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Abstract

In this paper, we study a class of multi-dimensional backward stochastic di7erential equa-
tions (BSDEs, for short) in which the terminal values and the generators are allowed to be
“discrete-functionals” of a forward di7usion. We <rst establish some new types of Feynman–
Kac formulas related to such BSDEs under various regularity conditions, and then we prove
that under only bounded continuous assumptions on the generators, the adapted solution to such
BSDEs does exist. Our result on the existence of the solutions to higher-dimensional BSDEs is
new, and our representation theorem is the <rst step towards the long-standing “functional-type”
Feynman–Kac formula.
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1. Introduction

Let (�;F; P;F) be a complete, <ltered probability space, where F , {Ft}t¿0 is
assumed to be the <ltration generated by a standard, d-dimensional Brownian motion
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W = {Wt ; t¿ 0}. A backward stochastic di=erential equation (BSDE for short) is of
the following form:

Yt = �+
∫ T

t
F(r; Yr; Zr) dr −

∫ T

t
Zr dWr; t ∈ [0; T ]; (1.1)

where F :� × [0; T ] × Rm × Rm×d �→ Rm is some appropriate measurable function,
called the generator of the BSDE. An adapted solution to the BSDE (1.1) is a pair
of F-adapted, Rm × Rm×d-valued processes (Y; Z) that satis<es (1.1) almost surely.
The theory of Backward SDEs, initiated by Bismut (1976) and later developed by

Pardoux and Peng (1990), has seen signi<cant development during the past decade.
We refer the readers to the books of El Karoui and Mazliak (1997), Ma and Yong
(1999), as well as the well-known survey paper of El Karoui et al. (1997) for all
detailed accounts of both theory and application (especially in mathematical <nance
and stochastic control) for such equations.
In this paper, we are interested in the following two long-standing problems in the

theory of BSDEs:

(i) Suppose m¿ 1, and that the generator f is only bounded and continuous (in
all variables). Do we still have the existence of the (strong) adapted solution to
the BSDE (1.2)?

(ii) Suppose that the terminal value � and the generator f are of the form � =
g(X )T and f(!; t; y; z) = f(t; X·(!); y; z), where X is a forward di=usion, and
g(·) and f(t; ·; y; z) are functionals of X . Then to what extent we can still have
the “nonlinear Feynman–Kac” formula? That is, we can represent an adapted
solution of BSDE, whenever exists, as some function or functional of the forward
di=usion via a solution of a system of partial di=erential equations (PDEs)?

To better illustrate these two problems let us be more speci<c. Consider the following
BSDE:

Yt = g(X )T +
∫ T

t
f(r; X; Yr; Zr) dr −

∫ T

t
Zr dWr; t ∈ [0; T ]; (1.2)

where X is an n-dimensional di7usion satisfying the SDE

Xt = x +
∫ t

0
b(r; Xr) dr +

∫ t

0
�(r; Xr) dWr; t ∈ [0; T ]; (1.3)

in which b : [0; T ] × Rn �→ Rn, � : [0; T ] × Rn �→ Rn×d are some measurable functions,
f : [0; T ] × C([0; T ];Rn) × Rm × Rm×d �→ Rm is a “non-anticipative functional” with
respect to X , and g is some functional de<ned on the path space C([0; T ];Rn). We
should note that while BSDE (1.2) is still “non-Markovian”, it has more structure than
(1.1). In what follows, our discussion will be mainly focus on such BSDEs.
Return now to the two questions. It is clear that the <rst one is simply a question of

existence of adapted solution under merely continuous assumption on the coe)cients.
Such problems have been studied by many authors (see, for example, Hamadene, 1996;
Lepeltier and San Martin, 1997, 1998; Kobylanski, 2000, to mention a few). However,
most of the existing results are restricted to the one-dimensional case (i.e., m=1), due
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to the comparison-theorem-technique used in the proofs. The case when m¿ 1 was
studied by Hamadene et al. (1997), but only in the “Markovian” case when both g and
f are “functions” of the forward di7usion. As a matter of fact, to our best knowledge,
to date there has been no result on the existence of the adapted solution for higher
dimensional, functional-type of BSDEs with only continuous coe)cients.
The second question is more subtle. It is known that if g and f are both “functions”

of X , then the nonlinear Feynman–Kac formula (see, e.g., Pardoux and Peng, 1992 or
Ma and Yong, 1999), modulo some regularity assumptions, provides us the following
representations for the adapted solution (Y; Z):

Yt = u(t; Xt); Zt = @xu(t; Xt)�(t; Xt); t ∈ [0; T ]; (1.4)

where u is the solution to a semilinear/quasilinear parabolic PDE, in a certain sense.
In fact, a result by El Karoui et al. (1997) indicated that one can always represent the
components of the adapted solution in terms of the forward di7usion:

Yt = u(t; Xt); Zt = v(t; Xt)�(t; Xt); t ∈ [0; T ]; (1.5)

where u and v are only measurable functions, based on a deep result in semimartingale
theory by CS inlar et al. (1980). These nice features, however, will lose their grounds
in the functional BSDE case. For example, while it might still be conceivable that the
relations in (1.5) could be modi<ed to

Yt = u(t; X·); Zt = v(t; X·)�(t; Xt); t ∈ [0; T ]; (1.6)

where u(·; ·) and v(·; ·) are two progressively measurable functionals de<ned on [0; T ]×
C([0; T ];Rn), the form of a Feynman–Kac formula, if it exists at all, is by no means
clear. In fact, one of our motivations of studying such problem comes from <nance: for
example, can we generalize the Black–Scholes PDE to general path-dependent exotic
options in any form?
This paper is a <rst attempt to answer these two questions. To be more pre-

cise, we shall consider the case where the functionals g and f are of the following
“discrete-functional type”:

g(X ) = g(Xt1 ; : : : ; XtN ); (1.7)

f(t; X; Yt ; Zt) = f(t; Xt1∧t ; : : : ; XtN∧t ; Yt ; Zt); (1.8)

where 0= t0 ¡t1 ¡ · · ·¡tN =T is a given partition of [0; T ]. We shall <rst prove that
the Feynman–Kac formula still holds in this case and derive the corresponding PDEs,
in both classical sense and viscosity sense. It is worth noting that in this “piecewise
Markovian” case, we can show that the following representation holds:

Yt = u(t; Xt1∧t ; : : : ; XtN∧t); Zt = v(t; Xt1∧t ; : : : ; XtN∧t)�(t; Xt); t ∈ [0; T ]; (1.9)

where u is a solution (in a certain sense) of a system of semilinear PDEs, partially
justifying our conjecture (1.6). Using the Feynman–Kac formula and borrowing some
ideas from Hamadene et al. (1997), we can then prove the existence of the adapted
solution to BSDE (1.2) with continuous coe)cients in this piecewise Markovian case.
Finally, we remark that the relations between BSDEs with discrete-functional-type

terminal have been discussed also by Zhang and Zheng (2002) and Ma and Zhang
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(2002). But in those cases, the generator f were assumed to be of “Markovian” type,
that is, it is the function with respect to the forward di7usion, rather than a functional
as is proposed in this paper. It is our hope that our result has the potential to be
developed into some completely non-Markovian cases. We also remark that the tech-
nical assumptions made in this paper are by no means the sharpest. Some of them
can be improved with some extra e7ort. But since this is not the main purpose of the
paper, we prefer not to over stress these technical points so as to make this already
complicated subject a little easier to bear.
The rest of the paper is organized as follows. In Section 2, we give all the necessary

preparations. In Section 3, we present the Feynman–Kac formula with strong conditions
on the coe)cients; we then establish a less trivial version of the Feynman–Kac formula,
in terms of the viscosity solution of the corresponding PDEs, in Section 4. In Section 5,
we prove an important measurable selection theorem, with which we prove the second
main result: the existence of adapted solution to BSDEs with continuous coe)cients,
in Section 6.

2. Preliminaries

Throughout this paper, we assume that (�;F; P) is a complete probability space on
which is de<ned a d-dimensional Brownian motion W = (Wt)t¿0. Let F , {Ft}t¿0

denote the natural <ltration generated by W , augmented by the P-null sets of F; and
let F=F∞. We note here that if necessary we may assume that (�;F; P; {Ft}) is the
canonical space. Thus for any sub-�-<eld G ⊆ F, the regular conditional probabilities
P!
G(·), P{·|G}(!) exist, for a.e. !∈�.
In what follows, we denote E to be a generic Euclidean space (or E1; E2; : : :, if

di7erent spaces are used simultaneously); and regardless of their dimensions we denote
〈·; ·〉 and | · | to be the inner product and norm in all E’s, respectively. Furthermore, we
use the notations @t=@=@t, @x=(@=@x1; : : : ; @=@xn), and @2=@xx=(@2xixj), for (t; x)∈ [0; T ]×
Rn. Note that if  = ( 1; : : : ;  m) : Rn �→ Rm, then @x , (@xj  

i) is an m × n matrix.
Now let X be a generic Banach space, whose topological Borel <eld is denoted by

B(X). If X and Y are two such spaces, we shall denote L0(X;Y) to be the space of
all B(X)=B(Y)-measurable functions. The following spaces will be frequently used in
the sequel:

• for any sub-�-<eld G ⊆ FT ; L0(G;X) denotes the space of all X-valued, G-
measurable random variables.

