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Abstract. In this paper we study the well-posedness and regularity of
the adapted solutions to a class of linear, degenerate backward sto-
chastic partial di�erential equations (BSPDE, for short). We establish
new a priori estimates for the adapted solutions to BSPDEs in a
general setting, based on which the existence, uniqueness, and regu-
larity of adapted solutions are obtained. Also, we prove some com-
parison theorems and discuss their possible applications in
mathematical ®nance.
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1. Introduction

Let �X;F; fFtgt�0; P � be a complete ®ltered probability space on
which is de®ned a d-dimensional standard Brownian motion
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W � fW �t� : t 2 �0; T �g such that fFtgt�0 is the natural ®ltration
generated by W , augmented by all the P -null sets in F. Consider the
(linear) backward stochastic partial di�erential equation (BSPDE, for
short) of the following form:

du � fÿ1
2r��ADu� ÿ ha;Dui ÿ cuÿr��Bq� ÿ hb; qi ÿ f g dt

� hq; dW �t�i;
u
��
t�T � g ;

8><>: �1:1�

where

Du � �@x1u; @x2u; . . . ; @xnu�T ; 8u 2 C1�Rn; R�;
r� n �

Xn

i�1 @xini; 8n � �n1; . . . ; nn� 2 C1�Rn; Rn� ;

8<:
and

A : �0; T � �Rn � X! Sn; B : �0; T � �Rn � X! Rn�d ;

a : �0; T � �Rn � X! Rn; b : �0; T � �Rn � X! Rd ;

c; f : �0; T � �Rn � X! R; g : Rn � X! R ;

8>>><>>>:
are random ®elds (Sn is the set of all n� n-symmetric matrices) sat-
isfying appropriate measurability and regularity conditions. Our
purpose is to ®nd a pair of random ®elds
�u; q� : �0; T � �Rn � X! R�Rd , such that for each ®xed x 2 Rn,
fu��; x; ��; q��; x; ��g is a pair of fFtg-adapted processes, and that (1.1)
is satis®ed in some sense. We would also like to study the regularity of
the solution pair �u; q� in the variable x, and we will try to ful®ll all
these tasks under the following ``minimum'' (parabolicity) condition:

A�t; x� ÿ B�t; x�B�t; x�T � 0; 8�t; x� 2 �0; T � �Rn; a.s. �1:2�

BSPDE of this kind was originally motivated by stochastic control
theory, as an adjoint equation appeared in the Pontryagin's maximum
principle when the controlled system is a stochastic PDE (Zakai
equation, for example), (see, e.g., Bensoussan [1], Nagasa-Nisio [16] or
Zhou [25]). In our previous work [15], we showed that such a BSPDE
is in fact a natural replacement of the parabolic PDE appearing in the
Feynman-Kac formula, when the associated ``di�usion'' process has
random coe�cients. As a consequence, we then derived a stochastic
version of the celebrated Black-Scholes formula for option pricing, in
the case when the parameters of the stochastic di�erential equation
that describes the stock price are allowed to be random processes.
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Motivations involving the BSPDEs and their relations with the
adapted solution to forward-backward stochastic di�erential equa-
tions (FBSDE, for short) with random coe�cients were also discussed
in [15]. (For more information on FBSDEs and their applications in
®nance, one is referred to the references [3±5], [7], [10], [13], [14], [22],
and [23].)

The aim of the present paper is to develop a more complete theory
concerning the existence, uniqueness, and regularity of the adapted
solutions to the linear BSPDE (1.1), and to remove the technical as-
sumption that we had to impose in our previous work [15]. More
precisely, we will not assume that the coe�cients A and B in (1.1) are
independent of x. We note that the main feature of the BSPDE under
study is its degeneracy (see (1.2)), combined with the fact that the

operator �Mq�Dr � �Bq� � hb; qi� is a unbounded operator. Thus the
existing method (e.g., [1], [17] and [25]) of combining ®nite dimen-
sional approximations and duality relation between the BSPDE and
forward SPDEs does not seem to apply directly due to the lack of
satisfactory estimates on the second-®rst order di�erential operator
involved in (1.1). We shall therefore ®rst establish a general a priori
estimate for BSPDEs, and then prove the well-posedness as well as
some regularity of the (adapted) solutions to the BSPDEs. Our proof
will take a quite di�erent route than the one in [15] in order to remove
the technical condition there, and our estimates in fact more precisely
re¯ect the essence of the BSPDE. We should point out that in general
higher dimensional cases we still need some conditions on the random
®eld B, which we call the ``symmetry condition'', to compensate the
degeneracy. But such a new condition is more reasonable (it is trivial
in one-dimensional case), and in fact contains all the existing results
known up to date. In some higher dimensional cases when the de-
generacy is not ``deadly'' (by which we mean, for example, the equality
holds in (1.2)), we prove further that the symmetric condition can be
removed and the problem is essentially solved completely.

Another topic we would like to address in this paper is the com-
parison theorem for the solution to BSPDEs, since it is one of the
indispensable tools in the theory of backward SDEs, and has its own
interest as well. We shall establish a fundamental inequality, which
will lead to various comparison theorems as corollaries.

This paper is organized as follows. In Section 2 we give some
preliminaries. In Section 3, we state the main theorem of the paper,
whose proof will be given in Sections 4±6. In Section 7 we prove a set
of comparison theorems, and in Section 8 we discuss the motivation of
these comparison theorems and their potential applications in, for
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example, the study of robustness of the Black-Scholes formula in the
sense of El Karoui-Jeanblanc-Shreve [6].

2. Preliminaries

For any integer m � 0, we denote by Cm�Rn; R`� the set of functions
from Rn to R` that are continuously di�erentiable up to order m; by
Cm

b �Rn; R`� the set of those functions in Cm�Rn; R`� whose partial
derivatives up to order m are uniformly bounded. If there is no danger
of confusion, Cm�Rn; R`� and Cm

b �Rn; R`� will be abbreviated as Cm

and Cm
b , respectively. We denote the inner product in an Euclidean

space E by h�; �i; and the norm in E by j � j. With the notation @xi � @
@xi
,

i � 1; . . . ; n and r � �@x1 ; . . . ; @xn�T , we shall denote

� Du � �@x1u; . . . ; @xnu�T , if u 2 C1�Rn�;
� r � n � @x1n1 � . . .� @xnnn, if n � �n1; . . . ; nd� 2 C1�Rn; Rd�;
� r � U � �r � U1; . . . ;r � Ud�, if U � �U1; . . . ;Ud� 2 C1�Rn; Rn�d�

(hence each Ui 2 C1�Rn; Rd�, i � 1; . . . ; d).

Let A �D fa � �a1; . . . ; an�
�� ai � 0; integersg be the set of multi-

indices. For any a 2A and x � �x1; . . . ; xn� 2 Rn, we denote

jaj �
Xn

i�1
ai; @a �D @a1

x1 @
a2
x2 . . . @an

xn
; xa � xa1

1 . . . xan
n :

Further, if b � �b1; b2; . . . ;bn� is another multi-index, then by b � a
we mean that bi � ai for 1 � i � n; and by b < a we mean that b � a
and jbj < jaj.

We now de®ne some other spaces that will be used in the paper. Let
m � 0 be an integer, and 1 � p; r � 1 be any real numbers. Let X be a
Banach space, and G be a sub-r-®eld of F. We denote

� by Hm�Rn;E� � W m;2�Rn;E� the usual Sobolev space;
� by Lp

G�X; X � the set of all X -valued, G-measurable random variable g
such that Ekgkp

X <1;
� by Lp

F�0; T ; Lr�X; X �� the set of all fFtg-predictable X -valued pro-
cesses u�t;x� : �0; T � � X! X such that kukLp

F
�0;T ;Lr�X;X �� �DR T

0 Eku�t�kr
X

� �p=r dt
n o1=p

<1.

� by CF��0; T �; Lr�X; X �� the set of all fFtg-predictable X -valued

continuous processes u�t;x� : �0; T � � X! X such that

kukCF��0;T �;Lr�X;X �� �D maxt2�0;T �
�
Eku�t�kr

X

�1=r
<1.
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If r � p, we shall denote Lp
F�0; T ; Lp�X; X �� by Lp

F�0; T ; X � for sim-
plicity. Also, if E � R, we denote Hm�Rn; R� � Hm�Rn� (or simply
Hm).

The following fact concerning the di�erentiability of stochastic
integrals with parameter is important for our purpose. Let
h 2 L2

F�0; T ; Cm
b �Rn; Rd��. Then it can be shown (see, for example, [12,

Exercise 3.1.5]) that the stochastic integral with parameter:R t
0 hh�s; x; ��; dWsi has a modi®cation that belongs to L2

F�0; T ; Cmÿ1�
and it satis®es

@a
Z t

0

hh�s; x; ��; dWsi �
Z t

0

h@ah�s; x; ��; dWsi; for jaj � 1; 2; . . . ;mÿ 1 :

�2:1�
Consequently, if h 2 L2

F�0; T ; C1b �, then
R �
0 hh�s; �; ��; dWsi 2

L2
F�0; T ; C1�; and (2.1) holds for all multi-index a.
Finally, if the coe�cients A and B are di�erentiable, which we will

always assume, then equation (1.1) (in divergence form) is equivalent
to an equation of a general form. To wit, let D2u be the Hessian of u
and Dq �D �Dq1; . . . ;Dqd� �D �@xiqj�n;di;j�1; and note that

tr�AD2u� � r � �ADu� ÿ hr � A;Dui;
tr�BT Dq� � r � �Bq� ÿ hr � B; qi ;

(
�2:2�

then (1.1) is the same as

du � fÿ1
2tr�AD2u� ÿ h~a;Dui ÿ cuÿ tr�BT Dq� ÿ h~b; qi ÿ f g dt

� hq; dW �t�i;
u
��
t�T � g ;

8><>: �2:3�

where

~a � a� 1
2r � A; ~b � b�r � B ; �2:4�

Since (1.1) and (2.3) are equivalent, all the results for (1.1) can be
automatically carried over to (2.3) and vice versa. To simplify dis-
cussion, we shall concentrate on (1.1) for well-posedness (§§3±6) and
on (2.3) for comparison theorems (§7).

