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Ruin Probabilities for Insurance Models Involving
Investments

JIN MA* and XIAODONG SUN†

Jin Ma, Xiaodong Sun. Ruin probabilities for insurance models involv-
ing investments. Scand. Actuarial J. 2003; 3: 217–237.

In this paper we study the ruin problem for insurance models that
involve investments. Our risk reserve process is an extension of the
classical Cramér–Lundberg model, which will contain stochastic interest
rates, reserve-dependent expense loading, diffusion perturbed models,
and many others as special cases. By introducing a new type of exponen-
tial martingale parametrized by a general rate function, we put various
Cramér–Lundberg type estimations into a unified framework. We show
by examples that many existing Lundberg-type bounds for ruin probabil-
ities can be recovered by appropriately choosing the rate functions. Key
words: risk reser�e, ruin probability, exponential martingales, Lundberg
bound.

1. INTRODUCTION

In this paper we study the classical ruin problem for a mixed insurance-finance
model in which the risk reserve is connected to a financial market. More precisely,
we will extend the classical Cramér–Lundberg model to the following (see §2 for
detailed derivation):

Xt=x+
� t

0

[rsXs+c(1+�(s, Xs))+��s, �s−rs1�] ds+
� t

0

��s, �s dWs�

−
� +

0

�
R+

f(s, x, · )Np(ds dx), (1.1)

where � is the expense loading function, f is the claim rate, p is a stationary Poisson
point process, W is a standard Brownian motion, r is the interest rate of a riskless
bank account, �= (�1, . . . , �n) is the mean return of the risky securities, � is
the �olatility matrix of the financial market, �= (�1, . . . , �n) is the portfolio of
the insurer, and finally, 1� (1, 1, . . . , 1) and � · , · � denotes the inner product
of Rn.

* This author is supported in part by NSF grant c9971720.
† This author is supported in part by NSF grant c9971720 and 2000 PRF research grant of Purdue
University.
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The ruin problems in stochastic environments have been studied by many
authors, we refer the readers to, e.g., Asmussen and Nielsen [1], Djehiche [4],
Kalashnikov & Norberg [7], Nyrhinen [10], Paulsen [11–13], Petersen [15], etc., for
results in various situations, and to the recent survey of Paulsen [14] for more
general accounts in this regard. In this paper we propose a more unified frame-
work for ruin probability estimation, via the method of exponential martingales.
To be more precise, we consider a class of exponential martingales parametrized
by a ‘‘rate function’’, and we show that various types of existing Lundberg bounds
of ruin probabilities, even those that do not have ‘‘exponential tails’’, can all be
obtained from this exponential martingale by choosing appropriate rate functions.

To better illustrate these points, we shall study several examples in details. These
examples contain different types of Cramér–Lundberg bounds that have been
studied separately before with different methods. Our purpose here is to show that
all these bounds can be derived from our exponential martingales by carefully
choosing the rate functions. For instance, by taking the rate function to be of the
form I�(t, x)=�x exp{−�t

0 rs ds}, parametrized by the constant �, we can easily
derive the Lundberg bounds for classical models, discounted reserve models, and
perturbed reserve models. In particular, our method can be used to determine the
adjustment coefficient even in the case of random coefficients, which does not seem
to be amenable by the existing methods. By setting the rate function to be of the
form I(x)=�t

0 �(z) dz, we recover the Lundberg bound of Asmussen & Nielsen [1]
and determine the ‘‘local adjustment coefficients’’. In one example we show that, if
instead of solving the Lundberg equation for �, we solve a general first order
integro-differential equation for I, then we can even derive the ‘‘exact’’ ruin
probability, whence the ‘‘sharp’’ Lundberg bound, in a situation studied in [1],
which seems to be beyond the scope of the local adjustment coefficient method. In
another example we show how to derive the ‘‘power tailed’’ ruin probability in the
presence of ‘‘proportional investments’’, as was seen in the recent works of
Nyrhinen [10] and Kalashnikov–Norberg [7], by constructing a C2 solution of a
second order integro-differential inequality.

We remark that in this paper we mainly concentrate on the upper bounds. Some
of the bounds presented in the examples are by no means sharp, and due to the
generality of our risk model (1.1), obtaining the ‘‘right’’ rate function in some cases
may seem to be more technical than the existing methods. But we nevertheless
believe that by finding the ‘‘right’’ rate function, especially via solving the integro-
differential inequalities up to the second order, our method has the potential to
produce better Lundberg-type bounds for a fairly large class of reserve models, at
least within the realm of exponential martingales. In these cases the technicality
could be the worthy ‘‘trade off’’ for the versatility of the method.

The rest of the paper is organized as follows. In Section 2 we formulate the
problem, and give basic definitions. In Section 3 we study the exponential martin-
gale; and in Section 4 we use the exponential martingales to derive two main
theorems for the Lundberg-type bounds. Finally in Section 5 we study several
examples in details.
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2. PROBLEM FORMULATION

We assume that all the uncertainties or randomness under consideration are from
a common, complete probability space (�, F, P). Consider the following classical
Cramér–Lundberg model: an insurance company has a (sole) income from premi-
ums, which is collected ‘‘continuously’’ at an instantaneous rate ct�0 at each time
t�0; the debt the company is obliged to, at each time t, is described by a claim
process St, which is often simply assumed to be a compound Poisson process. The
risk reser�e of the company is then defined by

Xt=x+
� t

0

cs ds−St, t�0. (2.1)

We generalize the model in the following way. First, we assume that the premium
rate takes the form ct=c(1+�(t, Xt)), t�0, where c is some constant and �(t, Xt)
is the so-called expense/safty loading at time t. Second, we assume that the claim
process St is a general càdlàg pure jump process that does not have any downward
jumps. To be more precise, we assume that St takes the form of the following
stochastic integral:

St=
� t+

0

�
R+

f(s, x, �)Np(ds dx), (2.2)

where p is a stationary Poisson point process of class (QL) and Np is its correspond-
ing counting measure on (0, �)×R+ (see, e.g., Ikeda-Watanabe [6] for the
definitions of all these terms).

