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Abstract

In this paper, we establish an equivalence relationship between the wellposedness of forward–backward
SDEs (FBSDEs) with random coefficients and that of backward stochastic PDEs (BSPDEs). Using the
notion of the “decoupling random field”, originally observed in the well-known Four Step Scheme (Ma
et al., 1994 [13]) and recently elaborated by Ma et al. (2010) [14], we show that, under certain conditions,
the FBSDE is wellposed if and only if this random field is a Sobolev solution to a degenerate quasilinear
BSPDE, extending the existing non-linear Feynman–Kac formula to the random coefficient case. Some
further properties of the BSPDEs, such as comparison theorem and stability, will also be discussed.
c⃝ 2012 Elsevier B.V. All rights reserved.
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1. Introduction

A forward–backward SDE (FBSDE) is the following system of Itô-type of SDEs:
X t = x +

 t

0
b(s, Xs, Ys, Zs)ds +

 t

0
σ(s, Xs, Ys, Zs)d Bs;

Yt = g(XT )+

 T

t
f (s, Xs, Ys, Zs)ds −

 T

t
Zsd Bs,

(1.1)
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where B is a standard Brownian motion, the coefficients b, σ, f, g are measurable functions, and
in general they could be random. The purpose is to seek the adapted solution to the FBSDE
(1.1), namely a triple of adapted processes (X, Y, Z) with appropriate dimensions that satisfies
(1.1) almost surely. It has been well-known that there are three solution schemes that are effec-
tive for the FBSDEs. (1) The contraction mapping approach (see, e.g. Antonelli [1], Pardoux and
Tang [22]). This is the most straightforward approach, but works well only when the time dura-
tion T > 0 is small; (2) The Four Step Scheme, first initiated by Ma et al. [13], and later improved
by Delarue [5]. This method allows arbitrary duration, but requires the Markovian structure, high
regularity of the coefficients, and the non-degeneracy of the forward diffusion; (3) The method of
continuation (see, e.g Hu and Peng [11], Peng and Wu [23], Yong [25]). This method allows non-
Markovian structure, but requires the “monotonicity” conditions on the coefficients. It should be
noted that these three approaches do not cover each other, and each has its own limitations.

During the past two decades tremendous effort has been made to understand the solvability
of the FBSDEs over arbitrary durations, with minimum requirements on the coefficients, but
most of the results were still within the paradigm of the three aforementioned methods. In the
non-Markovian cases, the progress was even more limited. Following the decoupling strategy
of [13,5], Zhang [26] studied the solvability of FSBDEs with random coefficients, under certain
compatibility conditions. In a recent work Ma et al. [14] proposed a much more unified approach
which extended all the existing approaches in the literature. The key observation of these works
is that the solvability of FBSDE (1.1) depends rather heavily on the existence of a (possibly
random) function u(t, x), which is uniformly Lipschitz continuous in x , so that Yt = u(t, X t )

for all t ∈ [0, T ], almost surely. Such a random field, if exists, is called the decoupling field of
the FBSDE (see [14]).

The main purpose of this paper is to characterize the decoupling random field u in terms of the
so-called backward stochastic PDEs (BSPDEs), and consequently find the equivalence between
the wellposedness of the two stochastic equations. We recall that in the Markovian case (that is,
the coefficients are deterministic), the field u becomes deterministic, and in light of the Four Step
Scheme (or simply the Feynman–Kac formula), the function u is known to satisfy the following
quasilinear PDE with terminal condition (in one dimensional setting, cf. e.g. [9,13,21]):

ut +
1
2 uxxσ

2(t, x, u)+ ux b(t, x, u, uxσ(t, x, u))+ f (t, x, u, uxσ(t, x, u)) = 0;

u(T, x) = g(x).
(1.2)

In the general case when the coefficients are random, the decoupling function u will naturally
become a random field, and the corresponding PDE is expected to become a backward stochastic
PDE (BSPDE). In the decoupled case when the generator of the backward SDE either is linear
or depends only on Y , the BSPDEs and the associated “stochastic Feynman–Kac formula” were
studied by Ma and Yong [15,16] and Hu et al. [10]. We note that in these cases the BSPDEs
are either linear or semi-linear, but the main difficulty is that they are degenerate in the sense of
SPDEs (cf. [12,15,16]).

In light of the general requirement of the decoupling random field in [14], in this paper we
are to show that the FBSDE (1.1) is wellposed if and only if we can find a random field u that
satisfies the following quasilinear BSPDE and that is uniformly Lipschitz in its spatial variable:

du = −


1
2 uxxσ

2(t, x, u)+ βxσ(t, x, u)+ ux b(t, x, u, β + uxσ(t, x, u))

+ f (t, x, u, β + uxσ(t, x, u))


dt + βd Bt ;

u(T, x) = g(x).

(1.3)
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We should note that a solution to the BSPDE is defined as the pair of progressively measurable
random fields (u, β). Clearly, when the coefficients are deterministic, we must have β = 0 and
the BSPDE (1.3) is reduced to the PDE (1.2). We would like to point out here that while it is
well understood that in the Markovian case a classical solution to the PDE (1.2) clearly leads
to a solution to the FBSDE, as we see in the Four Step Scheme, in many cases, the solvability
of the FBSDE depends only on the Sobolev type weak solution to the PDE (1.2) (see, e.g. [2]).
Thus, unlike the previous works [15,16,10] in this paper we shall focus on the regular weak
solution to the BSPDE (1.3), that is, the weak solution in which the random field u is uniformly
Lipschitz continuous in its spatial variable. We should point out that since BSPDE (1.3) is quasi-
linear and it is always degenerate, combining with the wellposedness results in the FBSDE
literature (e.g., [14]), a direct byproduct of this paper is the existence and uniqueness of weak
solutions to the degenerate quasi-linear BSPDE. This, to the best of our knowledge is novel in the
literature.

Finally, we remark that the well-posedness of the BSPDEs and some of solution properties
such as the comparison principle, have been studied in different forms recently, either in the
linear cases or in the semilinear but non-degenerate (super-parabolic) cases (cf. e.g., [6,7,18]).
But these results and methodology do not seem to be applicable to the current situation due to
both the non-Markovian and coupling nature of the FBSDE and the degeneracy of the BSPDE.
In fact, we shall present new arguments for the comparison theorem and the stability results,
taking advantage of the relationship between the BSPDE and FBSDE established in this paper,
and some recent developments in the FBSDE theory.

The rest of the paper is organized as follows. In Section 2, we give the preliminaries. In
Section 3, we introduce the notion of the decoupling random field, and establish the connection
between the existence of the decoupling field and the wellposedness of the FBSDE. In Section 3,
we prove the main theorem in decoupled case, and in Section 4, we prove the general case.
Finally, in Section 5, we establish some further properties of the solutions to BSPDEs, including
the comparison theorem and the stability result.

2. Preliminaries

Throughout this paper, we denote (Ω ,F ,P; F) to be a filtered probability space on which is
defined a d-dimensional Brownian motion B = (Bt )t≥0. We assume that F , FB , {F B

t }t≥0,
the natural filtration generated by B, augmented by the P-null sets of F . We consider the
following FBSDE:

X t = x +

 t

0
b(s, Xs, Ys, Zs)ds +

 t

0
σ(s, Xs, Ys)d Bs;

Yt = g(XT )+

 T

t
f (s, Xs, Ys, Zs)ds −

 T

t
Zsd Bs .

(2.1)

Here we assume that X ∈ Rn, Y ∈ Rm , and Z ∈ Rm×d . In this paper, we shall always assume the
coefficients b, σ, f, g could be random, and take values in Rn , Rn×d ,Rm , and Rm , respectively.

Throughout the paper, we shall make use of the following Standing Assumptions:

Assumption 2.1. (i) The coefficients b, σ, f are F-progressively measurable for any fixed
(x, y, z), and g is FT -measurable for any fixed x .

(ii) b, σ, f, g are uniformly Lipschitz continuous in (x, y, z).
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(iii) b and σ are bounded, and

I 2
0 , E

 T

0
| f (t, 0, 0, 0)|2dt + |g(0)|2


< ∞. (2.2)

In what follows we write E (also E1, . . .) for a generic Euclidean space, whose inner products
and norms will be denoted as the same ones ⟨·, ·⟩ and | · |, respectively and write B for a generic
Banach space with norm ∥ · ∥. The following notations for the high dimensional operators will
be frequently used in the sequel.
• For a matrix A ∈ Rn×m , we denote A∗ to be its transpose, and |A|

2 , tr (AA∗).

• For a function ϕ : Rn
→ Rm, Dϕ ,


∂ϕi

∂x j

m,n

i, j=1
∈ Rm×n denotes the derivative of ϕ.

• For a function ϕ : Rn
→ R, D2ϕ ,


∂2ϕ
∂xi ∂x j

n

i, j=1
∈ Rn×n denotes the Hessian of ϕ.

• For a function ϕ : Rn
→ Rm×n, D · ϕ ,

n
i=1

∂ϕi

∂xi
∈ Rm , where ϕi is the i th column of ϕ.

