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In this article we extend the notion of g-evaluation, in particular g-expectation, of
Peng [8, 9] to the case where the generator g is allowed to have a quadratic growth
(in the variable “z”). We show that some important properties of the g-expectations,
including a representation theorem between the generator and the corresponding g-
expectation—and consequently the reverse comparison theorem of quadratic BSDEs
as well as the Jensen inequality—remain true in the quadratic case. Our main results
also include a Doob–Meyer type decomposition, the optional sampling theorem, and
the upcrossing inequality. The results of this article are important in the further
development of the general quadratic nonlinear expectations (cf. [5]).

Keywords BMO; Doob–Meyer decomposition; Jensen’s inequality; Optional
sampling; Quadratic g-evaluations; Quadratic g-expectations; Reverse
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1. Introduction

In this article we extend the notion of g-evaluations, introduced by Peng [9], to the
case when the generator g is allowed to have quadratic growth in the variable z.
This will include the so-called quadratic g-expectation as a special case, as was in
the linear growth case initiated in [8]. The notion of g-expectation, as a nonlinear
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712 Ma and Yao

extension of the well-known Girsanov transformations and originally motivated by
theory of expected utility, has been found to have direct relations with a fairly
large class of risk measures in finance. When the nonlinear expectation is allowed to
have possible quadratic growth, it is expected that it will lead to the representation
theorem that characterizes the general convex, but not necessarily “coherent” risk
measures in terms of a class of quadratic BSDEs. The most notable example of
such risk measure is the entropic risk measure (see, e.g., [1]), which is known
to have a representation as the solution to a quadratic BSDE but falls outside
the existing theory of the “filtration-consistent nonlinear expectations” [3], which
requires that the generator be only of linear growth. We refer the readers to [2, 3, 8],
and the expository article [9] for more detailed account for basic properties of g-
evaluations and g-expectations, as well as the relationship between the risk measures
and g-expectations. A brief review of the basic properties of g-evaluations and g-
expectations will be given in Section 2 for ready references.

The main purpose of this article is to introduce the notion of quadratic g-
evaluation and g-expectation, and prove some of the important properties that
are deemed as essential. In an accompanying article [5], we shall further extend
the notion of filtration consistent nonlinear expectation to the quadratic case,
and establish the ultimate relations between a convex risk measure and a BSDE.
The main results in this article include the Doob–Meyer decomposition theorem,
optional sampling theorem, upcrossing inequality, and Jensen’s inequality. We also
prove that the quadratic generator can be represented as the limit of the difference
quotients of the corresponding g-evaluation, extending the result in linear growth
case [2]. With the help of this result, we can then prove the so-called reversed
comparison theorem, as in the linear case.

Although most of the results presented in this article look similar to those in the
linear case, the techniques involved in the proofs are quite different. We combine
the techniques used in the study for quadratic BSDEs, initiated by Kobylanski [7]
and the by now well-known properties of the BMO martingales. Since many of these
results are interesting in their own right, we often present full details of proofs for
future references.

This article is organized as follows. In Section 2 we give the preliminaries,
and review the existing theory of g-evaluation/expectations and BMO martingales.
In Section 3 we define the quadratic g-evaluation and discuss its basic properties.
Some fine properties of g-evaluations/expectations are presented in Section 4.
These include a representation of quadratic generator via quadratic g-evaluations,
a reverse comparison theorem of quadratic BSDE, and the Jensen’s inequality.
In Section 5 we prove the main results of this paper regarding the quadratic g-
martingales: a Doob–Meyer type decomposition, the optional sampling theorem,
and the upcrossing inequality.

2. Preliminaries

Throughout this article we consider a filtered, complete probability space
���� � P�F� on which is defined a d-dimensional Brownian motion B. We assume
that the filtration F

�= ��t�t≥0 is generated by the Brownian motion B, augmented
by all P-null sets in � , so that it satisfies the usual hypotheses (cf. [10]). We denote
� to be the progressively measurable �-field on �× �0� T	; and �0�T to be the set
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Quadratic g-Expectations 713

of all F-stopping times 
 such that 0 ≤ 
 ≤ T , P-a.s., where T > 0 is some fixed time
horizon.

In what follows, we fix a finite time horizon T > 0, and denote � to be a generic
Euclidean space, whose inner product and norm will be denoted by �·� ·� and � · �,
respectively; and denote � to be a generic Banach space with norm � · �. Moreover,
the following spaces of functions will be frequently used in the sequel. Let � be a
generic sub-�-field of � , we denote

• for 0 ≤ p ≤ �, Lp����� to be all �-valued, �-measurable random variables
�, with E����p� < �. In particular, if p = 0, then L0����� denotes the
space of all �-valued, �-measurable random variables; and if p = �, then
L������ denotes the space of all �-valued, �-measurable random variables
� such that ���� �= esssup∈������ < �;

• 0 ≤ p ≤ �, L
p
F��0� T	��� to be all �-valued, F-adapted processes �, such

that E
∫ T

0 ��t�pdt < �. In particular, p = 0 stands for all �-valued, F-
adapted processes; and p = � denotes all processes X ∈ L0

F��0� T	��� such
that �X�� �= esssupt��X�t��� < �;

• ��
F ��0� T	��� = �X ∈ L�

F ��0� T	��� � X has càdlàg paths�;
• ��

F ��0� T	��� = �X ∈ ��
F ��0� T	��� � X has continuous paths�;

• 	2
F��0� T	��� = �X ∈ L2

F��0� T	��� � X is predictably measurable�.

Finally, if d = 1, we shall drop � = 
 from the notation (e.g., Lp
F��0� T	� =

L
p
F��0� T	�
�, L���T � = L���T �
�, and so on).

2.1. g-Evaluations and g-Expectations

We first recall the notion of g-evaluation introduced in Peng [9]. Given a
time duration �0� T	, and a “generator” g = g�t� � y� z� � �0� T	×�×
×
d 
→ 

satisfying the standard conditions (e.g., it is Lipschitz in all spatial variables, and is
of linear growth, etc.), consider the following BSDE on �0� t	, t ∈ �0� T	:

Ys = �+
∫ t

s
g�r� Yr� Zr�dr −

∫ t

s
ZrdBr� s ∈ �0� t	� (2.1)

where � ∈ L2��t�. Denote the unique solution by �Y t��� Zt���. The g-evaluation is
defined as the family of operators

{
�g

s�t � L
2��t� 
→ L2��s�

}
0≤s≤t≤T

such that for any

t ∈ �0� T	, �g
s�t��	

�= Y t��
s , s ∈ �0� t	.

In particular, for any � ∈ L2��T �, its g-expectation is defined by �g���
�= Y T��

0 ,
and its conditional g-expectation is defined by �g����t	

�= �g
t�T ��	, for any t ∈ �0� T	.

We shall denote (2.1) by BSDE�t� �� g� in the sequel for notational convenience.

Remark 2.1. An important ingredient in the definition of g-evaluation is its
“domain,” namely the subset in L0��T � on which the operator is defined
(in the current case being naturally taken as L2��T �). The domain of a g-
evaluation/expectation may vary as the conditions on the coefficients change, due
to the restrictions on the well-posedness of the BSDE (2.1). For example, owing to
the nature of quadratic BSDEs, in the rest of this article we shall choose L���T �
as the domain for quadratic g-evaluations. We refer to our accompanying article
[5] for a more detailed discussion on the issue of domains for general nonlinear
expectations.
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714 Ma and Yao

By virtue of the uniqueness of the solution �Y t��� Zt���, one can show that the
g-evaluation �g

s�t has the following properties:

(1) (Monotonicity) For any �� � ∈ L2��t� with � ≥ �, P-a.s., �g
r�t��	 ≥ �g

r�t��	, P-a.s.;
(2) (Time-Consistency) �g

r�s

[
�g

s�t��	
] = �g

r�t��	, P-a.s., � ∈ L2��t�, 0 ≤ r ≤ s ≤ t ≤ T ;
(3) (Constant-Preserving) �g

s�t��	 = �, P-a.s., � ∈ L��s�, if it holds dt × dP-a.s. that

g�t� y� 0� = 0� y ∈ 
� (2.2)

(4) (“Zero-One Law”) For any � ∈ L2��t� and any A ∈ �s, s ∈ �0� t	, it holds that

1A�
g
s�t��	 = 1A�

g
s�t�1A�	� P-a.s�

Moreover, if g�t� 0� 0� = 0, dt × dP-a.s., then 1A�
g
s�t��	 = �g

s�t�1A�	, P-a.s.;
(5) (Translation Invariance) Assume that g is independent of y, then for any � ∈

L2��t� and � ∈ L2��s�, it holds that �
g
s�t��+ �	 = �g

s�t��	+ �, P-a.s.