Now let us assume that the insurance company will invest all its reserve in a
financial market. To specify the financial market structure, we assume that there are
n risky assets (stocks) and 1 riskless asset (bond/money market account) in the
market, and we denote the price per share of the bond at time t to be Pt

0, while that
of the i-th stock at time t is Pt

i, i=1, . . . , n. We assume that these prices are
described by the (stochastic) differential equations:

�
�
�
�
�

dPt
0=rtPt

0 dt ;

dPt
i =Pt

i[� t
i dt+ �

n

j=1

� t
ij dWt

j], i=1, . . . , n,
t� [0, T ], (2.3)

where {rt} is the interest rate ; �= (�1, . . . , �n) is the appreciation rate ; �= (� ij)i, j=1
n

is the �olatility matrix, and W={Wt : t�0} is a standard Brownian motion, which
is the source of uncertainty in the stock market. We assume that the Brownian
motion W and the claim process S are independent. For mathematical clarity we
define the following filtrations

Fp�{Ft
p: t�0}, FW�{Ft

W: t�0}, F�{Ft
p�Ft

W: t�0},

where Fp and FW are the natural filtrations generated by p and W, respectively, with
standard augmentations, and they are refined so that Fp, FW, and F all satisfy the
usual hypotheses (cf. Protter [16]).
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In order to carry out our analysis, let us give a more detailed characterization
of the claim process S. Let us recall from [6] the following notions. Note that
p is a stationary Poisson point process, we know that the compensator of Np,
denoted by N� p(dt dx), is given by N� p(dt dx)=E(Np(dt dx))=�(dx) dt, where �(dx)
is called the characteristic measure of p, defined on (R+, BR+

). Furthermore,
we define the compensated random measure N� p�Np−N� p. Then, for any
U�B(R+), (t, �) � N� p(t, U) is an Fp-martingale. Let us now consider the following
spaces:

� Fp is the space of all random fields f(t, x, �); [0, T ]×R×� � R+ such that for
fixed x, f( · , x, · ) is Fp-predictable, and that �t

0 �R+
� f(s, x, · )��(dx) ds�� a.s.

� Fp
1 is the subset of Fp such that

E
�� t

0

�
R+

� f(s, x, · )��(dx) ds
�

��, 	t�0.

� Fp
2 is the subset of Fp such that

E
�� t

0

�
R+

� f(s, x, · )�2�(dx) ds
�

��, 	t�0.

� Fp
1,loc is the subset of Fp such that there exists a sequence of Fp-stopping times 	n

such that 	n
�, P-a.s., and that f( ·�	n, · , · )�Fp
1, n=1, 2, . . . .

Recall from [6] that the stochastic integral (2.2) is well-defined for all f�Fp, and
furthermore, the stochastic integral

� t

0

�
R+

f(s, x, · )N� p(ds dx)�
� t

0

�
R+

f(s, x, · )Np(ds dx)−
� t

0

�
R+

f(s, x, · )�(dx) ds

is an F-local martingale if f�Fp
1,loc, and a true martingale if f�Fp

1.
Throughout this paper we shall make use of the following standing assumptions.

(A1) All the market parameters 	, �, � are FW-adapted stochastic processes.
(A2) The expense loading function � : [0, T ]×R is continuous, such that there

exists a constant C�0 such that

�0��(t, 0)	C ;

��(t, x)−�(t, y)�	C �x−y �, for all t�0. (2.4)

(A3) The random field f( · , · , · )�Fp, such that f(t, x, · )�0, 	(t, x), a.s.; and that
there exists a �0�0,

� t

0

�
R+

exp{�0 f(s, x, · )}�(dx) ds��, 	t
0, P-a.s.
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Now let us suppose that the insurance company can trade continuously, and at
each time t it invests � t

i-dollars into the i-th stock, i=1, . . . , n, and puts the rest of
its reserve (i.e., Xt−�i=1

n � t
i) into the money market. Then it is easy to show (cf.

e.g, [8]), using (2.3), that in this case the risk reserve will follow the stochastic
differential equation:

Xt=x+
� t

0

[rsXs+c(1+�(s, Xs))+��s, �s−rs1�] ds+
� t

0

��s, �s dWs�−St. (2.5)

where 1� (1, 1, . . . , 1), and � · , · � denotes the inner product of Rn. Our future
discussion will all be based on this generalized risk model. We remark here that
under our setting, the market should always be incomplete in general, due to the
presence of the claim process, which is not ‘‘investable’’.

The classical ruin problem concerns the following two probabilities


(x, T)=P{Xt�0: �t� (0, T ]}; 
(x)=P{Xt�0: �t�0}, (2.6)

where X is the risk process in (2.5). The probability 
(x, T) is called the finite
horizon ruin probability ; while 
(x) is called the infinite horizon ruin probability, for
obvious reasons. Since finding the closed form expression of ruin probabilities is
rather remote in general, our main purpose is to find the Lundberg-type bounds, as
usual.

We should note that the immediate difficulty for extending the results from the
classical model (2.1), or any piecewise deterministic Marko� processes (PDMP)
model, to the general model (2.5) is the presence of the Brownian motion W and
the nonlinear function �. For example, a simple calculation shows that the usual
methods of deriving the so-called adjustment coefficient and exponential martingales
do not seem to work. Therefore, in the following sections we will introduce a new
construction of the exponential martingale, which will lead to the desired Lundberg
bounds.