We shall use the standard notations for the spaces of continuously differentiable functions,
and pth integrable functions such as Cp(E1; E2), 0 ≤ p ≤ ∞ and L p(E1; E2), L p([0, T ] ×

E1; E2), 1 ≤ p ≤ ∞, etc. In particular, if E2 = R, we shall omit it (hence Cp(E), L p(E), etc.).
Furthermore, the following differential rules are easy to verify:

D2ϕ = D(Dϕ)∗, ϕ : Rn
→ R;

tr (D2ϕψ) = D · (Dϕψ)− DϕD · ψ, ϕ : Rn
→ R, ψ : Rn

→ Rn×n
;

tr (Dϕψ) = D · (ϕ∗ψ∗)− ϕ∗ D · ψ∗, ϕ : Rn
→ Rm, ψ : Rn

→ Rn×m .

(2.3)

We next introduce the notion of the weighted Sobolev space. We begin by considering a
function φ ∈ C∞(Rn) that satisfies the following conditions:0 < φ(x) ≤ 1,


Rn
φ(x)dx = 1;

φ(x) = e−|x | for x large enough.
(2.4)

We shall call such a smooth function φ the weight function. One can easily check that if φ is a
weight function, then one has

Kφ , sup
x∈Rn

|Dφ(x)| + |D2φ(x)|

φ(x)
< ∞. (2.5)

As we will see in Lemma 4.3 and Proposition 5.1 below, the constant Kφ is important for our
estimates.

Now for a given weight function φ, we denote H0
φ (R

n
; Rk×l) to be the space of all Lebesgue

measurable functions h : Rn
→ Rk×l such that

∥h∥
2
0 ,


Rn

|h(x)|2φ(x)dx < ∞.

When the weight function and the dimension of the domain and range spaces are clear from the
context, and there is no danger of confusion, we often drop the subscript φ and the spaces in the
notation, and denote simply as H0. Clearly H0 is a Hilbert space equipped with the following
inner product:

⟨h1, h2
⟩0 ,


Rn

tr


h1(x)(h2(x))∗

φ(x)dx . (2.6)
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We can now define the Weighted Sobolev spaces as usual. For example, we shall denote
H1

= H1
φ ⊂ H0 to be the subspace of H0 that consists of all those h such that its generalized

derivative, still denoted as Dh, is also in H0. Clearly, H1 is a Hilbert space with the inner product

⟨h1, h2
⟩1 , ⟨h1, h2

⟩0 + ⟨Dh1, Dh2
⟩0, h1, h2

∈ H1.

By (2.3) one can easily prove the integration by parts formula: for any h1
∈ H1(Rn,Rm) and

h2
∈ H1(Rn,Rm×n),

⟨Dh1, h2
⟩0 = −⟨h1, D · h2

⟩0 −


h1∗h2,

1
φ

Dφ


0
. (2.7)

Similarly, we denote H2
= H2

φ ⊂ H1 to be the subspace of H1 that contains all h ∈ H0 such

that Dh ∈ H1. Thus, H2 is again a Hilbert space with inner product

⟨h1, h2
⟩2 , ⟨h1, h2

⟩0 + ⟨Dh1, Dh2
⟩1, h1, h2

∈ H2.

Moreover, let H−1 be the dual space of H1, endowed with the dual product ⟨·, ·⟩−1. Then H−1

is equipped with the following norm:

∥h∥−1 , sup

⟨h, ϕ⟩−1 : ϕ ∈ H1, ∥ϕ∥1 = 1


.

Clearly, H0
⊂ H−1 in the sense that for any α ∈ H0, it holds that

⟨α, ϕ⟩−1 = ⟨α, ϕ⟩0, ∀ϕ ∈ H1. (2.8)

Furthermore, for any h ∈ H0(Rn,R), in light of (2.7), we have Dh ∈ H−1 in the following
sense: for any ϕ ∈ H1(Rn,R1×n),

⟨Dh, ϕ⟩−1 , −⟨h, D · ϕ⟩0 −


h∗ϕ,

1
φ

Dφ


0
.

Remark 2.2. It is worth noting that

(i) For any two weight functions φ1, φ2 satisfying (2.4), there must exist constants 0 < c < C
such that cφ1 ≤ φ2 ≤ Cφ1. So the norms defined via φ1 and φ2 are equivalent, and therefore,
the spaces H i , i = −1, 0, 1, 2, are independent of the choices of φ.

(ii) It is readily seen that the weight function belongs to the class of the so-called Schwartz
functions, and consequently any functions with polynomial growth are in H0. �

We conclude this section by introducing some spaces of stochastic processes that will be
useful for the study of the backward SPDEs. First, for any sub-σ -field G ⊆ F , and 0 ≤ p ≤ ∞,
we denote L p(G) to be the spaces of all G-measurable, L p-integrable random variables. Next,
for any generic Banach space B, we denote L p

F([0, T ]; B) to be all B-valued, F-progressively
measurable random fields (or processes) h : [0, T ] → B such that

∥h∥L p
F([0,T ];B) , E

 T

0
∥h(t, ·)∥p

Bdt

1/p

< ∞. (2.9)

In particular, if B = H i
φ , where φ is a given weight function, we denote H i

φ = L2([0, T ]; H i
φ),

i = −1, 0, 1, 2, respectively. Again, we often drop the subscript φ from the notations when the
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context is clear. Finally, the spaces of Banach-space-valued processes such as CαF([0, T ]; B), for
α ≥ 1, are defined in the obvious way.

3. The decoupling random field

In this section, we introduce the notion of the “decoupling random field”, and establish its
relationship with the well-posedness of the FBSDE (1.1). We should note that the definition of
the decoupling field here is slightly different from that in [14]. But one can easily check that a
regular decoupling field in this paper is equivalent to the decoupling field in [14].

To begin with, we note that, in light of [14] (or the Four Step Scheme in the Markovian case),
when FBSDE (2.1) is wellposed, one would expect that the relationship

Yt = u(t, X t ), ∀t ∈ [0, T ], P-a.s. (3.1)

holds for some random field u(·, ·). Our decoupling field of FBSDE (2.1) is thus defined as
follows. For any 0 ≤ t1 < t2 ≤ T and any random variable η ∈ L2(Ft1), consider the following
“localized” FBSDE:

X t1,η
t = η +

 t

t1
b(s, X t1,η

s , Y t1,η
s , Z t1,η

s )ds +

 t

t1
σ(s, X t1,η

s , Y t1,η
s )d Bs;

Y t1,η
t = u(t2, X t1,η

t2 )+

 t2

t
f (s, X t1,η

s , Y t1,η
s , Z t1,η

s )ds −

 t2

s
Z t1,η

s d Bs,

t ∈ [t1, t2].

(3.2)

Definition 3.1. We say u is a decoupling field of FBSDE (2.1) if

(i) u(T, x) = g(x) and
(ii) for any 0 ≤ t1 < t2 ≤ T and η ∈ L2(Ft1), FBSDE (3.2) has a solution (X t1,η, Y t1,η, Z t1,η)

satisfying

Y t1,η
t = u(t, X t1,η

t ), t ∈ [t1, t2]. (3.3)

Moreover, we say a decoupling field u is regular if it is uniformly Lipschitz continuous in x .

Remark 3.2. The condition that u is uniformly Lipschitz continuous in x is crucial in this paper.
In fact, from the general theory of FBSDEs (see, e.g., [14,26] and the references therein), we
see that in many cases a well-posed FBSDE does possess a uniform Lipschitz decoupling field.
One should note, however, that this is by no means a general statement. For example, the triplet
(X, Y, Z) = (W,W 2, 2W ), where W is a standard Brownian motion, is obviously the unique
solution to a trivial FBSDE, but in this case u = x2 is not Lipschitz. �

The main result of this section concerns the wellposedness of the FBSDE and the existence of
the regular decoupling field. An important starting point of our argument is the wellposedness of
the FBSDE on a small duration, due to Antonelli [1]. We summarize it into the following lemma.

Lemma 3.3. (Antonelli [1]) Assume Assumption 2.1 holds. Let K denote the Lipschitz constant
of the terminal condition g. Then there exists a constant δ(K ) > 0, which depends only on
the Lipschitz constants of b, σ, f , the dimensions, and the constant K , such that whenever
T ≤ δ(K ), the FBSDE (2.1) has a unique solution.
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We now give the main result of this section.

Theorem 3.4. Assume Assumption 2.1 holds. Then FBSDE (2.1) has at most one regular
decoupling field u. Furthermore, if the regular decoupling field exists, then the FBSDE (2.1) is
wellposed.

Proof. We first show that the existence of a regular decoupling field implies the wellposedness
of the FBSDE (2.1). Indeed, the existence of the solution to FBSDE (2.1) follows directly from
the definition (by simply taking t1 = 0, t2 = T , and η ≡ x). We need only show that the solution
is unique.

Let (X, Y, Z) be an arbitrary solution, and let u be a regular decoupling field and denote
the solution associated to u by (X0, Y 0, Z0). We show that (X, Y, Z) must coincide with
(X0, Y 0, Z0). To this end, let K be the Lipschitz constant of u and 0 = t0 < · · · < tk = T
be a partition of [0, T ] such that ∆ti ≤ δ(K ), i = 1, . . . , k, where δ(K ) is the constant in
Lemma 3.3. Note that (X, Y, Z) satisfies the following FBSDE on [tk−1, tk]:

X t = X tk−1 +

 t

tk−1

b(s, Xs, Ys, Zs)ds +

 t

tk−1

σ(s, Xs, Ys)d Bs;

Yt = g(XT )+

 tk

t
f (s, Xs, Ys, Zs)ds −

 tk

t
Zsd Bs .