• for any sub-�-<eld G ⊆ FT and 16p¡∞, Lp(G;X) denotes the space of all
X-valued, G-measurable random variables � such that E‖�‖p

X ¡∞. Moreover,
�∈L∞(G;X) means that it is G-measurable and bounded under ‖ · ‖X;

• for 16p¡∞, Lp(F; [0; T ]; E) is the space of all E-valued, F-progressively mea-
surable processes � satisfying E

∫ T
0 |�t |p dt ¡∞; and L∞(F; [0; T ]; E) is the space

of all E-valued, F-progressively measurable processes uniformly bounded in (t; !).
• for 16p¡∞ and X=C([0; T ]; E) or Lp([0; T ]; E), Lp(F; �;X) denotes the space
consisting of all �∈Lp(F; [0; T ]; E) ∩ Lp(FT ;X) such that the paths �· ∈X.
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Our main objective of this paper is to study the following (discrete) functional-type
(forward–)backward SDEs de<ned on an arbitrary interval [t; T ] ⊆ [0; T ]: for s∈ [t; T ],

Xs = x +
∫ s

t
b(r; Xr) dr +

∫ s

t
�(r; Xr) dWr;

Ys = g(Xt1 ; : : : ; XtN ) +
∫ T

s
f(r; Xt1∧r ; : : : ; XtN∧r ; Yr; Zr) dr −

∫ T

s
Zr dWr; (2.1)

where ( : 0 = t0 ¡t1 ¡ · · ·¡tN = T is a given partition on [0; T ]. We denote any
solution to (2.1), whenever exists, by (X t;x; Y t;x; Zt;x) to indicate its dependence on the
initial data (t; x). We should note that in general the solution to (2.1) is not unique,
but we nevertheless use the same notation when the context is clear.
Let ( : 0= t0 ¡t1 ¡t2 ¡ · · ·¡tN =T be a given partition. For any x=(x1; : : : ; xN )∈

RNn and k = 1; 2; : : : ; N , we denote

x(k) = (x1; : : : ; xk)∈Rkn; x(k;N ) = (xk ; : : : ; xN )∈R(N−k+1)n:

Further, let X 0; x be the solution to the forward SDE in (2.1), we de<ne

X(k)
t , (X 0; x

t1∧t ; : : : ; X
0; x
tk∧t); X(k;N )

t , (X 0; x
tk∧t ; : : : ; X

0; x
tN∧t); k = 1; 2; : : : ; N: (2.2)

In particular, we denote

X(k) , (X 0; x
t1 ; : : : ; X 0; x

tk ); X(k;N ) , (X 0; x
tk ; : : : ; X 0; x

tN ): (2.3)

Clearly, using this notation the BSDE in (2.1) can be rewritten as

Yt = g(X(N )) +
∫ T

t
f(s;X(N )

s ; Ys; Zs) ds −
∫ T

t
Zs dWs: (2.4)

We shall make use of the following Standing Assumptions:

(A1) The functions b : [0; T ] × Rn �→ Rn and � : [0; T ] × Rn �→ Rn×d are continuous.
Moreover, there exists a constant L1 ¿ 0, such that

|b(t; x1)− b(t; x2)|+ |�(t; x1)− �(t; x2)|6L1|x1 − x2|
for any (t; x1; x2)∈ [0; T ]× Rn × Rn; and

|b(t; x)|+ |�(t; x)|6L1(1 + |x|) ∀(t; x)∈ [0; T ]× Rn:

(A2) The function f belongs to the space Cb([0; T ]×RNn ×Rm ×Rm×d;Rm) and the
function g belongs to the space L∞(RNn;Rm).

In some of our discussions assumptions (A1) and (A2) need to be strengthened. We
list the possible extra assumptions for convenience.

(A3) The functions b and � are Lipschitz in (t; x), and ∃0¡c¡C, such that

|b(t; x)|+ |�(t; x)|6C ∀(t; x)∈ [0; T ]× Rn;

�T�(t; x)�T (t; x)�¿ c|�|2 ∀x; �∈Rn; t ∈ [0; T ]:
(2.5)
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(A4) There exists a constant L2 ¿ 0, such that

|f(t; x1; y1; z1)− f(t; x2; y2; z2)|6L2(|x1 − x2|+ |y1 − y2|+ |z1 − z2|)
for all (t; x1; y1; z1; x2; y2; z2)∈ [0; T ]× RNn × Rm × Rm×d × RNn × Rm × Rm×d, and

|g(x)|+ |f(t; x; y; z)|6L2(1 + |x|+ |y|+ |z|)
for all (t; x; y; z)∈ [0; T ]× RNn × Rm × Rm×d.

To end this section, we give a lemma concerning the transition probability densities
of the di7usion process X , the solution to the forward SDE (1.3). Note that under
assumption (A3), X is a strong Markov process with positive transition density. The
following result will be useful in our future discussion. Its proof can be found in
Aronson (1967) and/or Aronson (1968), we only state it here for ready reference.

Lemma 2.1. Assume (A3). For (t; x)∈ [0; T ]×Rn, denote +(t; x; s; dy), P{X t;x
s ∈ dy}

to be the transition probability of X t;x and p(t; x; s; y); (t ¡ s6T ) to be its density.
Then, the mapping (t; x) �→ p(t; x; s; y) is continuous, for @xed (s; y); and there ex-
ist constants m; ,;M;.¿ 0, such that the density function p(t; x; s; y) satis@es the
following estimation: for 06 t ¡ s6T ,

m(s − t)−n=2 exp
{−,|y − x|2

s − t

}
6p(t; x; s; y)

6M (s − t)−n=2 exp
{−.|y − x|2

s − t

}
:

3. Nonlinear Feynman–Kac formula via classical solutions

In this section, we take a <rst look at the possible nonlinear Feynman–Kac formula
in the case where the BSDEs are of “discrete functional” form. To be more precise,
recall BSDE (2.4):

Yt = g(X(N )) +
∫ T

t
f(s;X(N )

s ; Ys; Zs) ds −
∫ T

t
Zs dWs: (3.1)

We shall assume that the corresponding system of (semilinear) PDEs has a classical
solution (say, u) and prove that in such a case the adapted solution of (3.1) (Y; Z) is
related to the forward component X via a pair of functions u : [0; T ]×RNn �→ Rm and
v : [0; T ]× RNn �→ Rm×n, such that

Yt = u(t;X(N )
t ); Zt = v(t;X(N )

t )�(t; X 0; x
t ); (3.2)

as we predicted. We should note that various assumptions can be made to guarantee
the existence and uniqueness of the classical solution to the system of PDEs, as well
as the adapted solution to the BSDE (3.1). For example, if b and � satisfy assumption
(A3), and f and g are bounded and smooth with bounded derivatives (hence satisfy
(A4)), then the resulting system of PDEs will have a classical solution with bounded



Ying Hu, Jin Ma / Stochastic Processes and their Applications 112 (2004) 23–51 29

derivatives (cf. e.g., Ladyzenskaja et al., 1968), and BSDE (3.1) will have a unique
adapted solution. But at this point we would rather not to concentrate on the particular
assumptions.
To begin with, for each k = N; N − 1; : : : ; 1, we consider a sequence of semilinear

PDEs with parameters, de<ned recursively in a “backward” manner as follows: <rst <x
x(N−1) as a parameter, and de<ne

uN+1(T; x(N−1); x; x) = g(x(N−1); x); x∈Rn:

Next, for each k = N; N − 1; : : : ; 1, we <x x(k−1) as a parameter, and consider the
following system of PDEs: for (t; x)∈ [tk−1; tk ]× Rn,

@uk
i

@t
(t; x(k−1); x) +Luk

i (t; x
(k−1); x)

+fi(t; x(k−1); x; : : : ; x︸ ︷︷ ︸
N−k+1

; uk(t; x(k−1); x); @xuk(t; x(k−1); x)�(t; x)) = 0;

uk
i (tk ; x

(k−1); x) = uk+1
i (tk ; x(k−1); x; x); i = 1; : : : ; m:

(3.3)

Here, for ’∈C2(Rn) the operator L is given by

[L’](t; x) = 1
2 tr{��T (t; x)@2x’(x)}+ 〈b(t; x); (@x’)T (x)〉: (3.4)

Now let us suppose that all PDEs in (3.3) have classical solutions, and we denote
them by uk

i ; i = 1; : : : ; m, k = N; N − 1; : : : ; 1. Let us denote also that

vkij(t; x
(k−1); x) = @xju

k
i (t; x

(k−1); x); k = N; N − 1; : : : ; 1; i; j = 1; : : : ; m

(or simply vk(· · ·) = @xuk(· · ·)). We consider the following processes:

Y k
t = uk(t;X(k−1)

t (!); Xt);

Zk
t = vk(t;X(k−1)

t (!); Xt)�(t; Xt) = @xuk(t;X(k−1)
t (!); Xt)�(t; Xt):

(3.5)

Furthermore, let us “patch” the functions uk ’s and vk ’s together by de<ning the fol-
lowing functions u and v:

u(T; x(N )), uN (T; x(N )); v(T; x(N )), vN (T; x(N ))

and for t ∈ [0; T ),

u(t; x(N )) ≡ u(t; x(k−1); xk ; : : : ; xk︸ ︷︷ ︸
N−k+1

), uk(t; x(k))

v(t; x(N )) ≡ v(t; x(k−1); xk ; : : : ; xk︸ ︷︷ ︸
N−k+1

), vk(t; x(k))
if t ∈ [tk−1; tk) (3.6)

and <nally de<ne two processes

Yt = u(t;X(N )
t ); Zt = v(t;X(N )

t )�(t; Xt); t ∈ [0; T ]: (3.7)

Then, we have the following version of “nonlinear Feynman–Kac” formula.
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Theorem 3.1. Assume that all PDEs in system (3.3) have classical solutions with
bounded derivatives. Then, the processes (Y; Z) de@ned by (3.7) solves BSDE (2.4)
on [0; T ].