3. EXPONENTIAL (LOCAL) MARTINGALES

Recall that our risk process is of the following form:

Xt=x+
� t

0

{(rsXs+c(1+�(s, Xs))+��s, �s−	s1�)} ds

+
� t

0

��s, �s dWs�−
� t+

0

�
R+

f(s, x, · )Np(ds dx). (3.1)

In what follows we denote C1,2(R+, R) to be the space of all continuous functions
�(t, x), (t, x)�R+ ×R, such that �( · , · ) is continuously differentiable in t and
twice continuously differentiable in x. Furthermore, we shall require that the
portfolio process � satisfy the following ‘‘admissibility condition’’:
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� t

0

�� s
T�s �2 ds��, 	t� [0, T ], a.s. (3.2)

To construct the exponential martingale we proceed as follows. First, for any
function I�C1,2(R+ ×R) we define

Zt
I�

� t

0

�
R+

[exp{I(s, Xs)−I(s, Xs− f(s, x, · ))}−1]�(dx) ds (3.3)

Vt
I�

� t

0

{�xI(s, Xs)[rsXs+c(1+�(s, Xs))+��s, �s−rs1�]+�tI(s, Xs)} ds (3.4)

Yt
I�

� t

0

{(�xI(s, Xs))2−�xx
2 I(s, Xs)}�� s

T�s �2 ds, (3.5)

and

Kt
I� −Vt

I+
1
2

Yt
I+Zt

I, (3.6)

Lt
I�exp{−I(t, Xt)−Kt

I}, t�0. (3.7)

Since the process X has RCLL (right-continuous and left-limit) paths, it is not
hard to check that Vt

I�� and Yt
I��, 	t, P-a.s.

For processes ZI, KI and LI, however, we shall make use of the following
technical assumption:

HYPOTHESIS A. A function I�C1,2(R+ ×R) is said to satisfy Hypothesis A if the
process ZI defined by (3.3) satisfies Zt

I��, 	t�0, P-almost surely.

Clearly, if I satisfies Hypothesis A, then processes KI and LI will be almost surely
finite for all t as well. We shall call such function I the ‘‘rate function ’’ in the sequel,
for the obvious reason that we will see in a moment. The main result of this section
is the following.

THEOREM 3.1 Suppose that the rate function I satisfies Hypothesis A. Then the
process {Lt

I: t�0} is an F-local martingale.

Proof. For each I satisfying Hypothesis A, we define a function

FI(t, �, x, y, z)=exp
�

�−I(t, x)−
1
2

y−z
	

.

Then, by definitions (3.3)– (3.7) we see that Lt
I=FI(t, Vt

I, Xt, Yt
I, Zt

I), 	t. Further, it
is easily checked that (suppressing all variables)

�tF
I= − (�tI)FI, ��F

I=FI, �xFI= − (�xI)FI, �yF
I= −

1
2

FI,
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�zF
I= −FI, �xx

2 FI={(�xI)2−�xx
2 I}FI.

Applying Itô’s formula and noting that VI, YI, and ZI all have bounded variation
paths, we have

FI(t, Vt
I, Xt, Yt

I, Zt
I)−FI(V0

I, X0, Y0
I, Z0

I)

=
� t

0

�tFI ds+
� t

0

��FI dVs
I+

� t

0

�xFI(rsXs+c(1+�(s, Xs))+��s, �s−rs1�) ds

+
� t

0

�yFI dYs
I+

� t

0

�zFI dZs
I+

� t

0

�xFI��s, �s d�s�+
1
2
� t

0

�xx
2 FI�� s

T�s �2 ds

+
� t+

0

�
R+

{FI(s, Vs
I, Xs− − f(s, x, · ), Ys

I, Zs
I)FI(s, Vs

I, Xs−, Ys
I, Zs

I)}Np(dx ds)

= −
� t

0

FI dZs
I−

� t

0

�xFI��s, �s dWs�

+
� t+

0

�
R+

{FI(s, Vs
I, Xs− − f(s, x, · ), Ys

I, Zs
I)−FI(s, Vs

I, Xs−, Ys
I, Zs

I)}Np(dx ds).

(3.8)

Since for each (t, x), it holds P-almost surely that

FI(t, Vt
I, Xt− − f(t, x, · ), Yt

I, Zt
I)−FI(t, Vt

I, Xt−, Yt
I, Zt

I)

={exp(I(t, Xt−)−I(t, Xt− − f(t, x, · )))−1}FI(t, Vt
I, Xt−, Yt

I, Zt
I);

and� t+

0

FI(s, Vs
I, Xs, Ys

I, Zs
I) dZs

I

=
� t

0

�
R+

{exp(I(s, Xs)−I(s, Xs− f(s, x, · )))−1}FI(s, Vs
I, Xs, Ys

I, Zs
I)�(dx) ds,

we deduce from (3.8) that

FI(t, Vt
I, Xt, Yt

I, Zt
I)=FI(0, X0, Y0

I, Z0
I)−

� t

0

�xFI��s, �s dWs�

+
� t+

0

�
R+

{exp(I(s, Xs−)−I(s, Xs− − f(s, x, · )))−1}

×FI(s, Vs
I, Xs−, Ys

I, Zs
I)N� p(dx ds). (3.9)

Since the last two terms are local martingales, the theorem follows. �

An important example of the rate function I satisfying Hypothesis A is
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I(t, x)=I�(t, x)=�x e−�t
0 rs ds, (3.10)

for some constant ��R. In fact, as we will see below, many ‘‘classical’’ Lundberg
bounds can be derived by taking I� in this form with appropriately chosen �. We
now study this case in detail.

We first make the following observations: let �t= −�t
0 rs ds be the discount

factor, and let X� t=e�tXt, t�0, be the discounted risk reserve. Then we see that for
fixed �, I�(t, Xt)=�X� t, and an easy application of Itô’s formula shows that X�
satisfies the SDE:

X� t=x+
� t

0

e�s(�̃(s, �s, X� s)+��s, �s−rs1�) ds

+
� t

0

e�s��s, �s dWs�−
� t+

0

�
R+

e�sf(s, x, · )Np(dt dx), (3.11)

where �̃(t, �t, X� t)=c(1+�(t, e−�tX� t))=c(1+�(t, Xt)).
Now assume that f is a random field satisfying (A3). For any ��0, ��0, let us

define two processes:

mt
f(�)�

�
R+

[exp{�f(t, x, �)}−1]�(dx),

Zt
��

� t

0

ms
f(� e�s) ds, Zt

�,0�
� t

0

ms
f(�) ds, t�0. (3.12)

Then clearly both m f(�) and Z� are F-predictable processes, and m f(�) is increasing
in � and integrable for all �	�0, thanks to assumption (A3). Furthermore, it is
easily seen that the process Z� above is exactly ZI defined by (3.3), with I being
replaced by (3.10).

