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A GENERALIZED KYLE-BACK STRATEGIC INSIDER TRADING
MODEL WITH DYNAMIC INFORMATION*

JIN MA ' AND YING TAN #

Abstract. In this paper we consider a class of generalized Kyle-Back strategic insider trading
models in which the insider is able to use the dynamic information obtained by observing the instan-
taneous movement of an underlying asset that is allowed to be influenced by its market price. Since
such a model will be largely outside the Gaussian paradigm, we shall try to Markovize it by intro-
ducing an auxiliary diffusion process, in the spirit of the weighted total order process (see, e.g., [12]),
as a part of the “pricing rule”. As the main technical tool in solving the Kyle-Back equilibrium in
such a setting, we study a class of Stochastic Two-Point Boundary Value Problem (STPBVP), which
resembles the dynamic Markov bridge in the literature, but without insisting on its local martingale
requirement. In the case when the solution of the STPBVP has an affine structure, we show that
the pricing rule functions, whence the Kyle-Back equilibrium, can be determined by the decoupling
field of a forward-backward SDE obtained via a non-linear filtering approach, along with a set of
compatibility conditions.

Key words. Strategic insider trading, Kyle-Back equilibrium, conditioned SDE, stochastic two-
point boundary value problem, FKK equation, forward-backward SDE, stochastic optimal control
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1. Introduction. In this paper we are interested in an asset pricing problem
with asymmetric information, known as the Kyle-Back strategic insider trading equi-
librium problem initiated by Kyle [24] and Back ([4, 5]) (see also [1, 9, 11, 16, 23] and
the references therein for various generalizations of such models, along with different
approaches). In particular, we will focus on the cases of dynamic information, in which
the insider is allowed to use the dynamically observed information on the underlying
asset, rather than the information at a fixed terminal time, as it was originally sug-
gested. We shall carry out the analysis in a general Markovian, hence non-Gaussian
framework.

The Kyle-Back strategic insider trading problem can be briefly described as fol-
lows. Consider a market that involves three types of agents: (i) The insider, who
possesses some information of a given asset V' = {V;};cjo,7] that is not observable
in the market. The information can be either the value of Vi, or the instantaneous
observation of the state V4, t € [0, T, or both. In the literature, they are often referred
to as the “long-lived information” and the “dynamic information”, respectively. The
insider will then submit her order, denoted by &, t € [0,T]. (ii) The noise traders,
who have no direct information of the asset V, and (collectively) submit an order z;
at time ¢ € [0,7]. It is commonly assumed, by virtue of the central limit theorem,
that z; = fot ofdBf, where B* is a Brownian motion. (iii) Finally, the marked maker,
who observes the total traded volume in the market, Y; := & + 2, t € [0, 7], and sets
the price for V;. It is standard to assume (see, e.g., [24], by a Bertrand competition
argument) that the market price P;, t > 0, is the L?-projection of the true value V/
to the space of FY -measurable random variables. In other words, one assumes that,
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2 J. MA, AND Y. TAN
for t € 0,77,

E[Vr|FY] (long-lived information)
E[V,|FY] (dynamic information),

(L.1) P, = {
where FY = o{Y,,s < t}. An equilibrium of the Kyle-Back problem consists of an
insider’s strategy £* that maximizes her expected wealth at terminal time T, together
with the market price P in either form of (1.1) (known as the market efficiency).

Strong efforts have been made in recent years to extend the Kyle-Back problem to
more general settings beyond the traditional Gaussian framework, and some deeper
mathematical tools have been introduced to deal with the solvability issues accompa-
nied by the generality of the modeling (see, for example, [12, 13, 15] and the references
cited therein). It is thus always interesting to identify methodologies that are easily
accessible and at the same time efficient for solving more general models. This paper
is an effort in this general direction.

We are interested in a Kyle-Back equilibrium problem with the following features:

(i) The evolution of the dynamics of the underlying asset can depend on the
market price P = {P;} (hence depending on the market information F¥ = {F}}).

(ii) The insider can observe both the movements of the underlying asset and the
market price, and uses the information to decide her optimal strategy; and

(iii) the market maker’s pricing rule is in general an “optional projection” of the
underlying asset, rather than a martingale (note the two different forms in (1.1)).

We note that the feature (i) above, although reasonable (see, e.g., [27]), would
put our problem outside most of the cases studied in the literature, due to various
technical reasons which will become clear when our analysis proceeds, especially when
the idea of “dynamic Markov bridge” is adopted. The requirement (iii), however, will
be a natural connecting point to the nonlinear filtering, given the reasonable structure
of the asymmetric information. More precisely, in this paper we shall assume that the
underlying asset V' is governed by the following general SDE:

(1.2) dVy = b(t,Vipe, Pag)dt + o(t, Viae, Pat)dBY, Vo = v,

where b, o are given measurable functions. We shall also assume, as commonly seen
in the literature, that the insider’s strategy is of the form & = fg asds, t > 0, where
the “rate” « can depend on both V and P in an nonanticipative way, so that the
dynamics the market maker observes is:

(1.3) dY; = dé; + dzy = aft, Vias, Pag)dt 4+ d B2, t>0.

We remark that under the market efficiency requirement (1.1), the SDEs (1.2)
and (1.3) in general form a so-called conditional mean-field SDE (CMFSDE) (or more
generally, conditional McKean-Viasov SDE (CMVSDE), whose well-posedness is not
trivial (cf., e.g, [10, 27]). In this paper we shall take a different route, and follow
the idea of [12] and introduce a factor model which in a sense Markovizes the “path-
dependent” SDEs (1.2) and (1.3) completely. To be more precise, we are looking for
a factor process X that is determined completely by the observation It6 process Y,
in the sense that X; = ¥(¢,Y.A¢), such that the market price P is determined by

Pr=H(t,Xy) = H(t,U(t,Y.nr)) = D(t,Y.0e), t € [0,T].

Such a factor process X resembles the so-called weighted total process (see, e.g., [12]),
which was assumed to be a diffusion process driven by the observation process Y (see
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A GENERALIZED KYLE-BACK MODEL WITH DYNAMIC INFORMATION 3

§2 for detail). With such a Markovization, we shall recast the equilibrium problem as
a stochastic control problem and show that, by a dynamic programming argument,
a necessary condition for the strategy a* being optimal is that the corresponding
solution (V, X)) satisfies:

(1.4) Vr = Pr =H(T, Xr) := g(Xr).

We note that the relationship (1.4) naturally leads to a two-point boundary value
problem structure, or a “bridge”. In fact, there has been a tremendous effort to
use the notion of dynamic Markov bridge to help find the Kyle-Back equilibrium (see,
e.g., [21, 12, 13]), and the methodology works well when some technical and structural
assumptions are made to ensure the solvability. However, these assumptions excludes
the more convoluted situations such as (1.2).

The main motivation of this paper is based on the following observation: although
dynamic Markov bridge is a powerful tool in solving the problem, it can be slightly
relaxed for the purpose for this particular problem. In other words, a slightly gen-
eralized version, which we shall refer to as the stochastic two-point boundary value
problem (STPBVP), would be sufficient, if not more effective, for our purpose. Our
main idea is to simply use the so-called “conditioned” SDE (see, Baudoin [7]) and de-
sign a specific minimal probability measure for the two-dimensional Markovian process
(V,X), and construct a weak solution to the STPBVP. Some fundamental tools in
the study of dynamic Markov bridge should be sufficient for the resolution of TP-
BVP, whence the desired Kyle-Back equilibrium problem. We should note that the
choice of the coefficients of the factor process X is somewhat ad hoc, and we can
and will impose some structural assumptions that would lead to explicit “compatibil-
ity conditions” among coefficients of V' and X. In particular, in this paper we shall
assume an affine structure, motivated in part by the well-known Widder’s Theorem
(cf. e.g., [6, 30, 33, 32]) and the solution of the STPBVP. We shall first argue that,
given the affine structure, some analysis similar to affine term structure of interest
rates can be used to derive the compatibility conditions; and the optional projection
P, = E[V;|FY] can be rigorously put into a nonlinear filtering framework with (V, X)
being the state signal process, and Y being the observation process. Furthermore,
the terminal condition (1.4) will lead to a coupled Forward-backward SDE (FBSDE),
with the factor process X being the forward SDE, and the Fujisaki-Kallianpur-Kunita
(FKK) equation of the filtering problem being the backward SDE, both driven by the
process Y. We then show that the corresponding decoupling field (cf. [28]) is exactly
the pricing rule H (see, e.g., [12]). Note that such a connection opens the door to a
potentially much more general framework in which the decoupling field H is allowed
to be a random field, determined by a backward stochastic PDE (BSPDE), as is often
seen in the FBSDE literature (cf. e.g., [26]). We hope to be able to address such
issues in our future publications.

The rest of the paper is organized a follows. In §2 we formulate the problem
and introduce the notations and definitions. In §3 we revisit the conditioned SDE;
and in §4 we formulate the stochastic two-point boundary value problem (STPBVP)
and investigate its well-posedness and fundamental properties. In §5 we introduce
the notion of affine structure for the solution to the STPBVP and associated insider
strategies. In §6 we discuss the filtering problem and derive the FKK equation and
the corresponding FBSDE under the affine structure. Finally, in §7 we discuss the
sufficient conditions for optimality, and determine the equilibrium strategies.

2. Preliminaries and Problem Formulation. Throughout this paper, let X
be a generic Euclidean space and regardless of its dimension, (-,-) and | - | be its
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4 J. MA, AND Y. TAN

inner product and norm, respectively. We denote the space of X-valued continuous
functions defined on [0, 7] with the usual sup-norm by C([0,T]; X). In particular, we
denote C2 := C([0,7);R?), and let %(C%) be its topological Borel field. We shall
assume that all randomness in this paper is characterized by a canonical probabilistic
set-up: (Q,F,P,F, B), where (2, F) := (C%, 8(C%)); P € £(Q); and B = (B!, B?)
is a P-Brownian motion. Moreover, we shall assume that F* = {FF };50, i = 1,2, is
the natural filtration generated by B! and B2, respectively, and F = F' VF2, with the
usual P-augmentation so that it satisfies the usual hypotheses (cf. e.g., [29]). Finally,
we denote Q0 € Z2(Q) to be the Wiener measure on (2, F); BY(w) = w(t), w € Q,
the canonical process; and F := {F{}ic(0,17, where FY := %,(C3.) := o{w(-At) :w €
CZ%}, t € [0,7]. In what follows we shall make use of the following notations:

e For any sub-o-field G C Fr and 1 < p < oo, LP(G;X) denotes the space
of all X-valued, G-measurable random variables £ such that E|£[P? < co. As usual,
¢ € L*(G;X) means that it is G-measurable and bounded.

e For 1 < p < oo, G CF, LEL([0,7];X) denotes the space of all X-valued, G-

progressively measurable processes £ satisfying E( fOT |€:|Pdt) < oco. The meaning of
L ([0,77;X) is defined similarly. For simplicity, we will often drop X(= R) from
the notation, and denote all “LP-norms” by || - ||,, regardless it is for LP(G), or for
LE([0,T7), when the context is clear.

The Problem Formulation. As we indicated in before, there are three types of
agents in the market: the insider; the noise trader; and the market maker, which we
now specify in details.