Proof. We shall check only the case when t ∈ [tN−1; tN ] = [tN−1; T ], the other cases
can be argued in the same way.
First note that when t ∈ [tN−1; T ] we have

Yt = YN
t = uN (t;X(N−1); Xt);

Zt = ZN
t = vN (t;X(N−1); Xt)�(t; Xt) = @xuN (t;X(N−1); Xt)�(t; Xt):

We need only to show that the set

A=
{
!′ ∈�: YN

t (!
′) = g(X(N )(!′)) +

∫ T

t
f(s;X(N−1); Xs; Y N

s ; ZN
s )(!

′) ds

−
∫ T

t
ZN
s dWs(!′); t ∈ [tN−1; T ]

}

satis<es P(A) = 1. To see this we consider the regular conditional probability

P!
N−1(B), P(B|FtN−1 )(!) ∀B∈F; P-a:e: !∈�:

By the property of regular conditional probability, we know that for any FtN−1 -
measurable random vector 2, it holds that

P!
N−1{2(!′) = 2(!)}= 1 for P-a:e: !∈�

and furthermore,

P(A) =
∫
�
P!
N−1(A)P(d!): (3.8)

Note that for P-a.e. !∈�, one has P!
N−1-a.s.,

g(XN (·)) = g(X(N−1)(!); XT (·));
f(s;X(N−1); Xs; Y N

s ; ZN
s )(·) = f(s;X(N−1)(!); Xs(·); Y N

s (·); ZN
s (·)):

Thus, we can apply the nonlinear Feynman–Kac formula (see, e.g., Pardoux and Peng,
1992; Ma et al., 1994) to obtain that for P-a.e. !∈�, on the probability space
(�;F; P!

N−1) the pair (YN ; ZN ) solves the BSDE over [tN−1; T ],

YN
t = g(X(N−1)(!); XT )+

∫ T

t
f(s;X(N−1)

s (!); Xs; Y N
s ; ZN

s ) ds−
∫ T

t
ZN
s dWs: (3.9)
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That is P!
N−1(A)=1, for P-a.e. !∈�, whence P(A)=1, thanks to (3.8). To complete

the proof we note that at t = tN−1 one has, for P-a.e. !∈�,

YN
tN−1

(!) = uN (tN−1;X
(N−1)
tN−1

(!); XtN−1 (!))

= uN (tN−1;X(N−2)(!); XtN−1 (!); XtN−1 (!))

= uN−1(tN−1;X(N−2)(!); XtN−1 (!)) = YN−1
tN−1

(!):

Using the de<nition of the functions uN−1 and vN−1 we can similarly prove that
(Y; Z) = (YN−1; ZN−1) solves BSDE (2.4) on [tN−2; tN−1]. Continuing this way for N
steps and noting that the consistency requirements: Y i

ti−1
=Y i−1

ti−1
holds almost surely for

all i = 1; 2; : : : ; N , we obtain an adapted solution (Y; Z) on the whole interval [0; T ],
proving the theorem.

Next, we consider BSDEs de<ned on [t; T ], where 0¡t¡T . Note that in this case
no information is given on the interval [0; t). However, for the sake of consistency
we shall still assume that a partition is given on [0; T ] as before, but the initial time
t ∈ [tk−1; tk) for some 16 k6N . As usual let X t;x be the solution to the forward SDE
on [t; T ]:

Xs = x +
∫ s

t
b(r; Xr) dr +

∫ s

t
�(r; Xr) dWr; s∈ [t; T ]: (3.10)

For 16 k ¡ j6N , we denote

x(k; j) = (xk ; : : : ; xj)∈R( j−k+1)n;

X(k; j); (t; x)
s = (X t;x

tk∧s; : : : ; X
t;x
tj∧s); s∈ [t; T ];

X(k; j); (t; x) = (X t;x
tk ; : : : ; X t;x

tj ):

(3.11)

If the context is clear, we shall denote simply X(k; j)
s =X(k; j); (t; x)

s , and X(k; j) =X(k; j); (t; x).
For any x(k−1) ∈R(k−1)n, we denote (Y t;x(x(k−1)); Zt; x(x(k−1))) to be the solution to the
following BSDE:

Ys = g(x(k−1);X(k;N )) +
∫ T

s
f(r; x(k−1);X(k;N )

r ; Yr; Zr) dr −
∫ T

s
Zr dWr: (3.12)

We have the following variation of Theorem 3.1.

Theorem 3.2. Suppose that all PDEs in system (3.3) have classical solutions with
bounded derivatives. Assume that t ∈ [tk−1; tk), for some 16 k6N , and denote
(Y t;x(x(k−1)); Zt; x(x(k−1))) to be the solution to (3.12), for any x(k−1) ∈R(k−1)n. Then,
it holds that

Y t;x
s (x(k−1)) = u(s; x(k−1);X(k;N )

s );

Zt; x
s (x(k−1)) = v(s; x(k−1);X(k;N )

s )�(s; Xs);
s∈ [t; T ]; (3.13)

where Xk;N is de@ned by (3.11) and u; v are de@ned by (3.6).
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Proof. The case when k =N is trivial. We assume that k ¡N , and s∈ [tN−1; tN ]. For
notational simplicity, in what follows we denote �s = �t;x

s (x(k−1)), for �=Y; Z . That is,
(Y; Z) satis<es the BSDE (3.12) on [t; T ].
Again let us consider the probability space (�;F; P!

N−1), for P-a.e. !∈�. Applying
the nonlinear Feynman–Kac formula, and using the Markovian property of X we have

Ys = uN (s; x(k−1);X(k;N−1)(!); X t;x
s );

Zs = vN (s; x(k−1);X(k;N−1)(!); X t;x
s )�(s; X t;x

s ):

Consequently, using the de<nition of the functions u; v, and the property of the regular
conditional probability as before, we see that,

P{!′ : Ys(!′) = u(s; x(k−1);X(k;N )
s (!′));

Zs(!′) = v(s; x(k−1);X(k;N )
s (!′))�(s; X t;x

s (!′))}= 1:

The case when s belongs to other intervals can be argued in the same way, proving
the theorem.

Remark 3.3. From (3.6), we see that the process Z is cVadlVag.

4. Nonlinear Feynman–Kac formula via viscosity solutions

In the previous section, we proved one direction of the nonlinear Feynman–Kac
formula, that is, we assume that the system of PDEs (3.3) has classical solutions, then
it can produce the adapted solution to the “functional-type” BSDEs. In this section, we
show that the reverse direction is also true. To be more precise, we shall prove that if
the BSDE (3.12) has an adapted solution, then it will provide a probabilistic solution to
the system of PDEs (3.3) in the sense of “viscosity”. To this end, we assume that the
standing assumptions (A1) and (A4) hold in the sequel. Also, for technical simplicity
in this section we consider only the case m = 1. We should note, however, that such
a simpli<cation by no means a7ects our future results.
To begin with, let us recall the BSDE (3.12):

Ys = g(x(k−1);X(k;N )) +
∫ T

s
f(r; x(k−1);X(k;N )

r ; Yr; Zr) dr −
∫ T

s
Zr dWr; (4.1)

where t ∈ [tk−1; tk); 06 t6 s6T; x(k−1) ∈R(k−1)n, and X(k;N ) =X(k;N ); (t; x), as de<ned
by (3.11). We note that under assumption (A4), BSDE (4.1) has a unique adapted
solution on any interval [t; T ]. We denote such solution by (Y t;x(x(k−1)); Zt; x(x(k−1))).
The following lemma can be proved in a rather standard way. We shall only state

it for ready reference, but omit the proof.

Lemma 4.1. Suppose that assumptions (A1) and (A4) are in force. Then there exists
a constant L¿ 0, such that for all t ∈ [0; T ], it holds that

E
[
sup

t6s6T
|Y t;x

s (x(k−1))− Y t;y
s (y(k−1))|2

]
6L{|x(k−1) − y(k−1)|2 + |x − y|2}:
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Our main result of the section is the following theorem.

Theorem 4.2. Assume (A1) and (A4), and that m=1. Let t ∈ [tk−1; tk); x(k−1) ∈
R(k−1)n, and denote (Y t;x(x(k−1)); Zt; x(x(k−1))) to be the solution of (4.1). De@ne
uk(t; x(k−1); x) = Y t;x

t (x(k−1)). Then, the function (t; x) �→ uk(t; x(k−1); x) is the unique
viscosity solution of the following semilinear PDE

@uk

@t
(t; x(k−1); x) +Luk(t; x(k−1); x)

+f(t; x(k−1); x; : : : ; x︸ ︷︷ ︸
N−k+1

; uk(t; x(k−1); x); uk
x(t; x

(k−1); x)�(t; x)) = 0;

uk(tk ; x(k−1); x) = uk+1(tk ; x(k−1); x; x);

(4.2)

where

uN+1(T; x(N−1); x; x), g(T; x(N−1); x):

Proof. To prove the theorem, we <rst consider the case when t ∈ [tN−1; tN ]. In this
case, FSDE (3.10) and BSDE (3.12) become a usual Markovian (decoupled) FBSDE
(with parameter x(N−1)):

Xs = x +
∫ s

t
b(r; Xr) dr +

∫ s

t
�(r; Xr) dWr;

Ys = g(x(N−1); XT ) +
∫ T

s
f(r; x(N−1); Xr; Yr; Zr) dr −

∫ T

s
Zr dWr:

(4.3)

The conclusion then follows from the well-known result of Pardoux and Peng (1992)
and moreover,

Y t;x
s (x(N−1)) = uN (s; x(N−1); X t;x

s ); s∈ [t; tN ]:

Next, we assume that t ∈ [tN−2; tN−1], and s∈ [t; tN−1]. We note that this step is the
key, as all other steps can be argued inductively in a similar way.
Let us <rst <x x(N−2), and write BSDE (4.1) as

Y t;x
s (x(N−2)) = Y t;x

tN−1
(x(N−2))

+
∫ tN−1

s
f(r; x(N−2); X t;x

r ; X t;x
r ; Y t;x

r (x(N−2)); Zt; x
r (x(N−2))) dr

−
∫ tN−1

s
Zt;x
r (x(N−2)) dWr:
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We shall prove the following two assertions:

(i) P-almost surely,

Y t;x
tN−1

(x(N−2)) = uN (tN−1; x(N−2); X t;x
tN−1

; X t;x
tN−1

); (4.4)

(ii) the function (x(N−2); x) �→ uN (tN−1; x(N−2); x; x) is Lipschitz.