Next, let us define the following two subsets of R+:

�D={��0: Zt
���, P-a.s., 	t�0};

D0={��0: Zt
�,0�� P-a.s, 	t�0}.

(3.13)

Since ��0 and �s	0, the monotonicity of m f(�) (in �) shows that D0�D. Now
for each ��D, and I� as in (3.10), we can rewrite VI, YI, and KI of (3.4)– (3.6) as

Vt
�=�

� t

0

e�s [�̃(s, �s, X� s)+��s, �s−rs1�] ds ; (3.14)

Yt
�=�2 � t

0

e2�s �� s
T�s �2 ds ; (3.15)

Kt
�= −Vt

�+
1
2

Yt
�+Zt

�. (3.16)
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Thus LI of (3.7) can be expressed as

Lt
��exp{−�X� t−Kt

�}, t�0. (3.17)

Our second main result of the section is then the following

THEOREM 3.2 Suppose that the assumptions (A1)– (A3) hold. Then the process
{Lt

�: t�0} defined by (3.17) enjoys the following properties:

(i) For e�ery ��D, {Lt
�: t�0} is an F-local martingale.

(ii) If the processes �, �, �, and r are all bounded, and the random field f is
deterministic, then for e�ery ��D0, {Lt

�: t�0} is an F-martingale.
(iii) If in addition to (ii), r is also deterministic, then (ii) holds for all ��D.

Proof. (i) By definition of the set D we see that for each ��D, the function I of
(3.10) satisfies Hypothesis A. Therefore (i) follows from Theorem 3.1.

(ii) We now assume that the processes �, �, �, and r are all bounded; and we
denote the bounds by a common constant K�0. (In the sequel we shall denote all
generic constant by K, which is allowed to vary from line to line.) Further, we
assume that f is deterministic and ��D0. Note that with the choice (3.10), equation
(3.9) becomes

F�(t, Vt
�, Xt, Yt

�, Zt
�)=F�(0, X0, Y0

�, Z0
�)−�

� t

0

F� e�s
�s, �s dWs�

+
� t+

0

�
R+

{exp(� e�sf(s, x, · )−1)}

×F�(s, Vs
�, Xs−,Ys

�, Zs
�)N� p(dx ds). (3.18)

Denoting the two stochastic integrals on the right side of (3.18) to be I1 and I2,
respectively, we shall prove that both of them are in fact true martingales.

To see this, first note that

E�I1, I1�t
1/2=�E

�� t

0

exp(−2�X� s+2Vs
�−Ys

�−2Zs
�)e2�s �� s

T�s �2 ds
�1/2

. (3.19)

We shall prove that the right side of (3.19) is finite for each t. Indeed, recall that
�t	0, Yt

��0, 	t�0, a.s.; also, since f�0, one has mt
f(� e�t)�0, 	t�0, a.s. Thus,

for all ��0, Zt
��0 as well. Consequently, if we denote

Mt=exp{−2�
� t

0

e�s��s, �s dWs�}; S� t=
� t+

0

�
R+

e�sf(s, x)Np(ds dx),

then exp{−2�X� s+2Vs
�}=e−2�xMs e2�S� s, and (3.19) becomes
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E�I1, I1�t
1/2	�KE

�� t

0

exp(−2�X� s+2Vs
�) ds

�1/2

	� e−�xKE
�� t

0

(Ms e2�S� s) ds
�1/2

	� e−�xKE
��� t

0

Ms ds
	1/2 e�S� t�. (3.20)

Here we have used the fact that S� is non-decreasing.
Further, note that 0	e�tf(t, x)	 f(t, x), we have e�S� t 	e�St. Since r, �, � are all

FW-adapted and the �-fields Fp and FW are independent, Mt and St are independent
processes. Therefore we deduce from (3.20) that

E�I1, I1�t
1/2	� e−�xKE

��� t

0

Ms ds
	1/2

e�St
�

	� e−�xK
�

E
� t

0

Ms ds
�1/2

E e�St. (3.21)

It now suffices to prove that both expectations in the right hand side above are finite.
To see this, note that M satisfies the following SDE:

dMt=4�Mt e2�t �� t
T�t �2 dt−2�Mt e�t��t, �t dWt�. (3.22)

It is then standard to show, using the boundedness of the processes �, �, and �, that
E sup0	s	 t Ms	K eKt, for some generic constant K�0. Consequently one has

E
� t

0

Ms ds��. (3.23)

Finally, let us introduce a sequence of F-stopping times:

	n= inf{t�0; e�St �n}.

Applying Itô’s formula one shows that

e�St�	n=1+
� (t�	n )+

0

�
R+

e�Ss−{exp(�f(s, x))−1}Np(ds dx). (3.24)

Taking expectation on both sides of (3.24) we have

Ee�St�	n=1+E
� t�	n

0

�
R+

e�Ss{exp(�f(s, x))−1}�(dx) ds

=1+E
� t

0

1{s		n} e�Ssms
f(�) ds	1+

� t

0

E{e�Ss�	n}ms
f(�) ds. (3.25)

The Gronwall inequality then leads to that

E e�St�	n	exp
�� t

0

ms
f(�) ds

�
=eZt

�,0

��. (3.26)