(i) The insider. In this paper we shall assume that the insider can both dynami-
cally observe the liquidation value of the underlying asset V' = {V;}, and have some
information of Vr, in particular, the law of Vi, denoted by m* € £(R). Specifically,
we assume that the asset process V' is governed by the following SDE:

(2.1) dVy = b(t,Vy, P))dt + o(t, Vi, P)dBy, Vo =,

where b, 0 are measurable functions, and P = {P;} is the market price. We should
note that allowing (b, o) to depend on the market price P is one of the main features
of this paper, which amounts to saying that the fundamental price V is convoluted
with the market information FY (see (2.2) below), which leads to some fundamental
difficulties that distinguishes this paper from most of the existing literature, especially
in terms of the dynamic Markov bridge.

We should note that although the insider has more information of the underly-
ing asset, even it’s law at a future time, we shall insist that its strategy is in the
non-anticipating manner. More precisely, we shall assume that the order process
{&t}qeefo,m)y> takes the form & = £ = fot asds, where the process a = {a;}, often
referred to as the trading strategy, is assumed to have the form «; = u(t, Vs, Pat)s
t € 0,77, for some function u to be determined (see, e.g., [5, 27]).

(ii) The noise traders. For simplicity, in this paper we shall assume that the
(collective) order submitted by the noise traders is simply the z; = B2, for some
Brownian motion B?1LB'. In other words, we assume that B> = B2, and ¢* = 1.

(iii) The market maker. By virtue of the so-called Bertrand competition argument
(see, e.g., [24]), we assume that at each time ¢ € [0,T], the market maker sets the
(market) price P; to be the (L?-)projection of the (unobservable) underlying price
V, onto the space of all Y -measurable random variables. That is, P, = E[V;|F}],

This manuscript is for review purposes only.
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A GENERALIZED KYLE-BACK MODEL WITH DYNAMIC INFORMATION 5

t € [0,T], where Y is the total trading volume:
t
(2.2) Yt:§g+B2:/ asds+ BZ,  t€][0,T].
0

Furthermore, we require that the asymmetry of information ends at the terminal time
T. That is, at terminal 7" > 0 the value of the underlying asset Vi will be revealed
and the market price will be set as Pr = Vp, so that the insider does not have any
information advantage by the time 7. We should note that such a requirement is
not a natural consequence given the market parameters (i.e., the coefficients of SDEs
involved), but rather one of the conditions the equilibrium strategy must satisfy.
Before we describe the equilbrium, let us specify the set of admissible strategies:

(2.3) Uoa := {a € LA([0,T)) : L* is a local martingale on [0, T)}.

where LY := exp{f(;s asdB? — % 0t|0¢s\2d8}, t € [0,T). A (generalized) Kyle-Back
equilibrium consists of a “pricing rule”, under which P, = E[V;|F)], t € [0, T]; and
an optimal strategy a* € %4, such that the terminal wealth, defined by

Wr =W = [} e7dP,,
has a maximum expected value EF[W2"] = sup,cq, , EF[W].

Remark 2.1. (i) In (2.3) the process L® is defined only on [0,T"). In fact, it has
been noted that the optimal strategy «; often explodes when t T, because the
insider will try to use all the information advantage before it ends. (ii) From (2.2)
we see that Y depends on «, thus so do the market price P and the asset price V.
Therefore, a more precise definition of the admissible control set should be all o« € %4
such that Vp = V¥ ~ m* € Z(R), the law that is known to the insider. We prefer
not to impose such a restriction in order to avoid unnecessary technical subtlety, but
will emphasize this issue when it is needed in our discussion (e.g., in §4). [ ]

The Markovization. We note that the market price P, = E[V,|FY], t € [0,77, is in
general an optional projection of V onto the filtration F¥ = {F;}, but not necessarily
an FY -martingale as the “long-lived information” case (see (1.1)) considered in most of
the existing literature. In general the market price P can be written as P, = ®(¢, Y. a¢),
t > 0, for some measurable function ® defined on [0,7] x C([0,T]). Therefore (2.1)-
(2.2) is by nature a system of “path-dependent” Conditional McKean-Viasov SDEs
(CMVSDEs) or Conditional Mean-field SDEs (CMFSDES) (see [10, 27]). In this paper
we shall follow the idea of [12] to first Markovzie the system (2.1)-(2.2) by introducing
a factor process X, which satisfies an auxiliary SDE of the form:

(24) dXt = ,u(t, Xt)dt + ,D(t, Xf)d}/f, XO =,

where the coefficients (u, p) are to be determined, so that the market price P can be
written as P, = H(t, X;) for some function H. We note that, if on some probability
space (2, F,Q), where Q € () under which Y is a Brownian motion, then, as
the strong solution to SDE (2.4), X can be written as X; = ¥(t,Y.,), for some
measurable function ¥, and consequently, we have

P =EV,|F = H(t,X;) = H{t,VU(t,Y.n)) = ®(t,Yne),  t€[0,T).

We note that the factor process X resembles the weighted total order process proposed
in [12]), and the function H (together with the coefficients (u, p)) can be considered
as the “pricing rule” (see [12, 13]). They will be the main subject of this paper.

This manuscript is for review purposes only.
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6 J. MA, AND Y. TAN

We should remark here that a direct consequence of the Markovization is that we
can now put the problem of finding the equilibrium into a standard stochastic control
framework. More specifically, since P, = H(t, X;), by a slight abuse of notation, we
shall assume from now on that the underlying asset V' and the factor process X follow
a system of SDEs:

{ dVy = b(t, Vi, Xy)dt + o(t, Vi, X )dB}, Vo = v;

2.5
( ) dXt = M(taXt)dt + p(taXt)dY;‘n XO =x.

Considering (2.5) as a controlled system with the control o € %,4. Following the
argument of [4] by allowing a market clearing jump at terminal time, then a simple
integration by parts shows that the expected terminal wealth can be written as:

T T
(2.6)  E[W2] = E[(VT ~Pr)es 4 / gf“dPt} - E[ / Vi — Pt]atdt]
0 0
Assuming now the process a takes the feedback form: oy = u(t, Vi, Xy), then (V, X)
becomes Markovian, and we deduce from (2.6) that
{fo E[Ve|F Y]~ B, atdt] {fo (t, Vi, X3) — H(t,Xt)]atdt},

where F' is a continuous function satisfying F(T,v,x) = v, and can be determined
by the Kolmogorov backward equation or Feynman-Kac formula (see §7 for details).
Consequently, we can define a stochastic control problem with (V, X) as the controlled
dynamics, and the cost functional:

T
2.7)  J(t,v,wu) =By, [/ (F(s, Vi, Xs) — H(s, Xs))u(s, VS,Xs)ds],
t
so the value function v(t,v, ) := sup,ecq,, J(t, v, z; u) satisfies the HJB equation:

1 1
0=v(t,v,z) + b(t,v,2)vy + p(t,x)vy + 502(1?, UV, ) Vyy + §p2(t, ) Vg

(2.8) +i§l§{ T)Vy + F(t,v,x) — H(t, z)]u}.

Clearly, a necessary condition for the “sup”-term in (2.8) to be finite is:

p(t,x)vy + F(t,v,2) — H(t,z) =0, (t,v,2) € [0,T] x R2.
In particular, noting that F(T,v,z) = v, and v(T,v,z) = 0 by (2.7), we deduce that
(29) 0= p(T,2)v,(T,v,) = H(T,z) — F(T,v,2) = g(x) - v, (v,a) € R,
where g(z) = H(T, z). In other words, it holds that Vi = g(Xr) for some function g.
In fact, similar to [12], we shall assume from now on that the function g is increasing.

Consequently, (2.9) indicates an important fact: a necessary condition for o« € %4
being an equilibrium is that the following condition holds at the terminal time 7T

Vp =Pr=H(T,Xr) = g(Xr).

A Stochastic Two-Point Boundary Valued Problem (STPBVP). Summariz-
ing the discussion above we see that we should look for o € %, and coefficients (u, p)
so that the following system of SDEs with initial-terminal conditions is solvable:

dVy = b(t, Vi, X;)dt + o (t, Vi, X;)d B},
Vo=v, Xo=2, Vr=g(Xr)

This manuscript is for review purposes only.
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A GENERALIZED KYLE-BACK MODEL WITH DYNAMIC INFORMATION 7

In what follows we shall refer to (2.10) as a Stochastic Two-Point Boundary Value
Problem, whose solvability will be studied in details in the next section. In particular,
we are interested in the case when « takes the form oy = w(t, V4, X;), which will
render the solution (V, X) a Markov process.

We remark that the TPBVP (2.10) is closely related to the so-called dynamic
Markov bridge studied in, e.g., [12, 13, 21]. In fact, if b = p =0, 0 = p = 1,
and g(z) = x, the problem (2.10) was first studied, as the Brownian bridge, in the
context of insider trading in [21]. The more general cases were considered recently in
[12, 13, 14], also in the bridge context. But on the other hand, we note that in the
description of the problem above we see that the TPBVP (2.10) does not actually
require that the solution X to be a local martingale under its own filtration, a key
requirement to be a Markovian bridge (see §3 for a more detailed discussion). Thus,
the main point of this paper is to show that such a relaxation enables us to solve the
Kyle-Back equilibrium problem in a much more general setting.

3. The Conditioned SDE Revisited. Our construction of the (weak) so-
lution to TPBVP (2.10) is based on the notion of the so-called conditioned SDE
(cf. [7]), which we now briefly describe. Recall the canonical probabilistic set-up
(Q,F,Q%TF, BY) defined in the beginning of §2. In particular, we denote the canon-
ical process by B = (B',Y) so that it is a (Q°, F)-Brownian motion. Consider the
SDE on canonical space (€2, F,Q°, BY), for t € [0,T):

{ AV, = b(t, Vi, X3)dt + o(t, Vi, X;)dBL, Vo = v;

3.1
31) dX, = p(t, X,)dt + p(t, X,)dYs, Xo = 1.