It is clear that (ii) follows directly from Lemma 4.1. To see (i), let us recall that
(Y t;x

s (x(N−2)); Zt; x
s (x(N−2))) satis<es the following BSDE on [tN−1; tN ]:

Ys = g(x(N−2); X t;x
tN−1

; X t;x
T )

+
∫ T

s
f(r; x(N−2); X t;x

tN−1
; X t;x

r ; Yr; Zr) dr −
∫ T

s
Zr dWr: (4.5)

Using the Markovian property of the process X , this BSDE can be rewritten as

Ys = g(x(N−2); X t;x
tN−1

; X
tN−1 ;X t; x

tN−1
T )

+
∫ T

s
f(r; x(N−2); X t;x

tN−1
; X

tN−1 ;X t; x
tN−1

r ; Yr; Zr) dr −
∫ T

s
Zr dWr: (4.6)

Once again, consider for P-a.e. !∈�, the probability space (�;F; P!
N−1), where

P!
N−1 is the regular conditional probability P(·|FtN−1 )(!). Using the conclusion on

[tN−1; tN ] we know that for P-a.e. !∈�,

Y t;x
s (x(N−2)) = uN (s; x(N−2); X t;x

tN−1
(!); X

tN−1 ;X t; x
tN−1

(!)
s ) (4.7)

for all s∈ [tN−1; tN ]; P!
N−1-a.s. But then, denoting X̂ t; x;!;N = X tN−1 ;X t; x

tN−1
(!) we have

P{!′ : Y t;x
s (x(N−2))(!′) = uN (s; x(N−2); X t;x

tN−1
(!′); X t;x

s (!′))}

=
∫
�
P!
N−1{!′ : Y t;x

s (x(N−2))(!′) = uN (s; x(N−2); X t;x
tN−1

(!); X̂ t; x;!;N
s (!′))}P(d!)

= 1 (4.8)

for all s∈ [tN−1; tN ]. Hence,

Y t;x
s (x(N−2)) = uN (s; x(N−2); X t;x

tN−1
; X t;x

s ) ∀s∈ [tN−1; tN ]; P-a:s:

Letting s= tN−1 we derive (i).
Now replacing g(x(N−1); x) by uN (tN−1; x(N−2); x; x) and f(t; x(N−1); x; y; z) by

f(t; x(N−2); x; x; y; z) in (4.3), we can apply the “classical” nonlinear Feynman–Kac
formula of Pardoux and Peng (1992) on the interval [tN−2; tN−1] to obtain that, for
t ∈ [tN−2; tN−1],

uN−1(t; x(N−2); x), Y t;x
t (x(N−2))

is the unique viscosity solution to PDE (4.2) with k = N − 1.
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Repeating the same arguments to the intervals [tk−1; tk ] for k = N − 2; N − 3; : : : ; 1,
we complete the proof.

5. A measurable selection theorem

In the rest of the paper, we turn our attention to the existence of adapted solutions
to BSDEs with continuous coe)cients. Therefore, from now on we shall assume that
the coe)cients b; �; f and g satisfy only (A2) and (A3). As an important tool in the
proof, as well as an interesting problem in its own right, we <rst study a measurable
selection problem which we now describe. Consider, for example, the following BSDE
over the interval [tN−1; T ]:

Yt = g(x(N−1); X 0; x
T ) +

∫ T

t
f(r; x(N−1); X 0; x

r ; Yr; Zr) dr −
∫ T

t
Zr dWr; (5.1)

where tN−16 t6T , and x(N−1) ∈R(N−1)n. Suppose that there exists a pair of functions
(uN ; vN ) : [tN−1; T ]× R(N−1)n × Rn �→ Rm × Rm×n satisfying

(C-1) ∀x(N−1) ∈R(N−1)n, the mapping (t; y) �→ (uN (t; x(N−1); y); vN (t; x(N−1); y)) is
B([tN−1; T ]× Rn)-measurable.

(C-2) there exists a (Borelian) null-set AN−1 ⊆ R(N−1)n, such that for all x(N−1) �∈
AN−1, the processes

Y x;N
t (x(N−1)), uN (t; x(N−1); X 0; x

t )

Zx;N
t (x(N−1)), vN (t; x(N−1); X 0; x

t )�(t; X 0; x
t );

t ∈ [tN−1; T ]; (5.2)

is an adapted solution to BSDE (5.1).

Our question is whether such a pair of functions can be chosen so that they are
both jointly measurable in (t; x(N−1); y). The existence of such a “version” is essen-
tial for us to construct the adapted solution on the subsequent intervals [tN−2; tN−1],
[tN−3; tN−2]; : : :, whence a “global” adapted solution.
Note that our proof of the measurable selection applies to all intervals [tk−1; tk ] for

k¿ 2. (In fact, on [0; t1] some of the arguments may fail because the density function
p(0; x; t; y) no longer has a positive lower bound!) However, note that the measurable
selections are only needed for [t1; t2]; : : : ; [tN−1; T ], where the parameters x(1); : : : ; x(N−1)

are present. Namely the interval [0; t1] is not our concern. Therefore, without loss of
generality we shall study only the case when k = N . Let us begin by taking a closer
look at the functions (uN ; vN ) satisfying (C-1) and (C-2).
Let us denote CN = ‖g‖∞ + ‖f‖∞(T − tN−1), and introduce the following class of

functions

HN;n;m×n
loc = {v∈L2loc([tN−1; T ]× Rn;Rm×n) | ‖|v‖|N 6CN}; (5.3)

where

‖|v‖|2N , sup
x∈Rn

∫ T

tN−1

∫
Rn

|v(s; z)�(s; z)|2p(0; x; s; z) ds dz: (5.4)
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Then, it is clear that HN;n;m×n
loc is a closed subspace of L2loc([tN−1; T ]×Rn;Rm×n), and

(HN;n;m×n
loc ; ‖| ·‖|N ) is a Banach space. In what follows, we shall always use HN;n;m×n

loc
in the latter sense. We have the following lemma.

Lemma 5.1. Assume (A2) and (A3). Suppose that there exists a pair of functions
(uN ; vN ) : [tN−1; T ]×R(N−1)n ×Rn �→ Rm ×Rm×n satisfying (C-1) and (C-2). Then for
all x(N−1) �∈ AN−1, the null set in (C-2), the mapping

(t; y) �→ (uN (t; x(N−1); y); vN (t; x(N−1); y))

must belong to the space Cb([tN−1; T )× Rn;Rm)⊗ HN;n;m×n
loc .

Proof. Recall that we denoted (see Lemma 2.1) +(t; x; s; dy) = P{X t;x
s ∈ dy} to be the

transition probability of X t;x and p(t; x; s; y) (s¿ t) to be its density.
We <rst <x any t ∈ [tN−1; T ), and take conditional expectation E{·|X 0; x

t =y} on both
sides of (5.1). Using the relations in assumption (C-2) and the Markovian property of
process X 0; x we see that

uN (t; x(N−1); y)

=E{Y x;N
t (x(N−1))|X 0; x

t = y}

=
∫
Rn

g(x(N−1); z)p(t; y;T; z) dz

+
∫ T

t

∫
Rn

f(s; x(N−1); z; uN (s; x(N−1); z); vN (s; x(N−1); z)�(s; z))

×p(t; y; s; z) ds dz: (5.5)

Recall from Lemma 2.1 that the transition density p(t; y; s; z) is continuous in (t; y),
and note that f and g are bounded by (A2) and (A3), we see that uN (·; x(N−1); ·)∈
Cb([tN−1; T )× Rn). In fact, from (5.5) we deduce easily that

‖u(·; x(N−1); ·)‖∞ = sup
(t;y)∈[tN−1 ;T ]×Rn

E{|Y x;N
t (x(N−1))‖X 0; x

t = y}

6 ‖g‖∞ + ‖f‖∞(T − tN−1) = CN : (5.6)

To see that vN (·; x(N−1); ·)∈HN;n;m×n
loc , we <rst note that being an adapted solution

to BSDE (5.1), (Y x;N (x(N−1)); Zx;N (x(N−1))) must satisfy

E

{
|Y x;N

tN−1
(x(N−1))|2 +

∫ T

tN−1

|Zx;N
s (x(N−1))|2 ds

}

=E

∣∣∣∣∣Y x;N
tN−1

(x(N−1)) +
∫ T

tN−1

Zx;N
s (x(N−1)) dWs

∣∣∣∣∣
2

=E

∣∣∣∣∣g(x(N−1); X 0; x
T )+

∫ T

tN−1

f(r; x(N−1); X 0; x
r ; Y x;N

r (x(N−1)); Zx;N
r (x(N−1))) dr

∣∣∣∣∣
2

6C2
N : (5.7)
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In light of assumption (C-2) we then have

E

{∫ T

tN−1

|Zx;N
s (x(N−1))|2 ds

}

=
∫ T

tN−1

∫
Rn

|vN (s; x(N−1); y)�(s; y)|2p(0; x; s; y) ds dy6C2
N ; ∀x∈Rn:

Thus ‖|vN (·; x(N−1); ·)‖|N 6CN . Furthermore, applying the density estimate (for p) in
Lemma 2.1 to the above inequality we obtain that, for each x∈Rn,∫ T

tN−1

∫
Rn

|vN (s; x(N−1); y)�(s; y)|2 m
sn=2

exp
{

−,|y − x|2
2s

}
ds dy6C2

N : (5.8)

Consequently, one must have, for every compact set K ⊂ Rn,∫ T

tN−1

∫
K

|vN (s; x(N−1); y)|2 ds dy¡∞;

proving that vN (·; x(N−1); ·)∈L2loc([tN−1; T ]× Rn;Rm×n), whence HN;n;m×n
loc .