Clearly, if g satisfies (2.2), then one can deduce from (2) and (3) above that

�g����s	 = �g
s�T ��	 = �g

s�t

[
�g

t�T ��	
] = �g

s�t��	� P-a.s�� � ∈ L2��t�� 0 ≤ s ≤ t ≤ T�
(2.3)

and the conditional g-expectation �g�· ��t� possesses the following properties that
more or less justify its name (assuming (2.2) for (2a) and (3a) below):

(1a) (Monotonicity) For any �� � ∈ L2��T � with � ≥ �, P-a.s., �g����t	 ≥ �g����t	,
P-a.s.;

(2a) (Time-Consistency) �g
[
�g����t	

∣∣�s

] = �g����s	, P-a.s., � ∈ L2��T �, s ∈ �0� t	;
(3a) (Constant-Preserving) �g����t	 = �, P-a.s., � ∈ L2��t�;
(4a) (Zero-One Law) For any � ∈ L2��T � and A ∈ �t, it holds that 1A�

g�1A���t	 =
1A�

g����t	, P-a.s.; Moreover, if g�t� 0� 0� = 0, dt × dP-a.s., then 1A�
g����t	 =

�g�1A���t	, P-a.s.;
(5a) (Translation Invariance) Assume that g is independent of y, then for any � ∈

L2��T � and � ∈ L2��t� it holds that �
g��+ ���t	 = �g����t	+ �, P-a.s.

2.2. BMO Martingales and BMO Processes

An important tool for studying the quadratic BSDEs, whence the quadratic
g-expectations, is the so-called “BMO martingales” and the related stochastic
exponentials (see, e.g., [4]). We refer to the monograph of Kazamaki [6] for a
complete exposition of the theory of continuous BMO and exponential martingales.
In what follows, we list some of the important facts that are useful in our future
discussions for ready references.

To begin with, we recall that a uniformly integrable martingale M null at zero
is called a “BMO martingale” on �0� T	 if for some 1 ≤ p < �, it holds that

�M�BMOp

�= sup

∈�0�T

∥∥E��MT −M
−�p
∣∣�
�

1/p
∥∥
� < �� (2.4)

In such a case we denote M ∈ BMO�p�. It is important to note that M ∈ BMO�p�
if and only if M ∈ BMO�1�, and all the BMO�p� norms are equivalent (cf. [6]).
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Quadratic g-Expectations 715

Therefore, in what follows we say that a martingale M is BMO without specifying
the index p; and we shall use only the BMO�2� norm and denote it simply
by � · �BMO. Note also that for a continuous martingale M one has

�M�BMO = �M�BMO2
= sup


∈�0�T

∥∥E��M�T − �M�

∣∣�
�

1/2
∥∥
��

For a given Brownian motion B, we say that a process Z ∈ L2
F��0� T	�


d� is a
BMO process, denoted by Z ∈ BMO by a slight abuse of notations, if the stochastic
integral M

�= Z · B = ∫
ZtdBt is a BMO martingale.

Next, for a continuous martingale M , the Doléans–Dade stochastic exponential
of M , denoted customarily by ��M�, is defined as ��M�t

�= exp�Mt − 1
2�M�t�, t ≥ 0.

If M is further a BMO martingale, then the stochastic exponential ��M� is itself a
uniformly integrable martingale (see [6, Theorem 2.3]).

The theory of BMO was brought into the study of quadratic BSDEs for the
following reason. Consider, for example, the BSDE�T� �� g� (see (2.1)) where the
generator g has a quadratic growth. Assume that there is some k > 0 (we may
assume without loss of generality that k ≥ 1

2 ) such that for dt × dP-a.s. �t� � ∈
�0� T	×�,

�g�t� � y� z�� ≤ k�1+ �z�2�� �y� z� ∈ 
×
d� (2.5)

and denote �Y� Z� ∈ ��
F ��0� T	�× 	2

F��0� T	�

d� be a solution of the BSDE�T� �� g�.

For any 
 ∈ �0�T , applying Itô’s formula to e4kYt from 
 to T one has

e4kY
 + 8k2
∫ T



e4kYs �Zs�2ds = e4kYT + 4k

∫ T



e4kYs g�s� Ys� Zs�ds − 4k

∫ T



e4kYsZsdBs

≤ e4kYT + 4k2
∫ T



e4kYs

(
1+ �Zs�2

)
ds − 4k

∫ T



e4kYsZsdBs�

It is then not hard to derive, using some standard arguments, the following estimate:

E

[ ∫ T



�Zs�2ds ��


]
≤ e4k�Y��E

[
e4k� − e4kY
 ��


]+ e8k�Y���T − 
�� (2.6)

In other words, we conclude that Z ∈ BMO, and that

�Z�2BMO ≤ �1+ T�e8k�Y�� � (2.7)

3. Quadratic g-Evaluations on L����� T �

Our study of the g-evaluation/expectation benefited greatly from the techniques
used to treat the quadratic BSDEs, initiated by Kobylanski [7]. We first list
some results regarding the existence, uniqueness, and comparison theorems for the
quadratic BSDEs. Throughout the rest of the article we assume that the generator
g in BSDE(T� �� g) (2.1) takes the form:

g�t� � y� z� = g1�t� � y� z�y + g2�t� � y� z�� ∀�t� � y� z� ∈ �0� T	×�×
×
d�
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716 Ma and Yao

and satisfies the following Standing Assumptions:

(H1) Both g1 and g2 are � ⊗��
�⊗��
d�-measurable and both g1�t� � ·� ·� and
g2�t� � ·� ·� are continuous for any �t� � ∈ �0� T	×�;

(H2) There exist a constant k > 0 and an increasing function � � 
+ 
→ 
+, such
that for dt × dP-a.s. �t� � ∈ �0� T	×�,

�g1�t� � y� z�� ≤ k and �g2�t� � y� z�� ≤ k+ ���y���z�2� �y� z� ∈ 
×
d�

(H3) With the same increasing function �, for dt × dP-a.s. �t� � ∈ �0� T	×�,∣∣∣∣�g�z �t� � y� z�
∣∣∣∣ ≤ ���y���1+ �z��� �y� z� ∈ 
×
d�

(H4) For any � > 0, there exists a positive function h��t� ∈ L1�0� T	 such that for
dt × dP-a.s. �t� � ∈ �0� T	×�,

�g

�y
�t� � y� z� ≤ h��t�+ ��z�2� �y� z� ∈ 
×
d�

Under the assumptions (H1)–(H4), it is known (cf. [7, Theorems 2.3 and
2.6]) that for any � ∈ L���T �, the BSDE (2.1) admits a unique solution �Y� Z� ∈
��

F ��0� T	�× 	2
F��0� T	�


d�. In fact, this result can be extended to the following
more general form, which will be useful in our future discussion.

Proposition 3.1. Assume that g satisfies (H1)–(H4). For any � ∈ L���T � and any V ∈
��

F ��0� T	�, the BSDE

Yt = �+
∫ T

t
g�s� Ys� Zs�ds + VT − Vt −

∫ T

t
ZsdBs� t ∈ �0� T	� (3.1)

admits a unique solution �Y� Z� ∈ ��
F ��0� T	�× 	2

F��0� T	�

d�.

Proof. We define a new generator g̃ by g̃�t� � y� z�
�= g�t� � y − Vt��� z�,

�t� � y� z� ∈ �0� T	×�×
×
d. Then it is easy to see that for any �t� � y� z� ∈
�0� T	×�×
×
d

g̃1�t� � y� z� = g1�t� � y − Vt��� z��

g̃2�t� � y� z� = g2�t� � y − Vt��� z�− g1�t� � y − Vt��� z�Vt���

It can be easily verified that g̃ also satisfies (H1)–(H4). We can then conclude (see,
[7]) that the BSDE�T� �+ VT � g̃� admits a unique solution �Ỹ � Z� ∈ ��

F ��0� T	�×
	2

F��0� T	�

d�. But this amounts to saying that �Ỹ − V�Z� is the unique solution of

(3.1), proving the corollary. �

Proposition 3.1 indicates that if g satisfies (H1)–(H4), then we can again define
a g-evaluation �g

s�t � L
���t� 
→ L���s� for 0 ≤ s ≤ t ≤ T , as in the previous section.