Throughout the paper we shall make use of the following Standing Assumptions:
Assumption 3.1. (i) The functions b,o : [0,7] x R? = R and y,p: [0,T] xR — R

are measurable, and continuous in ¢ € [0, T7;
(ii) There exists L > 0, such that, for any ¢ € [0,T], v,v',z, 2’ € R, it holds that,

[b(,0,0) + [o(2,0,0)] + |u(t, 0)| + |p(, 0)| < L,
lp(t,v,2) — @(t, 0", 2")| < Ljv —v'| + |z — 2]), ¢=hb,0,
|¢(ta$>_¢(t7l‘/)‘ Sle—.’L‘/L wZM,Py

(iii) There exists a constant Ao > 0, such that o (¢,v,z) > Ao, (t,v,2) € [0,T] xR?;
(iv) The functions g : R — R is strictly increasing, and both g and g~! are

uniformly Lipschitz continuous. [ |

Clearly, under Assumption 3.1, SDE (3.1) has a unique strong solution over [0, T,
on (Q,F,Q"), denoted by & := (V° X°). Moreover, ¢ is a Markov process, and we
denote its transition density by p(s,z;t,y), 0 < s <t < T, x,y € R% For v € Z(R?),
we shall refer to the triplet (T, &7, v) as a “conditioning” below. Define

p(t7 §t7 T7 y)

7 t<T, QY-as.
p(07 607 Ta y)

Ly ::/ nfv(dy), where ny:=
R2

DEFINITION 3.2. The conditioning triplet (T, &r,v) is called “proper” if
(i) supp(v) C supp(Q° 0 &) and
(i) there exist constants C, A > 0, such that
y Meg—vl? 9 Meg—vl?
(32) 0< sup (T —t)y) <CTe ™ T ,yeR% e T v(dy) < oco.
tel0,T) R2

This manuscript is for review purposes only.
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8 J. MA, AND Y. TAN

We note that the condition (i) above is relatively easier to verify. In particular,
it would be trivial when the diffusion £ has positive density at time 7. For condition
(ii), we note that p(s,y;t, x) is the fundamental solution to the Kolmogorov backward
(parabolic) PDE, then it is well-known that (see, e.g., [2, 3]), for some constant ¢y,
c2, A\, A > 0, it holds that

c1 _Aly—z|? Cy  _Aly—z?

e Splsyita) < e WO, 0<s<t<T, zyeR’
— S

0<
t—s

Consequently we see that,

Algg—y|? | Mgg—vl® Aég—yl?
<< e M < O e ),
which leads to the first inequality in (3.2). Thus the requirement for the conditioning

being “proper” means that LY < oo for all t € [0,7T), Q°-a.s..

The following proposition contains some results similar to those in [7], extended
to the 2-dimensional case but with slightly different assumptions (see also, [18, 20]).
Although some proofs are quite similar, we give a detailed sketch for completeness.

PROPOSITION 3.3. Assume Assumption 3.1. Let (T,&r,v) be a given condition-
ing. Then,

(i) there exists a unique PV € P(Q), such that P” o 5;1 =v, and for anyt < T,
any bounded X € LO(F;R?), it holds that

(3.3) E [X|er =] =EL [p/X], t<T, Qo0& -ae yeR?

(ii) assuming further that (T, &p,v) is proper, then for any t < T, it holds that

= / niv(dy);
F R?

t

dapP”

(3.4) i

(iii) LV is a Q"-martingale on [0,T), and LY := lin% LY exists, with EQ’ (L] < 1.
t—

Proof. Given conditioning (T, &r,v), let QY(-) € Z2(£2) be the regular conditional
probability defined by QY(A) := Q°(A|ér = y), A € Fr, y € R?, and define

(3.5) PY(A):= [ QY(A)v(dy), Aec Fr.
R2
We now check (i). That P” o &' = v is obvious. To see (3.3), we define a finite

measure on (R?, B(R?)) by uXlér(A) = ffTeA X (w)Q%(dw), A € B(R?). Then, by
definition we can write, for A € Z(R?),

0 0
pIer (4) = /AEQ [X[ér = y)Q° 0 & (dy) = /AEQ [X[ér = y]p(0, 20; T, y)dy.
Since X € L%(F;;R?), using the Markov property on ¢ and Fubini theorem we have

;Nszéwhw@ﬂmwwww:/

Q

&t T X w)

— [ BVl i )Xy, A AR
A
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Comparing the two equations above, we deduce (3.3).
(ii) To see (3.4), it suffices to show that if Z € L} (R*,Q"), t € [0,T), then

(3.6) EY'[7] = E¥'[1V 7] = EY’ [ /R 2 ngfy(dy)z].

By a standard truncation, we may assume that Z is bounded. Then by (3.3), we have
E® (Y Z) = E¥[Z|¢r = y] = ¥ [Z|ér = y], thanks to definition (3.5), thus

B2 = [ B¥1Z1er = ivian) = | B0t Zvtay),

Comparing this to (3.6), we see that it suffices to show that [, EQO[M%’ZHI/(dy) <
00, so that the Fubini theorem can be applied. But this clearly follows from the
boundedness of Z and the assumption that the conditioning is proper.

(iii) Finally, by (3.4), 455 5 = Lt <T. Thus, [Visa Q-martingale on [0, T').
Since LY > 0, t € [0,T), by martingale convergence theorem, Ly := lim;_,7 L; exists,
and by Fatou’s lemma, one easily shows that E[LY] < lim,_,p E[L{] = 1. o

Remark 3.4. (1) The probability P¥ in Proposition 3.3 is called the minimal prob-
ability given the proper conditioning (T, &, v). Moreover, Proposition 3.3 shows that
the assumption (A1) in [7] is automatically satisfied in our setting.

(2) Proposition 3.3-(ii) only indicates that P* << Q® on each F3, 0 <t < T, with
the Radon-Nikodym derivative defined by (3.4). But it does not imply that P” and
QO are equivalent on F, for t < T, neither does it imply that P¥ << Q° on Fr. ]

We now turn our attention to a specific conditioning (7', &7, v) that will lead to the
solution to an STPBVP (2.10). For notational convenience we shall now simply
denote £ = (V, X)), when there is no danger of confusion. Let m* € Z(R) be a law of
the underlying asset Vp that is known to the insider. For technical reasons we shall
assume that m* satisfies the following condition:

Assumption 3.5. There exists Ao > 0 sufficiently large, such that

(3.7) /Re’\ovzm*(dv) < 0.

We remark that the Assumption 3.5 is actually not over restrictive. In fact, in light
of the well-known Fernique Theorem (cf. [17]) (3.7) covers a large class of normal
random variables. Now let us define a probability measure v € Z2(R?) by

(3.8) V(A):/RlA(v,g_l(v))m*(dv):/( m*(dv).

v,g71 (v))EA
That is, the measure v concentrates on the graph of the function v = g(z) (or x =
g~ %(v)), thanks to Assumption 3.1-(iii). Furthermore, we have the following lemma.

LEMMA 3.6. Assume Assumptions 3.1, 3.5 are in force, with Ao in (3.7) being
sufficiently large. Let & be the solution to (3.1), and v € P(R?) be defined by (3.5).
Then, (T,&r,v) is a proper conditioning. Furthermore, if PV is the minimum proba-
bility given (T, &7, v), then it holds that

(3.9) P{Vr = g(X7)} = 1.

This manuscript is for review purposes only.
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Proof. Since under Assumption 3.1 £ is a diffusion process with positive transition
density function (cf. e.g., [19]), we have supp(Q° o 57?1) = R2. Furthermore, by
definition of v (3.8), for the constants A > 0 in (3.2) we deduce from (3.7) that

Algg—yl? A(wg=)2+(zg—g 1 (v))?)
/ e T v(dy) = / e T m*(dv) < oo,
R2 R

provided Ao > %, where g is the constant in (3.7). That is, (T, &7, v) is proper.

To show the second assertion, first note that g is strictly increasing, the graphs of
g and g1, as the subset of R?, are identical. Let us denote I' := {(g(z),z) : # € R} =
{(v,g7t(v)) : v € R} C R2. Then, by definition (3.8) we see that v(A) = 1 if and
only if I' C A. In particular, v(I') = 1. Consequently, by definition of the minimum
probability, we have P*(Vy = g(X7)} = P¥ 0 £.'(T) = v(T') = 1, proving (3.9). |

Remark 3.7. (1) Note that & = (V, X) has continuous paths under Q, thus the
random variable &r_ and & have the same law under Q°. Then by definitions of the
measures m”*, v, and consequently P”, we see that (3.9) can also be written as

(3.10) P{lim Ve = Ve- = g(Xr-) = lim g(X0)} = 1.

This, together with Proposition 3.8, indicates that as far as the solution to the two-
point boundary value problem is concerned, without the specific requirement of Mar-
kovian bridge, the SDE (3.15) would be a desirable candidate, except for a slight
difference on the drift coefficients.

(2) By Proposition 3.3-(iii), L is a closeable supermartingale on [0,7]. But it
cannot be a martingale, unless Q°{Vy = g(Xr)} = 1, which is obviously not true in
general. Thus P¥ cannot be absolutely continuous with respect to Q" on Fr, as we
pointed out in Remark 3.4. [ ]

To end this section, let us define, for any proper conditioning (T, {1, V), a function
p(t, % T, y)
3.11 t,z :/ v(dy), z=(v,x),
(3.11) olt.0)= [ By (v,7)

where p is the transition density of & under Q° (hence p(-,-,T,y) € C+?). Clearly,
©(0,20) =1 and Ly = LY = o(t, &), t € [0,T). Now, applying It6’s formula we have

(3.12) Li=p=1+ [ o+ Zldds+ [ (Ve.oan).

where Z[p](t, 2) := (b, V)(t, 2) +tr [D?055T|(t, 2), and b := (b, )T, & := diag|o, p].
Since by Proposition 3.3-(iii), L is a Q"-martingale for ¢ € [0,T), we conclude that
©(t, z) must satisfy the following PDE (noting the definition of b and &) for ¢ € [0,T)
and z = (v,x) € R?,

1 1
(3.13) { Yy + b‘pv + N(ta 33)%0 + 502901)11 + 5/72(757 x)‘pzw = 0;
©(0,v9,20) = 1.
Consequently, it follows from (3.12) that
(3.14)  dLy =dy = (V,5dB}) = Li(0,,dBY), Lo=1, tel0,T),
where 6; := 5T(t&)% =T (t,&)V[ne(t,&)], t € [0,T). Denote Wy = By —

fg Osds, then by Girsanov’s theorem, {W;} is a 2-dimensional P¥-Brownian motion on
[0,T"). We have thus proved the following 2-dimensional extension of a result in [7].

This manuscript is for review purposes only.
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PROPOSITION 3.8 ([7, Proposition 37]). Assume Assumption 5.1, and let P¥ be
the minimal probability corresponding to the conditioning (T, &r,v), where £ = (V, X)
is the strong solution to (3.1). Then, under PV, £ solves the following SDE:

(3.15) dé = [b+ 50,)dt + adW; = bdt +adW,, & =2, 0<t<T,

where (b,&) are the same as those in (3.12), b(t, z) := b(t, z) + 567 (t, 2)V[In o(t, z)],
and 0y = (0§,67)" = a7 (t,&)V[Inp(t,&)] = (puo,0ep)T(,&); @ is defined by
(3.11); and W = (W, W?2) is a P”-Brownian motion.

4. A Stochastic Two-Point Boundary Value Problem. We are now ready

to study the STPBVP (2.10) and compare it to the well-known dynamic Markov
bridge in the literature. We begin by giving the precise definition of the STPBVP.

DEFINITION 4.1. A siz-tuple (P, B*, B2V, X, ) is called a (weak) solution of a
stochastic Two-Point Boundary Value Problem (STPBVP) on [0,T] if (i) P € £2(Q)
and B = (B, B?) is a P-Brownian motion on [0,T); (i) o € Uaa, and (V, X, )
satisfies the SDE on (Q, F,P):

(4.1) { dVy = b(t, Vi, Xy)dt + o(t, Vi, X;)dB}, Vo =u;

dX; = (u(t, Xy) + aup(t, Xy))dt + p(t, X, )dBE, Xo =z,

t€0,T), P-as. ; (i) limg ~p[Vi — g(X4)] =0, P-a.s.;
In particular, (V,X, ) is called the solution to a Markovian STPBVP, if oy =

u(t, Vi, Xy), t €[0,T), for some measurable function u, and (V, X) is an FV-X -Markov
process on [0,T). ]

Remark 4.2. (i) For notational clarity, when necessary we shall often refer to (4.1)
as a “STPBVP(b, o, i, p)”, and write the solution (V, X, a) to a STPBVP as (V*, X%)
for convenience.