Now, we introduce the following de®nition.

De®nition 2.1. We say that the equation (1.1) is

(i) parabolic, if A and B satisfy (1.2);
(ii) super-parabolic, if there exists a constant d > 0, such that

A�t; x� ÿ B�t; x�B�t; x�T � dI; a.e. �t; x� 2 �0; T � �Rn; a.s. �2:5�
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(iii) degenerate parabolic, if (1.2) holds and there exists a set
G � �0; T � �Rn of positive Lebesgue measure, such that

det�A�t; x� ÿ B�t; x�B�t; x�T � � 0; 8�t; x� 2 G: a.s. �2:6�
We see that in De®nition 2.1 only the coe�cients A and B are

involved and other coe�cients are irrelevant. Thus the de®nitions
apply to (2.3) automatically.

Note that if (1.1) is super-parabolic, then it is necessary that A�t; x�
is uniformly positive de®nite, i.e.,

A�t; x� � dI > 0; a.e. �t; x� 2 �0; T � �Rn; a.s. �2:7�
However, (2.7) and (1.2) do not imply the super-parabolicity of (1.1).
For example, if A�t; x� satis®es (2.7) but

A�t; x� � B�t; x�B�t; x�T ; a.e. �t; x� 2 �0; T � �Rn; a.s. �2:8�
then (1.1) is always degenerate parabolic! We note that this is the case
of special interest, because it is exactly what one has to consider for
the Stochastic Feynman-Kac Formula, or for the BSPDEs related to
an FBSDE with random coe�cients via Four Step Scheme (see [15]).

Let us now turn to the notion of solutions to (1.1). In what follows,
we denote BR � fx 2 Rn

�� jxj < Rg for any R > 0.

De®nition 2.2. Let f�u�t; x; x�; q�t; x; x��; �t; x;x� 2 �0; T � �Rn � Xg be
a pair of random ®elds. �u; q� is called

(i) an adapted classical solution of (1.1), if

u 2 CF��0; T �; L2�X; C2��BR���;
q 2 L2

F�0; T ; C1��BR; Rd��; 8R > 0 ;

(
�2:9�

such that the following holds for all �t; x� 2 �0; T � �Rn, almost
surely:

u�t; x� � g�x� �
Z T

t

�
1
2r��A�s; x�Du�s; x�� � ha�s; x�;Du�s; x�i
� c�s; x�u�s; x� � r��B�s; x�q�s; x��
� hb�s; x�; q�s; x�i � f �s; x�	 ds

ÿ
Z T

t
hq�s; x�; dW �s�i :

�2:10�

(ii) an adapted strong solution of (1.1), if

u 2 CF��0; T �; L2�X; H2�BR���;
q 2 L2

F�0; T ; H1�BR; Rd��; 8R > 0 ;

(
�2:11�
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such that (2.10) holds for all t 2 �0; T �, a.e. x 2 Rn, almost surely.
(iii) an adapted weak solution of (1.1) if

u 2 CF��0; T �; L2�X; H1�BR���;
q 2 L2

F�0; T ; L2�BR; Rd��; 8R > 0 ;

(
�2:12�

such that for all u 2 C10 �Rn� and all t 2 �0; T �, it holds almost surely
thatZ

Rn
u�t; x�u�x� dxÿ

Z
Rn

g�x�u�x� dx

�
Z T

t

Z
Rn

�ÿ 1
2hA�s; x�Du�s; x�;Du�x�i � ha�s; x�;Du�s; x�iu�x�
� c�s; x�u�s; x�u�s; x� ÿ hB�s; x�q�s; x�;Du�x�i �2:13�
� hb�s; x�; q�s; x�iu�x� � f �s; x�u�x�	 dx ds

ÿ
Z T

t

DZ
Rn

q�s; x�u�x� dx; dW �s�
E
:

It is clear that for (1.1), an adapted classical solution is an adapted
strong solution; and an adapted strong solution is an adapted weak
solution. The following result tells the reverse implications which will
be useful later. To simplify the statement we borrow the assumption
``(H)m'' from the next section (see (3.1)).

Proposition 2.3. Suppose that the assumption �H�m, �3:1�, holds for
m � 0. Then an adapted weak solution �u; q� of �1:1� satisfying (2.11) is
an adapted strong solution of (1.1). If further (2.9) holds, then �u; q� is
an adapted classical solution of (1.1).

Proof. Let �u; q� be an adapted weak solution of (1.1) such that (2.11)
holds. Then using integration by parts in (2.13) we haveZ

Rn
fu�t; x� ÿ g�x�gu�x� dx

�
Z

Rn

(Z T

t

�
1
2r��A�s; x�Du�s; x�� � ha�s; x�;Du�s; x�i

� c�s; x�u�s; x� � r��B�s; x�q�s; x�� � hb�s; x�; q�s; x�i

� f �s; x�	 dsÿ
Z T

t
hq�s; x�; dW �s�i

)
u�x� dx : �2:14�

Since the above is true for allu 2 C10 �Rn�, (2.10) follows.Namely �u; q�
is an adapted strong solution. The other assertion is obvious. (
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3. Well-posedness of linear BSPDEs

In this section we state the main results concerning the well-posedness
for BSPDE (1.1). The proofs of these results will be carried out in later
sections. To begin with, let us introduce the following main assump-
tion. Let m � 1 be an integer.

(H)m Functions fA;B; a; b; cg satisfy the following:

A 2 L1F�0; T ; Cm�1
b �Rn; Sn��; B 2 L1F�0; T ; Cm�1

b �Rn; Rn�d��;
a 2 L1F�0; T ; Cm

b �Rn; Rn��; b 2 L1F�0; T ; Cm
b �Rn; Rd��;

c 2 L1F�0; T ; Cm
b �Rn�� :

8><>: �3:1�

We note that (H)m implies that the partial derivatives of A and B in x
up to order �m� 1�, and those of a, b and c up to order m are uni-
formly bounded in �t; x;x� by a common constant Km > 0.

Theorem 3.1. Let the parabolicity condition (1.2) hold and �H�m hold for
some m � 1. Suppose further that the coe�cient B�t; x� satis®es the
following ``symmetry condition'': for 1 � i � n;

B�@xiB
T �� �T� B�@xiB

T �; a:e: �t; x� 2 �0; T � �Rn; a:s:; : �3:2�

Then for any random ®elds f and g satisfying

f 2 L2
F�0; T ; Hm�Rn��; g 2 L2

FT
�X; Hm�Rn�� ; �3:3�

BSPDE (1.1) admits an adapted weak solution; and it is unique in the
class of random ®elds �u; q� such that u 2 CF��0; T �; L2�X; H1�Rn���
and q 2 L2

F�0; T ; L2�Rn; Rd��. Moreover, the adapted weak solution
�u; q� satis®es the following estimate:

max
t2�0;T �

Eku�t; ��k2Hm � E
Z T

0

kq�t; ��k2Hmÿ1 dt

�
X
jaj�m

E
Z T

0

Z
Rn

�h�Aÿ BBT �D�@au�;D�@au�i � jBT �D�@au��

� @aqj2	 dx dt � CE
Z T

0

kf �t; ��k2Hm dt � kgk2H m

� �
;

�3:4�

where the constant C > 0 only depends on m, T and Km.
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Furthermore, if m � 2, the weak solution �u; q� becomes the unique
adapted strong solution of (1.1); and if m > 2� n=2, then �u; q� is the
unique adapted classical solution of (1.1).

The symmetry condition (3.2) is a technical condition that will play
a very important role in deriving the fundamental a priori estimates in
Lemma 5.1 to follow. However, we would like to point out here that
such a condition is not necessary in the proof of the uniqueness of
adapted weak (and hence strong and classical) solutions, as we shall
see in 4. Several examples of B satisfying condition (3.2) are listed
below:

� d � n � 1 (B is a scalar);
� B is independent of x;
� B�t; x� � u�t; x�B0�t�, where u is a scalar-valued random ®eld.

The following result shows that the symmetry condition (3.2) can be
removed if the parabolicity condition (1.2) is slightly strengthened.

Theorem 3.2. Suppose (1.2) holds and �H�m with m � 1 is in force.
Suppose further that for some e0 > 0, either

Aÿ BBT � e0BBT � 0; a:e: �t; x� 2 �0; T � �Rn; a:s: ; �3:5�

or

Aÿ BBT � e0
X
jaj�1
�@aB��@aBT � � 0; a:e: �t; x� 2 �0; T � �Rn; a.s.