Since ∆tk ≤ δ(K ), the solution to the above FBSDE is unique, thanks to Lemma 3.3. Then by
the definition of the decoupling field we must have Yt = u(t, X t ), t ∈ [tk−1, tk]. Assume now
that Yt = u(t, X t ) holds for t ∈ [ti , T ]. Then for t ∈ [ti−1, ti ], it holds that

X t = X ti−1 +

 t

ti−1

b(s, Xs, Ys, Zs)ds +

 t

ti−1

σ(s, Xs, Ys)d Bs;

Yt = u(ti , X ti )+

 ti

t
f (s, Xs, Ys, Zs)ds −

 ti

t
Zsd Bs .

(3.4)

Again, by the wellposedness of the above FBSDE and the definition of the decoupling field,
we see that Yt = u(t, X t ) holds for t ∈ [ti−1, ti ]. Repeating this argument we conclude that
Yt = u(t, X t ) holds for all t ∈ [0, T ].

Now note that X t0 = x . Considering FBSDE (3.4) for i = 1, by the uniqueness (X, Y, Z)
must coincide with (X0, Y 0, Z0) on [t0, t1]. In particular, X t1 = X0

t1 , a.s. Then considering the
FBSDE (3.4) for i = 2, we see that (X, Y, Z) coincides with (X0, Y 0, Z0) on [t1, t2]. Repeating
this argument forwardly finitely times we see that (X, Y, Z) coincides with (X0, Y 0, Z0) on the
whole interval [0, T ], proving the uniqueness, whence the wellposedness of (1.1).

It remains to show that the regular decoupling field, if exists, must be unique. Indeed, assume
that ũ is another regular decoupling field. For any (t, x), the FBSDE (3.2) with t1 = t, t2 =

T, η = x has a unique solution (X t,x , Y t,x , Z t,x ), and by definition of the decoupling field we
must have

ũ(t, x) = Y t,x
t = u(t, x), P-a.s.

Since (t, x) is arbitrary, this implies that the regular decoupling field is unique. �

4. Decoupling random field via BSPDE

In this section, we study the regular decoupling random field u from the perspective of the
Feynman–Kac formula, that is, we shall characterize u as a solution to some Backward SPDE.
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Such a point of view was a natural extension of the original decoupling idea of the Four Step
Scheme [13], and was studied in the simpler versions in [15,16,10].

Let us begin with the following heuristic argument. Assume that the decoupling field u takes
the form of an Itô-type random field:

du(t, x) = α(t, x)dt + β(t, x)d Bt , (t, x) ∈ [0, T ] × Rn, (4.1)

where α, β are (smooth) progressively measurable random fields taking values in Rm and Rm×d ,
respectively. Assume also that FBSDE (1.1) is well-posed, with the solution (X, Y, Z), then by
applying Itô–Ventzell’s formula we have, for i = 1, . . . ,m,

dui (t, X t ) =


αi (t, X t )+ Dui (t, X t )b(t, X t , Yt , Z t )

+
1
2

tr [D2ui (t, X t )σσ
∗(t, X t , Yt )] + tr (D(β i )∗(t, X t )σ (t, X t , Yt ))


dt

+


β i (t, X t )+ Dui (t, X t )σ (t, X t , Yt )


d Bt , (4.2)

where β i is the i th row of β. Noting that u is the decoupling field and comparing (4.2) with the
BSDE in (1.1) we must have

Yt = u(t, X t ),

Z t = β(t, X t )+ Du(t, X t )σ (t, X t , u(t, X t )),
t ∈ [0, T ], P-a.s. (4.3)

Furthermore, for i = 1, . . . ,m, we have

−αi (t, X t ) = Dui (t, X t )b(t, X t , Yt , Z t )+
1
2

tr [D2ui (s, X t )σσ
∗(t, X t , Yt )]

+ tr (D(β i )∗(t, X t )σ (t, X t , Yt ))+ f i (t, X t , Yt , Z t ).

Consequently, if we define

γ (t, x) , β(t, x)+ Du(t, x)σ (t, x, u(t, x)), (4.4)

αi (t, x) , −


1
2

tr [D2uiσσ ∗(t, x, u)] + tr (D(β i )∗σ(t, x, u))

+ Dui b(t, x, u, γ )+ f i (t, x, u, γ )


, i = 1, . . . ,m, (4.5)

then we have Z t = γ (t, X t ), t ∈ [0, T ],P-a.s., and (4.1) becomes
dui (t, x) = −


1
2

tr [D2uiσσ ∗(t, x, u)] + tr (D(β i )∗σ(t, x, u))+ Dui b(t, x, u, γ )

+ f i (t, x, u, γ )


dt + β i (t, x)d Bt , (t, x) ∈ [0, T ] × Rn, i = 1, . . . ,m;

u(T, x) = g(x).

(4.6)

In other words, the decoupling random field u must satisfy a (quasilinear) backward stochastic
PDE (BSPDE), which we will call the BSPDE associated to FBSDE (2.1).
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We are more interested in the converse, that is, the Stochastic Feynman–Kac formula. Suppose
that the BSPDE (4.6) has a “classical” solution (u, β) ∈ C0

F([0, T ]; C2(R))×L2
F([0, T ]; C1(R)),

such that all the derivatives involved are uniformly bounded. Then, we define

b̂(t, x) , b(t, x, u(t, x), γ (t, x)), σ̂ (t, x) , σ(t, x, u(t, x)), (4.7)

and consider the following SDE:

X t = x +

 t

0
b̂(s, Xs)ds +

 t

0
σ̂ (s, Xs)d Bs .

Since b̂, σ̂ are uniformly Lipschitz continuous in x , the above SDE has a unique solution X .
Setting

Yt , u(t, X t ), Z t , γ (t, X t ),

and applying Itô–Ventzell’s formula we can check (with the help of BSPDE (4.6)) that (X, Y, Z)
satisfies the FBSDE (3.2). This, together with the fact that Du is bounded, shows that u is
a regular decoupling field. In other words, combining with Theorem 3.4 and the “heuristic
argument” at the beginning of this section we have actually proved the following version of
the “stochastic Feynman–Kac formula”.

Theorem 4.1. Assume Assumption 2.1 holds. Let (u, β) ∈ C0
F([0, T ]; C2(R)) × L2

F([0, T ]; C1

(R)) be a pair of random fields, such that all the (spatial) derivatives involved are uniformly
bounded. Then, (u, β) is a classical solution to BSPDE (4.6) if and only if FBSDE (2.1) is
wellposed, and u is the regular decoupling field of FBSDE (2.1) such that (4.3) holds. �

Remark 4.2. (i) When σ also depends on z, under additional technical conditions, one can
still have the regular wellposedness of the FBSDE; see e.g. [14]. However, in this case the
corresponding BSPDE will involve an implicit function and the technical arguments will
become much more involved. Since the main focus of this paper is to establish the connection
between FBSDEs and BSPDEs, rather than to explore the most general conditions for
wellposedness of the systems, we content ourselves with the case σ = σ(t, x, y).

(ii) It is well-known (cf. e.g., [20,13]) that if the FBSDE (2.1) is well-posed, then under the
standard assumption the process Y is “Malliavin differentiable”, and Z t = Dt Yt , where D
is the Malliavin derivative. A similar relation also holds for the pair u and β. In fact, when
BSPDE (4.6) is linear, it is shown in [15] that Du(t, x) = β(t, x), with D being the Malliavin
derivative. Such a relation can also be established using the newly developed notion of ω-
derivatives in the sense of Dupire [8] (see also Cont and Fournié [3]), but we prefer not to
pursue any further as this is not the main purpose of this paper. �

We should note that Theorem 4.1 may very well be an empty statement if BSPDE (4.6) does
not have a classical solution. In the rest of the paper we shall focus on the Sobolev type weak
solutions. We begin with the following important fact.

Lemma 4.3. Assume Assumption 2.1 holds. Assume also that (u, β) ∈ H 1
φ × H 0

φ for some
weight function φ, and α is defined by (4.5). If Dσ̂ is uniformly bounded, where σ̂ is defined
by (4.7), then α ∈ H −1

φ .
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Proof. For notational simplicity we shall drop the subscript φ from all the notations. We claim
that, for any (u, β) ∈ H 2

× H 1 and any ϕ ∈ H 1,⟨αi , ϕ⟩−1

 ≤ C[1 + K ] [1 + I0 + ∥u∥1 + ∥β∥0] ∥ϕ∥1, (4.8)

where K is the bound of Dσ̂ , and the constant C depends only on T , the dimensions, the
bound of b, σ and the Lipschitz constant in Assumption 2.1, and the Kφ in (2.5). Then, for
(u, β) ∈ H 1

φ × H 0
φ , by standard approximating arguments we see that α ∈ H −1 and

∥α∥−1 ≤ C[1 + K ] [1 + I0 + ∥u∥1 + ∥β∥0] .