We shall name it as the “quadratic g-evaluation/expectation” for obvious reasons.
More generally, for any �, 
 ∈ �0�T such that � ≤ 
, P-a.s., we can define the
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Quadratic g-Expectations 717

quadratic g-evaluation �g
��
 � L

���
� 
→ L����� by �g
��
��	

�= Y �
� , where � ∈ L���
�,

and Y � satisfies the BSDE:

Y �
t = �+

∫ T

t
1�s<
�g�s� Y

�
s � Z

�
s �ds −

∫ T

t
Z�
s dBs� t ∈ �0� T	� (3.2)

with Z� ∈ 	2
F��0� T	�


d�, and Y �
t = Y �

t∧
 and Z�
t = 1�t<
�Z

�
t , P-a.s� In particular, if 
 =

T , we define the quadratic g-expectation of � for any � ∈ �0�T by �g�����	
�= �g

��T ��	.
We note that, similar to the deterministic-time case, �g

��
 has the following
properties:

(1) Time-Consistency: For any �, �, 
 ∈ �0�T with � ≤ � ≤ 
, P-a.s., we have

�g
���

[
�g

��
��	
] = �g

��
��	� P-a.s� ∀� ∈ L���
��

(2) Constant-Preserving: Assume (2.2), �g
��
��	 = �, P-a.s., ∀� ∈ L�����;

(3) “Zero-One Law”: For any � ∈ L���
� and A ∈ ��, we have 1A�
g
��
�1A�	 =

1A�
g
��
��	, P-a.s�; Moreover, if g�t� 0� 0� = 0, dt × dP-a.s., then �g

��
�1A�	 =
1A�

g
��
��	, P-a.s.;

(4) “Translation Invariant”: If g is independent of y, then

�g
��
��+ �	 = �g

��
��	+ �� P-a.s� ∀� ∈ L������ � ∈ L���
��

(5) Strict Monotonicity: For any �� � ∈ L���
� with � ≥ �, P-a.s., we have �g
��
��	 ≥

�g
��
��	, P-a.s.; Moreover, if �g

��
��	 = �g
��
��	, P-a.s., then � = �, P-a.s.

We remark that the last property (5) above is not completely obvious. In fact
this will be a consequence of so-called “strict comparison theorem” for quadratic
BSDEs, a strengthened version of the usual comparison theorem (see, for example,
[7, Theorem 2.6]). For completeness we shall present such a version, under the
following conditions that are similar to those in [7], but slightly weaker than (H1)–
(H4).

(A1) g is � ⊗��
�⊗��
d�-measurable and g�t� � ·� ·� is continuous for any
�t� � ∈ �0� T	×�;

(A2) For any M > 0, there exist � ∈ L1�0� T	� k ∈ L2�0� T	 and C > 0 such that for
dt × dP-a.s. �t� � ∈ �0� T	×� and any �y� z� ∈ �−M�M	×
d,

∣∣g�t� � y� z�∣∣ ≤ ��t�+ C�z�2 and

∣∣∣∣�g�z �t� � y� z�
∣∣∣∣ ≤ k�t�+ C�z��

(A3) For any � > 0, there exists a positive function h� ∈ L1�0� T	 such that for dt ×
dP-a.s. �t� � ∈ �0� T	×� and any �y� z� ∈ 
×
d,

�g

�y
�t� � y� z� ≤ h��t�+ ��z�2�

Theorem 3.2. Assume (A1)–(A3). Let �1� �2 ∈ L���T � and V i, i = 1� 2 be two
adapted, integrable, right-continuous processes null at 0. Let

(
Y i
t � Z

i
t

) ∈ ��
F ��0� T	�×
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718 Ma and Yao

	2
F��0� T	�


d�, i = 1� 2 be solutions to the BSDEs:

Y i
t = �i +

∫ T

t
g�s� Y i

s � Z
i
s�ds +

∫ T

t
dV i

s −
∫ T

t
Zi

sdBs� t ∈ �0� T	� i = 1� 2�

respectively. If �1 ≥ �2, P-a.s. and V 1
t − V 2

t is increasing, then it holds P-a.s. that

Y 1
t ≥ Y 2

t � t ∈ �0� T	� (3.3)

Moreover, if Y 1

 = Y 2


 for some 
 ∈ �0�T , then it holds P-a.s. that

�1 = �2� and V 1
T − V 2

T = V 1

 − V 2


 � (3.4)

Proof. It is not hard to see that (3.3) is a mere generalization of [7, Theorem 2.6],
thus we only need to prove (3.4). Let M

�= �Y 1�� + �Y 2��, and define �� = �1 − �2

for � = Y , Z, V , respectively. Then �Y satisfies:

d�Yt = −(
g�t� Y 1

t � Z
1
t �− g�t� Y 2

t � Z
2
t �
)
dt − d�Vt + �ZtdBt

= −
∫ 1

0

(
�g

�y
���

t ��Yt +
�g

�z
���

t ��Zt

)
d�dt − d�Vt + �ZtdBt

= −at�Ytdt − d�Vt + �Zt�−btdt + dBt�� (3.5)

where ��
t

�= �t� ��Yt + Y 2
t � ��Zt + Z2

t �, and

at

�=
∫ 1

0

�g

�y
���

t �d� and bt
�=
∫ 1

0

�g

�z
���

t �d�� t ∈ �0� T	�

Note that ���Yt + Y 2
t � ≤ M , ∀t ∈ �0� T	, P-a.s., by using some standard arguments

with the help of assumptions (A1)–(A3) as well as the Burkholder–Davis–Gundy
inequality we deduce from (3.5) that

E

{
sup
t∈�0�T	

∫ t

0
asds + sup

t∈�0�T	

∣∣∣∣ ∫ t

0
bsdBs

∣∣∣∣} < �� (3.6)

Define Qt

�= exp
{ ∫ t

0 asds − 1
2

∫ t

0 �bs�2ds +
∫ t

0 bsdBs

}
, t ≥ 0, and


n
�= inf

{
t ∈ �
� T	 � Qt > n

} ∧ T� n ∈ �

we see that 
n ↑ T , P-a.s., and (3.6) indicates that there exists a null set � such that
for each  ∈ � c, T = 
m�� for some m ∈ . On the other hand, for any n ∈ ,
integrating by parts on �
� 
n	 yields that

Q
n
�Y
n = Q
�Y
 −

∫ 
n



Qt�Ytatdt −

∫ 
n



Qt�Ztbtdt −

∫ 
n



Qtd�Vt

+
∫ 
n



Qt�ZtdBt +

∫ 
n



�YtQtatdt +

∫ 
n



�YtQtbtdBt +

∫ 
n



Qt�Ztbtdt

= −
∫ 
n



Qtd�Vt +

∫ 
n



Qt�ZtdBt +

∫ 
n



�YtQtbtdBt�
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Quadratic g-Expectations 719

Taking expectation on both sides gives:

E

{
Q
n

�Y
n +
∫ 
n



Qtd�Vt

}
= 0�

which implies that there exists a null set �n such that for any  ∈ �n
c, it

holds that �Y
n���� = 0 and �V
n��
�� = �V
����. Therefore, for any  ∈

{
� ∪(⋃

n∈ �n

)}c

, one has

�YT�� = 0 and �VT�� = �V
�����

This completes the proof. �

In most of the discussion below, we assume the generator g satisfies (H1)–(H4)
(hence (A1)–(A3)). We first extend a property of g-expectations [2, Proposition 3.1]
to the case of quadratic g-evaluations.

Proposition 3.3. Assume (H1)–(H4). Assume further that the generator g is
deterministic. For any t ∈ �0� T	 and � ∈ L���t�, if � is independent of �s for some
s ∈ �0� t�, then the random variable �g

s�t��	 is deterministic.

Proof. Let 0 ≤ s < t ≤ T be such that � ∈ L���t� and that it is independent of �s.
It suffices to show that �g

s�t��	 = c, P-a.s. for some constant c. To see this, for any
r ∈ �0� t − s	, we define B′

r = Bs+r − Bs, �
′
r = �

(
B′
u� u ∈ �0� r	

)
, and F′ = �� ′

r �r∈�0�t−s	.
Clearly, B′ is an F′-Brownian motion on �0� t − s	. Since � ∈ �t is independent of �s,
one can easily deduce that � ∈ � ′

t−s. Now we denote by ��Y ′
r � Z

′
r ��r∈�0�t−s	 the unique

solution to the BSDE:

Y ′
r = �+

∫ t−s

r
g�s + u� Y ′

u� Z
′
u�du−

∫ t−s

r
Z′

udB
′
u� r ∈ �0� t − s	�

The simple change of variables r = v− s and w = s + u yields that

Y ′
v−s = �+

∫ t

v
g�w� Y ′

w−s� Z
′
w−s�dw −

∫ t

v
Z′

w−sdB
′
w−s

= �+
∫ t

v
g�w� Y ′

w−s� Z
′
w−s�dw −

∫ t

v
Z′

w−sdBw� v ∈ �s� t	�

In other words, ��Y ′
v−s� Z

′
v−s��v∈�s�t	 is a solution to BSDE�t� �� g� on �s� t	. The

uniqueness of the solution to BSDE then leads to that Y ′
v−s = �g

v�t��	� v ∈ �s� t	. In
particular, one has �g

s�t��	 = Y ′
0, P-a.s�, which is a constant by the definition of F′

and the Blumenthal 0-1 law, completing the proof. �

As we can see from the discussion so far, so long as the corresponding
quadratic BSDE is well-posed, the resulting g-evaluation/expectation should behave
very similarly to those with linear growth generators, with almost identical proofs
using the properties obtained so far. We therefore conclude this section by listing
some further properties of the g-evaluation/expection in one proposition for ready
references, and leave the proofs to the interested reader.
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720 Ma and Yao

Proposition 3.4. Let gi, i = 1� 2, be two generators both satisfy (H1)–(H4).