�3:6�
Then the conclusion of Theorem 3.1 remains true; and in the case (3.5)
holds, the estimate (3.4) can be improved to the following:

max
t2�0;T �

Eku�t; ��k2Hm � E
Z T

0

kq�t; ��k2Hm dt

�
X
jaj�m

E
Z T

0

Z
Rn
hAD�@au�;D�@au�i dx dt

� CE
Z T

0

kf �t; ��k2Hm dt � kgk2H m

� �
; �3:7�

where the constant C > 0 depends only on m, T , Km and e0.
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In addition to (3.5) or (3.6), if A is uniformly positive de®nite, i.e.,
(2.7) holds for some d > 0 (this is the case if (1.1) is super-parabolic, i.e.,
(2.5) holds), then (3.7) can further be improved to the following:

max
t2�0;T �

Eku�t; ��k2Hm � E
Z T

0

fku�t; ��k2Hm�1 � kq�t; ��k2Hmg dt

� CE
Z T

0

kf �t; ��k2Hm dt � kgk2Hm

� �
: �3:8�

Remark. The conditions (3.5) (or (3.6)), even together with (2.7), is still
weaker than the super-parabolicity condition (2.5). For example, if
n > d and B is an �n� d� matrix, then BBT is always degenerate. We
can easily ®nd an A such that (3.5) (or (3.6)) and (2.7) hold but (2.5)
fails.

In Theorems 3.1 and 3.2 we have assumed that f and g are square
integrable in x 2 Rn globally. This will exclude the cases in which, say,
f and g have polynomial growth, which is often seen in applications.
In the rest of this section we would like to relax such a restriction, by

using a more or less standard method. Note that if �u; q� is an adapted

classical solution of (1.1), and if we let k > 0, denote hxi�D
���������������
jxj2 � 1

q
,

and set

v�t; x� � eÿkhxiu�t; x�; p�t; x� � eÿkhxiq�t; x�; �t; x� 2 �0; T � �Rn ;

�3:9�
then a direct computation shows that �v; p� satis®es the following
BSPDE (compare with (1.1)):

dv � fÿ1
2r��ADv� ÿ h�a;Dvi ÿ �cvÿr��Bp� ÿ h�b; pi ÿ �f g dt

� hp; dW �t�i;
v
��
t�T � �g ;

8>><>>: �3:10�

with

�a � a� kA
�

x
hxi
�
; �b � b� kBT

�
x
hxi
�
;

�c � c� k2

2

D
A
�

x
hxi
�
;
�

x
hxi
�E� k

2
r�
�

A
�

x
hxi
��� k

D
a;
�

x
hxi
�E
;

�f � eÿhkif �t; x�; �g � eÿhkig�x� :

8>>>><>>>>: �3:11�

Conversely, if �v; p� is an adapted classical solution of (3.10), then
�u; q� determined by (3.9) is an adapted classical solution of (1.1).
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Clearly, the same equivalence between (1.1) and (3.10) holds for
adapted strong and weak solutions, respectively.

On the other hand, from (3.11) we see easily that fA;B; a; b; cg
satis®es (H)m if and only if fA;B; �a; �b; �cg satis®es (H)m. This is because
k@ahxik1 � Ca for any multiindex a. Hence, from Theorems 3.1 and
3.2, we can derive the following result.

Theorem 3.3. Let m � 1 and (H)m hold for fA;B; a; b; cg. Let (1.2) and
(3.2) hold. Let k > 0 such that

eÿkh�if 2 L2
F�0; T ; Hm�Rn��; eÿkh�ig 2 L2

FT
�X; Hm�Rn�� : �3:12�

Then BSPDE (1.1) admits a unique adapted weak solution. Moreover,
the weak solution �u; q� satis®es the following estimate:

max
t2�0;T �

Ekeÿkh�iu�t; ��k2H m � E
Z T

0

keÿkh�iq�t; ��k2Hmÿ1 dt

�
X
jaj�m

E
Z T

0

Z
Rn

�h�Aÿ BBT �D�@a�eÿkh�iu��;D�@a�eÿkh�iu��i

� ��BTfD�@a�eÿkh�iu��g � @a�eÿkh�iq���2	 dx dt

� CE
Z T

0

keÿkh�if �t; ��k2Hm dt � keÿkh�igk2Hm

� �
; �3:13�

where the constant C > 0 only depends on m, T and Km.
Furthermore, if m � 2, the weak solution �u; q� becomes the unique

adapted strong solution of (1.1); if m > 2� n=2, then �u; q� is the unique
adapted classical solution of (1.1).

In the case that (3.2) is replaced by (3.5) or (3.6), the above con-
clusion remains true; and if (3.5) holds, the estimate (3.13) can be im-
proved to the following:

max
t2�0;T �

Ekeÿkh�iu�t; ��k2H m � E
Z T

0

keÿkh�iq�t; ��k2Hm dt

�
X
jaj�m

E
Z T

0

Z
Rn
hAD�@a�eÿkh�iu��;D�@a�eÿkh�iu��i dx dt

� CE
Z T

0

keÿkh�if �t; ��k2Hm dt � keÿkh�igk2Hm

� �
; �3:14�
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Finally, if in addition to (3.5), (2.5) holds for some d > 0, then (3.14) can
be further improved to the following:

max
t2�0;T �

Ekeÿkh�iu�t; ��k2Hm � E
Z T

0

�keÿkh�iu�t; ��k2Hm�1 � keÿkh�iq�t; ��k2Hm

	
dt

� CE
Z T

0

keÿkh�if �t; ��k2Hmÿ1 dt � keÿkh�igk2Hm

� �
: �3:15�

Clearly, (3.12) means that f and g can have an exponential growth
as jxj ! 1. This is good enough for many applications.

4. Uniqueness of adapted solutions

In this section we are going to establish the uniqueness of adapted
weak (whence strong and classical) solutions to our BSPDEs. We ®rst
note that since the equation is linear, the uniqueness of weak solutions
among those that satisfy (3.4) is immediate. To wit, if �ui; qi�, i � 1; 2
are two adapted solutions that both satisfy (3.4) with m � 1, say, then
�û; q̂��D �u1 ÿ u2; q1 ÿ q2� will be a solution to the homogeneous
BSPDE (f � g � 0). Thus it follows from (3.4) that û � 0 and q̂ � 0.
The purpose of this section, however, is to prove uniqueness without
using estimate (3.4), since one does not know a priori that all the weak
solutions would satisfy (3.4). We also note that the conditions for
uniqueness are much weaker than those for existence (for instance, the
symmetry condition (3.2) is not needed), since only the weak solutions
will be considered, thanks to the discussion right before Proposition
2.3. For notational convenience, we denote

Lu �D 1
2r��ADu� � ha;Dui � cu; Mq�D r��Bq� � hb; qi : �4:1�

Then equation (1.1) is the same as the following:

du � ÿ�Lu�Mq� f
	

dt � hq; dW �t�i; �t; x� 2 �0; T � �Rn;

ujt�T � g : �4:2�

(
the main result of this section is the following theorem.

Theorem 4.1. Suppose that the parabolicity condition (1.2) holds; and
that (3.3) and �H�m hold for m � 1. Then (4.2) admits at most one
adapted weak solution �u; q� in the class

u 2 CF��0; T �; L2�X; H1�Rn���;
q 2 L2

F�0; T ; L2�Rn; Rd�� :

(
�4:3�
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To prove the above uniqueness theorem, we need some prepara-
tions. First let us recall the Gelfand triple H1�Rn� ,!
L2�Rn� ,!Hÿ1�Rn�. Here, Hÿ1�Rn� is the dual space of H1�Rn�, and
the embeddings are dense and continuous. We denote the duality
paring between H1�Rn� and Hÿ1�Rn� by h�; �i0, and the inner product
and the norm in L2�Rn� by ��; ��0 and j � j0, respectively. Then, by
identifying L2�Rn� with its dual L2�Rn��, we have the following:

hw;ui0 � �w;u�0 �
Z

Rn
w�x�u�x� dx; 8w 2 L2�Rn�; u 2 H1�Rn� ;

�4:4�
and Xn

i�1
@iwi 2 Hÿ1�Rn�; 8wi 2 L2�Rn�; 1 � i � n;DXn

i�1
@iwi;u

E
0�D ÿ

Z
Rn

wi�x�@iu�x� dx; 8u 2 H1�Rn� :

8>>><>>>: �4:5�

Next, let �u; q� be an adapted weak solution of (4.2) satisfying (4.3).
Note that in (4.3), the integrability of �u; q� in x is required to be
global. By (4.4)±(4.5), we see that Lu�Mq 2 L2

F�0; T ; Hÿ1�Rn��,
and consequently (2.13) holds for any u 2 H1�Rn� (not just C10 �Rn�).
Namely,

d�u;u�0 � ÿhLu�Mq� f ;ui0 dt � h�q;u�0; dW �t�i; t 2 �0; T �;
�u;u�0

��
t�T � �g;u�0 : �4:6�

(
Here, �q;u�0�D ��q1;u�0; . . . ; �qd ;u�0� and q � �q1; . . . ; qd�. In the se-
quel we shall say that (4.2) holds in Hÿ1�Rn� if (4.6) holds for all
u 2 H1�Rn�.

The following form of ItoÃ 's formula can be found in [17].