To prove (4.8), we note that in the case when (u, β) ∈ H 2
× H 1, α ∈ H 0. Thus by (2.3),

(2.7) and (2.8), we have (suppressing variables)

⟨αi , ϕ⟩−1 = ⟨αi , ϕ⟩0 =


Rn
ϕ(x)αi (t, x)φ(x)dx

=


Rn


[φDϕ + ϕDφ]σ


β i

+
1
2

Duiσ

∗

+ ϕφ[β i
+ Duiσ ]D · σ ∗

−ϕφDui b

t, x, u, γ


− ϕφ f i t, x, u, γ


dx

=


β i

+
1
2

Duiσ


σ ∗, Dϕ


0
+ ⟨α̂i , ϕ⟩0, (4.9)

where

α̂i ,


β i

+
1
2

Duiσ


σ ∗

1
φ
(Dφ)∗ + γ i D · σ ∗

− Dui b

t, x, u, γ


− f i t, x, u, γ


. (4.10)

By Assumption 2.1 and (2.5) we getβ i
+

1
2

Duiσ


σ ∗

 ≤ C

1 + |β i

| + |Dui
|


;

|α̂i
| ≤ C [1 + |β| + |Du|] [1 + K ] + C [| f (t, 0, 0, 0)| + |x | + |u|] .

Consequently we obtain from (4.9) that⟨αi , ϕ⟩0

 ≤ C

1 + ∥β i

∥0 + ∥Dui
∥0


∥Dϕ∥0

+ C(1 + K ) [1 + ∥β∥0 + I0 + ∥u∥1] ∥ϕ∥0.

This implies (4.8) immediately. �

We now define the notion of Sobolev weak solutions to BSPDE (4.6).

Definition 4.4. We say that the pair of random fields (u, β) ∈ H 1
× H 0 is a weak solution to

BSPDE (4.6) if Dσ̂ is uniformly bounded and, for any ϕ ∈ H1, it holds that

d⟨ui (t, ·), ϕ⟩0 = ⟨αi (t, ·), ϕ⟩−1dt + ⟨β i (t, ·)d Bt , ϕ⟩0, a.s., i = 1, . . . ,m. (4.11)

We say that (u, β) ∈ H 1
× H 0 is a regular weak solution to BSPDE (4.6) if (u, β) is a weak

solution such that Du is uniformly bounded.
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Remark 4.5. Under Assumption 2.1, two typical cases such that Dσ̂ is bounded are: (i) Du is
uniformly bounded and (ii) σ does not depend on y. In particular, (4.11) is well defined for a
regular weak solution. �

5. The decoupled case

In this and next sections, we shall extend the stochastic Feynman–Kac formula (Theorem 4.1)
to the case when BSPDE only allows a regular weak solution. To this end, we first consider a
simple but important case, that is, when the FBSDE is of the following decoupled form:

X t = x +

 t

0
b(s, Xs)ds +

 t

0
σ(s, Xs)d Bs;

Yt = g(XT )+

 T

t
f (s, Xs, Ys, Zs)ds −

 T

t
Zsd Bs .

(5.1)

Clearly, the associated BSPDE (4.6) will then take the following form:
dui (t, x) = −


1
2

tr [D2uiσσ ∗
] + tr (D(β i )∗σ)+ Dui b + f i (·, u, γ )


(t, x)dt

+β i (t, x)d Bt , (t, x) ∈ [0, T )× Rn, i = 1, . . . ,m;

u(T, x) = g(x)

(5.2)

where γ is defined by (4.4). We should point out that, to our best knowledge, even in this simple
form the well-posedness of the BSPDE (5.2) is still open in the literature due to the dependence
of f on γ . Therefore the discussion in this section is interesting in its own right.

We first note that if Assumption 2.1 holds, then the decoupled FBSDE (5.1) is always well-
posed, and we can define the decoupling field as u(t, x) , Y t,x

t , where Y t,x is the solution to
FBSDE (3.2) with t1 = t, t2 = T, η = x . The main task of this section is to obtain some a priori
estimates for the weak solutions of BSPDE (5.2) which will be useful for the proof of the main
results in the next section. We begin with the following proposition.

Proposition 5.1. Assume Assumption 2.1 holds. Let (u, β) ∈ H 1
× H 0 be a weak solution

to the BSPDE (5.2). Then there exists a constant C > 0, depending only on the bounds in
Assumption 2.1, the dimensions, the duration T and the constant Kφ for the given weight
function (2.5), such that

E


sup

t∈[0,T ]

∥u(t, ·)∥2
0 +

 T

0
∥γ (t, ·)∥2

0dt


≤ C[1 + I 2

0 ], (5.3)

where I0 is defined by (2.2).

Proof. We first recall the following extended Itô’s formula (see Pardoux [19, Theorem 1.2]). Let
u ∈ H 1 be an Itô-type random field:

du(t, x) = α(t, x)dt + β(t, x)d Bt , (t, x) ∈ [0, T ] × Rn,

where α ∈ H −1 and β ∈ H 0. Then it holds that

d∥u(t, ·)∥2
0 =


2⟨α(t, ·), u(t, ·)⟩−1 + ∥β(t, ·)∥2

0


dt + 2⟨u(t, ·), β(t, ·)d Bt ⟩0,

t ∈ [0, T ]. (5.4)
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Now let (u, β) ∈ H 1
× H 0 be a weak solution to the BSPDE (5.2). Then

dui (t, x) = αi (t, x)dt + β i (t, x)d Bt , i = 1, . . . ,m,

where αi is defined by (4.5). Since αi
∈ H −1 by Lemma 4.3 and Remark 4.5, we can apply the

extended Itô formula (5.4) and use the identity (4.9) to get

d∥ui (t, ·)∥2
0 = 2⟨ui , β i d Bt ⟩0 +


⟨[2β i

+ Duiσ ]σ ∗, Dui
⟩0 + 2⟨α̂i , ui

⟩0 + ∥β i
∥

2
0


dt

= 2⟨ui , β i d Bt ⟩0 +


∥γ i

∥
2
0 + 2⟨α̂i , ui

⟩0


dt, (5.5)

where α̂i is defined by (4.10). Furthermore, by (4.10) we have

⟨α̂i , ui
⟩0 =


γ i

−
1
2

Duiσ


σ ∗

1
φ
(Dφ)∗ + γ i D · σ ∗

− Dui b − f i (t, x, u, γ ), ui


0

=


γ i


σ ∗

1
φ
(Dφ)∗ + D · σ ∗


− Dui


1
2
σσ ∗

1
φ
(Dφ)∗ + b


− f i (t, x, u, γ ), ui


0
. (5.6)

It is easy to check that
γ i


σ ∗

1
φ
(Dφ)∗ + D · σ ∗


, ui


0

 ≤ C∥γ i
∥0∥ui

∥0;⟨ f i (t, x, u, γ ), ui
⟩0

 ≤ C[∥ f (t, ·, 0, 0)∥0 + ∥u∥0 + ∥γ ∥0]∥ui
∥0.

(5.7)

Moreover, by Assumption 2.1 and (2.5), we see that1
2
σσ ∗

1
φ
(Dφ)∗ + b

 +

D


1
2
σσ ∗

1
φ
(Dφ)∗ + b

 ≤ C.

Thus by integrating by parts formula (2.7) we getDui


1
2
σσ ∗

1
φ
(Dφ)∗ + b


, ui


0


≤

1
2

ui D ·


1
2
σσ ∗

1
φ
(Dφ)∗ + b


, ui


0


+

1
2

|ui
|
2


1
2

1
φ
(Dφ)σσ ∗

+ b∗


,

1
φ
(Dφ)


0


≤ C∥ui

∥
2
0. (5.8)

Now, combining (5.5)–(5.8) we deduce from (5.6) that

d∥ui (t, ·)∥2
0 ≥ 2⟨ui , β i d Bt ⟩0

+


∥γ i

∥
2
0 − C[∥γ ∥0∥u∥0 + ∥u∥

2
0 + ∥ f (t, ·, 0, 0)∥2

0]


dt

≥ 2⟨ui , β i d Bt ⟩0 +


1
2
∥γ i

∥
2
0 − C[∥u∥

2
0 + ∥ f (t, ·, 0, 0)∥2

0]


dt. (5.9)
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Since u(T, x) = g(x), we get

E

∥ui (t, ·)∥2

0 +
1
2

 T

t
∥γ i (s, ·)∥2

0ds


≤ E


∥g∥

2
0 + C

 T

t
[∥u(s, ·)∥2

0 + ∥ f (s, ·, 0, 0)∥2
0]ds


≤ CE

 T

t
∥u(s, ·)∥2

0ds


+ C[1 + I 2

0 ], (5.10)

where I0 is defined by (2.2). Now summing over all i and applying Gronwall’s inequality we
obtain that

sup
0≤t≤T

E

∥u(t, ·)∥2

0


+ E

 T

0
∥γ (t, ·)∥2

0dt


≤ C[1 + I 2

0 ].

Thus (5.3) follows from the standard application of the Burkholder–Davis–Gundy inequality,
proving the proposition. �

We next estimate the difference of regular weak solutions to two BSPDEs. Let (b, σ, f, g)
and (b̃, σ̃ , f̃ , g̃) be two sets of coefficients of the (decoupled) BSPDE (5.2), and denote the
corresponding weak solutions by (u, β) and (ũ, β̃), respectively. For notational simplicity, we
denote, for ξ = u, β, b, σ, γ , and g,∆ξ , ξ̃ − ξ , and denote ∆ f , ( f̃ − f )(t, x, u, γ ). We
have the following estimates.