(ii) Comparing Definition 4.1 to that of a dynamic Markov bridge (see, e.g., [12]),
we see that, if the coefficients b and ¢ are independent of X and g = 0, then a
Markovian TPBVP is essentially a dynamic Markov bridge without requiring that X
be a local martingale with respect to its own filtration F¥X. Consequently, the results
of this paper and those in the existing literature mutually exclusive. [ ]

To construct a weak solution, we first recall (3.14) and the P¥-Brownian motion
W, = BY — [} 0ds; t € [0,T), where 0, := (0},67)" = a7 (t,&)V[lnp(t.&)] =
é(g@va, 0up)T(t,&), t € [0,T), and under P¥ the process & := (V;, X;)T satisfies the
SDE (3.15). We note that although the coefficient b in (3.15) is explicitly defined,
it depends on the solution of an ill-posed parabolic PDE (3.13), its behavior is a bit
hard to analyze. The following lemma is useful to note.

LEMMA 4.3. Let (T,&7,v) be the conditioning in Lemma 3.6, and PV the corre-
sponding minimum probability. Then, it holds that L% (R4 Q%) LY, (REGPY), ¢ < T.
Specifically, for any Ty < T, there exists a constant C, > 0, that depends only on
the coefficients (b, o, u, p), and Ty, such that, for any X € Fy, t € [0,To], it holds that
(4.2) E”[|X]P] < O, E¥'[|X]7).

In particular, the Q°-diffusion process & is well-defined fort € [0,T) on the probability
space (0, F,P¥), and IP’”{fOTO |&:|2dt < o0} =1, for any Ty < T.

This manuscript is for review purposes only.
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Proof. We first note that given Ty < T, and X € Fy, ¢ < To7 by Lemma 3.6-
.. v Alég—yl?
(i), E™[|X]P] = E'[L3, | X|7] < O, EY[|X[?], where Cr, = 720 fgae™ T v(dy),
proving (4.2). The rest of the proof is obvious. a0

Now for n € N, define 0%") = Oirr,, t € [0,T], where 7, := inf{t > 0 : |0;] >
n} AT. Clearly, under probability P, for each n € N, the SDE

(4.3) dei” = [o(t, &) + 3 (t, )0 dt + 5 (t, €)Wy, € =

is (strongly) well-posed on [0,7]. Now recall from Remark 3.7 we know that under
P¥, the process £ = (V, X) has continuous paths on [0, 7] and solves (3.15) on [0,T).

Thus by pathwise uniqueness, it is readily seen that fgn) =&, t €[0,7,], for any n.

We now write 0" = (61™,6>™), t € [0,T]. Since 01" is bounded by n, and

0, = 6,"*" on [0,7,]. By Girsanov’s theorem, there exists a family of probabilities

{P™},51 on (Q,F) by

d@(n) L T 1 T
S| =) =exp{ | okmaw! - 7/ 01" Pds .
APV Fr ( T ) exp A s s 2 o | s | S

Then for each n € N, the process B\ = (B}'™ W2) := — [ToLnds, WP),

[0, 7], is a 2-dimensional P("™)-Brownian motion. Moreover by the property of {0”},
we must have

dP(™)
dpv

dP(n+1)
P

(4.4)

= S0k = £ (0L =

Tn

]_‘

n Fr, n

Consequently, we have P(?+1) |}. =P® |f , and Bt("'H) = Bt("), t € [0, 7], for each
n € N. Observing that 7, /T as n — 9, We can define a new probability measure
Pon (Q,Fr_) Db

—P(")|_7:

T’

(4.5) P~

™n

n €N,

then P << PV on F, t € [0,T). Furthermore, if we define B, = Bt("), te0,7,],n €N,
then B is a P-Brownian motion on [0, T '), whence on [0, T, thanks to the Martingale
Convergence Theorem. Further, under P, the process £ = (V, X) satisfies the SDE:

dV, = b(t, Vy, X;)dt + o(t, Vy, X;)dB}, Vo = v;
(4.6) €[0,7).

dXt = (M(ta Xt) + p(ta Xt)etz)dt + p(ta Xt)th27 XO = X;

Comparing (4.6) and (4.1) and noting the facts (3.10) and P|r, << P¥|5,, t € [0,T),
we see that (P, B,V, X, 60?) is a weak solution to (4.1). We have the following result.

PROPOSITION 4.4. Assume Assumption 3.1. Then there exists a weak solution
(P,B,V,X,a) to STPBVP (4.1). Furthermore, P can be chosen so that P|r, <<
Q% %, t < T, and denoting Vo := Vp_ = limy_~r Vi, it holds that Po (Vp)~1 = m*.

Proof. Consider the probability P defined by (4. 4), (4.5) and SDE (4.6). We first
claim P << P¥ on Fr_. Indeed, let & := {G C F : P << P” on G}, then F, € </,
n € N. Since 7, /T, we have Fr_ =/, Fr, (see, e.g., [29, Exercise 1.27 or Theorem
3.6]), and thus Fr_ € &7, thanks to the Monotone Class Theorem.

Next, since {limy 7 V; # limy 7 9(Xe)} = U, Ny UTEQ(T—%,T) {IVi —g(X,)| >
%} € Fr—, where Q is the rationals in Ry, and Q(A) := QN A, A € B(R), and

This manuscript is for review purposes only.
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P < P on Fr_, we have P{lim; »r V; # lim; ~7 g(X;)} = 0, thanks to (3.10). That
is, P{lim¢ 7 V; = limy »p g(X¢)} = 1. Now let a = 62 in SDE (4.6), we see that
(IP’ B,V, X, a) is a weak solution to STPBVP (4.1).

It remains to check the last statement. To this end, let £ = (V, X). Since P«
P¥ < Q% on Fr_ and Q°{¢ € C([0,T]; R?)} = 1, we can naturally extend ¢ to [0, 7]
by setting &r = limy ~7 & so that PY{¢ € C([0,T];R?)} = P{¢ € C([0,T];R?)} =1
as well. We first claim that P¥ o V' = m*. Indeed, let B € #(R) and A :=
B x R € #(R?). By (3.8) we have B = {v : (v,g !(v)) € A}, and P{Vr € B} =
P{(Vr,Xr) € A} = v{A} = m*{B}. That is, PY o V. ' = m*

To see P o Vy & = m*, we note that £ = (V, X) is the unique strong solution to
SDE (3.1) under Q" with canonical process BY = (B',Y). Therefore we can write
&(w) = ®(t, BY,(w)) = ®(t,w), (t,w) € [0,T)xQ, for some (progressively) measurable
function @ : [0, 7] x Q — R2. Consequently, we can write 62(w) = (In (¢, & (w )))m =
(Inp(t, ®(t,w)))z, (t,w) € [0,T] x Q. By virtue of Lemma 4.3, the process 62 i
well-defined on [0,T) x Q, P-a.s. and 67 € L2(P), for ¢t € [0,T).

Now let us denote the solutions to (3.15) and (4.6) as (Vt,Xt) and (V;, X;) re-
spectively. Then we see that ((X;, W2),P”) and ((X;, W2),P) are two weak solu-
tions to the same SDE, well-defined on any [0,7;] C [0,7). Consequently, we have
ProX'=PoX!on [0, Tp] for any Ty < T. Extending the solution to [0, 7], we
have P¥ o X' = Po X', Since Vi = g(Xr), both P-a.s. and P”-a.s., we obtain that
Po VT_1 =P"o VT_1 = m™*, proving the proposition. 0

Uniqueness in law. Let us now turn to the issue of uniqueness. To begin
with let us recall that the weak solution (P, B,V, X, ) that we constructed has the
following properties:

(i) there exists a sequence of P- stopping times {7, }, and a sequence of probabilities
P(™ on (Q,F), such that 7, /T, P-as., and P|r, =P™ |z ,neN;

(ii) for each n € N, B = B™ on [0, 7,], where B™ = (B(" D BM2)) is a PM)-
Brownian motion on [0, T;

(i) the solution (V,X) = (V™ X)) on [0,7,], where (V) X (™) is a (path-
wisely) unique solution to the following SDE, defined on [0, T:

(4.7) dV; = b(t, Vi, X¢)dt + o(t, Vi, X,)dB{™", Vo = v;
| dX; = (u(t, X0) + plt, Xo)af")dt + p(t, X1)dB{™, X, ==,

where |a£n)\ < M,, t € [0,T], for some M, > 0; and a§n+1) = aﬁ"), t €10,7,), P-a.s.;
(iv) Plr, < PV|r, < Q% £, t€[0,7).

In what follows we shall denote (P,{7,}) to specify that P is “announced” by
{7n}, and make use of the following definitions in the spirit of the so-called “Q"-weak
solutions” in [27].

DEFINITION 4.5. We call a weak solution (P,V, X, B,a) of STPBVP (}.1) satis-
fying (i)—(iii) above a “nested weak solution” and the corresponding family of stopping
times {7, } the “announcing sequence” of probability P. We call ({7,,}, ) the charac-

teristic pair of the weak solution.
Furthermore, a nested weak solution is called a P¥-weak solution if (iv) holds. W

Remark 4.6. Comparing to the usual SDEs, the characteristic pair ({7,},«) is
important in determining a solution to an STPBVP. Note that if {7}, {72} are two

This manuscript is for review purposes only.
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announcing sequences of stopping times, then so is {7} A 72}. Thus the weak solution
is independent of the choice of the announcing sequence {7,,}. Since the process «
determines the coefficient of SDE (4.6), whence the solution, we often specify its role
by calling (P,V, X, B, a) the a-weak solution. [ |

DEFINITION 4.7. We say that the pathwise uniqueness holds for STPBVP (/].1),
if for two nested solutions (P!, & = (Vi X)), Bt o), i = 1,2 of (4.1) on [0,T), such
that Pt = P2 = P, ¢ = &, and P{aj = o, B} = B, t € [0,T)} = 1, then
P{¢t =¢€2, t€[0,To)} =1, for any Ty < T.