Since St is nondecreasing, letting n�� in (3.26) we get E e�St�eZt
�,0

��, thanks
to the Monotone Convergence Theorem. This, together with (3.23) and (3.21),
shows that E�I1, I1�1/2

t ��. Now we can apply the Burkholder–Davis–Gundy
inequality to conclude that I1 is a true martingale (see, e.g., Protter [16]).
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To show that I2 is also a true martingale, we use the same argument as before.
Note again that M and S are independent, we have

E
� t

0

�
R+

�{exp(� e�sf(s, x))−1}F�(Vs, X� s, Ys, Zs
�)��(dx) ds

	K
� t

0

ms
f(�)E{e�SsMs

1/2} ds

	K
� t

0

[ms
f(�)]{E e�St}{EMs}1/2 ds

	K3/2 exp
�

Zt
�,0+

1
2

Kt
�� t

0

ms
f(�) ds��. (3.27)

The last inequality is due to the fact that E e�St	eZt
�,0

and EMs�K eKt, for
0	s	 t. This means that the integrand of I2 belongs to Fp

1. Thus, I2 (whence L�

itself) is a true martingale, proving (ii).
(iii) Let us now assume that the interest rate r is also a deterministic function. In

this case we note that the processes M and S� become independent. Therefore the
second last inequality in (3.20) can be improved to

� e−�xKE
��� t

0

Ms ds
	1/2

e�S� t�=� e−�xKE
�� t

0

Ms ds
�1/2

E e�S� t. (3.28)

Using the same argument as before, we now obtain that:

E e�S� t	exp
�� T

0

m f(� e�s) ds
�

	eZt
�

��,

for all t, which leads to that I1 is a true martingale for all ��D. The argument for
I2 is similar, we leave it to the interested readers. �

4. LUNDBERG-TYPE BOUNDS

In this section we use the exponential martingales LI and L� to derive various
Lundberg-type bounds. Recall that


(x, T)=P{Xt�0, �t� (0, T ]}; and 
(x)=P{Xt�0, �t�0}.

We first give a result using general rate function I.

THEOREM 4.1 (Lundberg Bounds). Assume that the rate function I satisfies
Hypothesis A, such that I(t, x)	0, for all t and x	0. Then, it holds that


(x, T)	e−I(0,x)E sup
0	 t	T

exp(Kt
I), (4.1)


(x)	e−I(0,x)E sup
t�0

exp(Kt
I), (4.2)

where KI is defined by (3.6).
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Proof. The proof is more or less standard. First, we define a stopping time
	� inf {t, Xt�0}. Since Lt

I is a local martingale by Theorem 3.1, and it is obviously
nonnegative, it is a supermartingale. Applying the Optional Sampling Theorem to
Lt

I, we see that

e−I(0,x)�E{exp(−I(	�T, X	�T)+V 	�T
I −

1
2

Y 	�T
I −Z 	�T

I )}

�E{exp(−I(	, X	)−K 	
I�	�T}P{	�T}. (4.3)

Since X has RCLL paths, one has Xr	0. Thus, using the assumption on the rate
function I we have I(	, X	)	0, and the last inequality can be reduced to

e−I(0,x)�E{exp(−K 	
I)�	�T}P{	�T}�E

�
inf

0	 t	T
exp(−Kt

I)
�


(x, T). (4.4)

Applying Jensen’s inequality, we derive from (4.4) that


(x, T)	e−I(0,x)/E
�

inf
0	 t	T

exp(−Kt
I)
�

	e−I(0,x)E
� 1

inf0	 t	T exp(−Kt
I)
�

=e−I(0,x)E
�

sup
0	 t	T

exp(Kt
I)
�

,

proving (4.1). The estimate (4.2) follows from letting T�� in (4.1), thus the proof
is complete. �

It is sometimes more convenient to use the following slightly modified form of
Theorem 4.1.

COROLLARY 4.2. Assume all assumptions of Theorem 4.1 are in force. Then the
following Lundberg bounds hold:


(x, T)	e−I(0,x)E sup
0	 t	T

exp(Kt
I(X+)), (4.5)


(x)	e−I(0,x)E sup
t�0

exp(Kt
I(X+)), (4.6)

where KI(X+) is the same as KI except that all Xs’s in ZI, VI, and YI (3.3)– (3.5) are
replaced by Xs

+ �Xs�0, s�0.

Proof. Recall that 	= inf{t�0: Xt�0}. It is easy to see that X+ and X are the
same for t�	. Since the Lebesgue measure does not charge single points, from
(3.3)– (3.5), and (3.6) we see that K 	

I =K 	
I(X+), a.s. Thus, we can rewrite (4.3) as

e−I(0,x)�E{exp(−K 	
I(X+))�	�T}P{	�T}. (4.7)

The inequalities (4.5) and (4.6) then follow from the same arguments at those in
Theorem 4.1. �
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Next, we consider the special case when the rate function I(t, x)=I�(t, x) is defined
by (3.10). Recall from the last section that in this case X� t��tXt=e−�t

0 rs dsXt is the
discounted risk reserve process, and for each ��D, the processes VI, YI, ZI, KI, and
LI are replaced by V�, Y�, Z�, K�, and L� defined by (3.12)– (3.17). We have the
following theorem.

THEOREM 4.3. Assume (A1)– (A3). Then, for e�ery ��D, the ruin probabilities

(x, T) and 
(x) ha�e the following upper bounds:


(x, T)	e−�xE sup
0	 t	T

exp(Kt
�), (4.8)


(x)	e−�xE sup
t�0

exp(Kt
�). (4.9)

Furthermore, if the loading function �̃ satisfies that �̃(t, x)�c�, for some constant
c��0, then in, (4.8) and (4.9) the process K� can be replaced by

K� t
�� −V� t

�+
1
2

Yt
�+Zt

�, (4.10)

where

V� t
���

� t

0

e�s(c�+
�s, �s−rs1�) ds.

Finally, define �� =sup{��D: E{supt�0 exp(K� t
�)}��}. Then for all �0 it holds

that

lim
x��


(x) e (�� −)x=0. (4.11)

Proof : The inequalities (4.8) and (4.9) are the consequences of Theorem 4.1, we
need only prove the second part of the theorem. To this end let us assume that �̃

has a lower bound c��0. Then, since Kt
�	K� t

�, the similar argument also leads to
(4.8) and (4.9) with K� being replaced by K� �.