Proposition 5.2. Let (b, σ, f, g) and (b̃, σ̃ , f̃ , g̃) be two sets of coefficients of the (decoupled)
BSPDE (5.2) satisfying Assumption 2.1, and denote the corresponding weak solutions by (u, β)
and (ũ, β̃), respectively. Then

E


sup

t∈[0,T ]

∥∆u(t, ·)∥2
0 +

 T

0
∥∆γ (t, ·)∥2

0dt



≤ CE

∥∆g∥

2
0 +

 T

0
[∥∆ f ∥

2
0 + It ]dt


, (5.11)

where

I , ∥Du∆σ∥
2
0 + ∥Dui

∥0∥Dũi σ̃ (∆σ)∗∥0

+ ∥Dui
∥0∥Dũi∆σσ ∗

∥0 + ∥γ ∥0∥D(∆u)∆σ∥0

+ ∥γ ∥0

∆u
1
φ

Dφ∆σ


0
+ ∥Du∥0

∆u
1
φ

Dφ[σ̃ σ̃ ∗
− σσ ∗

]


0

+ ∥γ ∥0∥∆u(D · ∆σ)∗∥0 + ∥Du∥0∥∆u(∆b)∗∥0. (5.12)

In particular, if b̃ = b, σ̃ = σ , then I = 0 and thus

E


sup

t∈[0,T ]

∥∆u(t, ·)∥2
0 +

 T

0
∥∆γ (t, ·)∥2

0dt


≤ CE


∥∆g∥

2
0 +

 T

0
∥∆ f ∥

2
0dt


. (5.13)
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Proof. The estimate (5.13) obviously follows from (5.11). We shall prove only (5.11). First we
write

d(∆u) = [α̃ − α]dt + ∆βd Bt ,

where α̃ and α are defined by (4.5), with corresponding coefficients, respectively. We can apply
the extended Itô’s formula (5.4) again to get

d∥∆ui (t, ·)∥2
0 − 2⟨∆ui (t, ·),∆β i (t, ·)d Bt ⟩ =


2⟨α̃i

− αi ,∆ui
⟩−1 + ∥∆β i

∥
2
0


dt. (5.14)

To estimate the right hand side of (5.14) we first note that by (4.9) and (4.10) one has

2⟨α̃i
− αi ,∆ui

⟩−1 + ∥∆β i
∥

2
0

= ∥∆β i
∥

2
0 + ⟨2γ̃ i

− Dũi σ̃ , D∆ui σ̃ ⟩0 − ⟨2γ i
− Duiσ, D∆uiσ ⟩0

+


2γ̃ i

− Dũi σ̃ ,∆ui 1
φ

Dφσ̃


0
−


2γ i

− Duiσ,∆ui 1
φ

Dφσ


0

+ 2⟨γ̃ i D · (σ̃ )∗ − Dũi b̃ − f̃ i (·, ũ, γ̃ ),∆ui
⟩0 − 2⟨γ i D · (σ )∗ − Dui b

− f i (·, u, γ ),∆ui
⟩0, (5.15)

where γ̃ i and γ i ’s are defined by (4.4) with corresponding coefficients. Thus the straightforward
calculation shows that the right hand side above can be written as

∥∆γ i
∥

2
0 − 2⟨∆γ i , Dui∆σ ⟩0 + 2⟨γ i , D(∆ui )∆σ ⟩0 + ⟨Dui , Dũi (σ̃ (∆σ)∗ − ∆σσ ∗)⟩0

+ 2

∆γ i ,∆ui 1

φ
Dφσ̃


0
+ 2


γ i ,∆ui 1

φ
Dφ∆σ


0

−


D(∆ui ),∆ui 1

φ
Dφσ̃ σ̃ ∗


0
−


Dui ,∆ui 1

φ
Dφ[σ̃ σ̃ ∗

− σσ ∗
]


0

+ 2⟨∆γ i ,∆ui (D · (σ̃ )∗)∗⟩0 + 2⟨γ i ,∆ui (D · (∆σ)∗)∗⟩0 − 2⟨D∆ui ,∆ui (b̃)∗⟩0

− 2⟨Dui ,∆ui (∆b)∗⟩0 − 2⟨ f̃ i (·, ũ, γ̃ )− f̃ i (·, u, γ ),∆ui
⟩0 − 2⟨∆ f i ,∆ui

⟩0

= ∥∆γ i
∥

2
0 − 2⟨∆γ i , Dui∆σ ⟩0 + 2⟨γ i , D(∆ui )∆σ ⟩0

+ ⟨Dui , Dũi (σ̃ (∆σ)∗ − ∆σσ ∗)⟩0

+ 2

∆γ i ,∆ui 1

φ
Dφσ̃


0
+ 2


γ i ,∆ui 1

φ
Dφ∆σ


0

+
1
2


∆ui ,∆ui 1

φ
D · (Dφσ̃ σ̃ ∗)


0
−


Dui ,∆ui 1

φ
Dφ[σ̃ σ̃ ∗

− σσ ∗
]


0

+ 2⟨∆γ i ,∆ui (D · (σ̃ )∗)∗⟩0 + 2⟨γ i ,∆ui (D · (∆σ)∗)∗⟩0 + ⟨∆ui ,∆ui D · (b̃)∗⟩0

− 2⟨Dui ,∆ui (∆b)∗⟩0 − 2⟨ f̃ i (·, ũ, γ̃ )− f̃ i (·, u, γ ),∆ui
⟩0 − 2⟨∆ f i ,∆ui

⟩0.

Applying the Cauchy–Schwartz inequality repeatedly we obtain that

2⟨α̃i
− αi ,∆ui

⟩−1 + ∥∆β i
∥

2
0

≥
1
2
∥∆γ i

∥
2
0 − C


∥∆u∥

2
0 + ∥Du∆σ∥

2
0 + ∥Dui

∥0∥Dũi σ̃ (∆σ)∗∥0

+ ∥Dui
∥0∥Dũi∆σσ ∗

∥0 + ∥γ ∥0∥D(∆u)∆σ∥0
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+ ∥γ ∥0

∆u
1
φ

Dφ∆σ


0
+ ∥Du∥0

∆u
1
φ

Dφ[σ̃ σ̃ ∗
− σσ ∗

]


0

+ ∥γ ∥0∥∆u(D · ∆σ)∗∥0 + ∥Du∥0∥∆u(∆b)∗∥0 + ∥∆ f ∥
2
0



=
1
2
∥∆γ i

∥
2
0 − C


∥∆u∥

2
0 + ∥∆ f ∥

2
0 + It


.

Now following the same arguments as in Proposition 5.1 one can easily prove the result. �

A direct consequence of Proposition 5.2 is the following uniqueness result.

Corollary 5.3. Assume Assumption 2.1 holds. Then the decoupled BSPDE (5.2) has at most one
weak solution.

Another important consequence of Proposition 5.2 is the following “stability” result.

Proposition 5.4. Let (b, σ, f, g) and (b(l), σ (l), f (l), g(l)), l = 1, 2, . . . be a sequence of
coefficients of the decoupled BSPDE (5.2) satisfying Assumption 2.1 uniformly. Assume that

(i) liml→∞


∥b(l) − b∥

2
H 0 + ∥σ (l) − σ∥

2
H 1 + ∥g(l) − g∥

2
H 0


= 0.

(ii) For any fixed (x, y, z),

lim
l→∞

E
 T

0
| f (l) − f |

2(t, x, y, z)dt


= 0. (5.16)

(iii) For each l, BSPDE (5.2) with coefficients (b(l), σ (l), f (l), g(l)) has a regular weak solution
(u(l), β(l)).

(iv) Du(l) are uniformly bounded, uniformly on l.
(v) There exists u ∈ H 0 such that

lim
l→∞

∥u(l) − u∥
2
H 0 = 0. (5.17)

Then u ∈ H 1 and there exists β ∈ H 0 such that (u, β) is a regular weak solution to the
decoupled BSPDE (5.2) with coefficients (b, σ, f, g).

Proof. We first show that the limiting random field u ∈ H 1 and that Du is bounded. In fact, by
condition (iv) clearly Du(l) are bounded in H0. Then there exists v ∈ H0 such that Du(l) → v

weakly in H 0. It is clear that v is bounded. Moreover, the differential operator D is a closed
operator, that is, for any h ∈ H 1,

⟨v, h⟩0 = lim
l→∞

⟨Du(l), h⟩0 = lim
l→∞

⟨u(l), Dh⟩0 = ⟨u, Dh⟩0.

This implies that Du = v, and thus u ∈ H 1.
Next, denote γ (l) , β(l) + Du(l)σ (l). By (5.3), we get

∥γ (l)∥2
H 0 ≤ C and thus ∥β(l)∥2

H 0 ≤ C.

Now by (5.11), our conditions imply that {γ (l), l ≥ 1} is a Cauchy sequence in H 0. Then there
exists γ ∈ H 0 such that

lim
l→∞

∥γ (l) − γ ∥
2
H 0 = 0. (5.18)



J. Ma et al. / Stochastic Processes and their Applications 122 (2012) 3980–4004 3995

We now define β , γ − Duσ . Note that, for any h ∈ H 0,

⟨β(l), h⟩H0 = ⟨γ (l) − Du(l)σ (l), h⟩H0

= ⟨γ (l), h⟩H0 − ⟨Du(l)σ, h⟩H0 + ⟨Du(l)[σ − σ (l)], h⟩H0

→ ⟨γ, h⟩H0 − ⟨Duσ, h⟩H0 + 0 = ⟨β, h⟩H0 , as l → ∞,

where the second convergence is due to the weak convergence of Du(l) and the boundedness of
σ , and the third convergence is due to the uniform boundedness of Du(l). That is, β(l) converges
to β weakly in H 0.