Remark 4.8. The time Ty in Definition 4.7 can be changed to any stopping time
7 with P{7 < T} = 1. In fact, the following two statements are equivalent: (i) the
pathwise uniqueness holds on [0, Tp], for any Ty < T'; and (ii) there exists a sequence
of stopping time {7,,,n > 1}, lim, oo 7, = T almost surely, such that the pathwise
uniqueness holds on [0, 7,,], for each n > 1. Indeed, let (P*, &% = (V¢ X%)),i=1,2, be
two nested solutions as in Definition 4.7, and denote A := &} — €2, then we obtain

E[|AL)T, ] < E[JAL: 1iny<ry] + E[AL T Lingsry] < E[IALT Limysm ]

where |1} := sup,¢(o - ], for 7 > 0 and 5 € C([0, 7]). Similarly, for any Ty < T,

E[|AL7] < B[IAL T, Lir<my] + B[ AL romy] S E[AL 1rmy]-

Since lim,, 00 P{Ty > 7,} = 0 and limyp, »p P{7 > To} = 0, it is readily seen that the
statements (i) and (ii) above are equivalent, and T in Definition 4.7 can be replaced
by any stopping time 7, with P{r < T} = 1. [

The definition of the uniqueness in law for the STPBVP is a bit more involved.
First note that the component “a” of the solution is part of the drift coefficient of
the SDE (4.6), and in general it is not unique. Thus the uniqueness of the solution,
even in the weak sense, depends on how the process « is properly fixed. To this end,
denote & := {A € B([0,T)) ®F : Ay € Fy, t € [0,T]}, where A; is the ¢-section of A;
and denote all &/-measurable functions by LY, ([0,7] x Q). We should note that the
space ILOQ{([O, T] x Q) is independent of any probability measure, and we can therefore
use it to identify the a-component of the solution in an “universal” way.

DEFINITION 4.9. We say that the nested weak solution to the STPBVP (4.1) is
unique in law, if for any two a-weak solutions (P', Vi X' B* a'), i = 1,2 of (4.1)
on [0,T), such that (vi,z') = (v%,22); PLo (7)™ = P2o (r3)7!, n € N; and
Pi{ai = ap, t € [0,T)} =1, i = 1,2, for some o € LY([0,T] x ), then for any
cylindrical set Et‘?ltA” = {(v,x) € C([0,T);R?) : (v,x)(t;) € A;, i = 1,---,n},
where 0 <ty <ty <---<t, <T and A; € B(R?),i=1,--- ,n, it holds that

Plo (V17X1>—1{E£}1._-;£n} — P20 (‘727X2)_1{E£?-’--~“,;&f”}'
We now give the main theorem of this subsection.

PrOPOSITION 4.10. Assume Assumption 3.1. Then, the Markovian P¥-weak so-
lution to STPBVP (4.1) is unique in law.

The proof of Proposition 4.10 is based on a lemma that is interesting in its own right.

LEMMA 4.11. Assume Assumption 3.1, and let (P,&, &) be a nested Markovian
weak solution with a; = u(t,&), u € LO([0,T] x R2), such that P{a; = a4, t €
[0,7)} =1 for some a € L% ([0,T] x Q). Then a;(w) = u(t, ®(t,w)), dt ® dP-a.e.-
(t,w) € [0,T) x Q, for some ® € L ([0,T) x ).

This manuscript is for review purposes only.
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Proof. Let (P,£, @) be the nested Markovian weak solution. Then a; = u(t, &),
t € [0,T], for some u € L°([0,7] x R?). By Definition 4.5, the solution £ is the
pathwisely unique weak solution of SDE (4.7) on any [0, 7,,], n > 1, whence on [0, Tp],
for any Ty < T, thanks to Remark 4.8. Thus, by Yamada-Watanabe theorem, for
any Ty < T, € is the pathwisely unique strong solution on [0, Tp], and there exists a
®To € 1L9,(]0,To] x ), such that & = ®70(¢,.), t € [0,Tp], P-a.s.. As before, we can
define a @ € LO([0,T] x Q) so that ®(t,-) = ®T=(¢t,-), t € [0,T,], for any sequence
T, /T, and & = ®(t,-), t € [0,T), P-a.s.. Since a; = u(t,&) = u(t, ®(t,-)) by
assumption, we have ay = & = u(t, ®(¢,-)), dt ® dP-a.e., proving the lemma. |

[Proof of Proposition 4.10.] Let (P*,& = (V' X?), B',a?), i = 1,2, be two Markovian
weak solutions of (4.1) on [0,T), with characteristic pair ({7}, }, ), i = 1,2. Without
loss of generality, we assume that {72 } is the exit time of o = u(t, &%), i = 1,2, from
the interval [—m, m)].

Next, let the cylindrical set Eéf_’_f;gf” be given, with ¢, < T. Since 72, /T, we

. i\ — A, An n i\ — %) n i i\ —

can write (§1) (BT ) = 0520 (&) 7 (Ay) = Unmy sy {mi 2 61 01(€,) T (4)),
i = 1,2. Denoting E},, == {rh, = t;} 0 (&)7(4)) = {7h = ;3 0 (&™) 71 (4)),
i=1,2, we claim that E;m € Fri , for each 7, j,m. Indeed, fix 4, j, and m, one has

{rh, < NEL, ={t; <7, <t} (") N(A) e R, te[0,T),i=1,2.
That is, E;m € F.i , whence Efn = ﬂ?zl E;m € Fri , i =1,2. On the other hand,
note that the set E,, is increasing in m, thanks to the extension nature of solutions
£5(m) | Thus, noting that Pilr, = IP’i’(m)|].—T,i , for i = 1,2, we have

i Fiy— Ag,Ap Y o) (i . i [ i . i, (m) § 7

(4.8) PBlo (&) Byt =P { U, B} = lim PYE]}= lim PYOW{E]}
Now, by Lemma 4.11, for two Markovian weak solutions satisfying P{a! = ay, te
0,7)} =1, i = 1,2, we must have & = a; = a, = u(t,®(t,-)), t € [0,T), P,
P2-a.s. for some functions u € LO([0,T] x R?) and ® € L% ([0,7] x Q). In other
words, (PH(m) £6(m)) 1§ = 1,2, satisfy the same SDE (4.7) on [0, 7,,,] with the same
coeflicients induced by a (pounded)iprocess 04(7”7)7 for which the pathwise uniqueness
holds. We conclude that P1(™) o (¢1:(m)=1 = ]?2’(’”) 07(52’(7"))?1. Note that {77, >
t;} = {u(t;,£™) < m}, we see that PLOW{EL} = P2W{E2} m € N, and the
result follows from (4.8). n

5. Affine Structure of Insider Strategy. In the rest of the paper we shall
use the STPBVP to construct the equilibrium strategy. Note that the solution to
STPBVP (4.1) depends on the “pricing rule” (u, p), we first argue that (u, p) can be
chosen so that the equilibrium strategy takes a particular form. Specifically, from
Propositions 3.8 and 4.6 we see that the a-component in a weak solution is closely
related to an ill-posed parabolic PDE (3.13), and in light of the well-known Widder’s
Theorem and its extensions (cf. e.g., [6, 30, 33, 32]), we may assume that ¢(t,v,x) =
exp{I(t,v,x)}, where I(t,-,) is quadratic in (v,z). Thus, if a Markovian strategy
a; = u(t, ®(t,-)) (see Remark 4.11), then
(5.1) wu(t,v,z) = p(t,2)(In)y = uo(t,z) +ui(t,z)v, (t,v,z) € [0,T) x R?,

for some functions wug,uy : [0,7] X R — R to be determined later. In what follows we
call a function v of the form (5.1) as having an Affine Structure.

We should note that the affine structure of the insider strategy has been widely
observed in the literature. In particular, the equilibrium strategy of the form

(5.2) ar=pB(Vi = ), tel0,T),
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16 J. MA, AND Y. TAN

where § = {5;} is a deterministic function known as the “trading intensity”, can be
found in many static information case (see, e.g., [1, 24]), as well as dynamic informa-
tion case (see, e.g., [27]). The general form in (5.1) can also be found in [4, 5]. In
order to validate the affine structure, let us begin with some simple analysis.

Assume, for example, that a solution to the STPBVP (4.6) is such that a; =
u(t, Vi, X¢), where u(t,v, z) satisfies (5.1), then the function ¢ must have the form
o(t,v,z) = exp{I(t,v,z)}, where

(5.3) I(t,v,z) = h(t,v) + A(t,z) + B(t, z)v,

and A(t,z) and B(t,z) are defined respectively by

L xuo(t,y) . ) = zul(tvy) v) :=In v
A(t,x) .—/O (1) dy; B(t, ).—/O oY) dy, h(t,v):=1lnp(t,0,v).

Now assume that ¢ satisfies the PDE (3.13), then we derive a PDE for function I:

1 1
I + b, + p(t, z) I, + 502[(1’@)2 + L] + ipz(t,z)[(fz)Z + L] = 0;
I1(0,v,z) = h(0,v) + A(0,z) + B(0, x)v.

(5.4)

Plugging (5.3) into (5.4) we obtain
0 =37 (t,0) B2+ { B+ plt, ) B + 507 0)[Bea + A B} + A,
(5.5) + pu(t,z)A,; + %/ﬂ(t, 2)[Agz + A2] + hy + blhy, + B] + %aQ{hw + [hy + BJ?}.
For notational simplicity, for given coefficients b, o, i1, p, we define
To(t,2) = Tolt, 51, p) = Au + plt, ) As -+ 3 p%(0, ) A + A2

1
(5.6) L(t, ) = I(t @5 1, p) = Be + p(t, 2) Be + §p2(t, 2)[Baz + AxBal;
' 1
12(tv'r) = 12(t7x7,u7p) = §p2(t7x)BEa

Gt v,2) = ht, v)—i—b[hv(t,v)—f—B]—f—%aQ{hw(t,v)+[hv(t,v)+B]2}.

Then, (5.5) becomes
(5.7)  Ly(t,z)v® + L (t,x)v + I(t,z) + G(t,v,x) =0, (t,v,z) € [0,T] x R?.
We thus obtained the following result for affine structure of function wu.

PROPOSITION 5.1. The function u(t,v,xz) = p(t,x)(Inp(t,v,z)), has an affine
structure (5.1), where @ solves (3.13), if and only if the coefficients b, o, u, p satisfy
the compatibility conditions (5.7) with Iy-I and G being defined respectively by (5.6).

Furthermore, it holds that G (t,v,z) =0, (t,v,z) € [0,T] x R2. ]

We should note that the compatibility condition (5.7) is technically difficult to
verify in general, as it involves not only a fairly complicated systems of differential
equations, but also the selection of the “pricing rule” (u, p). In what follows we impose
some specific structures on the functions h, b and o, and try to find the conditions
under which the function u(t,v,x) is of an affine structure.

We begin with an example of a Kyle-Back problem that fits the generality con-
sidered in this paper, and justifies the validity of the compatibility condition.
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A GENERALIZED KYLE-BACK MODEL WITH DYNAMIC INFORMATION 17

Ezample 5.2. Consider the Kyle-Back problem studied in [27]. Namely, we as-
sume b(t,v,r) = fiv+gix+ks, o(t,v,2) = 1. Denote X; = P, = E¥[V;|F}]. Then, by
[27, Theorem 3.6, we have u(t,x) = (fy + g¢)x + k¢, and p(t, x) = p(t) = S5y, where
Sy satisfies a (deterministic) Riccati equation. Furthermore, in [27] it was shown that
the equilibrium strategy takes the form (5.2). That is, the equilibrium « has an affine
structure (5.1) with ug(t, ) = — Bz, ui (¢, ) = B;. By definition (5.4) we then have

T up(t,y) 1 /"L z?
Alt,x =/ dy=—o | ydy=—5c
(t,x) ; ; 55,

(
B(t,z) = /0 u /
ds;

Plugging these into (5.6) and noting that S satisfies the Riccati equation %t =

2f;S; — B2S? +1,t € [0,T), we see that the compatibility condition (5.7) holds. ®

y)
y

In general nonlinear cases, the analysis becomes too complicated to have a generic
result. We therefore consider some special cases that might be useful in practice.