1) Suppose that gi�t� 0� 0� = 0, i = 1� 2, and that

�g1
0�t��	 = �g2

0�t��	� ∀t ∈ �0� T	� ∀� ∈ L���t�� (3.7)

then for any � ∈ L���T �, it holds P-a.s. that �
g1
t�T ��	 = �g2

t�T ��	, ∀t ∈ �0� T	.
2) Suppose further that gi, i = 1� 2 are independent of y, For any t ∈ �0� T	, if �g1

0�t��	 ≤
�g2

0�t��	, ∀� ∈ L���t�, then for any � ∈ L���t�, it holds P-a.s. that �g1
s�t��	 ≤ �g2

s�t��	,
∀s ∈ �0� t	.

To end this section, we state a stability result of quadratic BSDEs which is a
slight generalization of Theorem 2.8 in [7]. Since there is no substantial difference
in the proof, we omit it.

Theorem 3.5. Let �gn� be a sequence of generators satisfying (H1) and (H2) with the
same constant k > 0 and increasing function �. Denote, for each n ∈ , �Y n� Zn� ∈
��

F ��0� T	�× 	2
F��0� T	�


d� to be a solution of BSDE�T� �n� gn� with �n ∈ L���T �.
Suppose that ��n� is a bounded sequence in L���T �, and converges P-a.s. to some

� ∈ L���T �; and that for dt × dP-a.s. �t� � ∈ �0� T	×�, �gn�t� � y� z�� converges to
g�t� � y� z� locally uniformly in �y� z� ∈ 
×
d with g satisfying (H1)–(H4). Then
BSDE�T� �� g� admits a unique solution �Y� Z� ∈ ��

F ��0� T	�× 	2
F��0� T	�


d� such that
P-a.s. Y n

t converges to Yt uniformly in t ∈ �0� T	 and that Zn converges to Z in
	2

F��0� T	�

d�.

4. Some Fine Properties of Quadratic g-Evaluations

In this section we extend some fine properties of g-evaluation to the quadratic case.
These properties have been discovered for different reasons in the linear growth
cases, and they form an integral part of the theory of nonlinear expectation. In the
quadratic case, however, the proofs need to be adjusted, sometimes significantly. We
collect some of them here for the distinguished importance.

We begin by a representation theorem for the generators via quadratic g-
expectation.

Theorem 4.1. Assume (H1)–(H4). Let �t� y� z� ∈ �0� T�×
×
d. If g satisfies

(g1) lim�s�y′�→�t+�y� g�s� y
′� z� = g�t� y� z�, P-a.s. and

(g2) For some �0 ∈ �0� T − t	 and some � > 0, there exists an integrable process
�h̃s�s∈�t�t+�0	

such that for dt × dP-a.s. �s� � ∈ �t� t + �0	×�,

�g

�y′
�s� y′� z� ≥ h̃s� ∀y′ ∈ 
 with �y′ − y� ≤ ��

then it holds P-a.s. that

g�t� y� z� = lim
�↘0

1
�

(
�g

t��t+��∧
�y + z�B�t+��∧
 − Bt�	− y
)
�

where 

�= inf

{
s > t � �Bs − Bt� > �

1+�z�
} ∧ T .
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Quadratic g-Expectations 721

Proof. We set M
�= 1+ �y� + ��z�

1+�z� , and M̃
�= kM + 2��4M��z�2. By reducing �0, we

may assume that M̃�0e
k�0 ≤ �

1+�z� ∧ 1
4��4M�

.

Fix � ∈ �0� ln 2
k
∧ �0	. Since �z�B�t+��∧
 − Bt��� ≤ ��z�

1+�z� , there exists a unique
solution

{
�Y �

s � Z
�
s �
}
s∈�t�t+�	

∈ ��
F ��t� t + �	�× 	2

F��t� t + �	�
d� to the following
BSDE:

Y �
s = y + z�B�t+��∧
 − Bt�+

∫ t+�

s
1�r<
�g�r� Y

�
r � Z

�
r �dr −

∫ t+�

s
Z�

r dBr� s ∈ �t� t + �	�

We know from Corollary 2.2 of [7] that �Y ��� ≤ ��y� + ��z�
1+�z� + k��ek� ≤ 2M . Now

let

Ỹ �
s

�= Y �
s − y − z�Bs∧
 − Bt�� Z̃�

s

�= Z�
s − 1�s<
�z� ∀s ∈ �t� t + �	�

It is easy to check that ��Ỹ �
s � Z̃

�
s ��s∈�t�t+�	 is a solution of the BSDE:

Ỹ �
s =

∫ t+�

s
g̃�r� Ỹ �

r � Z̃
�
r �dr −

∫ t+�

s
Z̃�

r dBr� s ∈ �t� t + �	 (4.1)

with g̃�s� � y′� z′�
�= ��y′�1�s<
�g

(
s� � y′ + y + z�Bs∧
��− Bt���� z

′ + z
)
,

�s� � y′� z′� ∈ �t� t + �	×�×
×
d where � � 
 
→ �0� 1	 is an arbitrary C1�
�

function that equals to 1 inside �−3M� 3M	, vanishes outside �−3M − 1� 3M + 1�
and satisfies sup3M<�x�<3M+1 ��′�x�� ≤ 2. For any �s� � y′� z′� ∈ �t� t + �	×�×
×

d, we see that

g̃�s� � y′� z′� = g̃1�s� � y
′� z′�y′ + g̃2�s� � y

′� z′�

with

g̃1�s� � y
′� z′� = ��y′�1�s<
�g1

(
s� � y′ + y + z�Bs∧
��− Bt���� z

′ + z
)
�

g̃2�s� � y
′� z′� = ��y′�1�s<
�g1

(
s� � y′ + y + z�Bs∧
��− Bt���� z

′ + z
)

× (
y + z�Bs∧
��− Bt���

)
+ ��y′�1�s<
�g2

(
s� � y′ + y + z�Bs∧
��− Bt���� z

′ + z
)
�

One can easily deduce from (H2) and (H3) that for dt × dP-a.s. �s� � ∈ �t� t + �	×
�, it holds for any �y′� z′� ∈ 
×
d that

�g̃1�s� � y′� z′�� ≤ k (4.2)

�g̃2�s� � y′� z′�� ≤ kM + 2��4M�
(�z�2 + �z′�2) = M̃ + 2��4M��z′�2 (4.3)

and

∣∣∣∣ �g̃�z′ �s� � y′� z′�
∣∣∣∣ ≤ ��4M�

(
1+ �z′� + �z�)� (4.4)
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722 Ma and Yao

Corollary 2.2 of [7] once again shows that �Ỹ ��� ≤ M̃�ek� ≤ M̃�0e
k�0 ≤ �

1+�z� ∧
1

4��4M�
. Applying Itô’s formula to �Ỹ �

s �2 we obtain that

�Ỹ �
s �2 +

∫ t+�

s
�Z̃�

r �2dr = 2
∫ t+�

s
Ỹ �
r g̃�r� Ỹ �

r � Z̃
�
r �dr − 2

∫ t+�

s
Ỹ �
r Z̃

�
r dBr� s ∈ �t� t + �	�

(4.5)

Using (4.2)–(4.4) and some standard manipulations one derives easily that

2
∫ t+�

s
Ỹ �
r g̃�r� Ỹ

�
r � Z̃

�
r �dr

= 2
∫ t+�

s
Ỹ �
r g̃�r� Ỹ �

r � 0�dr + 2
∫ t+�

s
Ỹ �
r Z̃

�
r

( ∫ 1

0

�g̃

�z′
�r� Ỹ �

r � �Z̃
�
r �d�

)
dr

≤ 2
∫ t+�

s
�Ỹ �

r �
(
k�Ỹ �

r � + M̃
)
dr + 2��4M�

∫ t+�

s
�Ỹ �

r � �Z̃�
r �
(
1+ �z� + 1

2
�Z̃�

r �
)
dr

≤
∫ t+�

s
�Ỹ �

r �
(
2k�Ỹ �

r � + 2M̃ + ��4M��1+ �z��2)dr + 2��4M�
∫ t+�

s
�Ỹ �

r � �Z̃�
r �2dr

≤ C�2 + 1
2

∫ t+�

s
�Z̃�

r �2dr� s ∈ �t� t + �	�

where C is a generic constant depending on �y�� �z�� �0� �� k and ��4M�, which may
vary from line to line. Taking the conditional expectation E� ��s	 on both sides of
(4.5) we have