It remains to show that (u, β) is a weak solution to BSPDE (5.2) with coefficients (b, σ, f, g).
To simplify notations, in this part of the proof we assume m = 1 so that we can drop the
superscript i , but all our arguments are still valid in high dimensional case.

It suffices to check (4.11). We fix t1 < t2 and a smooth function ϕ with compact support. For
each l, since (u(l), β(l)) is a weak solution to the corresponding BSPDE, by (4.9)–(4.11) we have

⟨ϕ, u(l)(t2, ·)− u(l)(t1, ·)⟩0

=

 t2

t1
⟨ϕ, β(l)(t, ·)d Bt ⟩0 +

 t2

t1


β(l) +

1
2

Du(l)σ (l)

(σ (l))∗, Dϕ


0

dt

+

 t2

t1


β(l) +

1
2

Du(l)σ (l)

(σ (l))∗

1
φ
(Dφ)∗ + γ (l)D · (σ (l))∗

− Du(l)b(l), ϕ


0

dt −

 t2

t1


f (l)


t, x, u(l), γ (l)


, ϕ


0

dt

=

 t2

t1
⟨ϕ, β(l)(t, ·)d Bt ⟩0 +

 t2

t1


γ (l) −

1
2

Du(l)σ


σ ∗, Dϕ


0

dt

+

 t2

t1


γ (l) −

1
2

Du(l)σ


σ ∗

1
φ
(Dφ)∗ + γ (l)D · σ ∗

− Du(l)b

− f (l)

t, x, u, γ


, ϕ


0

dt +

 t2

t1
[⟨I (l)t , Dϕ⟩0 + ⟨J (l)t , ϕ⟩0]dt,

where

I (l) , γ (l)[(σ (l))∗ − σ ∗
] −

1
2

Du(l)[σ (l)(σ (l))∗ − σσ ∗
];

J (l) , I (l)
1
φ
(Dφ)∗ + γ (l)D · [(σ (l))∗ − σ ∗

] − Du(l)[b(l) − b]

−


f (l)

t, x, u(l), γ (l)


− f (l)


t, x, u, γ


.

Sending l → ∞ we obtain

⟨ϕ, u(t2, ·)− u(t1, ·)⟩0

=

 t2

t1
⟨ϕ, β(t, ·)d Bt ⟩0 +

 t2

t1


γ −

1
2

Duσ


σ ∗, Dϕ


0

dt

+

 t2

t1


γ −

1
2

Duσ


σ ∗

1
φ
(Dφ)∗ + γ D · σ ∗

− Dub − f

t, x, u, γ


, ϕ


0

dt

+ lim
l→∞

 t2

t1
[⟨I (l)t , Dϕ⟩0 + ⟨J (l)t , ϕ⟩0]dt, (5.19)
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thanks to our assumptions on the coefficients. Furthermore, note that

|I (l)| ≤ C |γ (l) − γ | + |γ ||σ (l) − σ | + C |σ (l) − σ |;

|J (l)| ≤ C

|γ (l) − γ | + |σ (l) − σ | + |u(l) − u|


+ |γ |


|σ (l) − σ | + |D · ((σ (l))∗ − σ ∗)|


.

Again, by our assumptions on the convergence of the coefficients we have

lim
l→∞

 t2

t1
[⟨I (l)t , Dϕ⟩0 + ⟨J (l)t , ϕ⟩0]dt = 0.

This, together with (5.19), implies that (4.11) holds for (u, β). That is, (u, β) is a weak
solution. �

6. The main results

We are now ready to prove our main result of the paper. Note that except for the decoupled
case, in general neither the well-posedness of the original coupled FBSDE nor that of the
BSPDEs is known. Our main purpose here is to establish the equivalence of the solvability
between the FBSDEs and BSPDEs.

We begin our discussion from the simple, decoupled case. In this case, the FBSDE (5.1) is
always solvable, and its decoupling field always exists. On the other hand, by Theorem 4.1 we
know that a classical solution (u, β) of the associate BSPDE (5.2) is always a regular decoupling
field. However, the following result is by no means trivial.

Theorem 6.1. Let Assumption 2.1 hold. Then, a random field u ∈ H 1 is a regular decoupling
field of the decoupled FBSDE (5.1) if and only if there exists a random field β ∈ H 0 such that
(u, β) is the (unique) regular weak solution to the BSPDE (5.2).

Proof. We first note that in the decoupled case the solution to the BSPDE (5.2) has a unique
weak solution, thanks to Corollary 5.3. Thus, since in this case the regular decoupling field u
always exists, it suffices to find β ∈ H 0 so that (u, β) is a weak solution to BSPDE (5.2).

Recall that the filtration F is Brownian, and the coefficients b, σ , and f are all F-progressively
measurable, we can assume without loss of generality that they take the form: for P-a.e. ω, and
all (x, y, z),

θ(t, ω, x, y, z) = θ(t, (B)t (ω), x, y, z), θ = b, σ, f ;

g(ω, x) = g(BT (ω), x).

Here (B)t , {Bs∧t ; s ∈ [0, T ]} denote the path of B up to time t . We now proceed in several
steps, following the standard procedure of approximating non-Markovian processes with discrete
Markovian ones.

Step 1. Assume that
b(t, ω, x) = b̂(t, Bt (ω), x), σ (t, ω, x) = σ̂ (t, Bt (ω), x),
f (t, ω, x, y, z) = f̂ (t, Bt (ω), x, y, z), g(ω, x) = ĝ(BT (ω), x),

(6.1)
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where b̂, σ̂ , f̂ , ĝ are deterministic and smooth functions with bounded derivatives. Then, we can
consider the following decoupled FBSDE on [t, T ]:

As = a +

 s

t
1d Br ;

Xs = x +

 s

t
b̂(r, Ar , Xr )dr +

 s

t
σ̂ (r, Ar , Xr )d Br ;

Ys = ĝ(AT , XT )+

 T

s
f̂ (r, Ar , Xr , Yr , Zr )dr −

 T

t
Zr d Br .

Denoting its solution by (A, X, Y, Z) , (At,a,x , X t,a,x , Y t,a,x , Z t,a,x ), by standard arguments in
BSDE theory, we know that the (deterministic) function defined by û(t, a, x) , Y t,a,x

t is smooth,
and Ys = û(s, As, Xs), s ∈ [t, T ],P-a.s. Thus, applying Ito’s formula, we have

dY i
s =


ûi

s + Dx ûi b̂ +
1
2

tr (D2
aa ûi )+ tr (D2

ax ûi σ̂ )+
1
2

tr (D2
xx ûi σ̂ σ̂ ∗)


(s, As, Xs)ds

+


Da ûi

+ Dx ûi σ̂

(s, As, Xs)d Bs, i = 1, . . . ,m,

where Da denotes the gradient with respect to a, and Dxx denotes the Hessian with respect to x .
Other notations are defined in an obvious way. Compare this with the BSDE, we have

Zs =

Da û + Dx ûσ̂


(s, As, Xs),

and û satisfies the following PDE:
ûi

s + Dx ûi b̂ +
1
2

tr (D2
aa ûi )+ tr (D2

ax ûi σ̂ )+
1
2

tr (D2
xx ûi σ̂ σ̂ ∗)

+ f̂ i (t, a, x, û, Da û + Dx ûσ̂ ) = 0;

û(T, a, x) = ĝ(a, x).

(6.2)

Now consider the random fields

u(t, x) , û(t, Bt , x) and set β(t, x) , (Da û)(t, Bt , x).

For each fixed x we apply Itô’s formula to (t, Bt ) → û(t, Bt , x) and notice (6.2) we deduce that

dui (t, x) =


ûi

t +
1
2

tr (D2
aa ûi )


(t, Bt , x)dt + Da ûi (t, Bt , x)d Bt

= −


Dx ui b + tr (Dx (β

i )∗σ)+
1
2

tr (D2
xx uiσσ ∗)+ f i (t, x, u, β + Dx uσ)


(t, x)dt

+β i (t, x)d Bt , i = 1, . . . ,m.

That is, (u, β) is a classical solution to BSPDE (5.2).

Step 2. We now assume (6.1) again, but without requiring the smoothness of b̂, σ̂ , f̂ , ĝ. Let

(b̂(l), σ̂ (l), f̂ (l), ĝ(l)) be the standard smooth mollifiers of (b̂, σ̂ , f̂ , ĝ), and consider the random
fields

θ (l)(t, ω, x, y, z) , θ̂ (l)(t, Bt , x, y, z), θ = b, σ, f ;

and g(l)(ω, x) , ĝ(l)(BT (ω, x)). Then b(l), σ (l), f (l), and g(l) obviously satisfy condition (i)
and (ii) of Proposition 5.4. Also, the conditions (iii) and (iv) of Proposition 5.4 follow from
Step 1 and the standard result in BSDE. Finally, the stability result for decoupled FBSDEs leads
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to condition (v) there. Therefore, applying Proposition 5.4 we conclude again that (u, β) is a
regular weak solution to BSPDE (5.2).
Step 3. We now assume that all the coefficients are “discrete functionals” of B. That is, there

exists a partition of [0, T ]π : 0 = t0 < · · · < tl = T such that
b(t, ·, x) = b̂(t, Bt1∧t , . . . , Btl∧t , x), σ (t, ·, x) = σ̂ (t, Bt1∧t , . . . , Btl∧t , x),
f (t, ·, x, y, z) = f̂ (t, Bt1∧t , . . . , Btl∧t , x, y, z), g(·, x) = ĝ(Bt1 , . . . , Btl , x),

(6.3)

For t ∈ [tl−1, tl ], consider the decoupled FBSDE:

As = a +

 s

t
Id×dd Br ;

Xs = x +

 s

t
b̂(r, x1, . . . , xl−1, Ar , Xr )dr +

 s

t
σ̂ (r, x1, . . . , xl−1, Ar , Xr )d Br ;

Ys = ĝ(x1, . . . , xl−1, AT , XT )+

 T

s
f̂ (r, x1, . . . , xl−1, Ar , Xr , Yr , Zr )dr

−

 T

t
Zr d Br .