To prove (4.11), we first prove that the mapping � � E{supt�0 exp(K� t
�)} is

convex, and that D��{��D: E{supt�0 exp(K� t
�)}��} is a convex set. Indeed, for

fixed f, t, and � it is easily checked that the mapping � � mt
f(�) is convex, thus so

is the mapping � � Zt
�. This implies that D is a convex set. Moreover, from (4.10)

we see that the mapping � � K� t
� is convex as well, thus so is the mapping

� � exp(K� t
�), and consequently, since the convexity is preserved under supreme, we

see that � � E{supt�0 exp(K� t
�)} is a convex mapping. This, together with the

convexity of D, shows that D� is convex. Furthermore, by definition of �� , it is
readily seen that [0, �� )�D�, since clearly 0�D� and D� is convex.

We can now prove (4.11). Note that if �� =0, then there is nothing to prove. So
let us assume that �� ��0. Since [0, �� )�D� letting �=�� − (/2) we have
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c�E
�

sup
t�0

exp(Kt
�)
�

��, and 
(x)	c e−�x.

Consequently, we have

lim
x��


(x) e (�� −)x	 lim
x��

c e−ex/2=0.

This proves the theorem. �

5. EXAMPLES

In this section we try to apply Theorems 4.1 and 4.3 to derive several existing
Lundberg-type bounds. As we pointed out before, the purpose here is to show the
versatility of our method.

EXAMPLE 5.1 (Classical model). Assume that �t0, rt0, �(t, x)0, �t0,
�t0, and St is a compound Poisson process with Poisson intensity � and jump size
distribution F( · ). In other words, we have f(t, x, · )=x, and �(dx)=�F(dx). Then
our model (2.5) is reduced to the classical Cramér–Lundberg model.

Applying Theorem 4.3 we see that


(x)	e−�x sup
0	 t

exp(K� t
�),

where K� t
�= t(��

0 (e�x−1)�F(dx)−c�), and thus

�� =sup{��D: E{sup
t�0

exp(K� t
�)}��}=sup

�
� :

��

0

(e�x−1)�F(dx)−c�	0
�

.

(5.1)

Therefore we must have E{supt�0 exp(K� t
�� )}	1, and our Lundberg bound becomes


(x)	e−�� x, 	x. (5.2)

It is well-known (see, for example, [5, pp. 11]) that (5.2) is exactly the classical
Cramér–Lundberg inequality, and �� defined by (5.1) is exactly the so-called
Lundberg exponent. �

EXAMPLE 5.2 (Discounted risk reser�e). Assume that �t0, �(t, x)0, �t0,
�t0, and rt is a deterministic function. Assume also that St is a compound
Poisson process with f(t, x, · )x and �(dx)=�F(dx). Then we have a risk model
in an economic environment with deterministic interest rates (also called ‘‘dis-
counted risk reserve’’ model, see, for example, [17, pp. 474]).

Applying Theorem 4.3 we have


(x)	e−�� x sup
t�0

exp(K� t
�),

where K� � is now of the form

K� t
�=

� t

0

���

0

[exp(� e�sx)−1]�F(dx)−c e�s
�

ds,
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and �� =sup{��0: supt�0 K� t
���}. It is clear that in this case our Lundberg

bound and the Lundberg coefficient are again the same as the standard ones, see,
e.g., Theorem 11.4.1, Rokski et al. [17]. �

EXAMPLE 5.3 (Perturbed risk reser�e). We now assume that �t1, �(t, x)0,
rt0, �t0, �t, and St is a compound Poisson process with f(t, x, · )x and
�(dx)=�F(dx). Such a model is known as ‘‘Perturbed risk reserve’’ (cf. e.g., [17,
pp. 570]), since the reserve process Xt is perturbed by a Brownian motion Wt.

By Theorem 4.3 we see that the Lundberg bound in this case is


(x)	e−�x sup
0	 t

exp(K� t
�), 	��D,

where

K� t
�= t

�
−c�+

1
2

�22+
��

0

(e�x−1)�F(dx)
	

.

To figure out the Lundberg exponent, we consider the function

k(�)� −c�+
1
2

�22+
��

0

(e�x−1)�F(dx). (5.3)

Since k(�)�� as ���, it is clear that �� �sup{��0: k(�)=0}��, provided
the set {��0: k(�)=0} is not empty. Therefore, assuming that 0��� �� we then
have 
(x)	e−�� x, which is again the same as the standard Lundberg bound and
Lundberg exponent (cf. e.g., [17, pp. 570]). �

We remark that a sufficient condition for the existence of ‘‘adjustment coefficient’’,
i.e., the function k( · ) defined by (5.3) to have positive root, is the following

c��E [U1], (5.4)

where U1 is the jump size random variable of the compound Poisson process S.
This condition is known as the ‘‘net profit condition ’’ (see, e.g., Asmussen–Nielsen
[1]). Indeed, it is easy to check that k(0)=0, k(�)� +� as �� +�, and

k �(0)= −c+�E [U1]�0,

by the net profit condition (5.4). We conclude that k( · ) must have a positive root.
The net profit condition (5.4) is also useful in the following example.

EXAMPLE 5.4 (Asmussen–Nielsen bound). We still assume that �0, �0,
�0, but rt=r is a constant, and �(t, x)�(x) is an increasing function in x. We
also assume that f(t, x, · )=x, and �(dx)=�F(dx) where F is the claim size
distribution.