Now let us introduce a device that is useful for our measurable selection. For nota-
tional simplicity in what follows we denote CN;n;m

b =Cb([tN−1; T )×Rn;Rm). Also, for
any (y; u; v)∈R(N−1)n × CN;n;m

b × HN;n;m×n
loc , we denote

F[y; u; v](t; X 0; x
t ), f(t; y; X 0; x

t ; u(t; X 0; x
t ); v(t; X 0; x

t )�(t; X 0; x
t )):

Now let AN−1 be the exceptional set in condition (C-2). Consider a mapping GN :
R(N−1)n × CN;n;m

b × HN;n;m×n
loc → L0(Rn;R+) de<ned by

GN [y; u; v](x), E

{∫ T

tN−1

∣∣∣∣u(t; X 0; x
t )− g(y; X 0; x

T )−
∫ T

t
F[y; u; v](r; X 0; x

r ) dr

+
∫ T

t
v(r; X 0; x

r )�(r; X 0; x
r ) dWr

∣∣∣∣ dt
}
1AN−1 (y); x∈Rn:

The following two lemmas give the main properties of the function GN .

Lemma 5.2. Assume (A2) and (A3). Then the mapping x �→ GN [y; u; v](x) is contin-
uous for each @xed (y; u; v), and ‖GN [y; u; v](·)‖C(Rn;R+)6 3CN (T − tN−1).

Proof. The bound for GN is a direct consequence of estimates (5.6) and (5.7). We
prove the continuity of GN [y; u; v](·). To begin with, let us choose, for 5¿ 0, continuous
functions g5; F5 and v5, such that

(a) g5 and F5 are uniformly bounded (uniformly in 5 as well),
(b) ‖g5(y; ·)− g(y; ·)‖L2loc(Rn;Rm) → 0, ‖F5 − F[y; u; v]‖L2loc([tN−1 ;T ]×Rn;Rm) → 0,
(c) ‖v5 − v‖L2loc([tN−1 ;T ]×Rn;Rm×n) → 0.
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Now assume that x → x0. Without loss of generality, we may assume that x∈B(x0; a)
for some a¿ 0, where B(x0; a) denotes the closed ball centered at x0, and with radius
a. For each M ¿ 0, we de<ne

7M = inf{s¿ tN−1 | |X 0; x
s |+ |X 0; x0

s |¿M} ∧ T:

Then it is clear that for some constant C′ ¿ 0,

P{7M ¡T}= P

{
sup

tN−16s6T
(|X 0; x

s |+ |X 0; x0
s |)¿M

}
6

C′(1 + |x|2 + |x0|2)
M 2 :

Therefore limM→∞ P{7M ¡T} = 0, and the limit is uniform for all x∈B(x0; a). Fur-
ther, for notational simplicity, let us denote for any �∈L2(F; �;C([0; T ];Rn)) and
(y; u; v)∈R(N−1)n × CN;n;m

b × HN;n;m×n
loc ,

8[y; u; v](t; �), g(y; �T ) +
∫ T

t
F[y; u; v](r; �r) dr −

∫ T

t
v(r; �r)�(r; �r) dWr;

Then we can write

GN [y; u; v](x) = E

{∫ T

tN−1

|u(t; X 0; x
t )− 8[y; u; v](t; X 0; x)| dt

}
1AN−1 (y) (5.9)

and consequently,

|GN [y; u; v](x)− GN [y; u; v](x0)|

6E

{∫ T

tN−1

{|u(t; X 0; x
t )− u(t; X 0; x0

t )|

+ |8[y; u; v](t; X 0; x)− 8[y; u; v](t; X 0; x0 )|} dt
}

: (5.10)

A simple application of Lebesgue’s Dominated Convergence Theorem shows that

lim
x→x0

E

{∫ T

tN−1

|u(t; X 0; x
t )− u(t; X 0; x0

t )| dt
}
= 0: (5.11)

Furthermore, note that (suppressing (y; u; v) in 8[ · · · ])

E

{∫ T

tN−1

|8(t; X 0; x)− 8(t; X 0; x0 )| dt
}

=E

{∫ T

tN−1

{1{7M¡T}|8(t; X 0; x)− 8(t; X 0; x0 )|

+ 1{7M=T}|8(t; X 0; x)− 8(t; X 0; x0 )|} dt
}

, IN;1
M + IN;2

M ; (5.12)
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where IN;1
M and IN;2

M are de<ned in an obvious way. Since limM→∞ P{7M ¡T} = 0,
uniformly for x∈B(x0; a), we have

IN;1
M 6 E

{∫ T

tN−1

1{7M¡T}{|8(t; X 0; x)|+ |8(t; X 0; x0 )|} dt
}

6 P{7M ¡T}1=2
∫ T

tN−1

E{(|8(t; X 0; x)|+ |8(t; X 0; x0 )|)2}1=2 dt → 0;

as M → ∞;

uniformly for x∈B(x0; a). Thus for any :¿ 0, we can choose an M = M (:)¿ 0
such that IN;1

M ¡:. Fixing this M we now estimate IN;2
M . Bearing the indicator function

1{7M=T} in mind, we have

IN;2
M 6 E{|g(y; X 0; x

7M )− g5(y; X 0; x
7M )|+ |g(y; X 0; x0

7M )− g5(y; X 0; x0
7M )|}(T − tN−1)

+E{|g5(y; X 0; x
T )− g5(y; X 0; x0

T )|}(T − tN−1)

+
∫ T

tN−1

E
{∣∣∣∣

∫ 7M

t∧7M
(F[y; u; v]− F5)(r; X 0; x

r ) dr
∣∣∣∣
}
dt

+
∫ T

tN−1

E
{∣∣∣∣

∫ 7M

t∧7M
(F[y; u; v]− F5)(r; X 0; x0

r ) dr
∣∣∣∣
}
dt

+
∫ T

tN−1

E

{∫ T

tN−1

|F5(r; X 0; x
r )− F5(r; X 0; x0

r )| dr
}

dt

+CN;M;T

∫ T

tN−1

E
{∫ 7M

t∧7M
|(v − v5)�(r; X 0; x

r )|2 dr
}1=2

dt

+CN;M;T

∫ T

tN−1

E
{∫ 7M

t∧7M
|(v − v5)�(r; X 0; x0

r )|2 dr
}1=2

dt

+CN;M;T

∫ T

tN−1

E

{∫ T

tN−1

|(v5�)(r; X 0; x
r )− (v5�)(r; X 0; x0

r )|2 dr
}1=2

dt:

Here we used the Burkholder’s inequality to treat the stochastic integrals, and CT;N;M

denotes a generic constant depending only on T; N; M , and B(x0; a), which is allowed
to vary from line to line. Clearly, for <xed M we can choose 5 small enough so that

E|g(y; X 0; x
7M )− g5(y; X 0; x

7M )|6
∫

|y|6M
|g(y; y)− g5(y; y)|2p(0; x;T; y) dy
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6CT;N;M

∫
|y|6M

|g(y; y)− g5(y; y)|2 dy

¡
:

T − tN−1
:

In fact, we can choose 5 small enough so that all the following hold:

E|g(y; X 0; x0
7M )− g5(y; X 0; x0

7M )|¡ :
T − tN−1

;

∫ T

tN−1

E
{∣∣∣∣

∫ 7M

t∧7M
(F[y; u; v]− F5)(r; X 0; x

r ) dr
∣∣∣∣
}
dt ¡:;

∫ T

tN−1

E
{∣∣∣∣

∫ 7M

t∧7M
(F[y; u; v]− F5)(r; X 0; x0

r ) dr
∣∣∣∣
}
dt ¡:;

∫ T

tN−1

E

{∣∣∣∣
∫ 7M

t∧7M
|(v − v5)�(r; X 0; x

r )|2 dr
}1=2

dt ¡
:

CN;M;T
;

∫ T

tN−1

E

{∣∣∣∣
∫ 7M

t∧7M
|(v − v5)�(r; X 0; x0

r )|2 dr
}1=2

dt ¡
:

CN;M;T
:

Consequently, we have

IN;2
M 6 6:+ E{|g5(y; X 0; x

T )− g5(y; X 0; x0
T )|}(T − tN−1)

+
∫ T

tN−1

E

{∫ T

tN−1

|F5(r; X 0; x
r )− F5(r; X 0; x0

r )| dr
}

dt

+CN;M;T

∫ T

tN−1

E

{∫ T

tN−1

|(v5�)(r; X 0; x
r )− (v5�)(r; X 0; x0

r )|2 dr
}1=2

dt:

Since for any t ∈ [tN−1; T ], X 0; x
t converges in probability to X 0; x0

t , one can apply the
Dominated Convergence Theorem again to show that the last three terms on the
right-hand side above all converge to 0 as x → x0 (while M and 5 being <xed!).
In other words, we have limx→x0 I

N;2
M 6 6:. Plugging this, as well as IN;1

M ¡:, into
(5.12) we have

lim
x→x0

E

{∫ T

tN−1

|8(t; X 0; x)− 8(t; X 0; x0 )| dt
}

¡ 7::

Since : is arbitrary, combining this with (5.10) and (5.11) we obtain that

lim
x→x0

|GN [y; u; v](x)− GN [y; u; v](x0)|= 0:
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That is, the mapping GN can be considered as a functional from CN;n;m
b ×HN;n;m×d

loc to
C(Rn;R+), proving the lemma.