Case 1. h = h(t), b(t,z,v) = b(t,z) and o(t,v,2) = o(t,x). Then, (5.5) becomes
(5.8) Io(t,z) + L(t,z)v + L(t,z)v* =0,

where Iy = hy +bB+ 202 B? + Ay + 1A, + $p*(Apo + A2), I = B+ By + 3p?(Bow +
AzB;), and Iy = %pQBg. Clearly, (5.8) implies that o = I; = I = 0. Then, by

definition B, = % = 0, which implies uy(¢,2) =0, and B(¢t,z) = 0. It then follows

1

That is, a necessary condition for affine structure is that u; = 0 and (5.9) holds.

Case 2. h = h(t), b(t,v,x) = bo(t,z) + bi(t,x)v, o(t,v,x) = oo(t,x) + o1(t, z)v.
Then, similar to Case 1, we simplify the equation (5.5) and denote

1 1
1
I —b1B+UoolBQ+Bt+uB +5p %(Byx + Ay By);
1
I = 2B2 3 1B2.

We see from Iy = 0 that u; = 0, which again leads to (5.9).
Case 3. h = h(t), b=bo(t,z) + b1 (t,x)v + ba(t,)v?, 0 = 0¢(t,z) + o1(t, x)v. Then,

1 1
Iy = hy +boB + 50332 + Ay + pAs + §p2(Am + A2%) =

1
(5.10) It = b1 B+ 0001 B% + By + By + 5p*(Bus + 4. By) = 0;
1 1
IQ = inB% + 50'%32 + b2B =

In particular, Iy = 0 if and only if

=[Sy [
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18 J. MA, AND Y. TAN

If we choose u; = p, then (5.11) implies p? = —o(z — 20)? — 2ba(x — 7). Using
I, =0 in (5.10), we can write ug as
2 1,5 9
(5.12) uy = —[—Bt—ﬂB$—§p Byy — 1B — 0go1B ]
Ui

Therefore, (5.10), (5.11), and (5.12) guarantee the affine structure in this case.
C

Case 4. h(t,v) = ho(t) + h1(t)v, b, o same as Case 3. In this case,

1 1
Iy = (hO)t + bo(h1 + B) + 50’8(}“ + B)Q =+ At + /,LAm + 5/)2(143635 + Ai) =0

1
Iy = (h1)¢ + bi(hy + B) + 0901 (hy + B)? + By + uB, + in(Bm + A, B;) = 0;

(
1
2

1
Iy=-p*B% + 5a%(hl + B)? + by(hy + B) = 0.
Case 5. h = ho(t)+h1(t)v+ha(t)v?. Since there are the terms bh,, 0?h2 in G(¢,v, z),
and h is quadratic, we see that o (¢, v, ) must be independent of v, and b is linear in
v. We thus assume that b = by (¢, x) + b1 (¢, 2)v, 0 = o(t, z), in other words,

1 1
Io = (ho)e + bo(hy + B) + 502[2/12 +(h1 +B)*| 4+ A + pAy + gpz(Am—k A2) =0;
1
I = (h1)i+2boha+ by (ha+B)+20% (i + B)ha+ Byt Bt 5 p* (Brw + A By) = 0;
1
Iy = (ha)¢ + 2b1hy + 202h3 + 5&3; —0.

6. The Filtering Problem and FBSDE under Affine Structure. A popu-
lar approach in studying Kyle-Back equilibrium problem is nonlinear filtering (cf. e.g.,
[1, 16, 27]). In fact, when the market price is in the form of an optional projection:
P, = E[V;|F)], t € [0,T], we believe that the filtering approach should be particularly
effective in determining the equilibrium strategy, which we now explain.

We begin by recasting the STPBVP (4.1) as a nonlinear filtering problem. Let
(P,V, X, B,a) be a (Markovian) weak solution, with a; = u(t, Vi, X;), and under P,

d‘/t = b(t7‘/t7Xt)dt+0(t7W7Xt)dBt17 ‘/b = o,
(6.1) dX; = [u(t, Xy) + p(t, Xo)u(t, Vi, Xp)|dt + p(t, X)dB2,  Xo = xo;
dY; = u(t, V;, X;)dt + dB2, Yy = 0.

Since the function u is now fixed, (6.1) can be thought of as a nonlinear filtering
problem with correlated noises, in which (V, X)) is the signal process and Y is the
observation process. The only technical problem, however, is whether the function u
satisfies usual technical requirements so that the Fujisaki-Kallianpur-Kunita (FKK)
equation ([22, Theorem 4.1]) holds for P, = E[V;|F}]. To this end, we assume that
u has the affine structure: u = uo(t,x) + uq (¢, z)v. Denoting oy = u(t, Vs, X¢), and
consider the SDE:

(6.2) dM; = —o; MydB?, My =1, t€10,7).

The following result is a modification of [8, Lemma 4.1.1] to the current case.

PROPOSITION 6.1. Assume Assumptions 3.1, and that the function u in (6.1)
satisfies |u(t,v,z)] < K(t)(1 + |[v| + |z]), (t,v,2) € [0,T) x R%, for some function
K € L%([0,T);Ry). Then, the solution M to (6.2) is a true martingale on [0, T).
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Proof. Clearly, M is a local martingale. Then, by Fatou’s lemma, for any ¢ €
[0, T, we have E[M;] < lim,, o0 E[Minr,] = E[My] = 1, where {7, } is any announcing
sequence for M, and M is a true martingale iff E[M;] = 1,0 < t < T, which we now
prove. For any ¢ > 0, define f. := 5=, and My = f.(My), t € [0,T]. Clearly, by
bounded convergence theorem, we have lim._,o E[M7] = E[M;]. On the other hand,
by a simple application of It6’s formula and then taking expectation one has

1 t
BV = -~ B[ [ 6w M|, te 0.7
1 + € 0
where G*(a, ) := % It is easy to check that there exists C' > 0, such that

|G%(a, )| < Ca’x, for all e,x > 0. Denoting U; := M,(V;> + X?), then the linear
growth assumption for oy gives E[G*(ay, M;)] < CE[af M,] < CK?(t)[1+ E[Uy]]. We
claim that sup,c(o ) E[U;] < co. The result then follows easily from the Dominated
Convergence theorem. Applying It6’s formula to U; and f.(U;), we have (denoting
60| = v§ + )

2 LOM, [Viby + Xopis + 2(02 4 p? b 2M V0o,
fs(Ut) _ |§0| - / [ M 22(05 ps)] d5+/ K (J‘2dBtl
1+ ¢l&o| 0 (1+eUs) o (1+¢Uy)
t_e[AV202 M2 + (2M. X ps — Usar)’ b
+/ e[aVioIMZ + ( p o) ]der/ Usag +2MsXspsdBf.
0 (14¢eUs)3 0 (14 ¢eUs)? ‘

Taking expectation on both sides, and by the linear growth of b, o, 1 and p, we obtain

1
‘/sbs + Xsﬂs + 7(0—3 + P%)

t 2Ms[ ]
2 2
Bl < ol + | B[ e Js

< Jof? + / L(ELf. (V)] + 1)ds.

Now, first applying Gronwall’s inequality and then applying Fatou’s lemma (sending
£ — 0), we deduce that sup,c 7] E[U;] < oo, proving the claim. |

We should note that with Proposition 6.1 and the affine structure assumption
on u the SDE (6.1) can be naturally extended to [0,7], and we can follow the same
argument of [22, Theorem 4.1] to derive the FKK equation for P, = EF[V;|FY], which
takes the following form:

dP, = [E'[b(t, Vi, X¢)] — E'u(t, Vi, X¢)] Ze)dt + Z,dYs,
(6.3) te€ 0,17,
Zt = ]Et[‘/;fu(ta ‘/257Xt)] - Pt]Et[u(t; ‘/:‘.aXt)}a
where Ef[] := EF[|FY], t € [0,T]. Now if we assume that the coefficient b(---) is

also of affine structure: b(t,v,x) = bo(t,x) + by (t,x)v, and X is F¥ -adapted, then for
t €[0,T],(6.3) can be rewritten as

(64) dPt = {bo(t, Xt) + bl (t, Xt)Pt — (’LLO(t, Xt) + Ul(t, Xt)Pt)Zt}dt + thY;g7

Let us now choose oy = u(t,V;, X¢), t € [0,T)], to be the a-component of a
Markovian weak solution to the STPBVP (4.1), and assume that it has the affine
structure. By Proposition 6.1, the process M defined by (6.2) is a martingale on
[0, 77, so we can define a new probability measure Q on the canonical space (2, F) by
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%I-FT = My, then under Q, the process Y’ (for the given «) is a Brownian motion,
and Q{Vr = g(X7)} = P{Vr = g(X7)} = 1. In other words, under Q, we can rewrite
(6.4) and the SDE (4.1) for X as the following forward-backward SDE (FBSDE):

( ) dXt = ‘u(t, Xt)dt + p(t,Xt)d)/t, X() =,
6.5
dP, = [Bo(t, X¢, P) + b1 (t, Xy, Py) Zy]dt + Z,dY;,  Pr = g(Xr),

where Bo(t, x,y) = bo(t,x) + b1(t, x)y, B1(t, z,y) = —uo(t, ) — uy(t, z)y.
Remark 6.2. (i) Although Q ~ P << Q° and the process Y is a Brownian motion

under both measures Q and Q°, Q and Q° are not equivalent on Fr, since Q°{Vp #
g(X7)} > 0 in general. In fact, L” is local martingale, but M is a true martingale.

(ii) Under Assumption 3.1, X is a diffusion driven by the Q-Brownian motion Y,
hence it is FY -adapted, which justifies (6.4), whence (6.5). |

We should note that the FBSDE (6.5) is actually “decoupled”, in the sense that
the forward SDE is independent of the backward components (Y, Z). But the BSDE
in (6.5) is somewhat non-standard in that the coefficients are neither Lipschitz nor of
linear growth. Specifically, the fact that |51 (¢, z,y)z| < K(1 + |y||z|) makes it super-
linear in (y, 2), and is beyond the usual “quadratic BSDE” framework. Nevertheless,
the well-posedness of (6.5) can be argued via a more or less standard localization
argument following the idea of [25]. Since this is not the main purpose of the paper,
we shall only state the following result, but omit the proof (see [31] for details).

PROPOSITION 6.3. Assume Assumption 3.1, and let (P, (B, B?),(V,X),a) be a
Markovian nested solution to STPBVP (j.1), and assume that o has an affine struc-
ture. Then there exists a probability measure Q on the canonical space (Q, F), such
that

d
(i) %‘}.T = My, where M satisfies the linear SDE (6.2);
(i) denoting Y; = B} + fot asds and Py = EF[V,|FY], t € [0,T)], then' Y is a
Q-Brownian motion, and under Q, (X, P) satisfies the FBSDE (6.5). ]

In the rest of this section we try to determine the most important element of the
pricing mechanism: the function H : [0,7] xR — R, so that P, = H(t, X;), t € [0,T].
To begin with, we recall from the general theory of FBSDE (cf. e.g., [26, Chapter
4], [28, Section 2]) that, if (X, P, Z) is the solution to the FBSDE (6.5), then under
appropriate conditions on the coefficients, there is a decoupling field H : [0, T]xR — R,
which satisfies the following semilinear PDE (at least in the viscosity sense):

1
(66) { Hy 4 50 (t,2) Hay + u(t2) o + h(t o, H, plt,2) H) = 0;

H(T7 'T) = g($)7
where h = =y (¢, z,y)—1(t, z,y)z, and it holds: P, = H(t, X+), Zy = p(t, X¢)H. (¢, X¢)
t € [0,T]. The following extension of Example 5.2 justifies this fact.

