W̃ ;S): Clearly, the

right-hand side has convergence to zero as h0/0, thanks to the continuity of W̃ and S, as

well as the Monotone Convergence Theorem. Similarly, one can argue that the second

term on the right-hand side of (5.22) vanishes as h0/0 as well. Combining, we obtain that

lim
h00

I2

h
�

X
i"k

lki(Ui(t;w�bki(t; s); s)�Uk(t;w; s)) (5:23)

Now putting (5.21) and (5.23) together, we obtain from (5.20) that

0]
1

h
(I1�I2) 0 Uk

t (t;w; s)� L[Uk](t;w; s)� Hk(t; s;w;Uk
w;U

k
ww;Uws;p)

�
X
i"k

lki(Ui(t;w�bki(t; s); s)�Uk(t;w; s)); as h 0 0:

Taking supremum over p we get
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X
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(5:24)

In particular, (5.24) shows that Hk(t; s;w;Uk
w;U

k
ww;U

k
ws)B�: Thus we must have Uk

wwB0

(see the remark following (5.15)). In other words, Uk is strictly concave for all k, as (t, w, s)

are arbitrarily chosen.

It remains to be proven that the opposite direction of the inequality of (5.24) also holds.

To see this, note that for any o�/0, h�/0, there exists p0 �A (depending on o, h!), such that

Uk(t;w; s)�ohBEtfu(W p0

T )g: (5:25)

By the uniqueness of the solution to the SDE (5.4), we have

Et;W p0
t ;St;Xt

(u(Wp0

T ))�Et;W p0
t ;St;Xt

(u(W t;Wp0
t

T ))5UXt (t;W p0

t ;St); P-a:s:

for any stopping time t. Taking expectation Etf�g on both sides above, one obtains that

Etfu(W p0

T )g5EtfUXt (t;W p0

t ;St)g; �t5tBT : (5:26)

Further, for such a fixed p0, let t�/t(h, M) as before. Then, following the same

calculation as in the previous step, and using the definition of Hk, we have
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Similar to the proof of (5.21), we define a continuous function
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r ;Sr)�Hk(r;W p0

r ;Sr;U
k
w;U

k
ww;U

k
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We note that this function actually depends on o and h, as p0 does. However, using the

regularity of all the functions involved, as well as assumption (H4), it is not too hard to

show that the following limit still holds: for fixed o�/0,
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h00
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�
�F̄ [Uk](t): (5:28)

With the same reason, one shows that the result of (5.23) is also valid for each o�/0, again

thanks to (H4). This, together with (5.28), leads to that, for fixed o�/0,
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Therefore, by letting h0/0, (5.27) becomes:
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(5:29)

Letting o go to zero, we obtain the inequality as desired. The proof is now complete. I
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