The next lemma concerns the measurability of the mapping GN . Let us endow the
space C(Rn;R+) with a metric, ;(·; ·), that is equivalent to the uniform convergence on
compacts (e.g., ;(’1; ’2),

∑∞
k=1(‖’1 −’2‖k ∧ 1)=2k , where ‖’‖k = sup|x|6k |’(x)|).

In what follows all the measurability involving C(Rn;R+) will be in terms of the
topological Borel <eld of C(Rn;R+) under this metric. We denote ‖’‖C = ;(’; 0).

Lemma 5.3. Assume (A2) and (A3). The mapping (y; u; v) �→ GN [y; u; v](·) is jointly
measurable, as a function from R(N−1)n × CN;n;m

b × HN;n;m×n
loc to C(Rn;R+).

Proof. We <rst note that for <xed (u; v), the mapping y �→ GN (y; u; v)(·) is obviously
(Borel) measurable in y∈R(N−1)n. We need only check that for each <xed y∈R(N−1)n,
the mapping (u; v) �→ GN [y; u; v] is continuous.
To this end, let (u‘; v‘) → (u; v) in CN;n;m

b × HN;n;m×n
loc , and <x y �∈ AN−1. Recall

(5.9) and the de<nitions of F[y; u; v] and 8[y; u; v] we see that for any x∈Rn it holds
that

|GN (y; u‘; v‘)(x)− GN (y; u; v)(x)|

6E

{∫ T

tN−1

|ul(t; X 0; x
t )− u(t; X 0; x

t )|

+ |8[y; u‘; v‘](t; X 0; x)− 8[y; u; v](t; X 0; x)| dt
}

6 (‖u‘ − u‖∞ + ‖|v‘ − v‖|N )(T − tN−1)

+E

{∫ T

tN−1

∫ T

t
|F[y; u‘; v‘](r; X 0; x

r )− F[y; u; v](r; X 0; x
r )| dr dt

}
:

Clearly, by the nature of the metric ‖ · ‖C we need only show that for any R¿ 0,

lim
‘→∞

sup
|x|6R

E

{∫ T

tN−1

|F[y; u‘; v‘](t; X 0; x
t )− F[y; u; v](t; X 0; x

t )| dt
}
= 0: (5.13)

To see this, denote YF‘(y; t; y) = F[y; u‘; v‘](t; y)− F[y; u; v](t; y), and note that

E

{∫ T

tN−1

|YF‘(y; t; X 0; x
t )| dt

}
=

∫ T

tN−1

∫
Rn

|YF‘(y; t; y)|p(0; x; t; y) dt dy:

Since |YF‘(y; t; y)|6 2‖f‖∞, and for <xed R¿ 0 it holds that

lim
K→∞

sup
|x|6R

∫ T

tN−1

∫
|y|¿K

p(0; x; t; y) dt dy = 0;
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we have, for any :¿ 0, there exists K = K(:; R)¿ 0, such that

sup
|x|6R

∫ T

tN−1

∫
|y|¿K

|YF‘(y; t; y)|p(0; x; t; y) dt dy¡::

Therefore

sup
|x|6R

∫ T

tN−1

∫
Rn

|YF‘(y; t; y)|p(0; x; t; y) dt dy

6 :+ sup
|x|6R

∫ T

tN−1

∫
|y|6K

|YF‘(y; t; y)|p(0; x; t; y) dt dy: (5.14)

Now denote, for any ?¿ 0; AK;?
‘ , {(t; y) | |y|6K; |v‘(t; y) − v(t; y)|¿?}, and let

|AK;?
‘ | denote the Lebesgue measure of AK;?

‘ in [tN−1; T ]×Rn. Using the uniform ellip-
ticity of ��∗, thanks to (A3), we have

‖|v‘ − v‖|2N ¿
∫ T

tN−1

∫
|y|6K

c|v‘(t; y)− v(t; y)|2p(0; x; t; y) dt dy

¿ c?2|AK;?
‘ |cR;K;N ∀x∈B(0;R);

where cR;K;N = inf |x|6R; |y|6K; t∈[tN−1 ;T ] p(0; x; t; y)¿ 0, and c is the constant in (2.5) of
(A3). In other words, v‘ converges to v in measure on [tN−1; T ]× B(0;K), uniformly
for |x|6R. The continuity of f then implies that lim‘→∞ YF‘(y; ·; ·) = 0 in measure
on [tN−1; T ] × B(0;K), uniformly for |x|6R, as well. Consequently, if we denote
CR;K;N = sup|x|6R; |y|6K; t∈[tN−1 ;T ] p(0; x; t; y), then

sup
|x|6R

∫ T

tN−1

∫
|y|6K

|YF‘(y; t; y)|p(0; x; t; y) dt dy

6CR;K;N

∫ T

tN−1

∫
|y|6K

|YF‘(y; t; y)| dt dy → 0; as ‘ → ∞;

thanks to the Dominated Convergence Theorem. This, together with (5.14), leads to
(5.13). The proof is complete.

We are now ready to prove the main result of this section.

Theorem 5.4. Assume (A2) and (A3), and suppose that there exists a pair of func-
tions (uN ; vN ) satisfying conditions (C-1) and (C-2). Then there exists a pair of
functions ( Zu N ; ZvN ) : [0; T ]× R(N−1)n × Rn �→ Rm × Rm×n, such that
(i) for each x(N−1); Zu N (·; x(N−1); ·)∈Cb([tN−1; T ) × Rn;Rm) and ZvN (·; x(N−1); ·)∈

HN;n;m×n
loc ;
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(ii) there exists a (Borelian) null set A′
N−1 ⊂ R(N−1)n such that for each x(N−1) �∈

A′
N−1, the pair of processes ( ZY x;N (x(N−1)); ZZx;N (x(N−1))) de@ned by

ZY x;N
t (x(N−1)) = Zu N (t; x(N−1); X 0; x

t ); ZZx;N
t (x(N−1)) = ZvN (t; x(N−1); X 0; x

t )�(t; X 0; x
t )

is an adapted solution to BSDE (5.1); and
(iii) ( Zu N (·; ·; ·); ZvN (·; ·; ·)) is B([tN−1; T ]×R(N−1)n ×Rn)=B(Rm)⊗ B(Rm×n)-jointly

measurable.

Proof. Consider the function GN [y; u; v] de<ned by (5.9). De<ne the set

AN , {(y; u; v) :GN [y; u; v](x) = 0;∀x∈Rn};
then AN is a Borel set in B(R(N−1)n × CN;n;m

b × HN;n;m×n
loc ). Also, the existence of

solution to (5.1) and the relation (5.2) imply that ProjR(N−1)n(AN )=R(N−1)n. Therefore,
applying the measurable selection theorem (see, e.g., Dellacherie and Meyer, 1978,
Appendix to III-81 or Bertsekas and Shreve, 1978, Proposition 7.49), we can <nd a
pair of functions

( Zu N ; ZvN ) : R(N−1)n �→ CN;n;m
b × HN;n;m×n

loc

and a Lebesgue null set A′′
N−1 such that for any y �∈ A′′

N−1; GN (y; Zu N (y); ZvN (y))(x)=0,
for all x∈Rn and that the mapping y �→ ( Zu N (y); ZvN (y)) is B(R(N−1)n)=B(CN;n;m

b ×
HN;n;m×n

loc )-measurable. This, together with the de<nition of the set AN , proves (i) and
(ii) (replacing y by x(N−1)!).
To see (iii), we note that for each y, the mapping (t; y) �→ Zu N (t; y; y) is continuous,

and for (t; y), the mapping y �→ Zu N (t; y; y) is measurable. Thus, Zu N (·; ·; ·) is jointly
measurable. It remains to show that ZvN (·; ·; ·) is also jointly measurable.
To this end, noting that limk→+∞ ZvN (y)1{|y|6k}= ZvN (y), it su)ces to prove the joint

measurability of ZvN assuming that ZvN (y)∈L2([tN−1; T ] × Rn;Rm×n). We note that the
space L2([tN−1; T ]×Rn;Rm×n) is a separable Hilbert space. Let {�i}i¿1 be a standard
orthogonal basis of L2([tN−1; T ] × Rn;Rm×n), so that the functions ZvN can be written
as ZvN (y) =

∑∞
i=1 bi(y)�i, in L2([tN−1; T ]× Rn;Rm×n) and a.e., where

bi(y),
∫ T

tN−1

∫
Rn

ZvN (y)�i(t; y) dy dt:

Clearly, for each i; bi(·) is B(R(N−1)n)/B(R)-measurable, thus all the mappings

(t; y; x) �→ bi(y)�i(t; x)

are B([tN−1; T ]× R(N−1)n × Rn)=B(Rm×n)-jointly measurable. Thus (iii) follows.