E

{ ∫ t+�

s
�Z̃�

r �2dr
∣∣�s

}
≤ C�2� s ∈ �t� t + �	� (4.6)

Now, taking the conditional expectation in the BSDE (4.1) we have

1
�
Ỹ �
t − g̃�t� 0� 0� = 1

�
E

{ ∫ t+�

t

(
g̃�r� Ỹ �

r � Z̃
�
r �− g̃�t� 0� 0�

)
dr

∣∣�t

}
= 1

�
E

{ ∫ t+�

t

[
Z̃�

r

∫ 1

0

�g̃

�z′
�r� Ỹ �

r � �Z̃
�
r �d�

+ Ỹ �
r

∫ 1

0

�g̃

�y′
�r� �Ỹ �

r � 0�d�+ g̃�r� 0� 0�− g̃�t� 0� 0�
]
dr

∣∣∣�t

}
�

We know from (g2) and (H4) that for dt × dP-a.s. �s� � ∈ �t� t + �	×�,

h̃s ≤
�g

�y′
�s� � y′ + y + z�Bs∧
��− Bt���� z� ≤ h1�s�+ �z�2

holds for any y′ ∈ 
 with �y′� ≤ �
1+�z� . It follows that for dt × dP-a.s. �s� � ∈ �t� t +

�	×�,∣∣∣∣ �g̃�y′ �s� � y′� 0�
∣∣∣∣ = ∣∣�′�y′�1�s<
�g�s� � y

′ + y + z�Bs∧
��− Bt���� z�
∣∣
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Quadratic g-Expectations 723

+
∣∣∣∣��y′�1�s<
�

�g

�y′
�s� � y′ + y + z�Bs∧
��− Bt���� z�

∣∣∣∣
≤ 2k�1+ 4M�+ (

1+ 2��4M�
)�z�2 + �h̃s� + h1�s�

�= hs

holds for any y′ ∈ 
 with �y′� ≤ �
1+�z� . Clearly, �hs�s∈�t�t+�0	

is an integrable process.
Then applying (4.4), (4.6) and the Hölder Inequality we have∣∣∣∣1�Ỹ �

t − g̃�t� 0� 0�

∣∣∣∣ ≤ 1
�
E

{ ∫ t+�

t

[
��4M�

(
�1+ �z���Z̃�

r � +
1
2
�Z̃�

r �2
)
+ �Ỹ �

r �hr

]
dr

∣∣∣�t

}
+ E

{
1
�

∫ t+�

t

∣∣g̃�r� 0� 0�− g̃�t� 0� 0�
∣∣dr ∣∣∣�t

}
≤ C

(
�+√

�
)+ M̃ek�E

[ ∫ t+�

t
hrdr

∣∣∣�t

]
+ E

{
1
�

∫ t+�

t

∣∣g̃�r� 0� 0�− g̃�t� 0� 0�
∣∣dr ∣∣∣�t

}
� (4.7)

As lims→t+ 1�s<
� = 1 and lims→t+�Bs∧
 − Bt� = 0, P-a.s., one can deduce from (g1)
that

lim
s→t+

g̃�s� 0� 0� = lim
s→t+

g�s� y + z�Bs∧
 − Bt�� z� = g�t� y� z� = g̃�t� 0� 0�� P-a.s��

which implies that

lim
�↘0

1
�

∫ t+�

t

∣∣g̃�r� 0� 0�− g̃�t� 0� 0�
∣∣dr = 0� P-a.s�

Since �g̃�s� � 0� 0�� ≤ M̃ for dt × dP-a.s. �s� � ∈ �t� t + �	×�, Lebesgue
Convergence Theorem implies that the right hand side of (4.7) converges P-a.s. to
0 as � → 0+. Therefore,

g�t� y� z� = g̃�t� 0� 0� = lim
�→0+

1
�
Ỹ �
t = lim

�→0+

1
�
�Y �

t − y�

= lim
�↘0

1
�

(
�g

t��t+��∧
�y + z�B�t+��∧
 − Bt�	− y
)
� P-a.s��

where (3.2) was used in the last equality. The proof is now complete. �

A simple application of the theorem above gives rise to a reverse to the
Comparison Theorem of quadratic BSDE:

Theorem 4.2. Assume that gi, i = 1� 2 satisfy (H1)–(H4) and (2.2). Let t ∈ �0� T�. If
�g1 ����t	 ≤ �g2 ����t	, P-a.s. for any � ∈ L���T �, and if both gi satisfy (g1) and (g2) for
any �y� z� ∈ 
×
d, then it holds P-a.s. that

g1�t� y� z� ≤ g2�t� y� z�� ∀�y� z� ∈ 
×
d�

We also have the following corollary of Theorem 4.1.
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724 Ma and Yao

Proposition 4.3. Assume that g satisfies (H1)–(H4) and (2.2). We also assume that P-
a.s., g�·� y� z� is continuous for any �y� z� ∈ 
×
d. If g satisfies (g1) and (g2) for any
�t� y� z� ∈ �0� T�×
×
d, then g is independent of y if and only if

�g��+ c	 = �g��	+ c� ∀� ∈ L���T �� ∀c ∈ 
�

Proof:. “⇒”: A simply application of translation invariance of quadratic g-
expectations.

“⇐”: For any c ∈ 
, we define a new generator gc�t� � y� z�
�= g�t� � y − c� z�,

∀�t� � y� z� ∈ �0� T	×�×
×
d. It is easy to check that gc satisfies (H1)–(H4)
as well as the other assumptions on g in this proposition. For any � ∈ L���T �, let
�Y� Z� denote the unique solution to BSDE�T� �� g�. Setting Ỹt = Yt + c, t ∈ �0� T	
one obtains that

Ỹt = �+ c +
∫ T

t
gc�s� Ỹs� Zs�ds −

∫ T

t
ZsdBs� ∀t ∈ �0� T	�

Thus, it holds P-a.s. that

�gc ��+ c��t	 = Ỹt = Yt + c = �g����t	+ c� ∀t ∈ �0� T	�

In particular, taking t = 0 gives that �gc ��	 = �g��	 for any � ∈ L���T �. Since g

satisfies (2.2), it easy to see that the condition (3.7) is satisfied for g1
�= g and g2

�=
gc. Hence, Proposition 3.4 implies that for any � ∈ L���T �, it holds P-a.s. that
�g����t	 = �gc ����t	, ∀t ∈ �0� T	. Applying Theorem 4.1 we see that for any �t� z� ∈
�0� T�×
d, it holds P-a.s. that g�t� c� z� = gc�t� c� z� = g�t� 0� z�. Then (H1) implies
that for any t ∈ �0� T�, it holds P-a.s. that g�t� y� z� = g�t� 0� z�, ∀�y� z� ∈ 
×
d.
Eventually, by our assumption, it holds P-a.s. that g�t� y� z� = g�t� 0� z�, ∀�t� y� z� ∈
�0� T�×
×
d. This proves the proposition. �

To end this section we extend another important feature of the g-expectation to
the quadratic case: The Jensen’s inequality. We begin by recalling some basic facts
for convex functions, and we refer to Rockafellar [11] for all the notions to appear
below.

Recall that if F � 
n 
→ 
 is a convex function, then by considering the convex
real function f���

�= F��x�− (
�F�x�+ �1− ��F�0�

)
, � ∈ 
, with f�0� = f�1� = 0, it

is easy to check that for any x ∈ 
n, it holds that{
F��x� ≤ �F�x�+ �1− ��F�0�� if � ∈ �0� 1	�

F��x� ≥ �F�x�+ �1− ��F�0�� if � ∈ �0� 1�c�
(4.8)

Next, if F � 
 
→ 
 is a convex (real) function, then we denote by �F the
subdifferential of F (see [11]). In particular, for any x ∈ 
, �F�x� is simply an
interval �F ′

−�x�� F
′
+�x�	, where F ′

− and F ′
+ are left-, and right-derivatives of F ,

respectively. The following result is an extension of the linear growth case (cf. [2,
Proposition 5.2]).
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Quadratic g-Expectations 725

Theorem 4.4. Assume that g is independent of y and satisfies (H1)–(H4) and (2.2). Let
t ∈ �0� T�. If g�s� � z� is convex in z for dt × dP-a.s. �s� � ∈ �t� T	×�, then

F
(
�g����t	

) ≤ �g�F�����t	� P-a.s�

for any � ∈ L���T � with �F
(
�g����t	

) ∩ �0� 1�c �= ∅, P-a.s.