Define û(t, a1, . . . , al−1, a, x) , Y t,a1,...,al−1,a,x
t . Then, apply the result of Step 2, we see that

u(t, x) , û(t, Bt1 , . . . , Btl−1 , Bt , x) is a regular weak solution to BSPDE (4.6) on [tl−1, tl ].
Now as a regular decoupling field (on [tl−1, tl ]), u(tl−1, x) = û(tl−1, Bt1 , . . . , Btl−1 , Btl−1 , x)

is uniformly Lipschitz continuous in x . Thus we can consider the system on [tl−2, tl−1] with
terminal condition u(tl−1, x). Repeating this argument backwardly on each interval [ti , ti+1], i =

l − 1, l − 2, . . . , 0 we obtain the result again.

Step 4. Finally we consider the general case. For each l, denote t (l)i , iT
2l , i = 0, . . . , 2l . Let F (l)

t
be the σ -field generated by (B

t (l)1 ∧t
, B

t (l)2 ∧t
, . . . , B

t (l)
2l ∧t

) and define

b(l)(t, x) , E{b(t, x)|F (l)
t }, σ (l)(t, x) , E{σ(t, x)|F (l)

t },

f (l)(t, x, y, z) , E{ f (t, x, y, z)|F (l)
t }, g(l)(x) , E{g(x)|F (l)

T }.

We claim that (b(l), σ (l), f (l), g(l)) satisfy all the conditions in Proposition 5.4. Indeed, first
note that (b(l), σ (l), f (l), g(l)) satisfies Assumption 2.1. Next, by the Dominated Convergence
Theorem, we have

Dσ (l)(t, x) , E{Dσ(t, x)|F (l)
t }.

Note that F (l)
t is increasing in l, and clearly Ft is generated by


l F (l)

t . Then (b(l), σ (l),
f (l), g(l)) satisfy Proposition 5.4 (i) and (ii). To see (iii), note that for each l, (b(l), σ (l), f (l), g(l))
take the form in Step 3 and thus applying the result in Step 3 we know that the corresponding
BSPDE has a regular weak solution u(l). The conditions (iv) and (v) of Proposition 5.4 follow
from the standard estimates as well as the stability result in the BSDE literature, respectively.
Thus, applying Proposition 5.4 we obtain the result. �

We now extend the result to the general case. That is, the FBSDE (2.1) is truly coupled.
However, for technical reasons, in the rest of the paper we consider only the case when the
forward diffusion is independent of the backward component Z . In other words, we shall assume
that the coefficient b also takes the form

b = b(t, ω, x, y), (t, ω, x, y) ∈ [0, T ] × Ω × Rn
× Rm . (6.4)
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We should point out here that in this case the FBSDE (2.1) is non-Markovian, and strongly
coupled, thus its well-posedness and the existence of the regular decoupling field is not known.
We nevertheless have the following analogue of Theorem 6.1.

Theorem 6.2. Assume Assumption 2.1 and (6.4) hold. Then a random field u ∈ H 1 is a regular
decoupling field of the FBSDE (2.1) if and only if there exists β ∈ H 0 such that (u, β) is a
regular weak solution to BSPDE (4.6).

Furthermore, the regular weak solution to BSPDE (4.6), if exists, must be unique.

Proof. We first assume that FBSDE (2.1) has a regular decoupling random field u, then by
Theorem 3.4 the FBSDE (2.1) has a (unique) solution (X, Y, Z). We shall find the random field
β ∈ H 0 such that (u, β) is a regular weak solution to BSPDE (4.6). Note that in this case (4.7)
becomes

b̂(t, x) , b(t, x, u(t, x)), σ̂ (t, x) , σ(t, x, u(t, x)). (6.5)

Since u is uniformly Lipschitz continuous, we see that b̂ and σ̂ are still uniformly Lipschitz
continuous. Now note that (X, Y, Z) satisfies the following decoupled FBSDE:

X̂ t = x +

 t

0
b̂(s, X̂s)ds +

 t

0
σ̂ (s, X̂s)d Bs;

Ŷt = g(X̂T )+

 T

t
f (s, X̂s, Ŷs, Ẑs)ds −

 T

t
Ẑsd Bs;

(6.6)

Denote û(t, x) , Ŷ t,x
x . We can apply Theorem 6.1 to conclude that there exists β ∈ H 0 such

that (û, β) is a regular weak solution to the following (decoupled) BSPDE:
dûi (t, x) = −


1
2

tr [D2ûi σ̂ σ̂ ∗(t, x)] + tr (D(β̂ i )∗σ̂ (t, x))+ Dûi b̂(t, x)

+ f i (t, x, û, γ̂ )


dt + β̂ i d Bt , i = 1, . . . ,m;

û(T, x) = g(x).

(6.7)

But the uniqueness of the decoupling field and that of the BSPDE then imply that Ŷ t,x
t = Y t,x

t
and thus û = u. Then (u, β̂) is a regular weak solution to BSPDE (4.6).

Conversely, if (u, β) is a regular weak solution to BSPDE (4.6). Define b̂, σ̂ by (6.5). Then
(u, β) is the (unique) weak solution to BSPDE (6.7). Let (X, Y, Z) be the unique solution to the
decoupled FBSDE (6.6). By Theorem 6.1, we see that Yt = u(t, X t ). Thus actually (X, Y, Z)
satisfies FBSDE (2.1). We note that this argument applies to FBSDE (3.2) on any subinterval
[t1, t2]. Thus u is a regular decoupling field.

To show the uniqueness, we note from the above argument that any regular weak solution
to BSPDE (4.6) must correspond to a regular weak solution to the decoupled BSPDE (6.7),
and thus is a regular decoupling field of FBSDE (2.1). Then the uniqueness follows from
Theorem 3.4. �

Remark 6.3. From the proof of Theorem 6.2 the only reason that we require the assumption
(6.4) is that the decoupled SDE can have Lipschitz coefficients. This condition can be relaxed if
we raise the regularity of the solution (u, β) (e.g., requiring the function γ to be Lipschitz). But
we do not intend to pursue such generality in this paper, and the interested reader can extend the
result in a case by case basis. �
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To conclude this section we would like to point out that the significance of Theorems 6.1 and
6.2 is that it gives the equivalence of solvability between the FBSDE (2.1) and BSPDE (4.6). This
provides a new tool for solving BSPDEs that has not been established before, especially given
the recent developments on the theory of non-Markovian FBSDEs. For example, an interesting
by-product of Theorems 6.1 and 6.2 is the following well-posedness result for the degenerate
quasilinear BSPDE (4.6) which, to our best knowledge, is novel in the literature.

Let us assume that all involved processes are 1-dimensional. For any t , any x1 ≠ x2, y1 ≠

y2, z1 ≠ z2, and ϕ = b, σ, f , let us define

ϕ1(t) , ϕ1(t, x1, y1, z1, x2, y2, z2) ,
ϕ(t, x1, y1, z1)− ϕ(t, x2, y1, z1)

x1 − x2
;

ϕ2(t) , ϕ2(t, x1, y1, z1, x2, y2, z2) ,
ϕ(t, x2, y1, z1)− ϕ(t, x2, y2, z1)

y1 − y2
;

ϕ3(t) , ϕ3(t, x1, y1, z1, x2, y2, z2) ,
ϕ(t, x2, y2, z1)− ϕ(t, x2, y2, z1)

z1 − z2
;

h , h(x1, x2) ,
g(x1)− g(x2)

x1 − x2
;

and

F(t, y) , F(x1, y1, z1, x2, y2, z2; t, y) , f1 + [ f2 + b1 + f3σ1]y + [b2 + f3σ2]y2.

Theorem 6.4. Assume Assumption 2.1 and (6.4) hold, and that all processes involved are 1-
dimensional. Assume further that there exist a constant c and a constant ε > 0 small enough such
that one of the following two conditions holds true: for any t and any x1 ≠ x2, y1 ≠ y2, z1 ≠ z2

F(t, c) ≥ 0, c ≤ h, b2 + f3σ2 ≤ ε;

F(t, c) ≤ 0, c ≥ h, b2 + f3σ2 ≥ −ε.

Then the FBSDE (2.1) has a regular decoupling field and thus the BSPDE (4.6) has a unique
regular weak solution.

Proof. Applying the wellposedness result in [14] we know that under the given assumptions the
FBSDE (2.1) is well-posed, and that the regular decoupling field exists. The result then follows
from Theorem 6.2. �

7. Comparison theorem

In this section, we investigate the comparison theorem for the quasilinear BSPDE (4.6). We
should note that while such result is more or less standard in BSDE theory (see, e.g., [15,16]
for the case of linear BSPDEs), it is more significant because its connection to the fully coupled
FBSDE (2.1), for which the comparison theorem generally fails (cf. e.g., [4,17]). Our argument
follows that of [26, Theorem 7.1].