Lemma 4.2. Let n 2 L2
F�0; T ; Hÿ1�Rn�� and �u; q� satisfy (4.3), such

that
du � n dt � hq; dW �t�i; t 2 �0; T � :

Then for t 2 �0; T � it holds that

ju�t�j20 � ju�0�j20 �
Z t

0

�
2hn�s�; u�s�i0 � jq�s�j20

	
ds

� 2

Z t

0

h�q�s�; u�s��0; dW �s�i :
�4:7�

Proof of Theorem 4.1. We need only show that if �u; q� is any adapted
weak solution of (4.2) with f � g � 0 and (4.3) holds, then �u; q� � 0.
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To this end, applying Lemma 4.2, and noting that Lu�Mq 2 L2
F�0;

T ; Hÿ1�Rn��, we have, for t 2 �0; T �,

Eju�t�j20 � E
Z T

t

�
2hLu�s� �Mq�s�; u�s�i0 ÿ jq�s�j20

	
ds

� E
Z T

t

Z
Rn
ÿhADu;Dui � ha;D�u2�i � 2cu2
�

ÿ 2hq;BT Dui � 2hbu; qi ÿ jqj2g dx ds

� E
Z T

t

Z
Rn
fÿh�Aÿ BBT �Du;Dui ÿ jq� BT Duÿ buj2

� �b2 � 2cÿr � �a� Bb��u2g ds

� C
Z T

t
Eju�s�j20 ds :

�4:8�

Thus Gronwall's inequality leads to Eju�t�j20 � 0, t 2 �0; T �, i.e., u � 0.
By (4.8) again, we must also have q � 0. This proves the uniqueness of
adapted weak solutions to (4.2). (

5. Existence of adapted solutions

In this section we prove the existence part of Theorem 3.1. We shall
start with two technical lemmas that will be useful in the proof. The
®rst Lemma is fundamental, but its proof is rather technical and
lengthy. We therefore postpone its proof to the next section in order
not to disturb our discussion.

Lemma 5.1. Let the parabolicity condition (1.2) and the symmetry
condition (3.2) hold. Let �H�m hold for some m � 1. Then, there exists a
constant C > 0, such that for any u 2 C10 �Rn� and q 2 C10 �Rn; Rd�, it
holds thatZ

Rn

( X
jaj�m

�h�Aÿ BBT �D�@au�;D�@au�i � jBT D�@au� � @aqj2	
�

X
jaj�mÿ1

j@aqj2
)

dx

� C
Z

Rn

X
jaj�m

�ÿ 2�@au�@a�Lu�Mq� � j@aqj2 � j@auj2	 dx;

a.e.t 2 �0; T �; a.s. �5:1�
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The above remains true if (3.5) or (3.6) holds instead of (3.2); and in the
case (3.6) holds, the above can be replaced by the following:Z

Rn

n X
jaj�m

hAD�@au�;D�@au�i �
X
jaj�m

j@aqj2
o

dx

� C
Z

Rn

X
jaj�m

n
ÿ 2�@au�@a�Lu�Mq� � j@aqj2 � j@auj2

o
dx;

a.e. t 2 �0; T �; a.s. �5:2�
In addition to (3.5), if A�t; x� is uniformly positive de®nite, then (5.2) can
further be improved to the following:Z

Rn

n X
jaj�m�1

j@auj2 �
X
jaj�m

j@aqj2
o

dx

� C
Z

Rn

X
jaj�m

�ÿ 2�@au�@a�Lu�Mq� � j@aqj2 � j@auj2	 dx;

a.e. t 2 �0; T �; a.s. �5:3�

Lemma 5.2. Let F 2 Hm�Rn� and G 2 Hm�Rn�n, such that

�F ;u�m � �G;Du�m; 8u 2 C10 �Rn� : �5:4�
Then

�F ;u�0 � �G;Du�0; 8u 2 C10 �Rn� :
Proof. Let S�D S�Rn� be the set of all u 2 C1�Rn�, such that

Ua;b�u��D sup
x2Rn
jxa@bu�x�j <1; 8a; b :

Under the family of semi-norms Ua;b, S is a FreÂ chet space. Also,
C10 �Rn� is a dense subset of S. Thus, (5.4) holds for all u 2S. Next,
it is known that (see [8, p. 161]) the Fourier transformation u 7! û is
an isomorphism ofS onto itself. Applying Parseval's formula to (5.4),
we obtainZ

Rn
�F̂ �n� ÿ hĜ�n�; ni�

X
jaj�m

jnaj2
0@ 1Aû�n� dn � 0; 8u 2 C10 �Rn� :

�5:5�
Now, for any w 2 C10 �Rn�, we have ŵ�n��Pjaj�m jnaj2�ÿ1 2S. Thus,

there exists a u 2S, such that û�n� � ŵ�n��Pjaj�m jnaj2�ÿ1. Com-
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bining this with (5.5) and using Parseval's formula again we obtain

that �F ;w�0 � �G;Dw�0, for all w 2 C10 �Rn�, proving the lemma. (

Proof of Theorem 3.1. We start with the case of weak solution. Let
fukgk�1 � C10 �Rn� be an orthonormal basis for the Hilbert space
Hm � Hm�Rn�, and we denote the inner product in Hm by

�u;w�m �
Z

Rn

X
jaj�m

�@au��@aw� dx; 8u;w 2 Hm : �5:6�

Denote jujm � �u;u�1=2m ; and as a usual convention, H0 � L2�Rn�.
When q � �q1; . . . ; qd�, p � �p1; . . . ; pd� 2 �Hm�d , we denote �q; p�m �Pd

i�1�qi; pi�m.
Let k � 1 be ®xed. Consider the following linear BSDE:

dukj �ÿ
Xk

i�1 �Lui;uj�muki � h�Mui;uj�m; qkii� �� �f ;uj�m
n o

dt

� hqkj; dW �t�i;
ukj�T � � �g;uj�m; 1 � j � k :

8>><>>:
It is by now standard (see e.g., [18]) that there exists a unique adapted
solution ukj��� 2 CF��0; T �; R�, and qkj��� 2 L2

F�0; T ; Rd�, 1 � j � k.
Let

uk�t; x;x� �
Xk

j�1
ukj�t;x�uj�x�; qk�t; x;x� �

Xk

j�1
qkj�t;x�uj�x� ;

for �t; x;x� 2 �0; T � �Rn � X. Then we see that for any ®xed
�t;x� 2 �0; T � � X, uk�t; �;x� 2 C10 �Rn�, and qk�t; �;x� 2 C10 �Rn; Rd�.
Further, if we denote Pk : Hm ! spanfu1; . . . ;ukg�D Hm

k , to be the
orthogonal projection in Hm, then obviously we have �P k�� � P k, and
Pkuk � uk, k � 1, since uk (as well as qk

1; . . . ; qk
d with qk � �qk

1; . . . ; qk
d�)

are Hm
k -valued processes. Now let f k � Pkf and gk � Pkg, then clearly

the following holds:

duk � ÿPk�Luk �Mqk� ÿ f k
� 	

dt � hqk; dW �t�i;
uk
��
t�T � gk :

�
�5:7�

We now derive the estimate for �uk; qk�. By Lemma 5.1, we haveZ
Rn

� X
jaj�m

h�Aÿ BBT �D�@auk�;D�@auk�i�
:� jBT D�@auk� � @aqkj2g

�
X
jaj�mÿ1

j@aqkj2
�

dx

� C
Z

Rn

X
jaj�m

�ÿ 2�@auk�@a�Luk �Mqk� � j@aqkj2 � j@aukj2	 dx : �5:8�
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On the other hand, applying ItoÃ 's formula to j@aukj2 and using inte-
gration by parts we have from (5.7) that

E
Z

Rn

X
jaj�m

�j@agk�x�j2 ÿ j@auk�t; x�j2	 dx

� E
Z T

t

Z
Rn

X
jaj�m

�
2�@auk�@a

�
Pk
ÿÿLuk ÿMqk�ÿ f k�� j@aqkj2

�
dx ds

� E
Z T

t

�
ÿ 2�uk; Pk�Luk �Mqk� � f k�m � jqkj2m

�
ds

� E
Z T

t

�
ÿ 2�uk;Luk �Mqk � f k�m � jqkj2m

�
ds

� E
Z T

t

Z
Rn

X
jaj�m

�
ÿ2�@auk�@a�Luk �Mqk�

� j@aqkj2 ÿ 2�@auk��@af k�
�

dx ds

� 1

C
E
Z

Rn

� X
jaj�m

�h�Aÿ BBT �D�@auk�;D�@auk�i � jBTD�@auk� � @aqkj2	

�
X
jaj�mÿ1

j@aqkj2
�
ÿ
X
jaj�m

�j@aukj2 � 2�@auk��@af k�	 dx ds : �5:9�

We remark here that for the ®rst equality in the above we assumed
without loss of generality that the expectation of the stochastic inte-
gral appearing in the ItoÃ 's formula is zero. In general one can always
``localize'' to such a case via a sequence of stopping times, and then
pass to the limit, thanks to the Dominated Convergence Theorem.
Moreover, the third equality in (5.9) is due to the fact that �P k�� � P k

and P kuk � uk. Combining (5.8) and (5.9), and modifying the constant
C if necessary, we obtain
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Z
Rn

X
jaj�m

�h�Aÿ BBT �D�@auk�;D�@auk�i
8<:
�jBT D�@auk� � @aqkj2	� X

jaj�mÿ1
j@aqkj2

9=; dx

� C

(
Ejgkj2m ÿ Ejuk�t�j2m � E

X
jaj�m

Z T

t

Z
Rn

�
2�@auk��@af k�

� j@aukj2� dx ds

)
� C Ejgkj2m ÿ Ejuk�t�j2m �

Z T

t
E
�juk�s�j2m � jf k�s�j2m

�
ds

� �
: �5:10�

By Gronwall's inequality, we have

max
t2�0;T �

Ejuk�t�j2m � E
Z T

0

jqk�t�j2mÿ1 dt

�
X
jaj�m

E �
Z T

0

Z
Rn

�h�Aÿ BBT �D�@auk�;D�@auk�i

� ��BT �D�@auk�� � @aqk
��2	 dx dt

� CE
Z T

0

jf k�t�j2m dt � jgkj2m
� �

� CE
Z T

0

jf �t�j2m dt � jgj2m
� �

:

�5:11�
Note that the constant C > 0 in (5.11) only depends on T , m and Km,
and the right side is independent of k, so we may conclude that

uk ! u; weak� in L1F�0; T ; L2�X; H `��; 0 � ` � m;
qk ! q; weakly in L2

F�0; T ; H `�d ; 0 � ` � mÿ 1 ;

�
�5:12�

and for any jaj � m,

�Aÿ BBT �1=2D�@auk� ! �Aÿ BBT �1=2D�@au�;
BT �D�@auk�� � @aqk ! BT �D�@au�� � @aq; weakly in L2

F�0; T ; H0� :

(

Now by Mazur's theorem, �u; q� is in fact a strong limit of certain
sequence of the convex combinations of �uk; qk�'s. Note again that the
right side of (5.11) is independent of k, we can take limit in (5.11)
(along the sequence of the convex combinations if necessary) to show
that �u; q� also satis®es the estimate (5.11), or in other words, (3.4). It
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remains to prove that �u; q� is a weak solution of (4.2). To this end, let
us take q 2 H1�0; T � such that q�0� � 0, q�T � � 1, 0 � q�t� � 1, for all
t 2 �0; T �. Next, let ` > 0 be ®xed and k � `. For any
u 2 Hm

` � C10 �Rn�, from (5.7) and the fact Pku � u, we have

�gk;u�m �
Z T

0

_q�t��uk�t�;u�m ÿ q�t��Luk�t� �Mqk�t� � f k�t�;u�m
� 	

dt

�
Z T

0

q�t�h�qk�t�;u�m; dW �t�i :

By the de®nition of L and M, using integration by parts, we obtain

�gk;u�m �
Z T

0

_q�t��uk�t�;u�m ÿ q�t��ÿ 1
2�A�t�Duk�t� � B�t�qk�t�;Du�m

�
��ha�t�;Duk�t�i�c�t�uk�t��hb�t�; qk�t�i�f k�t�;u�m

�	
dt

�
Z T

0

q�t�h�qk�t�;u�m; dW �t�i; a.s. �5:13�

If we denote

F �x;x� � gk ÿ
Z T

0

�
_q�t�uk�t� ÿ q�t��ha�t�;Duk�t�i � c�t�uk�t�

� hb�t�; qk�t�i � f k�t��	 dt ÿ
Z T

0

hq�t�qk�t�; dW �t�i;

G�x;x� �
Z T

0

q�t�� 12 A�t�Duk�t� � B�t�qk�t�� dt ;

8>>>>>>>>><>>>>>>>>>:
then (5.13) reads �F ;u�m � �G;Du�m, for all u 2 C10 �Rn�, a.s.. So by
Lemma 5.2 we must have �F ;u�0 � �G;Du�0, for all u 2 C10 �Rn�, a.s.,
which means

�gk;u�0 �
Z T

0

_q�t��uk�t�;u�0 ÿ q�t�hLuk�t� �Mqk�t� � f k�t�;ui0
� 	

dt

�
Z T

0

q�t�h�qk�t�;u�0; dW �t�i; a.s. �5:14�

We are now going to let k !1 in (5.14) in order to obtain the similar
equality for �u; q�. Note that by (5.12) with ` � 1 for uk and ` � 0 for
qk, together with the convergence of �f k; gk� to �f ; g�, we can pass to
the limit in (5.14) weakly in L2�X� for all terms except the last term
which involves the ItoÃ integral. To treat this last term, we de®ne
K : L2

F�0; T ; H0�d ! L2�X� by
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Kp �
Z T

0

q�t�h�p�t�;u�0; dW �t�i; 8p 2 L2
F�0; T ; H0�d :

Then it is easy to check that K is a bounded linear operator. Thus, for
any g 2 L2�X�, one has

E g
Z T

0

q�t�h�qk�t� ÿ q�t�;u�0; dW �t�i
� �

� �g;K�qk ÿ q��L2�X�

��K�g; qkÿq�L2
F
�0;T ;H0�d!0 :

Hence, it follows from (5.14) that

�g;u�0 �
Z T

0

_q�t��u�t�;u�0 ÿ q�t�hLu�t� �Mq�t� � f �t�;ui0
� 	

dt

�
Z T

0

q�t�h�q�t�;u�0; dW �t�i; a.s. �5:15�

Now, ®xed any t 2 �0; T �. For e > 0 small enough we let

qe�s� �
0; s � t ÿ e=2;
1
2� sÿt

e ; t ÿ e=2 < s < t � e=2;
1; s � t � e=2 :

8<:
Replacing q � qe in (5.15) and letting e! 0, we obtain that, for all
u 2 C10 �Rn�,

�g;u�0 ��u�t�;u�0 ÿ
Z T

t
hLu�t� �Mq�t� � f �t�;ui0 dt

�
Z T

t
h�q�t�;u�0; dW �t�i ;

almost surely. This means that �u; q� is an adapted weak solution of
(4.2).

Now suppose that m � 2. From (3.4) we see that (2.11) holds and
thus, by Proposition 2.3, �u; q� becomes an adapted strong solution. If
one has further that m > 2� n=2, then by Sobolev's embedding the-
orem, (2.9) holds and therefore �u; q� becomes an adapted classical
solution, thanks again to Proposition 2.3. The proof is now com-
plete. (

Proof of Theorem 3.2. We assume now that (3.5) or (3.6) holds instead
of (3.2). Since (5.1) still holds by Lemma 5.1, all the proof that we
have presented above remains true. Further, if (3.5) holds, then we
have (5.2), which leads to estimate (3.7); in addition, if A�t; x� is uni-
formly positive de®nite, a little more computation would yield (3.8).
In fact, in this case we can use integration by parts in the last step of
(5.9) to get
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E
X
jaj�m

Z T

t

Z
Rn

2�@auk��@af k� dx ds � CE
Z T

t

�juk�s�j2m�1 � jf k�s�j2mÿ1
	

ds :

We leave the details of the proof to the interested readers. (

6. Proof of Lemma 5.1

We now proof the fundamental lemma of this paper: Lemma 5.1. Let
` �D jaj � m. For any u 2 C10 �Rn� and q 2 C10 �Rn; Rd�, by de®nition
of L and M (see (4.1)), and di�erentiation, we have

Ia�D
Z

Rn
ÿ2�@au�@a�Lu�Mq� � j@aqj2
n o

dx

�
Z

Rn

n
ÿ 2�@au�@a

h
1
2r � �ADu� � ha;Dui � cu

�r � �Bq� � hb; qi
i
� j@aqj2

o
dx

�
Z

Rn
ÿ2�@au�

h
1
2r � �AD�@au�� � ha;D�@au�i

n
� c�@au� � r � �B�@aq�� � hb; @aqi

i
� j@aqj2 ÿ 2�@au�

�
X

0�b<a

Cab

h
1
2r � ��@aÿbA�D�@bu�� � h@aÿba;D�@bu�i

��@aÿbc��@bu� � r � ��@aÿbB��@bq�� � h@aÿbb; @bqi
io

dx

� Ia
0 �Ia

1 �Ia
2 �Ia

3 ;

where Cab is a positive integer depending on a and b, and

Ia
0 �

Z
Rn

n
�ÿ2@au�

h
1
2r � �AD�@au�� � ha;D�@au�i � c�@au�

� r � �B�@aq�� � hb; @aqi
i
� j@aqj2

o
dx;

Ia
1 � ÿ2

Z
Rn

X
0�b<a

Cab�@au�
h
1
2r���@aÿbA�D�@bu��

� h@aÿba;D�@bu�i � �@aÿbc��@bu� � h@aÿbb; @bqi
i

dx;

Ia
2 � ÿ2

R
Rn

P
0�b<a
jbj<jajÿ1

Cab�@au�r � ��@aÿbB��@bq�� dx;

Ia
3 � ÿ2

R
Rn

P
0�b<a
jbj�jajÿ1

Cab�@au�r � ��@aÿbB��@bq�� dx :

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:
�6:5�
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We note that in the case ` � 0, Ia
1, I

a
2 and Ia

3 are all absent. To
estimate Ia

i , i � 0; 1; 2; 3, we ®rst note that A and B are Cm�1
b in x,

which immediately yields that

jIa
1j � jIa

2j � C
ÿjuj2` � jqj2`ÿ1� : �6:6�

Furthermore, using integration by parts, we have

Ia
0 �

Z
Rn
hAD�@au�;D�@au�i � 2h@aq;BT D�@au�i � j@aqj2
n
ÿha;D��@au�2�i ÿ 2c�@au�2 ÿ 2hb�@au�; @aqi

o
dx

�
Z

Rn
h�Aÿ BBT �D�@au�;D�@au�i � jBT D�@au�j2
n
� j@aqj2 � 2h@aq;BT D�@au�i ÿ 2hb�@au�; @aqi
ÿ2hBT D�@au�; b�@au�i � �r � �aÿ Bb� ÿ 2c��@au�2

o
dx :

�6:7�
Also, we note that for b < a with jbj � jaj ÿ 1, doing integration by
parts again we have

ÿ
Z

Rn
�@au�r � ��@aÿbB��@bq�� dx �

Z
Rn
�@bu�r � f@aÿb��@aÿbB��@bq��g dx

� ÿ
Z

Rn
hD�@bu�; �@aÿbB�@aq� �@2�aÿb�B�@bqi dx

� ÿ
Z

Rn

�h�@aÿbBT �D�@bu�; @aqi � hD�@bu�; �@2�aÿb�B�@bq�i	 dx :