Proof. Since both F ′
−�x� and F ′

+�x� are nondecreasing functions, we can define
another non-decreasing function:

��x�
�= 1�F ′−�x�≤0�F

′
−�x�+ 1�F ′−�x�>0�F

′
+�x�� x ∈ 
�

Thus, �t

�= �
(
�g����t	

)
is an �t-measurable random variable. Since ��x� ∈ �0� 1�c for

any x ∈ 
 with �F�x� ∩ �0� 1�c �= ∅, it follows that

�t ∈ �0� 1�c� P-a.s� (4.9)

One can deduce from the convexity of F that

�t

(
�− �g����t	

) ≤ F���− F
(
�g����t	

)
� (4.10)

Since � ∈ L���T �, it is clear that F���, �g����t	, F
(
�g����t	

)
as well as �t

(
�−

�g����t	
)
are all of L���T �. Taking �g� ��t	 on both side of (4.10), and using

Translation Invariance of quadratic g-expectation we have

�g��t���t	− �t�
g����t	 = �g

[
�t

(
�− �g����t	

)∣∣�t

]
≤ �g

[
F���− F

(
�g����t	

)∣∣�t

]
= �g�F�����t	− F

(
�g����t	

)
� P-a.s�

Hence, it suffices to show that �t�
g����t	 ≤ �g��t���t	, P-a.s. To see this, let Yt

�=
�g����t	, t ∈ �0� T	. As �t ∈ �t, one has

�tYs = �t�+
∫ T

s
�tg�r� Zr�dr −

∫ T

s
�tZrdBr� ∀s ∈ �t� T	�

Since g is convex and satisfies (2.2), using (4.8) and (4.9) we obtain

�tYs ≤ �t�+
∫ T

s
g�r� �tZr�dr −

∫ T

s
�tZrdBr = �g��t���s	� ∀s ∈ �t� T	�

In particular, we have �t�
g����t	 ≤ �g��t���t	, P-a.s�, proving the theorem. �

5. Main Results

In this section we prove the main results of this paper regarding the quadratic g-
martingales. To begin with, we give the following definition. Recall that �g

s�t�·	, 0 ≤
s ≤ t ≤ T denotes the g-evaluation.
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726 Ma and Yao

Definition 5.1. An X ∈ L�
F ��0� T	� is called a “g-submartingale” (resp. g-

supermartingale) if for any 0 ≤ s ≤ t ≤ T , it holds that

�g
s�t�Xt	 ≥ �resp. ≤�Xs� P-a.s�

X is called a g-martingale if it is both a g-submartingale and a g-supermartingale.

We should note here that, in the above the martingale is defined in terms of
quadratic g-evaluation, instead of quadratic g-expectation as we have usually seen.
This slight relaxation is merely for convenience in applications. It is clear, however,
that if g satisfies (2.2), then the quadratic g-martingale defined above should be the
same as the one defined via quadratic g-expectations, thanks to (2.3).

We shall extend three main results for g-expectation to the quadratic case: the
Doob–Meyer decomposition, the optional sampling theorem, and the upcrossing
theorem. Although the results look similar to the existing one in the g-expectation
literature, the proofs are more involved due to the special nature of the quadratic
BSDEs. We present these results separately.

We begin by proving a Doob–Meyer type decomposition theorem for g-
martingales.

Theorem 5.2 (Doob–Meyer Decomposition Theorem). Assume (H1)–(H4). Let Y be
any g-submartingale (resp. g-supermartingale) that has right-continuous paths. Then
there exist a càdlàg increasing (decreasing) process A null at 0 and a process Z ∈
	2

F��0� T	�

d� such that

Yt = YT +
∫ T

t
g�s� Ys� Zs�ds − AT + At −

∫ T

t
ZsdBs� t ∈ �0� T	�

Proof. We first assume that Y is a g-submartingale. Set M
�= ��Y�� + kT�ekT and

K
�= ��M + 1�, we let � � 
 
→ �0� 1	 be any C2�
� function that equals to 1 inside[

e−2KM� e2KM
]
and vanishes outside

(
e−2K�M+1�� e2K�M+1�

)
. Let us construct a new

generator: For any �t� � y� z� ∈ �0� T	×�×
×
d,

g̃�t� � y� z�
�= ��y�

[
2Ky g

(
t� �

ln �y�
2K

�
z

2Ky

)
− �z�2

2y

]
�

One can deduce from (H2) that for dt × dP-a.s. �t� � ∈ �0� T	×�,

g̃�t� y� z� ≤ 2�M + 2�kK��y�y� �y� z� ∈ 
×
d�

Since 2�M + 2�kK��y�y is Lipschitz continuous in y, we can construct (cf. [7]) a
decreasing sequence gn�t� y� z� of generators uniformly Lipsichitz in �y� z� such that
P-a.s.

gn�t� y� z� ↘ g̃�t� y� z�� ∀�t� y� z� ∈ �0� T	×
×
d�

Now fix t ∈ �0� T	, for any � ∈ L���t� with ���� ≤ �Y��, we define ys
�= �g

s�t��	,
s ∈ �0� t	. It follows from [7, Corollary 2.2] that �y�� ≤ ��Y�� + kT�ekT = M .
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Quadratic g-Expectations 727

Applying Itô’s formula we see that ỹs
�= e2Kys , s ∈ �0� t	 together with a process z̃ ∈

	2
F��0� t	�


d� is a solution of the following BSDE:

ỹs = e2K� +
∫ t

s
g̃�r� ỹr � z̃r �dr −

∫ t

s
z̃rdBr� ∀s ∈ �0� t	�

Since gn is Lipschitz, a standard comparison theorem implies that

e2K�g
s�t ��	 = ỹs ≤ �gn

s�t�e
2K�	� s ∈ �0� t	� P-a.s�

In particular, taking � = Yt shows that

e2KYs ≤ e2K�g
s�t �Yt	 ≤ �gn

s�t�e
2KYt 	� s ∈ �0� t	� P-a.s�

Namely, Ỹ = e2KY is a right-continuous gn-submartingale in the sense of gn-
evaluation for any n ∈ . Applying the known g-submartingale decomposition
theorem for the Lipschitz case (see [9, Theorem 3.9]), we can find a càdlàg increasing
process An null at 0 and a process Zn ∈ 	2

F��0� T	�

d� such that

Ỹt = ỸT +
∫ T

t
gn�s� Ỹs� Z

n
s �ds − An

T + An
t −

∫ T

t
Zn

s dBs� t ∈ �0� T	� (5.1)

from which we see that Ỹ , whence Y is càdlàg. Note that, in the representation
(5.1), the martingale parts must coincide for any m and n. In other words, one must
have Zm = Zn as the elements in 	2

F��0� T	�

d�. Thus, for any n ∈ , (5.1) can be

rewritten as

Ỹt = ỸT +
∫ T

t
gn�s� Ỹs� Z̃s�ds − An

T + An
t −

∫ T

t
Z̃sdBs� t ∈ �0� T	�

Since gn ↘ g̃, the Lebesgue Convergence Theorem implies that∫ T

0

[
gn�s� Ỹs� Z̃s�− g̃�s� Ỹs� Z̃s�

]
ds → 0� P-a.s�

Consequently, it holds P-a.s. that

An
t → Ãt

�= Ỹt − Ỹ0 +
∫ t

0
g̃�s� Ỹs� Z̃s�ds −

∫ t

0
Z̃sdBs� ∀t ∈ �0� T	�

It is easy to check that Ã is also a càdlàg increasing process null at 0. Now let us
define a new C2�
� function � by ��y�

�= ��y� ln �y�
2K , y ∈ 
. Applying Itô’s formula to

��Ỹt� from t to T one has

Yt = YT +
∫ T

t+
1

2KỸs−

[
g̃�s� Ỹs� Z̃s�ds − dÃs − Z̃sdBs

]
+ 1

2

∫ T

t+
�Z̃s�2
2KỸ 2

s−
ds − ∑

s∈�t�T	

{
�Ys −

�Ỹs

2KỸs−

}
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728 Ma and Yao

= YT +
∫ T

t

1

2KỸs

[
g̃�s� Ỹs� Z̃s�ds − dÃc

s − Z̃sdBs

]+ 1
2

∫ T

t

�Z̃s�2
2KỸ 2

s

ds − ∑
s∈�t�T	

�Ys

= YT +
∫ T

t
g

(
s� Ys�

Z̃s

2KỸs

)
ds −

∫ T

t

1

2KỸs
dÃc

s −
∫ T

t

Z̃s

2KỸs
dBs −

∑
s∈�t�T	

�Ys�

where the second equality is due to the fact that �Ỹs = �Ãs > 0 and Ãc denotes the
continuous part of Ã. Clearly, At