Then we will have the same situation discussed in Asmussen–Nielsen [1], that is,
risk reserve process is now given by
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Xt=x+
� t

0

p(Xs) ds+
� t

0

�
R+

xNp(dx ds), (5.5)

where p(x)�rx+c(1+�(x)), x�R. The net profit condition in this case is

inf
x�0

p(x)��E [U1]. (5.6)

This time we shall apply Corollary 4.2. Namely, we try to find a function I
satisfying Hypothesis A, and I(t, x)	0, x	0. Then the Lundberg inequalities (4.5)
and (4.6) hold, with

Kt
I(X+)=

� t

0

�
−{�xI(s, Xs

+)p(Xs
+)+�tI(s, Xs

+)}

+
�

R+

[exp{I(s, Xs
+)−I(s, Xs

+ −x)}−1]�F(dx)
�

ds, t�0. (5.7)

In light of Asmussen–Nielsen [1], we consider the rate function I of the following
form

I(x)=
� x

0

�(y) dy x�0. (5.8)

If we assume further that �( · ) is non-decreasing, then we derive from (5.7) that

Kt
I(X+)=

� t

0

�
−�(Xs

+)p(Xs
+)+

�
R+

�
exp

�� Xs
+

Xs
+ −x

�(y) dy
�

−1
n

�F(dx)
�

ds

	
� t

0

�
−�(Xs

+)p(Xs
+)+

�
R+

[exp{�(Xs
+)x}−1]�F(dx)

�
ds, (5.9)

for all t�0. Thus a natural choice of �( · ) is a positive, non-decreasing solution of
the following Lundberg equation:

−�p(y)+
�

R+

[e �x−1]�F(dx)=0, y�0. (5.10)

Using elementary analysis for implicit functions one can show that such a solution,
called the ‘‘local adjustment coefficient ’’ by Asmussen and Nielsen [1], does exist
under the net profit condition (5.6) and the assumption that �( · ) (or p( · )) is
non-decreasing; and it satisfies that infy�0 �(y)�0 (see also [1]). Furthermore, it
can be checked that if p( · ) is continuously differentiable, then so is �( · ), and
hence I( · )�C2(R+). Since I(0)=0, and I �(0)=�(0)�0, we see that I(x)�0 when
x�0 with �x � small. Therefore, we can choose ��0, and extend I( · ) to whole R

in such way that I is C2, I(x)�0 for x� (−�, 0), and I(x)=0, 	x	 −�.
Note that by definition of � (5.9) now leads to

Kt
I(X+)	

� t

0

�
−�(Xs

+)p(Xs
+)+

�
R+

[exp{�(Xs
t)x}−1]�F(dx)

�
ds=0, t�0.

(5.11)
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Thus I satisfies Hypothesis A, and I(x)	0 for all x	0. Applying Corollary 4.2
and noting that exp {Kt

I(X+)}	1, 	t�0 by (5.11), we obtain the Lundberg
inequalities


(x, T)	e−I(x) and 
(x)	e−I(x),

which are the same as the results of Asmusssen and Nielsen [1]. �

It is worth noting that the inequality in (5.11) indicates a possibility of improving
the Asmussen–Nielsen bound using our method, because there is still room to
manipulate the rate function without changing the non-positivity of KI(X+). In the
following example we shall consider a special case of Example 5.4, and derive the
sharpest Lundberg bound from Theorem 4.1 (or Corollary 4.2), which does not
seem to be amendable by the local adjustment coefficient method of [1].

EXAMPLE 5.5. Let us assume that in Example 5.4 the loading function �(x)0,
and the claim size has exponential distribution with rate �. That is, F(x)=1−
e−�x, x�0. We note that this case was studied by Asmussen–Nielsen [1, Example
2] using the local adjustment coefficient method, and a Lundberg bound was
proved to be


(x)	e−�x�1+
r
c

x
	�/r

, x�0.

Let us now try to use Theorem 4.1 (or Corollary 4.2) to derive a sharper bound.
First note that in this case, the process KI(X+) takes the form

Kt
I(X+)=

� t

0

�
−I �(Xs

+)(rXs
+ +c)

+
��

0

[exp{I(Xs
+)−I(Xs

+ −x)}−1]�� e−�x dx
�

ds, (5.12)

for t�0. Now instead of considering I of the form (5.8) let us look directly at the
integro-differential equation

−I �(y)[ry+c ]+
��

0

[exp{I(y)−I(y−x)}−1]�� e−�x dx=0. (5.13)

A direct computation shows that the following function

I(y)= − log�
�

�

�

�

��

y

e−�z�1+
rz
c
	(�/r)−1

dz

c
�
+
��

0

e−�z�1+
rz
c
	(�/r)−1

dz
�
�

�

�



is a solution to (5.13) for y�0. Clearly, I(y)�0 for y�0. Thus, for each n let us
molify I to a nonnegative, C2-function I (n) such that
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I (n)(y)=
�I(y), y�0;

0, y	 −1/n,

and we require that supn supy� [−1/n,0] I (n)(y)	C, for some constant C�0.
We note that the function I (n) does not satisfy the nonpositivity condition on

(−�, 0], so we cannot apply Theorem 4.1 (or Corollary 4.2) directly. But this
technical difficulty can be fixed by modifying the proof there as follows. Since I (n)

is C2, we still have (4.3):

e−I(n)(x)�E{exp{−I (n)(X	)−K 	
I(n)

}� 	�T}P{	�T},

where 	= inf{t�0: X	�0}. Since for t		, Kt
I(n)

=Kt
I(n)

(X+)=Kt
I(X+)=0 by our

choice of I and I (n), we have exp{−K 	
I(n)

}=1. Hence for x�0,

e−I(x)=e−I(n)(x)�E{exp{−In(X	)}�	�T}{	�T}

=E{exp{−I (n)(X	)}�	�T, X		 −1/n}P{X		 −1/n}P{	�T}

+E{exp{−I (n)(X	)}�	�T, X	� −1/n}P{X	� −1/n}P{	�T}

�P{X		 −1/n}P{	�T}+e−CP{X	� −1/n}P{	�T}. (5.14)

Now from (5.5) it is not hard to see that Xt�0 only when �Xt=Xt− −Xt�0, we
must have X	�0, a.s. Thus letting n�� in the above we obtain that

e−I(x)�P{	�T}=
(x, T), x�0.