�6:8�
Thus, it follows that

Ia
0 �Ia

3 �
Z

Rn

(
h�Aÿ BBT �D�@au�;D�@au�i

� BT D�@au� � @aqÿ b�@au� ÿ
X
0�b<a
jbj�jajÿ1

Cab�@aÿbBT �D�@bu�

�������
�������
2

ÿ jb�@au�j2 ÿ
X
0�b<a
jbj�jajÿ1

Cab�@aÿbBT �D�@bu�

�������
�������
2

� 2
X
0�b<a
jbj�jajÿ1

Cabh�@aÿbBT �D�@bu�;BTD�@au�i
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ÿ 2
X
0�b<a
jbj�jajÿ1

Cabh�@aÿbBT �D�@bu�; b�@au�i

� �r � �aÿ Bb� ÿ 2c��@au�2

ÿ2
X
0�b<a
jbj�jajÿ1

CabhD�@bu�; �@2�aÿb�B��@bq�i
)

dx :

�6:9�

Note thatZ
Rn

BT D�@au� � @aqÿ b�@au� ÿ
X
0�b<a
jbj�jajÿ1

Cab�@aÿbBT �D�@bu�

�������
�������
2

dx

� 1
2

Z
Rn

��BT D�@au� � @aq
��2 dx

ÿ 1
2

Z
Rn

b�@au� �
X
0�b<a
jbj�jajÿ1

Cab�@aÿbBT �D�@bu�

�������
�������
2

dx

� 1
2

Z
Rn

BT D�@au� � @aq
�� ��2 dxÿ Cjuj2` : �6:10�

Combining (6.6), (6.9)±(6.10) yields

Ia � Ia
0 �Ia

1 �Ia
2 �Ia

3 �
Z

Rn

n
h�Aÿ BBT �D�@au�;D�@au�i:

�1
2 jBT D�@au� � @aqj2

o
dx ÿ C�juj2` � jqj2`ÿ1�

� 2

Z
Rn

X
0�b<alpha
jbj�jajÿ1

Cabh�@aÿbBT �D�@bu�;BT D�@au�i dx : �6:11�

To estimate the last term in the above, we use the symmetry condition
(3.2). For b < a, jbj � jaj ÿ 1, we haveZ

Rn
h�@aÿbBT �D�@bu�;BT D�@au�i dx �

Z
Rn
h�B@aÿbBT �D�@bu�;D�@au�i dx

�
Z

Rn

1
2 @aÿbh�B@aÿbBT �D�@bu�;D�@bu�i�
ÿh@aÿb�B@aÿbBT �D�@bu�;D�@bu�i� dx

� ÿ 1
2

R
Rn h@aÿb�B@aÿbBT �D�@bu�;D�@bu�i dx � ÿCjuj2` : �6:12�

Then (6.11) becomes
Ia � Ia

0 �Ia
1 �Ia

2 �Ia
3

�
Z

Rn

n
h�Aÿ BBT �D�@au�;D�@au�i

� 1

2
jBT D�@au� � @aqj2

o
dx ÿ C�juj2` � jqj2`ÿ1� : �6:13�
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Now, we sum (6.13) up for all jaj � ` to get the following:

W`�D
X
jaj�`

Z
Rn
ÿ2�@au�@a�Lu�Mq� � j@aqj2
n o

dx

� 1

2

X
jaj�`

Z
Rn
h�Aÿ BBT �D�@au�;D�@au�i � jBT D�@au� � @aqj2
n o

dx

ÿ C�juj2` � jqj2`ÿ1� : �6:14�
Thus, it follows that

U`�D
X
jaj�`

Z
Rn
h�Aÿ BBT �D�@au�;D�@au�i � jBT D�@au� � @aqj2
n o

dx

� C W` � juj2` � jqj2`ÿ1
� �

: �6:15�
Note that

j@aqj2 � 2jBT D�@au� � @aqj2 � 2jBT D�@au�j2 : �6:16�
Using the parabolicity condition (1.2) and the de®nition of U` (see
(6.15)), we have

jqj2`ÿ1 � C�U`ÿ1 � juj2`� : �6:17�
Consequently, from (6.15) and (6.17), we obtain

U` � C�W` � U`ÿ1 � juj2`�; 1 � ` � m : �6:18�
On the other hand, for ` � 0 (i.e., a � 0), we haveZ

Rn
ÿ2u�Lu�Mq� � jqj2
n o

dx

�
Z

Rn

n
ÿ 2u

h 1
2
r��ADu� � ha;Dui � cu�r��Bq� � hb; qi

i
� jqj2

o
dx

�
Z

Rn

n
h�Aÿ BBT �Du;Dui � jBT Duj2 � jqj2 � 2hq;BT Dui ÿ 2hbu; qi
ÿ 2hBT Du; bui � �r � �a� Bb� ÿ 2c�u2

o
dx

�
Z

Rn

�h�Aÿ BBT �Du;Dui � ��BT Du� qÿ bu
��2	 dxÿ Cjuj20

� 1

2

Z
Rn

�h�Aÿ BBT �Du;Dui � ��BT Du� q
��2	 dxÿ Cjuj20 : �6:19�

This implies

U0 � C
Z

Rn

�ÿ 2u�Lu�Mq� � jqj2	 dx� Cjuj20
� �

: �6:20�

Hence, it follows from (6.18) and (6.20) that
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Um � C�Wm � juj2m� ; �6:21�
which is the same as (5.1).

In the case that (3.5) holds (and (3.2) is not assumed), we need to
replace (6.12) by another proper estimate. To this end, we use the
following estimate:Z

Rn
h�@aÿbBT �D�@bu�;BT D�@au�i dx

� ÿe
Z

Rn
jBT D�@au�j2 dxÿ C

Z
Rn
jD�@bu�j2 dx ; �6:22�

for small enough e > 0 to getZ
Rn
h�Aÿ BBT �D�@au�;D�@au�i�
� 2

X
0�b<a
jbj�jajÿ1

Cabh�@aÿbBT �D�@bu�;BT D�@au�i

� e0
2

Z
Rn
h�Aÿ BBT �D�@au�;D�@au�i dxÿ Cjuj2` : �6:23�

Then, we still have (6.15) and ®nally have (6.21) which is the same as
(5.1).

In the case (3.6) holds (without assuming (3.2)), we use the fol-
lowing estimate: (note b < a)Z

Rn
h�@aÿbBT �D�@bu�;BT D�@au�i dx

�
Z

Rn
h�@aÿbBT �D�@bu�; @aÿb�BT D�@bu�� ÿ �@aÿbBT �D�@bu�i dx

� ÿ
Z

Rn

�h�@2�aÿb�BT �D�@bu�;BT D�@bu�i
� h�@�aÿb�BT �D�@au�;BT D�@bu�i � j�@aÿbBT �D�@bu�j2	 dx

� ÿe
Z

Rn

ÿ
@aÿbBT �D�@au��� ��2 dxÿ Cjuj2` ; �6:24�

for e > 0 small enough to obtain (6.23) and ®nally to obtain (6.21).
Note that in the case (3.5) holds, we have (3.8). Then, (5.2) follows

from (5.1) easily. Finally, if in addition, (2.7) also holds, then, (5.3)
follows from (5.2). This completes the proof of Lemma 5.1. (

7. Comparison theorems

In this section we present some comparison theorems for the adapted
solutions of di�erent BSPDEs. For convenience, we consider BSPDEs
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of form (2.3), for which we have the well-posedness under proper
conditions (see the discussion at the end of x3). Let us denote (com-
pare (4.1))

Lu�D 1

2
tr�AD2u� ÿ ha;Dui ÿ cu; Mq�D tr�BT Dq� ÿ hb; qi;

�Lu�D 1

2
tr��AD2�u� ÿ h�a;D�ui ÿ �cu; �Mq�D tr��BT D�q� ÿ h�b; �qi :

8><>: �7:1�

Consider the following BSPDEs:

du � ÿ�Lu�Mq� f
	

dt � hq; dW �t�i; �t; x� 2 �0; T � �Rn;
u
��
t�T � g : (7.2)

�
d�u � ÿ� �L�u� �M�q� �f

	
dt � h�q; dW �t�i; �t; x� 2 �0; T � �Rn;

�u
��
t�T � �g : (7.3)

�
Note that (7.2) and (4.2) are a little di�erent in that the latter is in a
divergence form, while the former is in a general form. Throughout this
section, we assume that the parabolicity condition (1.2), the symmetry
condition (3.2) and (H)m (for some m � 2) hold for fA;B; a; b; cg, and
f�A; �B; �a; �b;�cg. Then by the discussion at the end of x3, we know that
Theorems 3.1±3.3 also hold for (7.2) and (7.3). Namely, for any pairs
�f ; g� and ��f ; �g� satisfying (3.12), there exist unique adapted strong
solutions �u; q� and ��u; �q� to (7.2) and (7.3), respectively, satisfying
estimates of form (3.13). We hope to establish some comparisons
between u and �u in various cases.

Our main result is the following theorem. For a 2 R, we denote
aÿ � ÿ�a ^ 0�, as usual.