�= ∫ t

0
1

2KỸs
dÃc

s +
∑

s∈�0�t	 �Ys is a càdlàg increasing
process null at 0, finally we get

Yt = YT +
∫ T

t
g�s� Ys� Zs�ds − AT + At −

∫ T

t
ZsdBs� t ∈ �0� T	�

On the other hand, if Y is a g-supermartingale, then one can easily check that
−Y is correspondingly a g−-submartingale with

g−�t� � y� z�
�= −g�t� �−y�−z�� ∀�t� � y� z� ∈ �0� T	×�×
×
d� (5.2)

Clearly, g− also satisfies (H1)–(H4), thus there exist a càdlàg increasing process A

null at 0 and a process Z ∈ 	2
F��0� T	�


d� such that

−Yt = −YT +
∫ T

t
g−�s�−Ys� Zs�ds − AT + At −

∫ T

t
ZsdBs� t ∈ �0� T	�

We can rewrite this BSDE as:

Yt = YT +
∫ T

t
g�s� Ys�−Zs�ds − �−AT�+ �−At�−

∫ T

t
�−Zs�dBs� t ∈ �0� T	�

The proof is now complete. �

We now turn our attention to the optional sampling theorem. We begin by
presenting a lemma that will play an important role in the proof of the optional
sampling theorem.

Lemma 5.3. Let 
 ∈ �0�T be finite valued in a set 0 = t0 < t1 < · · · < tn = T . If ti ≤
s < t ≤ ti+1 for some i ∈ �0� 1� � � � � n− 1�, then for any � ∈ �t∧


�g
s∧
�t∧
��	 = 1�
≤ti�

�+ 1�
≥ti+1�
�g

s�t��	� P-a.s� (5.3)

Proof. For any � ∈ �t∧
, let �Y� Z� be the unique solution to the BSDE (3.2) with

 = t ∧ 
. Then we have

�g
r∧
�t∧
��	 = Yr∧
 = �+

∫ T

r∧

1�u<t∧
�g�u� Yu� Zu�du−

∫ T

r∧

1�u<t∧
�ZudBu

= �+
∫ t

r
1�u<
�g�u� Yu∧
� Zu�du−

∫ t

r
1�u<
�ZudBu� ∀r ∈ �0� t	�
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Quadratic g-Expectations 729

For any r ∈ �s� t	, since �
 ≤ ti� = �
 ≥ ti+1�
c ∈ �ti

⊂ �r , one can deduce that

1�
≤ti�
Yr∧
 = 1�
≤ti�

�+
∫ t

r
1�
≤ti�

1�u<
�g�u� Yu∧
� Zu�du−
∫ t

r
1�
≤ti�

1�u<
�ZudBu

= 1�
≤ti�
�� (5.4)

and that

1�
≥ti+1�
Yr∧
 = 1�
≥ti+1�

�+
∫ t

r
1�
≥ti+1�

1�u<
�g�u� Yu∧
� Zu�du−
∫ t

r
1�
≥ti+1�

1�u<
�ZudBu

= 1�
≥ti+1�
�+

∫ t

r
1�
≥ti+1�

g�u� Yu∧
� Zu�du−
∫ t

r
1�
≥ti+1�

ZudBu� (5.5)

On the other hand, we let Y ′
r = �g

r�t��	, r ∈ �0� t	. Then for any r ∈ �s� t	, by the
definition of quadratic g-evaluation, one has

1�
≤ti�
Y ′
r = 1�
≤ti�

�+
∫ t

r
1�
≤ti�

g�u� Y ′
u� Z

′
u�du−

∫ t

r
1�
≤ti�

Z′
udBu� (5.6)

Adding (5.6) to (5.5) shows that Ỹr
�= 1�
≥ti+1�

Yr∧
 + 1�
≤ti�
Y ′
r and Z̃r

�= 1�
≥ti+1�
Zr +

1�
≤ti�
Z′

r solve the following BSDE

Ỹr = �+
∫ t

r
g�u� Ỹu� Z̃u�du−

∫ t

r
Z̃udBu� ∀r ∈ �s� t	�

Then it is not hard to check that Ŷr = 1�r≥s�Ỹr + 1�r<s��
g
r�s�Ỹs	� r ∈ �0� t	 is the unique

solution of BSDE�t� �� g�. Hence we can rewrite Ŷr = �g
r�t��	, r ∈ �0� t	. In particular,

it holds P-a.s. that

1�
≥ti+1�
Ys∧
 = 1�
≥ti+1�

Ỹs = 1�
≥ti+1�
Ŷs = 1�
≥ti+1�

�g
s�t��	� (5.7)

Letting r = s in (5.4) and then adding it to (5.7), the lemma follows. �

We are now ready to prove the optional sampling theorem.

Theorem 5.4. Assume (H1)–(H4). For any g-submartingale X (resp., g-
supermartingale, g-martingale) such that esssup∈� supt∈�0�T	 �X�t��� < �, and for
any �, 
 ∈ �0�T with � ≤ 
, P-a.s. Assume either that � and 
 are finitely valued or that
X is right-continuous, then

�g
��
�X
	 ≥ �resp. ≤� =� X�� P-a.s�

Proof. We shall consider only the g-submartingale case, as the other cases can
be deduced easily by standard argument. To begin with, we assume that 
 takes
values in a finite set 0 = t0 < t1 < · · · < tn = T . Note that if t ≥ tn, then it is clear
that �g

t∧
�
�X
	 = �g

�
�X
	 = X
, P-a.s. We can then argue inductively that for any

t ∈ �0� T	,

�g
t∧
�
�X
	 ≥ Xt∧
� P-a.s� (5.8)
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730 Ma and Yao

In fact, assume that for some i ∈ �1� � � � � n�, (5.8) holds for any t ≥ ti. Then for any
t ∈ �ti−1� ti�, the time-consistence and the monotonicity of quadratic g-evaluations as
well as (5.3) imply that

�g
t∧
�
�X
	 = �g

t∧
�ti∧

[
�g

ti∧
�
�X
	
] ≥ �g

t∧
�ti∧
�Xti∧
	

= 1�
≤ti−1�
Xti∧
 + 1�
≥ti�

�g
t�ti
�Xti∧
	

= 1�
≤ti−1�
Xt∧
 + 1�
≥ti�

�g
t�ti
�Xti∧
	� P-a.s�

Since �
 ≥ ti� = �
 ≤ ti−1�
c ∈ �t, the “zero-one law” of quadratic g-evaluations

shows that

1�
≥ti�
�g

t�ti
�Xti∧
	 = 1�
≥ti�

�g
t�ti
�1�
≥ti�

Xti∧
	 = 1�
≥ti�
�g

t�ti
�1�
≥ti�

Xti
	

= 1�
≥ti�
�g

t�ti
�Xti

	 ≥ 1�
≥ti�
Xt = 1�
≥ti�

Xt∧
� P-a.s�

Hence, (5.8) holds for any t ≥ ti−1, this completes the inductive step. If � is also
finitely valued, for example in the set 0 = s0 < s1 < · · · < sm = T , then it holds P-a.s.

�g
��
�X
	 = �g

�∧
�
�X
	 =
m∑
j=0

1��=sj �
�g

sj∧
�
�X
	

≥
m∑
j=0

1��=sj �
Xsj∧
 = X�∧
 = X�� (5.9)

For a general 
 ∈ �0�T , we define two sequences ��n� and �
n� of finite valued
stopping times such that P-a.s.

�n ↘ �� 
n ↘ 
� and �n ≤ 
n� ∀n ∈ �

Fix n ∈  and let �Y n� Zn� be the unique solution to the BSDE (3.2) with � = X
n

and 
 = 
n. We know from (5.9) that P-a.s.

