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Abstract 

In this paper we prove the existence and uniqueness, as well as the regularity, of  the adapted 
solution to a class of degenerate linear backward stochastic partial differential equations (BSPDE) 
of parabolic type. We apply the results to a class of forward-backward stochastic differential 
equations (FBSDE) with random coefficients, and establish in a special case some explicit formu- 
las among the solutions of FBSDEs and BSPDEs, including those involving Malliavin calculus. 
These relations lead to an adapted version of stochastic Feynman-Kac formula, as well as a 
stochastic Black-Scholes formula in mathematical finance. @ 1997 Elsevier Science B.V. 
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1. Introduction 

In this paper we study a class of (linear) backward stochastic partial differential 
equations (BSPDE for short) of the following type: 

u( t , x , . )  = ,q(x, .) + { ( . ~ u ) ( s , x , . ) + ( , / g q ) ( s , x , . ) + f ( s , x , . ) } d s  

(q(s,x,.),d~), (t,x)C[O,T]×[R"~ (1.1) 

where W= { Wr: t E [0, T]} is a d-dimensional Brownian motion defined on some filtered 
probability space (Q, .:~, P; {~}t~>0), with {-~}t~-0 being the natural filtration generated 
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by W, augmented by all the P-null sets in Y ;  and for ~o E C2(En), ~p E c l ( ~ n ;  ~d): 

= x, + + 

i,j 1 i--I 
(1.2) 

k - I  ( 1 / 1 

We assume that aiJ, ai, ao, b k~ and b ~, i , j ,  k =  1,. . . ,n,  ~ - -1  . . . .  ,d (resp. g) are real- 

valued measurable random fields defined on [0, T] × En × ~2 (resp. A n × •), such that 

for fixed x, they are ~tt-progressively measurable (resp. ~T-measurable). Further, we 
assume that a ij = a ji, i , j  = 1,2 . . . . .  n, and the following paraboficity condition holds: 

(AiJ)~ 2 a i J -  ~-~ bi/bJ/ ) 0 ,  V(t,x)E[O,T]×~" a . s . ~ o C ( 2 ,  (1.3) 
/=1  

where (c ij) denotes a matrix. Our purpose is to find a pair of random fields (u, q): [0, T] 
× lt~" × (2- - -~  × ~  a, such that for each fixed xE~n , {u ( . , x , . ) , q ( . , x , . ) }  is a pair of  
adapted processes, and that (1.1) is satisfied almost surely; and to study the regularity 
of  the solution pair (u,q) in the variable x. 

We should point out here that the stochastic integral in (1.1) is a forward It6 inte- 

gral and the solution pair is assumed to be adapted to the forward filtration { ~ } .  
Therefore our BSPDE is an extension of the backward SDE initiated by Bismut 
(1973), later developed by Pardoux and Peng (1990); and is different from those pre- 
sented by many other authors (e.g., Rozovskii, 1990; Krylov and Rozovskii, 1982; 
Kunita, 1990; Pardoux, 1979, etc.) in which no such adaptedness of the solutions 
was required. The BSPDEs of this kind were originally found useful in stochastic 
control theory. The works concerning the existence, uniqueness and regularity of the 
adapted solution to a BSPDE, mostly in the context of  stochastic maximum prin- 
ciple for optimal control problems involving SPDEs (Zakai equation in particular), 
can be found in, for example, Bensoussan (1983, 1992), Hu and Peng (1991), Peng 
(1992) and Zhou (1992, 1993). However, most of the existing results essentially re- 
quired the so-called superparabolic condition: to wit, the matrix (A ij) in (1.3) is uni- 
formly positive definite. We note that in Zhou (1992, 1993) the degenerate cases 
were discussed, but the results there required that the operator Jg  to be bounded, 
which is unfortunately not the case we are interested in this paper, due to the spe- 
cial form of the BSPDE arising in our applications. As a matter of  fact, it is this 
application (to be described in the next paragraph) that motivated the present pa- 
per; moreover, to our best knowledge, the existence, uniqueness and regularity of  
the adapted solution of a degenerate BSPDE with unbounded Jg  has remained open 
so far. 