Theorem 7.1. Let (1.2), (3.2) and �H�m hold for (7.2) and (7.3), for some
m � 2. Let �f ; g� and ��f ; �g� satisfy (3.12) with some k � 0. Let �u; q�
and ��u; �q� be adapted strong solutions of (7.2) and (7.3), respectively.
Then for some l > 0,

E
Z

Rn
eÿkhxi

�
�u�t; x� ÿ �u�t; x��ÿ

�2

dx

� el�Tÿt�E
Z

Rn
eÿkhxi

�
�g�x� ÿ �g�x��ÿ

�2

dx � E
Z T

t
el�sÿt�

�
Z

Rn
eÿkhxi

�
��Lÿ �L��u�s; x� � �Mÿ �M��q�s; x�

� f �s; x� ÿ �f �s; x��ÿ
�2

dx ds; 8t 2 �0; T � ; �7:4�
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Proof. We ®rst prove the case when �f � �g � 0 (consequently
�u � �q � 0 by linearity). Also, we assume that �f ; g� satis®es (3.12) with
k � 0. De®ne a function u : R! �0;1� as follows:

u�r� �
r2; r � ÿ1;
�6r3 � 8r4 � 3r5�2; ÿ1 � r � 0;
0; r � 0 :

8<:
We can directly check that u is C2 and u�0� � u0�0� � u00�0� � 0,
u�ÿ1� � 1, u0�ÿ1� � ÿ2, and u00�ÿ1� � 2. Next, for any e > 0, we let
ue�r� � e2u�re�. One shows that

lim
e!0

ue�r� � �rÿ�2; lim
e!0

u0e�r� � ÿ2rÿ; uniformly;

ju00e �r�j � C; 8e > 0; r 2 R; lim
e!0

u00e �r� �
2; r < 0;

0; r > 0 :

(
8>><>>:

Denote â � aÿ 1
2r � A and b̂ � bÿr�B, we have by (2.2) that

1

2
tr�AD2u� � ha;Dui � 1

2
r � �ADu� � hâ;Dui;

tr�BT Dq� � hb; qi � r � �Bq� � hb̂; qi :

8<:
Applying the ItoÃ 's formula to ue�u�, and then integrating with respect
to x, we obtain that (let Qt � �t; T � �Rn)

E
Z

Rn
ue�g�x�� dxÿ E

Z
Rn

ue�u�t; x�� dx

� E
Z

Qt

n
u0e�u�

�ÿ 1

2
r � �ADu� ÿ r � �Bq� ÿ hâ;Dui

ÿ cuÿ hb̂; qi ÿ f
�� 1

2
u00e �u�jqj2

o
dx ds

� E
Z

Qt

n 1

2
u00e �u�

�hADu;Dui � 2hBTDu; qi � jqj2�
ÿ u0e�u�

�hâ;Dui � cu� hb̂; qi � f
�o

dx ds

� E
Z

Qt

n 1

2
u00e �u�

�h�Aÿ BBT �Du;Dui � jBT Du� qÿ b̂uj2�
� 1

2
u00e �u�

�ÿ jb̂j2u2 � 2hBTDu; b̂ui � 2hb̂u; qi�
ÿ hâ;Due�u�i ÿ u0e�u��cu� hb̂; qi � f �

o
dx ds
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� E
Z

Qt

n
ÿ 1

2
u00e �u�jb̂j2u2 � hBb̂;D

Z u

0

u00e �r�r dri

� �u00e �u�uÿ u0e�u��hb̂; qi � �r� â�ue�u� ÿ u0e�u��cu� f �
o

dx ds :

�7:5�
Since

R u
0 u00e �r�r dr � u0e�u�uÿ ue�u�, and lime!0�u00e �u�uÿ u0e�u��

� 2uI�u�0� � 2uÿ � 0; letting e! 0 in (7.5) we obtain

E
Z

Rn
�g�x�ÿ�2 dxÿ E

Z
Rn
�u�t; x�ÿ�2 dx ds

� E
Z

Qt

ÿI�u�0�jb̂j2u2 ÿr � �Bb̂��ÿ2uÿuÿ juÿj2�
n
��r � â�juÿj2 � 2uÿ�cu� f �

o
dx ds

� E
Z

Qt

�ÿjb̂j2 ÿr � �Bb̂� � r � âÿ 2c�juÿj2 ÿ 2uÿfÿ
n o

dx ds

� ÿlE
Z

Qt

�uÿ�2 dx dsÿ E
Z

Qt

�fÿ�2 dx ds ;

where l�D supt;x;x

�ÿr� â�r��Bb̂� � jb̂j2 � 2c� 1
�
<1. Therefore,

by Gronwall's inequality we obtain (7.4) for the case �f � �g � 0 and
k � 0. If k 6� 0, we can prove (7.4) (with �u � �q � �f � �g � 0) by using
transformation (3.9) and working on �v; p� for the transformed
equations.

We now consider the general case when �f 6� 0 and �g 6� 0. It is clear
that

d�uÿ �u� � ÿ�L�uÿ �u� �M�qÿ �q� � �Lÿ �L��u
��Mÿ �M��q� f ÿ �f

	
dt � hqÿ �q; dW �t�i;

�uÿ �u���t�T �gÿ �g :

8><>: �7:6�

Then, using the previous arguments by replacing f by
�Lÿ �L��u� �Mÿ �M��q� f ÿ �f , we derive (7.4) immediately. The
proof is now complete. (

Corollary 7.2. Let the conditions of Theorem 7.1 hold. Then we have the
following direct consequence:

(i) If g�x� ÿ �g�x� � 0, 8x 2 Rn, a.s., and

�Lÿ �L��u�t; x� � �Mÿ �M��q�t; x� � f �t; x� ÿ �f �t; x� � 0; 8�t; x�; a.s. ;

�7:7�
then u�t; x� � �u�t; x�, 8�t; x� 2 �0; T � �Rn, a.s..
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(ii) If L � �L, M � �M, and g�x� � �g�x�, f �t; x� � �f �t; x�,
8�t; x�; a.s., then u�t; x� � �u�t; x�, 8�t; x� 2 �0; T � �Rn, a.s.

(iii) If g�x� � 0, and f �t; x� � 0, 8�t; x�, a.s., then u�t; x� � 0,
a.e.�t; x� 2 �0; T � �Rn, a.s.

Proof. (i) Under the assumption we have

E
Z

Rn
eÿkhxi��u�t; x� ÿ �u�t; x��ÿ	2 dx � 0; 8t 2 �0; T � :

the conclusion follows immediately.

(ii) is a special case of (i).
(iii) follows from (i) by setting �f � �g � 0 and noting that ��u; �q�
� �0; 0� is the unique solution of the corresponding BSPDE.

(

Let us now make an observation on Theorem 7.1. Suppose ��u; �q� is
an adapted strong solution of (7.3). Then (7.7) gives a condition on A,
B, a, b, c, f and g, such that the solution �u; q� of the equation (7.2)
satis®es u � �u. The case when �u � 0 is very useful in the discussion of
the convexity of the solution in the variable x.

The following corollary lists some su�cient condition for (7.7).

Corollary 7.3. Suppose that the assumption of Theorem 7.1 hold.

(i) If �A, �B, �a, �b and �c are independent of x. Let �f and �g be convex in x.
Let ��u; �q� be a strong solution of (7.3). Then, �u is convex in x almost
surely.

(ii) In addition to the assumptions in (i), assume that �f and �g are
nonnegative. If M � �M, and for �t; x� 2 �0; T � �Rn, it holds almost
surely that

A�t; x� � �A�t� � A0�t; x�; c�t; x� � �c�t� � c0�t; x�; a�t; x� � �a�t; x�;
f �t; x� � �f �t; x� � f0�t; x�; g�x� � �g�x� � g0�x� ;

(
�7:8�

where

A0�t; x� � 0; c0�t; x� � 0; f0�t; x� � 0; g0�x� � 0; 8�t; x�; a:s: :
�7:9�

Then u�t; x� � �u�t; x�, 8�t; x�, a.s.
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(iii) If �A, �B, �a, �b, �c, �f and �g are deterministic, and let �u be the solution
of the following equation:

�ut � ÿ �Luÿ �f ; �t; x� 2 �0; T � �Rn;

�u
��
t�T � �g :

(
Suppose that �u�t; x� is convex in x. Then for any solution �u; q� to the
BSPDE (7.2) withL satisfying (7.8)±(7.9), it holds that u�t; x� � �u�t; x�,
8�t; x�, a.s..

Proof. (i) We ®rst assume that f and g are smooth enough in x. Then
the corresponding solution ��u; �q� of (7.3) is smooth enough in x. Now,
for any g 2 Rn, we de®ne

v�t; x� � hD2�u�t; x�g; gi;
p�t; x� � �p1�t; x�; . . . ; pd�t; x��; 8�t; x� 2 �0; T � �Rn; a.s.

pk�t; x� � hD2�qk�t; x�g; gi; 1 � k � d;

8><>:
Then the following holds

dv � �ÿ �Lvÿ �Mp ÿ h�D2�f �g; gi� dt � hp; dW �t�i;
v
��
t�T � h�D2�g�g; gi :

(
�7:23�

By Corollary 7.3 and the convexity of �f and �g (in x), we obtain

hD2�u�t; x�g; gi � v�t; x� � 0; 8�t; x� 2 �0; T � �Rn; g 2 Rn; a:s:

�7:24�
This implies the convexity of �u�t; x� in x almost surely. In the case that
�f and �g are not necessarily smooth enough, we may make approxi-
mation.