Theorem 7.1. Assume that (b, σ, fi , gi ), i = 1, 2 satisfy Assumption 2.1 and (6.4), and that the
BSPDE (4.6) with coefficients (b, σ, fi , gi ) has a regular weak solution ui , i = 1, 2, respectively.
Assume further that m = 1 and

f1(t, ·, x, y, z) ≤ f2(t, ·, x, y, z), g1(·, x) ≤ g2(·, x), ∀(t, x, y, z), P-a.s.,

then it holds that u1(t, x) ≤ u2(t, x),∀(t, x),P-a.s.
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Proof. Let K denote the common Lipschitz constant of u1, u2, and δ(K ) be the constant in
Lemma 3.3. We first claim that it suffices to prove the result for the case that

T ≤ δ(K ). (7.1)

Indeed, if comparison holds whenever T ≤ δ(K ), let 0 = t0 < · · · < tk = T be a partition
such that ∆ti ≤ δ(K ). Then by applying our assumption on [tk−1, tk] we get u1(t, x) ≤ u2(t, x)
for t ∈ [tk−1, tk]. In particular, u1(tk−1, x) ≤ u2(tk−1, x). We can then repeat the argument on
[tk−2, tk−1] to get u1(t, x) ≤ u2(t, x) for t ∈ [tk−2, tk−1], and so on, to obtain the result.

Next, we note that by introducing the solution to FBSDE (2.1), say, (X3, Y 3, Z3), with
coefficients b, σ, f1, g2, and then arguing that Y 1

0 ≤ Y 3
0 and Y 3

0 ≤ Y 2
0 , respectively, we can

split the arguments for the comparisons for f and for g separately.
We now assume (7.1) holds, and consider the following two cases.

Case 1. Assume f1 = f2 = f and g1 ≤ g2.
Let ui be the regular weak solution to BSPDE (4.6), and (X i , Y i , Z i ) the solution to FBSDEs

(2.1), i = 1, 2, respectively. Without loss of generality, we shall only prove

u1(0, x) ≤ u2(0, x), or equivalently Y 1
0 ≤ Y 2

0 . (7.2)

To this end, denote X , X2
− X1, Y , Y 2

− Y 1, Z , Z2
− Z1, and ξ , g2(X1

T )− g1(X1
T ).

Then ξ ≥ 0, and
X t =

 t

0
[λ1

s Xs + θ1
s Ys]ds +

 t

0
[λ2

s Xs + θ2
s Ys]d Bs;

Yt = G XT + ξ +

 T

t


λ3

s Xs + θ3
s Ys + κ3

s Zs


ds −

 T

t
Zsd Bs,

(7.3)

for some appropriate bounded processes λi , θ i , κ i , i = 1, 2, 3, and bounded random variable
G (depending on the Lipschitz constants with respect to x, y, z of coefficients b, σ, f , and g,
respectively).

We shall prove (7.2) by contradiction. Suppose not, then Y0 < 0. Define

G t , E[G|Ft ], τ , inf{t : Yt ≥ G t X t } ∧ T .

Since Y0 − G0 X0 = 0, YT − GT XT = ξ ≥ 0, and the process Y − G X is continuous, we have
Yτ = Gτ Xτ . Denote

ζ̃t , ξt 1[0,τ ](t) for ζ = λi , θ i , κ i , and η̃t , ητ∧t for η = X, Y, Z .

One can easily check that (X̃ , Ỹ , Z̃) satisfies:
X̃ t =

 t

0
[λ̃1

s X̃s + θ̃1
s Ỹs]ds +

 t

0
[λ̃2

s X̃s + θ̃2
s Ỹs]d Bs;

Ỹt = Gτ X̃T +

 T

t


λ̃3

s X̃s + θ̃3
s Ỹs + κ̃3

s (Z̃s)
∗


ds −

 T

t
Z̃sd Bs .

Note that λi , θ i and κ i are all bounded, we assume that they are all bounded by K . Then, by
our choice of δ(K ) we see that the above FBSDE has a unique solution, and it must be the zero
solution. Therefore Y0 = Ỹ0 = 0, a contradiction. Thus (7.2) holds.
Case 2. g1 = g2 = g, but f1 ≤ f2. We still assume (7.1) holds, and make a further reduction.
We claim that it suffices to prove the comparison for the case that

c0 ≤ f2 − f1 ≤ c−1
0 for some c0 > 0. (7.4)
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Indeed, for general f1, f2, denote f ε2 , ( f2 + ε)∧ ( f1 + ε−1). Then f ε2 satisfies Assumption 2.1
uniformly, f ε2 → f2, almost surely, as ε → 0, and ε ≤ f ε2 − f1 ≤ ε−1. Let (X2,ε, Y 2,ε, Z2,ε)

denote the unique solution to FBSDE (2.1) with coefficients (b, σ, f ε2 , g). By our assumption,

Y 1
0 ≤ Y 2,ε

0 for any ε > 0. By the stability of FBSDEs we get limε→0 Y 2,ε
0 = Y 2

0 . Thus Y 1
0 ≤ Y 2

0 .

In what follows we assume (7.1) and (7.4). Again, denote X , X2
− X1, Y , Y 2

− Y 1, Z ,
Z2

− Z1 and ηt , ( f2 − f1)(t, X1
t , Y 1

t , Z1
t ). Then (7.4) implies that

c0 ≤ η ≤ c−1
0 ,

and (7.3) is replaced by
X t =

 t

0
[λ1

s Xs + θ1
s Ys]ds +

 t

0
[λ2

s Xs + θ2
s Ys]d Bs;

Yt = G XT +

 T

t


λ3

s Xs + θ3
s Ys + κ3

s Zs + ηs


ds −

 T

t
Zsd Bs,

(7.5)

for some appropriate bounded processes λi , θ i , κ i and bounded random variable G.
Following the arguments in Case 1, it suffices to prove Y0 ≥ 0 for T ≤ δ, where δ , δ(c) ≤

δ(K ) will be specified later. So we now assume T ≤ δ. For any ε > 0, applying standard
arguments on the BSDE in (7.5) we have

E

|Yt |

2
+

1
2

 T

t
|Zs |

2ds


≤ E


|XT |

2
+ Cε−1

 T

t
[|X t |

2
+ |Yt |

2
]dt + ε

 T

t
|ηs |

2ds


.

Then

sup
0≤t≤T

E{|Yt |
2
} ≤ [1 + Cε−1T ] sup

0≤t≤T
E{|X t |

2
} + Cε−1T sup

0≤t≤T
E{|Yt |

2
} + εT c−2

0 . (7.6)

Moreover, from the FSDE in (7.5) we have

sup
0≤t≤T

E{|X t |
2
} ≤ CE

 T

0
|Yt |

2dt


≤ CT sup

0≤t≤T
E{|Yt |

2
}. (7.7)

Plugging (7.7) into (7.6) we get

sup
0≤t≤T

E{|Yt |
2
} ≤ C0ε

−1T sup
0≤t≤T

E{|Yt |
2
} + c−2

0 εT .

Now we set ε , 2C0T in the above, and deduce that

sup
0≤t≤T

E{|Yt |
2
} ≤ Cc−2

0 T 2, and thus sup
0≤t≤T

E{|X t |
2
} ≤ Cc−2

0 T 3. (7.8)

Now let M be the solution to the following linear SDE:

Mt = 1 +

 t

0
Msκ

3
s d Bs, t ∈ [0, T ]. (7.9)

Then applying Itô’s formula we have

Yt Mt = G XT MT +

 T

t
[λ3

s Xs + θ3
s Ys + ηs]Msds −

 T

t
Ms[Zs + Ysκ

3
s ]d Bs .
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Note that M is a positive martingale, we have

Y0 = Y0 M0 = E


G XT MT +

 T

0
[λ3

t X t + θ3
t Yt + ηt ]Mt dt


≥ c0E

 T

0
Mt dt


−

E 
G XT MT +

 T

0
[λ3

t X t + θ3
t Yt ]Mt dt


≥ c0T − C sup

0≤t≤T
E{|X t Mt |} − CT sup

0≤t≤T
E{|Yt Mt |}.

Since E{|Mt |
2
} ≤ C , it follows from (7.8) that

E{|X t Mt |} ≤


E{|X t |

2
}

 1
2

E{|Mt |

2
}

 1
2

≤ Cc−1
0 T

3
2 ,

and

E{|Yt Mt |} ≤


E{|Yt |

2
}

 1
2

E{|Mt |

2
}

 1
2

≤ Cc−1
0 T .

Consequently, we have

Y0 ≥ c0T − Cc−1
0 [T

3
2 + T 2

] ≥ c−1
0 T


c2

0 − Cδ
1
2


.

Choosing δ ≤ c4
0C−2 we obtain Y0 ≥ 0. This proves Case 2, whence the theorem. �

Remark 7.2. It should be noted that the comparison between the BSPDE only leads to the
comparison between the decoupling field u of FBSDEs, and consequently the comparison for
Y 1

0 = u1(0, x) ≤ u2(0, x) = Y 2
0 . However, since in general there is no comparison between

X1
t ≠ X2

t , we cannot conclude Y 1
t ≤ Y 2

t for t > 0, except for some special situation in
which some monotone properties of the coefficients hold so that the decoupling field becomes
monotone, and the comparison between Yt , for all t becomes possible (see e.g. [24]). �
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