The second aim of the paper is to apply the result of  BSPDE to the study of a 
class of  forward backward SDEs (hereafter FBSDEs) with random coefficients, which 
has recently been found useful, apart from stochastic control theory, in mathemati- 
cal finance. In the case when the coefficients of an FBSDE are deterministic, it was 
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proved in our previous work (Ma et al., 1994) that, under certain conditions, the FB- 

SDE has a unique adapted solution over an arbitrarily prescribed time duration; and 

more importantly, the backward and forward components of  such adapted solutions 

can be related explicitly via a classical solution to a backward quasilinear parabolic 
PDE. Some earlier results concerning the solvability o f  an FBSDE can be found in 

Antonelli (1993) and Ma and Yong (1995), using different methods; and the appli- 

cations of  FBSDEs, especially in mathematical finance, can be found in Duffle et al. 
(1995) and Cvitanic and Ma (1996). However, when the coefficients and the termi- 

nal value .? are allowed to be random, the problem becomes much more tbrmidable. 

It turns out that in this case the corresponding PDE has to be replaced by a back- 

ward quasilinear SPDE similar to (1.1) with a strong degeneracy: i.e., the matrix 

(A~ i ) -O ,  and the operator ~f/ is unbounded. We note that the existence and unique- 

ness of  adapted solutions to a class of  FBSDEs with random coefficients was studied 

recently by Hu and Peng (1997) and Peng and Wu (1996), under certain "mono- 

tonicity" conditions on the coefficients. In this paper we do not pursue the general 

solvability of  such FBSDEs, instead we content ourselves with some simpler cases in 

which the structure of  the adapted solution can be clearly seen, based on our results 
in BSPDEs. We establish in a special case the relation between an FBSDE and a 

BSPDE, which leads to an adapted version of  stochastic Feynman Kac formula, and 

later a generalized option pricing formula. The derivation of  these formulas depends 

heavily on the method we have been using, namely, the Four-Step Scheme as presented 

in Ma el al. (1994). 

Finally, we would like to point out that the main difficulty in deriving the satisfactory 

existence, uniqueness and regularity result for a degenerate BSPDE seems to be that the 

best a priori estimate of  Krylov Rozovskii (cf. Krylov and Rozovskii, 1982, or Zhou, 

1993) for a degenerate second first-order differential operator, on which the existing 

method is heavily based, is not strong enough to guarantee the desired convergence of 

the finite-dimensional approximating sequences (see Zhou, 1993 for more discussion on 

this issue). In this paper, however, we shall derive an a priori estimate for the BSPDE 
directly without using the Krylov-Rozovskii  estimate, which enables us to approximate 

the degenerate BSPDE by a sequence of  nondegenerate ones for which the existence 

of  adapted solutions is known; and derive the existence, uniqueness and regularity of  

the adapted solution to a degenerate BSPDE in a different way. For technical reasons, 

in this paper we deal only with the case when the coefficients ( d  i) and (b ~j) are 

independent of  x. And we shall, hopefully, address the more general cases in our 

future publications. 
This paper is organized as follows. In Section 2 we give some preliminaries. Sec- 

tions 3 5 are devoted to the proof of  the existence and uniqueness of  the adapted 
solution to the degenerate BSPDE (1.1). In Sections 6 and 7 we discuss the relation 

between the BSPDE (1.1) and a class of  FBSDEs. We relate their solutions explic- 
itly through a set of  formulas, including those involving Malliavin calculus; and as 
a corollary we derive a stochastic Feynman Kac formula. We note that the relations 
involving the component q o f  the adapted solution to BSPDE (1.1) are new. Finally, 

in Section 8 we apply our result to an option pricing problem in mathematical finance, 
and derive (for the first time) a stochastic Black-Scholes formula. 
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2. Notation and preliminaries 

Throughout this paper we assume that the time duration [0, T] is fixed; and that 
(g2, ~ , P )  is a complete probability space on which is defined a d-dimensional standard 