6. Existence of solutions for BSDEs with continuous coe.cients

We now prove the existence of adapted solutions to BSDEs with continuous co-
e)cients in the discrete functional form. To be more precise, we shall consider the
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following (F)BSDE:

Xt = x +
∫ t

0
b(r; Xr) dr +

∫ t

0
�(r; Xr) dWr;

Yt = g(X(N )) +
∫ T

t
f(r;X(N )

r ; Yr; Zr) dr −
∫ T

t
Zr dWr;

t ∈ [0; T ]: (6.1)

We assume that the coe)cients g and f satisfy only (A2), that is, g is only bounded
measurable, and f is only bounded and continuous. We assume that b and � satisfy
(A3).
Our plan of attack is the following, we <rst mollify the coe)cients g and f so

that the representation results of the previous sections can be applied. We then pass to
the limit, in the spirit of the method proposed in Hamadene et al. (1997), to obtain a
candidate of the solution. Then, by using the measurable selection theorem established
in Section 5 we verify that the candidate solution is indeed what we are looking for.
Since the discussion is quite lengthy, we shall split it into several lemmas.
To begin with let us choose a sequence of molli<ers {(g5; f5)}5¿0, such that

(i) for all 5¿ 0; g5 and f5 are uniformly bounded (uniformly in 5 as well!);
(ii) g5 ∈C∞(RNn;Rm) and f5 ∈C∞([0; T ] × RNn × Rm × Rm×d;Rm), with bounded

derivatives of all orders; and
(iii) for <xed (t; x(N ); y; z)∈ [0; T ]× RNn × Rm × Rm×d, it holds that

f5(t; x(N ); y; z) → f(t; x(N ); y; z); as 5 → 0 (6.2)

and for any p¿ 1; g5(·) → g(·), in Lp
loc(RNn), as 5 → 0.

By a diagonalisation procedure, we can choose a subsequence (still denote by itself),
such that g5 converges to g a.e.
Now for each 5¿ 0 consider the FBSDE (6.1) with g and f being replaced by g5

and f5. Clearly, the adapted solution exists and is unique, we denote it by (Y 5; Z5).
Furthermore, since b and � satisfy (A3), and g5 and f5 are both bounded and smooth
with derivatives of all orders, it is known that all PDEs in the system (3.3) (with
g5 and f5) will have classical solutions (see the remarks at the beginning of Section
3). Therefore, applying the result of Section 3 we can construct a pair of functions
u5 : [0; T ]× RNn �→ Rm and v5 : [0; T ]× RNn �→ Rm×n such that

Y 5
s = u5(s;X(N )

s ); Z5
s = v5(s;X(N )

s )�(s; Xs):

The same relation holds when we consider the FSDE (6.1) starting from (t; x) with
t ∈ [tk−1; tk). Denote the corresponding solution by (Y 5; t; x(x(k−1)); Z5; t; x(x(k−1))).
Our next step is to look at the limit of the family (Y 5; t; x(x(k−1)); Z5; t; x(x(k−1))), as

5 → 0, which is one of the building blocks of the desired adapted solution. The main
technicality in this step can be roughly described as follows. Since in general one
only knows that the family { ZY 5; ·; ·(x(k−1)); { ZZ5; ·; ·(x(k−1))} is precompact for each <xed
x(k−1), a limit point of this family will depend on the choice of the subsequence,
whence on x(k−1), the measurability of the limit points of this family on x(k−1) thus
requires more careful consideration.



Ying Hu, Jin Ma / Stochastic Processes and their Applications 112 (2004) 23–51 45

We <rst state a simple lemma to facilitate our discussion.

Lemma 6.1. Suppose that g :RNn �→ Rm is a bounded measurable function, and
{g5(·)} is a family of smooth molli@ers of g converging to g a.e. Then there ex-
ists a (Borelian) null measurable set AN−1 ⊂ R(N−1)n, independent of the initial state
x, such that

lim
5→0

E|g5(x(N−1); X 0; x
T )− g(x(N−1); X 0; x

T )|= 0 ∀x(N−1) �∈ AN−1:

Proof. Since g5 converges to g a.e., i.e.,∫
R(N−1)n

∫
Rn
1{lim5→0|g5(x(N−1) ;yN )−g(x(N−1) ;yN )|¿0}(x

(N−1); yN ) dx(N−1) dyN = 0:

Thus, there exists a (Borelian) null set AN−1, such that ∀x(N−1) �∈ AN−1,∫
Rn
1{lim5→0|g5(x(N−1) ;yN )−g(x(N−1) ;yN )|¿0}(x

(N−1); yN ) dyN = 0:

That is, lim5→0 |g5(x(N−1); yN )− g(x(N−1); yN )|= 0, dyN -a.e., for all ∀x(N−1) �∈ AN−1.
Consequently,

lim
5→0

E|g5(x(N−1); X 0; x
T )− g(x(N−1); X 0; x

T )|

=lim
5→0

∫
Rn

|g5(x(N−1); y)− g(x(N−1); y)|p(0; x;T; y) dy = 0 ∀x(N−1) �∈ AN−1;

thanks to the Dominated Convergence Theorem, proving the lemma.

We now state and prove our main result.

Theorem 6.2. Assume (A2) and (A3). Then, there exists a pair of functionals (u; v) :
[0; T ]× RNn �→ Rm × Rm×n, such that

(i) u(·; ·) (resp. v(·; ·)) is B([0; T ]× RNn)=B(Rm) (resp. B(Rm×n))-measurable;
(ii) if we de@ne

Y x
t = u(t;X(N )

t ); Zx
t = v(t;X(N )

t )�(t; X 0; x
t ); t ∈ [0; T ]; (6.3)

then (Y x; Zx) is an adapted solution to FBSDE (6.1) over [0; T ].

Proof. We shall construct the desired functional interval by interval, starting from
[tN−1; T ]. More precisely, in each interval we proceed with two-steps: the <rst step
is to prove the existence of the pair functions (uk ; vk) satisfying conditions (C-1) and
(C-2) in Section 5; and the second step is to modify these functions, with the help
of Theorem 5.4, so that they have required measurability so that a recursive argument
can be carried out. Consider now the interval [tN−1; tN ] = [tN−1; T ].
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Step 1: Let {5N‘ } be a sequence such that

lim
l→∞

g5Nl (x(N−1); x) = g(x(N−1); x); dx(N−1) dx-a:e:

We denote it by {5‘} for notational simplicity. Also, we denote the exceptional set in
Lemma 6.1 by AN−1 ⊂ R(N−1)n, and let x∈Rn be <xed.
For each x(N−1) ∈R(N−1)n, let us denote the solution of the following (decoupled)

FBSDE, (7; �)∈ [tN−1; T )× Rn, s∈ [7; T ],

Xs = �+
∫ s

7
b(r; Xr) dr +

∫ s

7
�(r; Xr) dWr; (6.4)

Ys = g5‘(x(N−1); XT ) +
∫ T

s
f5‘(r; x(N−1); Yr; Zr) dr −

∫ T

s
Zr dWr (6.5)

by (X 7;�; Y ‘;7;�(x(N−1)); Z‘;7;�(x(N−1))). Then, thanks to Theorem 3.2, we have the fol-
lowing representation: for (7; �)∈ [tN−1; T )× Rn and s∈ [7; T ],

Y ‘;7;�
s (x(N−1)) = u‘;N (s; x(N−1); X 7;�

s );

Z‘;7;�
s (x(N−1)) = v‘;N (s; x(N−1); X 7;�

s )�(s; X 7;�
s );

(6.6)

where u‘;N (7; x(N−1); �) = Y ‘;7;�
7 (x(N−1)) is the classical solution to the PDE (3.3) for

(7; �)∈ [tN−1; T ]× Rn, and the following relation holds

v‘;N (7; x(N−1); �) = @xu‘;N (7; x(N−1); �); (7; �)∈ [tN−1; T ]× Rn:

We shall prove that for <xed x(N−1) �∈ AN−1, there exists a subsequence {5‘′} (this
time it may depend on x(N−1)!), such that for each <xed (7; �)∈ [tN−1; T ]× Rn,

lim
5‘′ →0

u‘′ ;N (7; x(N−1); �) = uN (7; x(N−1); �);

where uN (·; x(N−1); ·) is some measurable function.
To this end we <x x(N−1) �∈ AN−1, and denote, for each ‘¿ 0,

F‘;N (r; x(N−1); y)

, f5‘(r; x(N−1); y; u‘;N (r; x(N−1); y); v‘;N (r; x(N−1); y)�(r; y)): (6.7)

Then clearly F‘;N is a bounded measurable function on (r; y)∈ [tN−1; T ]×Rn. Now con-
sider the family {F‘;N (·; x(N−1); ·)}‘¿0. Since f5‘ is uniformly bounded, this family is
a bounded set in L∞([tN−1; T ]×Rn), whence weak*-precompact. In other words, there
exists a subsequence {‘′} (may depend on x(N−1)!), and a function F0;N (·; x(N−1); ·)∈
L∞([tN−1; tN ]× Rn) such that for any ’∈L1([tN−1; tN ]× Rn), we have

lim
‘′→∞

∫ T

tN−1

∫
Rn
[F‘′ ;N (r; x(N−1); y)− F0;N (r; x(N−1); y)]’(r; y) dy dr = 0:
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Consequently, for all (7; �)∈ [tN−1; T )× Rn and :¿ 0 su)ciently small, we have

lim
‘′→∞

∫ T

7+:

∫
Rn
[F‘′ ;N (r; x(N−1); y)− F0;N (r; x(N−1); y)]p(7; �; r; y) dy dr

=0: (6.8)

We now borrow some idea from Hamadene et al. (1997) to prove that the se-
quence {u‘′ ;N (7; x(N−1); �)} converges pointwisely for every (7; �)∈ [tN−1; tN ]×Rn and
x(N−1) �∈ AN−1. First, we claim that the sequence is Cauchy in ‘′. Indeed, from BSDE
(6.5) and representation (6.6), we see that for (7; �)∈ [tN−1; T ) × Rn and :¿ 0 is
su)ciently small, then for any ‘′