Ezxample 6.4. Recall Example 5.2, in which the coefficients b, o, 1 and the function
u have the specific form: b(t,v,z) = frv + gz + ki, 0 = 1, p(t,z) = (fr + g0)x + ke,
u(t,v,x) = Byv — By, and thus the PDE (6.6) now reads (suppressing variables):

1
Hy+ ((fe + go)x + ke + p(— Bz + BH)) Hy + §P2Hm=gt$ + ke + foH;

H(T,z) ==,

(6.7)
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We can easily check that H(T,z) = z is the (unique) solution to (6.7), and hence
P = H(t,X;) = Xy, for t € [0,T), and X7 = H(T, Xr) = Pr = Vi n

Remark 6.5. If we restrict the strategy to the form a; = B:(V; — P;) = B:(V; —
H(t, X)), that is, ug = —:H(t,z),u; = B, and we assume further that the original
asset V' is under the risk neutral probability so that b = 0, then (6.6) is reduced to

1
(6.8) Hy(t, @) + pult, 2) Hy (1, 2) + 5% (8, 2) Hoa (£,7) = 0

H(T,z) = g(x).

We should note that the PDE (6.8) is well-posed with properly chosen (u, p), as part
of the pricing rule. The determination of (u, p), however, is the main task for finding
the Kyle-Back equilibrium, which will be discussed in details in the next section. H

7. Sufficient Conditions for Optimality. We are now ready to investigate
the main issue of this paper: finding the equilibrium of the pricing problem. That is,
we are to find the optimal strategy o™ for the insider, which maximizes her expected
terminal wealth Wy, given the pricing rule P, = E[V;|F], t € [0,T].

In light of the analysis in the previous sections, we recast the problem of finding
the Kyle-Back equilibrium as follows. First recall the Markovized system (2.5):

1) { dV, = b(t, Vi, Xy)dt + o (t, Vi, X )d B}, Vo = v;

dXt = [/,L(t, Xt) -+ p(t, Xt)ozt]dt + p(t, Xt)dBtz, XO =X.

where oo € %q (see (2.3) for definition). Assume that the process a takes the feedback
form a; = u(t, Vi, Xt), we have argued in §2 that finding the optimal strategy amounts
to solving a stochastic control problem with state equation (7.1) (or (2.5)) and the cost
functional (2.7). Moreover, a necessary condition for o € %4 being an equilibrium
is that Vpr = Pr = H(T, X1) = g(Xr) (see (1.4)). Therefore, We shall consider only
the (weak) solution (P,V,X,a) to STPBVP (4.1), and by Proposition 4.4, we shall
assume that P|r, << Q°|7,, t < T, and Po (Vp)~! = m*.

It is worth noting that the solution to STPBVT (4.1) or SDE (7.1), depends on
the coefficients (u, p). We shall argue that the equilibrium can be determined by
properly choosing (i, p) through some “compatibility conditions”.

The case b(t,v,z) = 0. For notational simplicity, in what follows we use P instead
of P. As we pointed out in Remark 6.5, this could be the case when P is the risk
neutral probability measure, and V is the discounted asset price, hence a (P,TF)-
martingale. We note that in this case the market price P, = E[V;|FY],t > 0 is a
(P, FY)-martingale. Indeed, since V = {V;} is a (P, F)-martingale, for s < ¢, we have

P, = EF[V,|FY] = EF[EP [Vi| )| FY ] = EF (Vi | Z) ] = EF[EF (V| F) )| FY ) = EF [P FY ).

On the other hand, if we assume that P, = H (¢, X;), t € [0, T, where X satisfies (7.1),
with Pr = g(Xr), then a simple application of It6’s formula shows that P = {P;}
being an FY -martingale means that the decoupling field H must satisfy the PDE:

1
H; + pu(t,2)Hy + =p?(t,x)Hyy = 0; tel0,T
) 4t ) H, + 5 0) 0.7)

H(T,z) = g(x).
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Comparing to (6.6) and recalling (6.5) we see that under affine structure we have
h(t,z, H, p(t,x)Hy) = —B1(t,z, H)p(t, x)Hy = (uo(t, ) + u1(t,x)H)p(t,x)H, = 0.

Therefore we have ug(t, X;) = —B:H(t, X;), where 8; = uy (¢, X¢). Consequently, we
see that oy = ug(t, X¢) +u1 (¢, Xe) Vi = w1 (¢, X4) (Vi — H(t, Xt)) = B:(Vy — P;), which
is exactly the form commonly seen in the literature (see, e.g., [1, 24, 27]), except that
B¢ is no longer deterministic. Our first main result of this section is the following.

THEOREM 7.1. Assume Assumption 3.1, and b = 0. Let (P,V,X,a) be a weak
solution to the STPBVP (].1) such that &y has an affine structure. Then,

(i) the market price P, = EF[V,|FY] = H(t,X;), t € [0,T) is an FY -martingale,
where H solves the PDE (7.2);

(ii) the process & is of the form ay = B(t, X)) (Vi — H(t, X3)) = B(t, X4)(V; — P),
t € [0,T), where (V,X) is the solution to the SDE (7.1) under some probability
measure P, such that Vr = g(Xr), P-a.s.;

(iii) @ is an equilibrium strategy if the following “compatibility condition” holds:

(73)  pultx) — et 2)plt, )+ pult )t 2) + 700t ) =

Proof. The parts (i) and (ii) have been argued prior to the theorem. We shall
prove only part (iii). To this end, we shall borrow the idea of [34], and look for a
function J(t,x;a) such that for fixed a € R, J(-,;a) € CH2([0,T] x R), and satisfies
the following properties

1
Ji(s,x;a) + Jp(s, x5 a)p(s, x) + §Jm(s,x; a)p?(s,x) = 0;
(7:4) Jo(s,3;a)p(s,x) = H(t,2) — a;
J(T,z;a) > 0,and J(T,z;a) =0 iff a = g(z).

Assume now that a function J satisfying (7.4) exists. Then for any o € %,q, we
let (P, V*, X*) be a weak solution to the SDE (4.1). Given a € R, applying Itd’s
formula to J(-,;a) we have

t
1
J(t, X5 a) = J(0,20; a) +/ [Je(- 5 a) + Jo(e s a)u + iJm(-7 -;a)pﬂ (s, X)ds
0
t t
(7.5) + [ s Xesa)pls, XY, = J(O.w0i) + [ (H(s, X2~ a)a.
0 0
t

t
= J(0,20;0a) +/ (H(s, X$) —a)asds—i—/ H(s,X*)dB? — aB?.
0 0

Denoting (V, X) = (V, X®) and by the total probability formula and (7.5) we have

EF[J(T, Xr; V) = J(0,20; Vr)] = /REP [J(T, X5 a) = J(0,w0; )| Vi = a] Py, (da)
T T
=[] [ 106, ~ et + [ 1 X0)aBE - aBla = Vi Py, (do
= EP[/T(H(S,XS) - VT)atdt} + EP{/T H(t,Xt)dBtQ} - EP[VTB%]
0 0

- EP[/OT(H(S,XS) - VT)atdt} — EF[VyB2).
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But, since ( B, B?) = 0, we have d(V;B?) = V;dB? + BZo(t,V;, X;)dB}, t > 0. That
is, {V;B?} is a P-martingale, hence EF[VrB2] = 0. Recalling (2.6) we deduce from
equations above that

T
(1.0) EWFI=BF[ [ (Vi = H(s X2))oud] =BT [ (000 Vi) = (7. X5: V)]
< EF[J(0, 20; V).

Here the last inequality is due to property (7.4) of the function J, and furthermore, the
equality holds if and only if the terminal condition VF = g(X¢) holds. Consequently,
if we let (P,V,X,a) be a weak solution to STPBVP (4.1), then Proposition 4.4,
together with (7.6), shows that

]EP[W;:‘] = SUD e, 4 Po(Vie )~ =mx EP[WI‘}] = fR J(0,xz0;a)m*(da).
In other words, the solution to the STPBVP leads to the optimal strategy for the
insider, among all the strategies satisfying Po (V,2)~1 = m*.
Our last task is to construct a function J that satisfies all the requirements in
(7.4). In light of [34], we consider the following function:

T —a T
(7.7 J(t,x;a) = /1( )%dy+/t f(s;a)ds,

where H(-,-) satisfies (7.2), and f(¢;a) is a function to be determined and independent
of x. To check that such a function is possible for the proper choices of u, p, and f,
we simply plugging the function J into the PDE in (7.4) to get

f(t;a) =[(% - %)(H—a)} + (HL;@"T) +/;1(a) [it - (H;;)pt} (¢, y)dy.

In order that f(-;a) is independent of x, we take derivative of the right hand side
with respect to x, and multiply it by p?(¢,x) to obtain (suppressing variables and
rearranging terms)

1 1
fap® = plHy + pHy + 59" Haal + [(tap = 1pa) = 5paap® = i) (H = a)

1
= [(1op = pp2) = 5p2up” = i) (H = a),

thanks to (7.2). Since p is positive, we see that f, = 0 provided (7.3) holds. We note
that if the function f in (7.7) is independent of z, then the second equation in (7.4)
is obvious by definition. It thus remains to verify the last requirement of (7.4). To

: «  HTy -a «  gly)—a
see this we note that J(T,z;a) = fg_l(a) Wdy = fg_l(a) ATy
g is increasing, and p(T,y) > 0, we have g(y) > g(g~'(a)) = a, for y > g~'(a). Thus
J(T,z;a) >0, for x > g~*(a), and J(T,z;a) = 0 iff z = g~1(a), proving (7.4). 0

dy. Since

Remark 7.2. The compatibility condition (7.3) between the coefficients u, p, and
the PDE (7.2) for the pricing rule H are not new. In the so-called “long-lived”
information case, for example, the market price P, = E[Vp|F)], t > 0, is naturally a
martingale, and b = 0 is by assumption, thus Theorem 7.1 always applies. In this case,
[34] chooses p = 0 and p = 1, which obviously satisfies the compatibility condition

1
(7.3), and (7.2) becomes H; + §HM =0, and f(t) = H,(t,g (a)).
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As another example, in [12] it is derive from a control theoretic argument via

2 2
HJB equation that 4 = 0, and p and H satisfy p; + % pzz = 0, Hy + & Hyp = 0, and
F(t:a) = Ho(t, g~ (a))p(t, g1 (a)), justifying (7.2) and (7.3). "

The General Case. We now try to apply the same scheme to the general case
without assuming that b(t,v,z) = 0. We first observe that in this case the market
price P, = E[V;|F)], t > 0, is an “optional projection”, which is not necessarily an
FY_martingale. Thus the discussion is more involved, and the final outcome is less
explicit. We hope to be able find some more effective approaches in future research.