Letting T��, we obtain that 
(x)	e−I(x), x�0. We should point out that this
bound is the sharpest. In fact, in this case it is well-known (see, for example,
Segerdahl [18]) that 
(x)=e−I(x), x�0. �

EXAMPLE 5.6. (Proportional in�estments). We now change Example 5.5 slightly
by allowing the so-called ‘‘Proportional investments’’, that is, we assume that the
portfolio �t=�Xt, where �= (�1, �2, . . . , �n) is a constant vector with �j�0, 	i,
such that �� ���i �i�0. (Note: if �� �=0, then we return to Example 5.5.) We also
assume that 	t=�t=r, and of �t=�, thus the reserve process becomes

Xt=x+
� t

0

p(Xs) ds+
� t

0


�Xs, � dWs�−
� t+

0

�
R+

xNp(dx ds), (5.15)

where p(x)=rx+c. For the sake of argument in what follows we make use of the
following extra compatibility condition :

r�
1
2

��T� �2�0. (5.16)
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In light of Examples 5.4 and 5.5, this time we shall construct a rate function
I�C2(R) satisfying

GI(y)� −I �(y){ry+C}+
1
2

(I �(y)2−I�(y))y2��T� �2

+
�

R+

[exp{I(y)−I(y−x)}−1]�� e−�x dx	0, y�0, (5.17)

such that I(y)�k ln y+C for some constant k, C as y��, so that Kt
I(X+)=

�t
0 GI(Xs

+) ds	0, for t�0, a.s. It is clear that (5.17) is a second order integrodiffer-
ential inequality. We follow the idea of the so-called ‘‘principle of smooth-fit ’’ to
find a C2-solution to this inequality which will serve as our rate function. The
derivation of such C2 solution is a little lengthy, we give only a sketch here, and
refer to Sun [19] for complete details.

We begin with the two-parameter family: I�,k(y)=k(ln(y+�)− ln 2�)1[�,�)(y),
where k and � are to be determined.

Step 1. Choose k= (2r/��T� �)−1, and denote B=�r+c, and C=c�. Then
k�0, thanks to (5.16); and it can be checked that (denoting I=I�,k)

GI(y)=
−k{By+C}

(y+�)2 +��
��

y−�

exp{I(y)} e−�x dx

+��
� y−�

0

exp{I(y)−I(y−x)} e−�x dx−�, y��, (5.18)

Step 2. We prove that (5.17) holds for all y�� when � is sufficiently large. To
see this we first let �� (0, (�kr/(kr+8�))), and let �=�(�)=k/�. Clearly for any
y�� we have I �(y)=k/(y+�)	k/(2�)��. Thus, using the fact that I(b)−
I(a)=�a

b I �(y) dy and I(�)=0 one shows that

��
��

y−�

exp{I(y)} e−�x dx+��
� y−�

0

exp{I(y)−I(y−x)} e−�x dx−�

	��
�

R+

e�(x� (y−�)) e−�x dx−�	��
�

R+

e− (�−�)x dx−�=
��

�−�
, y��.

Furthermore, note that

−
k(By+C)

(y+�)2 	 −
k�ry

(y+�)2	 −
kr�

4y
, y��. (5.19)

Thus if �	y�2�, then we deduce from (5.18) and the definition of � that

GI(y)	
−k{(�r+c)y+c�}

(y+�)2 +
��

�−�
	

−kr�

4y
+

��

�−�
�0, (5.20)

that is, (5.17) holds for y� [�, 2�). To see the case when y�2�, we observe that
y−��y/2, y+�	3

2y, and
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��
��

y−�

exp{I(y)} e−�x dx=��
��

y−�

�y+�

2�

	k

e−�x dx	�
�3y

4
	k

e−�y/2�h1(y).

(5.21)

Therefore, using the fact that the mapping z � z/(z−x) is decreasing, and integrat-
ing by parts twice one has

��
� y−�

0

exp{I(y)−I(y−x)} e−�x dx−�=��
� y−�

0

� y+�

y+�−x
	k

e−�x dx−�

	
�k
�

1
y+1

−
�

� e−�y+
�k
�

	
(y+1)k e−�y

+
k(k+1)�

�

� y

0

(y+1)k

(y+1−x)k+2 e−�x dx

�
�k
�

1
y+1

+h2(y). (5.22)

Thus, combining (5.19), (5.21), and (5.22), we derive from (5.18) that, for y�2�,

GI(y)	
−kr�

4y
+

�k
�

1
y+1

+h1(y)+h2(y)	
1
y
�

−
kr�

4
+

�k
�

+y [h1(y)+h2(y)]
�

.

(5.23)

Now, some careful estimation shows that y [h1(y)+h2(y)]�0 as y��. Thus we
can first choose M�0 so that 0�y [h1(y)+h2(y)]	1, whenever y�M, and then
choose �� (0, (�kr/kr+8�)), such that

�=�(�)=
k
�

�max
�

M,
4
kr
��k

�
+1

	�
.

Combining (5.18)– (5.23) we conclude that GI(y)	0, for all y��.

Step 3. In order to apply Corollary 4.2, we modify I�,k slightly so that it is also
C2 at y=�. This can be done by choosing I to be of the form

I(y)=

�
�
�
�
�

I�,k(y)+a3 y��+1,

−
a1

12
(y−�)4+

a2

6
(y−�)3 �	y	�+1,

0 y	�,

where a1, a2 and a3 are determined by solving a linear system algebraic equations.
We leave it to the interested readers.

Now applying Corollary 4.2 we get


(x)	e−I(x)=K(x+�)−k, for x large,

where K is some constant. In other words, this is a case of so-called ‘‘power ruin
probability’’ (see, e.g., Nyrhinen [10] and Kalashnikov & Norberg [7]). We remark
that this is still only a upper bound, which may not be sharp. �
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