Y n
�m

= �g
�m�
n

�X
n
	 ≥ X�m

� ∀m ≥ n�

In light of the right-continuity of X and Y n, letting m → � gives that

Y n
� ≥ X�� P-a.s�

Now let �Y� Z� be the unique solution to the BSDE (3.2) with � = X
. It is
easy to see that for dt × dP-a.s. �t� � ∈ �0� T	×�� 1�t≤
n�

g�t� � y� z� converges to
1�t≤
�g�t� � y� z� uniformly in �y� z� ∈ 
×
d. Theorem 3.5 then implies that P-a.s.
Y n
t converges to Yt uniformly in t ∈ �0� T	. Thus, we have

�g
��
�X
	 = Y� = lim

n→� Y n
� ≥ X�� P-a.s��

proving the theorem. �

Finally, we study the so-called upcrossing inequality for quadratic g-
submartingales, which would be essential for the study of path regularity of g-
submartingales.
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Theorem 5.5. Given a g-submartingale X, we set J
�= (�X�� + kT

)
ekT and denote

X̃t = Xt + k�J + 1�t, t ∈ �0� T	. As usual, for any finite set � = �0 ≤ t0 < t1 < · · · <
tn ≤ T�, we let Ub

a �X̃��� denote the number of upcrossings of the interval �a� b	 by X̃
over �. Then there is a BMO process

{
���t�

}
t∈�0�tn	 such that

E

[
Ub

a �X̃��� exp
( ∫ tn

0
���s�dBs −

1
2

∫ tn

0
����s��2ds

)]
≤ �X�� + k�J + 1�T + �a�

b − a
�

and that E
∫ tn
0 ����s��2ds ≤ C, a constant independent of the choice of �.

Proof. For any j ∈ �1� � � � � n� we consider the following BSDE:

Y j
t = Xtj

+
∫ tj

t
g�s� Y j

s � Z
j
s�ds −

∫ tj

t
Zj

sdBs� ∀t ∈ �tj−1� tj	�

Applying Corollary 2.2 of [7] one has

�Y j�� ≤ (�Xtj
�� + k�tj − tj−1�

)
ek�tj−tj−1� ≤ J� (5.10)

Now let us define a d-dimensional process ���t� = ��1
t � � � � � �

d
t �, t ∈ �0� tn	 by

�l
t

�=
n∑

j=1

1t∈�tj−1�tj 	

∫ 1

0

�g

�zl

(
t� Y j

t � �Z
j�1
t � � � � � �Zj�l

t � 0� � � � 0�
)
d�� l ∈ �1� � � � � d��

It is easy to see from Mean Value Theorem that for any t ∈ �tj−1� tj	,

g�t� Y j
t � Z

j
t �− g�t� Y j

t � 0�

=
d∑

l=1

{
g
(
t� Y j

t � �Z
j�1
t � � � � � Zj�l

t � 0� � � � � 0�
)− g

(
t� Y j

t � �Z
j�1
t � � � � � Zj�l−1

t � 0� � � � � 0�
)}

=
d∑

l=1

Zj�l
t �l

t = �Zj
t � ���t��� (5.11)

Moreover, (H3) implies that

∣∣�l
t

∣∣ ≤ ��J�
n∑

j=1

1t∈�tj−1�tj 	
�1+ �Zj

t ��� t ∈ �0� tn	� l ∈ �1� · · · � d�� (5.12)

We see from (2.7) that each Zj is a BMO process, thus so is ��. In fact, for any

 ∈ �0�tn

, one can deduce from (5.12) that

E

[ ∫ tn



����s��2ds

∣∣�


]
≤ Ctn + C

n∑
j=1

E

[ ∫ tj

�
∨tj−1�∧tj
�Zj

s �2ds
∣∣�


]

≤ CT + C
n∑

j=1

{
1�
≤tj−1�

E

[ ∫ tj

tj−1

�Zj
s �2ds

∣∣�
∧tj−1

]

+ 1�tj−1<
≤tj �
E

[ ∫ tj

�
∨tj−1�∧tj
�Zj

s �2ds
∣∣��
∨tj−1�∧tj

]}
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732 Ma and Yao

≤ CT + C
n∑

j=1

{
1�
≤tj−1�

E

[
E�
∫ tj

tj−1

�Zj
s �2ds ��tj−1

	
∣∣�
∧tj−1

]

+ 1�tj−1<
≤tj �
�Zj

s�2BMO2

}
≤ CT + C

n∑
j=1

�Zj
s�2BMO2

� (5.13)

where C
�= 2d��J�2. Thus,

{
�
(
�� • B)

t

}
t∈�0�tn	 is a uniformly integrable martingale.

By Girsanov’s theorem we can find an equivalent probability Q� such that
dQ�/dP = �

(
�� • B)

tn
. Then (5.11) and (H2) show that for any j ∈ �1� � � � � n� and

any t ∈ �tj−1� tj	,

Y j
t = Xtj

+
∫ tj

t

[
g�s� Y j

s � 0�+ �Zj
s� ���s��

]
ds −

∫ tj

t
Zj

sdBs

= Xtj
+

∫ tj

t
g�s� Y j

s � 0�ds −
∫ tj

t
Zj

sdB
�
s

≤ Xtj
+ k�J + 1��tj − t�−

∫ tj

t
Zj

sdB
�
s �

where B� denotes the Brownian Motion under Q�. Taking the conditional
expectation EQ� �·��t	 on both sides of the above inequality one can obtain that

�g
t�tj
�Xtj

	 = Y j
t ≤ EQ� �Xtj

��t	+ k�J + 1��tj − t�� P-a.s� ∀t ∈ �tj−1� tj	�

In particularly, taking t = tj−1 we have

Xtj−1
≤ �g

tj−1�tj
�Xtj

	 ≤ EQ� �Xtj
��tj−1

	+ k�J + 1��tj − tj−1�� P-a.s�

Hence, �X̃tj
�nj=0 is a Q�-submartingale. Applying the classical upcrossing theorem

one has

EQ�

[
Ub

a �X̃���
] ≤ EQ�

[
�X̃tn

− a�+
]

b − a
≤ �X�� + k�J + 1�T + �a�

b − a

Furthermore, we denote C > 0 to be a generic constant depending only on
d� T� J� k� �X��, and is allowed to vary from line to line. Letting 
 = 0 in (5.13) one
can deduce that

E
∫ tn

0
����s��2ds ≤ C + C

n∑
j=1

E
∫ tj

tj−1

�Zj
s �2ds

≤ C + C
n∑

j=1

{
e4K̃JE

[
e
4K̃Y

j
tj − e

4K̃Y
j
tj−1

]+ e8K̃J �tj − tj−1�
}

≤ C + C
n∑

j=1

E
[
e
4K̃Xtj − e

4K̃Xtj−1
] = C + CE

[
e4K̃Xtn − e4K̃Xt0

] ≤ C�
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Quadratic g-Expectations 733

where we applied (2.6) and (5.10) with K̃
�= 1

2 ∨ k�J + 1� ∨ ��J� to derive the second
inequality and the third inequality is due to the fact that Y j

tj−1
= �g

tj−1�tj
�Xtj

	 ≥ Xtj−1
.

The proof is now complete. �

With the above upcrossing inequality, we can discuss the continuity of the
quadratic g-sub(super)martingales.

Corollary 5.6. If X is a g-submartingale (resp. g-supermartingale), then for any
denumerable dense subset � of �0� T	, it holds P-a.s. that

lim
r↗t�r∈�

Xr exists for any t ∈ �0� T	 and lim
r↘t�r∈�

Xr exists for any t ∈ �0� T��

Proof. If X is a g-supermartingale, then −X is correspondingly a g−-submartingale
with g− defined in (5.2). Hence, it suffices to assume that X is a g-submartingale.
Let ��n�n∈ be an increasing sequence of finite subsets of � such that

⋃
n �n = �.

For any two real numbers a < b, Theorem 5.5 and Jensen’s Inequality imply that:

C̃
�= 1+ �X�� + k�J + 1�T + �a�

b − a

≥ 1+ E

[
Ub

a �X̃��n� exp
{ ∫ tn

0
���s�dBs −

1
2

∫ tn

0
����s��2ds

}]
= E

[(
1+ Ub

a �X̃��n�
)
exp

{ ∫ tn

0
���s�dBs −

1
2

∫ tn

0
����s��2ds

}]
≥ exp

{
E

[
ln
(
1+ Ub

a �X̃��n�
)+ ∫ tn

0
���s�dBs −

1
2

∫ tn

0
����s��2ds

]}
�

from which one can deduce that

E
[
ln
(
1+ Ub

a �X̃��n�
)] ≤ ln C̃ + 1

2
+ ����2L2

F��0�tn	�

d�
≤ C ′�

where C ′ is a constant independent of the choice of �. Since Ub
a �X̃��n� ↗ Ub

a

(
X̃��

)
as �n ↗ �, Monotone Convergence Theorem implies that ln

(
1+ Ub

a

(
X̃��

))
is integrable, thus Ub

a

(
X̃��

)
< �, P-a.s� Then a classical argument yields the

conclusion for X̃, thus for X. The proof is now complete. �
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