(ii) By Corollary 7.2 and part (i), �u is convex and nonnegative.
Thus,

�Lÿ �L��u�t; x� � 1
2tr�A0D2�u� � c0�u � 0 :

The conclusion follows.
(iii) Note that if all the coe�cient are deterministic, then ��u; 0� is

the unique (adapted) strong solution of (7.3). Using the similar ar-
guments as in (ii), and noting that �q � 0, we obtain the assertion
readily. (

We remark that in Corollary 7.3-(iii), the operator M (or equiva-
lently, the coe�cients B and b) are arbitrary.
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8. Discussions

The comparison theorems presented in the previous sections are
strongly motivated by the problems in ®nance, especially by the issue
of robustness of Black-Scholes formula (see [6] for a detailed ex-
position of the problem). Let us quickly recall some facts. The stan-
dard Black-Scholes PDE (see, for example, [11, p.379]) in a one
dimensional version is of the following form:

ut � 1
2x

2r2uxx � xrux ÿ ru � 0; on �0; T � � �0;1�,
u�T ; x� � h�x�; x � 0 .

�
�8:1�

Here, r is the interest rate of the (non-risky) money market and r is
the volatility of the (risky) stock market. If both r and r are constant,
then the Black-Scholes option valuation formula tells us that for the
given European contingent claim h�ST �, where ST is the stock price at
time T , the value of the contingent claim at time t 2 �0; T � is given by

Yt � u�t; St� � Efeÿr�Tÿt�h�ST �jFtg; 0 � t < T : �8:2�
The robustness of the Black-Schole formula concerns the following
problem: suppose a practitioner's information leads him to a mis-
speci®ed value of, say, volatility r, and he calculates the option price
according to this misspeci®ed parameter and equation (8.1), and then
tries to hedge the contingent claim, what will be the consequence? In
[6] it is proved that under certain conditions (in particular that con-
tingent claims have convex payo�s), then the value of European
contingent claim is convex; and, if the misspeci®ed volatility domi-
nates (resp. is dominated by) the true volatility, which is assumed to
be any fFtg-adapted process r���, then the contingent claim price
corresponding to the misspeci®ed volatility dominates (resp. is dom-
inated by) the true contingent claim price. An interesting counterex-
ample is also given in that paper, which shows that if the misspeci®ed
volatility is not the deterministic function of the stock price, the
comparison may fail.

In what follows we give some discussions in this direction, in terms
of our comparison theorems. We note that our discussion is not a
``translation'' of the existing results, but rather a new way of looking
at the problem. However, some of our conclusions do not seem to be
easy consequences of the methods presented in [7].

To begin with, we ®rst recall that in [15] we proved that in the case
where the parameters r and r are allowed to be fFtg-adapted pro-
cesses, the option price can still be written in the form (8.2), but with u
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being replaced by an adapted solution to a BSPDE of the following
form:

du � �ÿ 1
2x

2r2uxx ÿ xrux � ruÿ xrqx ÿ hqg dt ÿ q dW �t�;
on �0; T � � �0;1�;

u�T ; x� � h�x�; x � 0 ;

8>>><>>>: �8:3�

where h � rÿ1�bÿ r� is so-called risk premium process. We remark
that the well-posedness of (8.3) is not the direct consequence of the
results in x3, because the coe�cients of the BSPDE are linear in x
(whence unbounded). However, a simple change of variable: x � ey

would convert the equation to an equivalent BSPDE with random but
bounded coe�cients (see [15] or [4] for detailed calculations), so that
the results of x3 can be applied. The interpretation of this mathe-
matically well-known Euler transformation in ®nance terms is nothing
but to consider the ``log-price'' instead of stock price itself, a common
way to look at the ``geometric Brownian motion''. We also recall that
if all the parameters: r, r, and b are deterministic, then the solution of
(8.3) is �u; 0�, where u is the solution of (8.1). Therefore we at times
consider (8.1) as a special case of (8.3) and apply the results of
BSPDEs to (8.1) as well.

0.1 Convexity of the European contingent claims. Assume that r and r
are stochastic processes, independent of the current stock price. Since
the coe�cients in (8.3) depend on x, we cannot apply Corollary 7.3
directly. But if we di�erentiate (8.3) twice (in x) and denote v � uxx,
p � qxx, then we see that �v; p� satis®es the following (linear) BSPDE:

dv � �ÿ 1
2x

2r2vxx ÿ �2xr2 � xr�vx ÿ �r2 � r�vÿ xrpx

ÿ �2rÿ h�p	 dt ÿ p dW �t�;
v�T ; x� � h00�x� :

8>><>>: �8:4�

Here again the well-posedness of (8.4) can be obtained by considering
its equivalent form after the Euler transformation (since r and r are
independent of x). Moreover, applying Corollary 7.2-(iii) (to the
transformed equation) it is easily seen that v � 0, whenever h00 � 0,
and hence u is convex. Note that since we allow both r and r to be
random, this result seems to be new.

In fact, we can discuss more complicated situation by using the
comparison theorem. For example, let us assume that both r and r are
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deterministic functions of �t; x�, and we assume that they are both C2

for simplicity. Then as we pointed out before, (8.3) coincides with
(8.1). Now di�erentiating (8.1) twice and denoting v � uxx, we see that
v satis®es the following PDE:

0 � vt � 1
2x

2r2vxx � âxvx � b̂v� rxx�xux ÿ u�; on �0; T � � �0;1�,
v�T ; x� � h00�x�; x � 0 ,

�
�8:5�

where

â � 2r2 � 2xrrx � r;

b̂ � r2 � 4xrrx � �xrx�2 � x2rrxx � 2xrx � r :

Now let us denote V � xux ÿ u, then some computation shows that V
satis®es the equation:

0 � Vt � 1
2x

2r2Vxx � ĉxVx � �xrx ÿ r�V ; on �0; T � � �0;1�,
V �T ; x� � xh0�x� ÿ h�x�; x � 0 ,

�
�8:6�

for some function ĉ depending on â and b̂ (whence r and r).
Now we can apply Corollary 7.2 repeatedly (use Euler transfor-

mation if necessary) to get the following results: assume that h is
convex, then

(i) if r is convex and xh0�x� ÿ h�x� � 0, then u is convex.
(ii) if r is concave and xh0�x� ÿ h�x� � 0, then u is convex.
(iii) if r is independent of x, then u is convex.

Indeed, if xh0�x� ÿ h�x� � 0, then V � 0 by Corollary 7.2-(iii). This,
together with the convexity of r and h, in turn shows that the solution
v of (8.5) is non-negative. Namely, u is convex, proving (i). Part (ii)
can be argued similarly. We note that when r is independent of x, (8.5)
becomes a homogeneous equation, thus the convexity of h already
implies that of u, thanks to Corollary 7.2-(iii) again. In fact, this
special case can be proved more directly under weaker conditions. We
refer the interested reader to [7, Theorem 5.2]. We also remark here
that, modulo the smoothness conditions, one can check that a stan-
dard European call option satis®es xh0�x� ÿ h�x� � 0, but European
put option satis®es xh0�x� ÿ h�x� � 0. In other words, in the case when
r depends also on x, the convexity of the value of the European
contingent claim depends further on the type of payo� function,
which is quite di�erent from the case (iii) where the convexity is the
only requirement for h.

Linear, degenerate backward stochastic partial di�erential equations 167



0.2 Robustness of Black-Scholes Formula. Let us ®rst assume that the
only misspeci®ed parameter is the volatility, and denote it by
r � r�t; x�, which is C2 in x; and assume that the interest rate is de-
terministic and independent of the stock price. By the conclusion (iii)
in the previous part we know that u is convex in x. Now let us assume
that the true volatility is an fFtg-adapted process, denoted by r̂,
satisfying

r̂�t� � r�t; x�; 8�t; x�; a.s: �8:7�

Also let us denote the operators corresponding to (8.3) with r and r̂ by
�L̂;M̂�, and that to (8.1) by �L;M�. Let the solution to (8.3) be
�û; q̂�, and that of (8.1) be �u; 0�. Note that both (8.1) and (8.3) are
homogeneous equations, i.e., f̂ � f � 0, thus

�L̂ÿL�u� �M̂ÿM�q� f̂ ÿ f � 1
2x

2�r̂2 ÿ r2�uxx � 0 ; �8:8�
because u is convex. Consequently one has û�t; x� � u�t; x�, 8�t; x�, a.s.,
thanks to Corollary 7.2-(ii).

Now let us assume that the inequality in (8.7) is reversed. Note that
both (8.1) and (8.3) are linear and homogeneous, we see that �ÿû;ÿq̂�
and �ÿu; 0� also satisfy (8.3) and (8.1), respectively, with the terminal
condition being replaced by ÿh�x�. But in this case (8.8) becomes

�L̂ÿL��ÿu� � 1
2x

2�r̂2 ÿ r2��ÿuxx� � 0 ;

because u is convex, and r̂2 � r2. Thus ÿû � ÿu, namely û � u.
Using the similar technique we can again discuss some more

complicated situations. For example, let us allow the interest rate r to
be misspeci®ed as well, but in the form that it is convex in x, say.
Assume that the payo� function h satis®es xh0�x� ÿ h�x� � 0, and that
r̂ and r̂ are true interest rate and volatility such that they are fFtg-
adapted random ®elds satisfying r̂�t; x� � r�t; x�, and r̂�t; x� � r�t; x�,
8�t; x�. Then, using the notation as before, one shows that

�L̂ÿL�u � 1
2x

2�r̂2 ÿ r2�uxx � �r̂ ÿ r��xux ÿ u� � 0 ;

because u is convex, and xux ÿ u � V � 0, thanks to the arguments in
the previous part. Consequently one has û�t; x� � u�t; x�, 8�t; x�, a.s..
Namely, we also derive a one-sided domination of the true values and
misspeci®ed values. One can of course try to get more comparison
results, by combining the arguments before, but we prefer not to
pursue any further, as this is not the main purpose of the paper.
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