1; ‘
′
2 ∈ {‘′},

|u‘′
1 ;N (7; x(N−1); �)− u‘′

2 ;N (7; x(N−1); �)|

=
∣∣∣∣E

∫ T

7
[F‘′

1 ;N (r; x(N−1); X 7;�
r )− F‘′

2 ;N (r; x(N−1); X 7;�
r )] dr

∣∣∣∣
+E|g‘′

1 (x(N−1); X 7;�
T )− g‘′

2 (x(N−1); X 7;�
T )|

=
∣∣∣∣
∫ T

7

∫
Rn
[F‘′

1 ;N (r; x(N−1); y)− F‘′
2 ;N (r; x(N−1); y)]p(7; �; r; y) dr dy

∣∣∣∣
+E|g‘′

1 (x(N−1); X 7;�
T )− g‘′

2 (x(N−1); X 7;�
T )|

6

∣∣∣∣∣
∫ 7+:

7

∫
Rn
[YF‘′

1 ; ‘
′
2 ;N (r; x(N−1); y)]p(7; �; r; y) dr dy

∣∣∣∣∣
+

∣∣∣∣
∫ T

7+:

∫
Rn
[YF‘′

1 ; ‘
′
2 ;N (r; x(N−1); y)]p(7; �; r; y) dr dy

∣∣∣∣
+E|g‘′

1 (x(N−1); X 7;�
T )− g‘′

2 (x(N−1); X 7;�
T )|

= I1(:; ‘′
1; ‘

′
2) + I2(:; ‘′

1; ‘
′
2) + I3(‘′

1; ‘
′
2); (6.9)

where

YF‘′
1 ; ‘

′
2 ;N (r; x(N−1); y), F‘′

1 ;N (r; x(N−1); y)− F‘′
2 ;N (r; x(N−1); y)

and I1; I2 and I3 are de<ned in an obvious way. We now analyze the convergence of
I1; I2; I3 one by one. First, by Lemma 6.1 we see that I3(‘′

1; ‘
′
2) → 0, as ‘′

1; ‘
′
2 → ∞.

Next, applying Lemma 2.1 and using the boundedness of the function f, one shows
that I1(:; ‘′

1; ‘
′
2)6C1:, where C1 ¿ 0 is a constant independent of ‘′. Finally, (6.8)

implies that I2(:; ‘′
1; ‘

′
2) → 0 as ‘′

1; ‘
′
2 → ∞, thanks to the weak*-precompactness

of the sequence {F‘′ ;N (·; x(N−1); ·)} in L∞([tN−1; T ] × Rn). Consequently, <rst letting
‘′
1; ‘

′
2 → ∞ on both sides of (6.9) and then letting : → 0 one shows that the se-

quence {u‘′ ;N (7; x(N−1); �)} is Cauchy. Thus it converges, for <xed x(N−1) �∈ AN−1, to
a (measurable) function uN (7; x(N−1); �); (7; �)∈ [tN−1; T ]×Rn. (Bearing in mind that
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the subsequence {‘′} depends on x(N−1), and we do not claim any measurability of
uN in x(N−1)!).
Now let us consider the process

Y ‘′ ;N
t (x(N−1)) = u‘′ ;N (t; x(N−1); X 0; x

t ); (t; x)∈ [tN−1; T ]× Rn:

The pointwise convergence of the sequence {u‘′ ;N (·; x(N−1); ·)} implies that for <xed
x(N−1); Y ‘′ ;N (x(N−1)) converges to a process YN

t (x
(N−1)) , uN (t; x(N−1); X 0; x

t ); t ∈
[tN−1; T ], almost surely. Furthermore, applying Itô’s formula to |Y l′1 ;N

t − Y l′2 ;N
t |2 and

following the same argument as that in Hamadene et al. (1997) one shows easily that
Z‘′ ;N converges also to a process ZN (x(N−1))∈L2([tN−1; T ]×�;Rm×d). Note that for
each x(N−1) �∈ AN−1, and for each 5¿ 0; (Y 5;N (x(N−1)); Z5;N (x(N−1))) solves the BSDE
on [tN−1; T ]:

Y 5
t = g5(x(N−1); X 0; x

T ) +
∫ T

t
f5(r; x(N−1); X 0; x

r ; Y 5
r ; Z

5
r ) dr −

∫ T

t
Z5
r dWr: (6.10)

Applying Lemma 6.1 and using the continuity of the function f and the fact that f5

converges to f uniformly on compact sets, as 5′(= 5‘′) → 0, it is standard to show
that for each x(N−1) �∈ AN−1, the limiting process (YN (x(N−1)); ZN (x(N−1))) satis<es
the limiting BSDE (suppressing “x(N−1)” in the notation) on [tN−1; T ]:

YN
t = g(x(N−1); X 0; x

T ) +
∫ T

t
f(r; x(N−1); X 0; x

r ; Y N
r ; ZN

r ) dr −
∫ T

t
ZN
r dWr: (6.11)

De<ning uN (t; x(N−1); x) arbitrarily for x(N−1) ∈AN−1, we complete the construction of
uN .
We now show that there exists a function vN (t; x(N−1); �) such that, whenever x(N−1) �∈

AN−1 it holds that

ZN
t (x

(N−1)) = vN (t; x(N−1); X 0; x
t )�(t; X 0; x

t ); dP × dt-a:s:

Indeed, denote

vN (t; x(N−1); �) = lim
5′→0

v5
′ ;N (t; x(N−1); �):

Then, since Z5′ ;N converges to ZN (x(N−1))∈L2([tN−1; T ] × �;Rm×d), along a subse-
quence, may denote {5′} itself, the convergence is dP× dt-almost sure. Therefore, one
has

vN (t; x(N−1); X 0; x
t )�(t; X 0; x

t ) = lim
5′→0

v5
′ ;N (t; x(N−1); X 0; x

t )�(t; X 0; x
t )

= lim
5′→0

Z5′ ;N
t (x(N−1)) = ZN

t (x
(N−1)):

This completes Step 1 of the construction.
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Step 2: We note here that the functions uN (t; x(N−1); �) and vN (t; x(N−1); �) con-
structed in Step 1 are only measurable in (t; �), for each <xed x(N−1) and x∈Rd.
Also, only for x(N−1) �∈ AN−1, the processes

YN
t , uN (t; x(N−1); X 0; x

t ); ZN
t , vN (t; x(N−1); X 0; x

t )�(t; X 0; x
t )

satisfy BSDE (6.11). However, applying the measurable selection Theorem 5.4 we can
choose a pair of (t; x(N−1); �)-jointly measurable functions ( Zu N ; ZvN ), and de<ne, for
t ∈ [tN−1; T ],

ZY x;N
t = Zu N (t;X(N−1); X 0; x

t ); ZZx;N
t = ZvN (t;X(N−1); X 0; x

t )�(t; X 0; x
t ):

Then, noting that X(N−1) has a positive density, it can be checked, using the by now
standard argument of regular conditional probabilities, that ( ZYN ; ZZN ) solves BSDE (6.1)
on [tN−1; T ]. This completes the second step, whence the construction of the adapted
solution on [tN−1; T ].
To proceed further, we need to make sure that the same arguments can be applied to

the subsequent interval [tN−2; tN−1]. Let us drop the sign “−” and superscript x from
the aforementioned solutions ( ZYN ; ZZN ).
Similar to the estimate (5.6), we now have

|YN
tN−1

| = |uN (tN−1;X(N−1); XtN−1 )|= |uN (tN−1;X(N−2); XtN−1 ; XtN−1 )|

=

∣∣∣∣∣E
{
g(X(N−1); X 0; x

T ) +
∫ T

tN−1

f(r;X(N−1); X 0; x
r ; Y N

r ; ZN
r ) dr

}∣∣∣∣∣
6 ‖g‖∞ + ‖f‖∞(T − tN−1) = CN : (6.12)

Let us denote

g(N−1)(x(N−2); x) = uN (tN−1; x(N−2); x; x)1{|uN (tN−1 ;x(N−2) ; x; x)|6CN};

f(N−1)(t; x(N−2); x; y; z) = f(t; x(N−2); x; x; y; z):

Then g(N−1) and f(N−1) satisfy (A2) with N being replaced by N − 1. Moreover,
recalling (5.6) we see that BSDE (6.1) can be written, for t ∈ [tN−2; tN−1] as

Yt = YN
tN−1

+
∫ tN−1

t
f(r;X(N−1); Xr; Xr; Yr; Zr) dr −

∫ tN−1

t
Zr dWr

= uN (tN−1;X(N−1); XtN−1 )

+
∫ tN−1

t
f(N−1)(r;X(N−2); Xr; Yr; Zr) dr −

∫ tN−1

t
Zr dWr

= g(N−1)(X(N−2); XtN−1 )

+
∫ tN−1

t
f(N−1)(r;X(N−2); Xr; Yr; Zr) dr −

∫ tN−1

t
Zr dWr: (6.13)
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Thus, we can repeat the same argument as before to obtain a pair of measurable
functions (uN−1; vN−1) so that the process

Y x;N−1
t = uN−1(t;X(N−2); Xt); Zx;N−1

t = vN−1(t;X(N−2); Xt)

is the adapted solution of BSDE (6.13). Continuing for N steps, we obtain N pairs of
processes (Y x;k ; Zx;k) and N pairs of functions (uk ; vk) with

Y x;k
t = uk(t;X(k−1); Xt); Zx;k

t = vk(t;X(k−1); Xt)�(t; Xt); t ∈ [tk−1; tk ]

solves BSDE (6.1) on [tk−1; tk ]. Finally, de<ne the functionals u and v as in (3.6) and
then the processes Y and Z as in (3.7) we obtain an adapted solution of BSDE (6.1)
on [0; T ] as desired.

Remark 6.3. Let t ∈ [tk−1; tk) for some 16 k6N . We de<ne (Y t;x; Zt;x) by (3.13),
where (u; v) is what we have obtained in the above theorem. Then (Y t;x; Zt;x) solves
the BSDE (3.12).
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