Let us assume now that both b and « have the general affine structure: b(t,v,x) =
bo(t, z) + b1 (t,x)v and u(t, v, x) = ug(t, z) + u1(t, z)v. By Proposition 6.3, the decou-
pling field H(t,x) would satisfy a more general PDE:

1

So if we still try to construct the function J(¢,x;a) as in (7.7), then it may not be
possible to find a corresponding function f that is independent of x. We propose to
modify (7.7) in the following way. First recall that when « is Markovian, we can write

EP[W%] = EP[/T[F(t7%a7X?) - H(t,Xf‘)]u(t, ‘/ta7X£x)dt:|,
0

where F(t,V;, Xy) := EP[VTLEV’X], thanks to the Markovian property of the solution
(Ve, X%). Further, by Feynman-Kac formula, we see that F' satisfies the PDE:

1 1
(79 F+ §Fw02 + 5Fmp2 + Fub+ Fu(p + up) = 0; F(T,v,x) = v.

In light of (7.7), we now look for the function J(¢, v, ) with the following properties:
Jep(t,x) = H(t,x) — F(t,v,x);
(720) 4 Tt b0, )Ty 4l )T+ L0200, )T+ g p(E ) e = O
J(T,v,2) >0, and J(T,v,z)=0Iiff v=g(x).
If such function J exists, then a simple application of Itd’s formula shows that
EF (W3] =E*[-J(T,Vr, Xr) + J(0,v0, 20)] < J (0,0, 0),

and the equality holds when Vr = g(Xr) P-a.s., which would imply the optimality of
the solution to STPBVP. To find such a function, we modify (7.7) as follows. Define

’ H<t7y)_F(tvv7y)
~1(v) p(t,y)

(7.11)  J(t,v,z) = / dy + G(t,v) = J(t,v,x) + G(t,v),

where G(t,v) is a function to be determined. We first note that the first identity
in (7.10) is trivial by definition of the function J (7.11). Next, we observe that
J(T,v,z) = f;fl(v) %}dy, which satisfies that J(T,v,z) > 0, and J(T,v,z) =0
if and only if x = g~!(v), as we argued in Theorem 7.1. Therefore the function J
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defined by (7.11) satisfies the terminal condition in (7.10) provided G(T,v) = 0. Let
us now look at the PDE in (7.10). Plugging (7.11) into (7.10), we have

—_

1 S _ H-F
(7.12) 0=G:+bG, + iosz + Jp 40Ty + 202 Ty + “(p)

[\

Jr%[(Hm - ch)/) - (H - F)px]

We see that if we can find the function G(t,v) satisfying the PDE (7.12) with the
terminal condition G(T',v) = 0, then we will be able to define J as in (7.11). Sum-
marizing the discussions above, we have the following result.

THEOREM 7.3. Assume Assumption 3.1, Then, a weak solution (P,V,X, &) to
STPBVP (4.1) with a having the affine structure is an equilibrium strategy if there
exists a function G(t,v) satisfying (7.12) with G(T,v) = 0. |

We remark that by looking at (7.11), it seems that the function J depends on the
choice of the strategy « since both PDEs (7.8) and (7.9) (for H and F') do. However,
we should also note that the PDE in (7.10) for J, as well as its terminal condition
are independent of a. Therefore the function J should depend solely on the choice
of coefficients but independent of a. We should also note that Theorem 7.3 is only
a sufficient condition for identifying the equilibrium, which is by no means necessary.
That is, there could be different ways to find equilibrium, and Theorem 7.3 is only
associated to the specific scheme that follows the idea of constructing the function J
with the form (7.11). We conclude this section by using Theorem 7.3 to analyze two
special cases in which the underlying asset process V is not a martingale.

Ezample 7.4. Consider the linear model in [27] again. That is, we let b(t,v,z) =
fovtgx+hy, o(t,v,x) = o, H(t,x) = z, and a(t,v,z) = B¢(v—1x), where f, g, h, 0,
are deterministic functions. Then by [27, Theorem 3.6], we have u(t, ) = (fi+g:)x+he
and p(t,z) = S¢ B¢, where S; solves a Riccati equation. In this case, we can check that

2

_ Ty—F(t,v,vy) 1 2?2 v /f’:
= = - F
J(t, v, ) /U 5,5, dy 5.5, { > "2/ (t,v, y)dy} :

and a direct computation shows that (7.12) is now reduced to

1
(7.13) 0=G:+ (frv+ he)Gy + EUEGW + O1(t,v, z),

where ©1 := J; 4+ ¢:xGy + (frv+ gex+ he) Jp + = Jov 4 [(ff+gt)§_‘—ﬁh1](z F 0k )Sfﬁ']
Since G is independent of z, we deduce from (7 13) that 0,01 (t,v,z) =0, that is

(714) 0= G’Ugt + @2(t7 v, .’L'),

where O3 (t,v,2) := Jip + (fiv + g + he) Jow + gt Jo + 507 Jpva + %ﬁt[(ft +g1)(2x —
F)+ hy] — %FMStBt. Similarly, we can conclude that 0,02 = 0, which leads to that

1
(7.15)  (Fp — 1)(SiBe)e = SiBe[Fia + (frv + g1 + hi) Fop + 29 Fy + =

2
g F'Uva:
2 t

+(.ft + gt)(FJ; ) (Stﬁt) -LLI]
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Recall that F(¢,v,x) satisfies the PDE (7.9), we deduce from (7.15) that

(Fp — 1)(S¢Be):

(7.16) 50

= gth - Fxm[(ft + gt)x + ht + StBtQ(U - LL')]

+F 887 = 2(fi + g1)-
Therefore, the compatibility conditions become (7.13), (7.14), (7.16), and G(T,v) = 0.
It might be interesting to note that (7.16) can be further simplified in the case

g = 0. Indeed, by [27, Theorem 6.1], we see that in this case S;8; = %ao exp{fot fudu},
where ag is a constant. Then, it is easy to check that (7.16) can be simplifies as

—fir = ([frx + hy + Stﬁz(v —x)|Fy),.

—f12+Co (t,v)
fe—SeB2)x+StBEv+h?
determined later. It is not hard to check that F(¢,v,2) can be written explicitly as

which immediately gives F, = i for some function Cy(t,v) to be

(7.17) F = _/sz + U(t,v)log ®(t,v,z) + Cy(t,v),
where Ay = f, — S 82, ® =z + S’ﬁ‘ v—l— , U= (t v 4 f’(S’Bf'H'h’) , and Cq(t,v) is

another function to be determlned After calculatlng F, F,, Fm,7 F, and F,, accord-
ingly and plugging them into (7.9), we obtain

(7.18) 0 =2 F(t,v) +log ®Fy(t,v) + Fs(t,v) + &~ Fy(t,v) + & 2F5(t,v),
where
_ fe :
~a ()~ fi
Oi a'UUCO .

F2 :Gt\If(t,v) + (ftU + ht)avq/(t7v) + 2 A ’
t

1
F3 :(8t + (ftv + h/t)a’u + 50-15281)1))01 + 007

Stﬁt UtZSt/@? .
) T v)

Fy =U(t,0) (a@(t, v,z) + (ftv + he)

HEORE o

St B{

F5:[—

Multiplying ®2, and denoting A(t,v) = v+ h’ , we see that ® = 2+ A, and (7.18)

now reads
0=F2° + Fa(z + A)?log ® + (2AF; + F3) 2® + (A°Fy +2AFs + Fy) o
+(A2F3 + AFy + F5).

Therefore, to show F' defined in (7.17) satisfies the PDE (7.9), it is sufficient to show
the following equations hold:

Fi=Fy,=2AF, + F3 = A°F) + 2AF3+ Fy = A’F3 + AFy + F5 = 0.

which immediately implies F} = Fy, = F3 = F, = F5 = 0. We observe that F; = 0 is
an ODE which determines f;. Next, setting Cp := M we have U(t,v) =0,
and hence Fy = F5 = 0. Further, since 9,,Cy = 0, this 1mphe5 F5 = 0. Finally, given
Cy, we can solve an ODE for C; so that F3 = 0. Therefore, with such f;, Cy, and C4
the function F' defined in (7.17) satisfies (7.9) and (7.16) for arbitrary h; and o;. W
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Ezxample 7.5. We now extend the previous example by adding a slight nonlinearity
into the system, but assuming that b and o do not depend on x. More precisely, we
let b(t,v,z) = frv + hy, but o(t,v,z) = o(t,v). We note that although in this case
g = 0, the solution is no longer Gaussian, and the decoupling field H is not explicitly
known. To find the desired function G(¢,v) in Theorem 7.3, we differentiate both
sides of (7.12) with respect to # and multiply by p? to get (suppressing variables):

1 1
(7.19) 0= (H = F)[=pt + ptop — tpa = 50" pra] + p(Hy + pHo + 5 p* Heg)
1 2 1 2
—p{F; + bF, + nF, + Pl F,, + 5p Fp.}.

Note that H and F satisfy PDEs (7.8) and (7.9), respectively, we deduce that

he + fiH + p[(uo + wiv)Fy — Hy(ug + w1 H)] = 0.

1
Pt = Hap + pait+ 5P%Pue = 0.

We now observe that the function (;5( x) = (ug + u1v)F; is independent of v. Thus
¢

for v # —up/uy, we can write F m (t u)v and compute F,., Fi¢, Firy, Fryy and

F... accordingly. Differentiating (7. 9) w1th respect to z, plugging the corresponding
partial derivatives above, and denoting

A =0t + ppata + %p%m + Gu(h+ fo+ p) + dpta;
B =¢[(uo)t + (u1):v] + ppad[(u0)s + (u1)2v] + p*Pr[(u0)s + (u1)xv]
4 3 PP00)ze + (1 )azt] + 6(+ fo+ )(o)s + (m)o
C =pui + p*d[(u0)x + (u1)z0])?,
we obtain the following equation:

A B C

7.20 0= s+ — + .
(7.20) (9) uo+uwiv  (uo+wiv)?  (ug + uiv)?3

Now fix (¢,z) and let v — oo, by definitions of A and B, we can easily check that

(builf _ (bf('l;l)a; _ (¢p)m + (ﬁ)

uy uy

=0.

T

(¢p)z +

This implies ¢(t, ) = c(t) [p(t,z) + ul{tt $)] ~! for some function ¢(t). Moreover, set-
ting v = —3% + £, multiplying (7.20) by €3, and sending € to 0 will yield: o2¢u? +
p2o{(ug)x — (ul)IZ—‘l’}2 = 0, which implies ¢ = 0, and hence F, = F,, = 0. Conse-
quently, we can rewrite the compatibility conditions from (7.19):

F, +bF, +1/20%F,, = 0;

Hi+ pHy + 1/2p2H:cx =0;

Pt = fap + papt + 1/20°pra = 0.
We note that in the above the first equation is (7.9), the second and the third condition

coincide with the ones in Theorem 7.1. Furthermore, the second equation implies {P; }
is a martingale, but since b = fv + h # 0, {V;} is not a martingale. ]
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