Brownian motion W =  {Wt: t C [0, T]}. We further assume that the filtration {~}t~>0 
is generated by W, augmented by all the P-null set in ~ ,  and thus satisfies the "usual 

hypotheses" (Protter, 1990). 
For any integer m ~>0, we denote by cm(Rn; ~/)  the set of  functions from ~n to ~ 

that are continuously differentiable up to order m; by C~(~n; R r') the set o f  those func- 
tions in cm(ff~a; ~d') whose partial derivatives up to order m are uniformly bounded. I f  

there is no danger of  confusion, c m ( ~ ;  ~ )  and C~(~=; ~ )  will be abbreviated as C m 
and C~', respectively. We denote the inner product in an Euclidean space E by I', '); and 
the norm in E by ]. ]. With the notation 0x, = 0/0x~, i =  1 . . . .  , n and 27 = (0~,, . . . ,  0x,,)T, 
we shall denote, for any q~CC1(~=), 27cp=(0Xl~P . . . . .  ~x,~p) T. I f  ~ = ( ~ l  . . . . .  ~n) is a 
vector field such that each ~jE CI (~" ) ,  then we denote by 27~ the matrix (0~./)i , j ;  

t /  
and by 27. ~ Y'~i=l 0~,~ ' the divergence of  ~. 

For any multi-index ~=(~1 ,~2 , . . . , ~=) ,  we denote I~]=~1 + :¢2 + " "  + ~= and 

D~ ~ -x '~ '  ¢?~-'~, . . -  0~;I. I f  [~ = (/31, f12 . . . . .  fin) is another multi-index, then by/3  ~< ~ we mean 
that fli<~:¢i for l<<.i<_n; and b y / ~ < ~  we mean that fl~<~ and I/~l <1c¢1. For m~>0, we 
denote by mm'P(~ n) the usual Sobolev space, and Hm(~ n) = Wm'2(~n). In the case of  
no ambiguity, we often write H m, W m'p, etc., instead of  Hm([~n), mm'p(~n), etc. for 

simplicity. 
Finally, for any 1 ~< p, r ~< ~ ,  any Banach space X, and any sub-a-field ~ c_ ~-, we 

denote 

* by LP(E2,X) the set o f  all X-valued, if-measurable random variable ~p such that 
E]lq~][x p <oo ;  and we simply write LP(Q;X)= L~(E2, X) ,  p " • 

* by LP(0,  T ; U ( ~ ; X ) )  the set of  all {~t}-predictable X-valued processes ~p(t,., co): 

[0, T] x ~---~. X such t h a t  I]~OHL%(O,T;L,(Q;X)) ~ {for[El]q~(t)ll~x] p/~ dt} Up < oo. 

Similarly, we can define the space C~([O,T];U(~2;X)), etc.. I f  p = r ,  we shall 
denote P L~(O, T;LP(E2;X)) by L P(0, T;X)  for simplicity. In particular, if  X = ~= and 
p = r  = 2, we denote L2~(0, T) = = L 2 ( 0 ,  T; ~ = ) =  L2(0 ,  T;L2(~; ~n)),  which is the set 

o f  all {~t}-adapted square integrable processes taking values in ~". 
To conclude this section, we recall a useful fact. Let h ~ L2~(0, T; C ~ ' ( ~ ;  ~d)).  Then 

it can be shown (see, for example, Kunita, 1990, Exercise 3.1.5) that the stochastic inte- 
gral with parameter: fo (h(s,x, .), dWs) has a modification that belongs to L~(0 ,  T; C m-~ ) 
and it satisfies 

f'( f0' D ~ h(s,x,.), dW=) = (D~h(s,x,.), d ~ )  for ]~l = 1,2 . . . . .  m - 1. (2.1) 

Consequently, if  h EL2~(O,T;C~), then fo(h(s , . , . ) ,  d ~ ) C L 2 ( O , T ; C ~ ) ;  and (2.1) 
holds for all multi-index ~. 
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3.  A l inear  d e g e n e r a t e  B S P D E  

The main result of  this paper concerns the following BSPDE: for (t ,x)  ~ [0, T] x ~". 

u(t.x, .) = ,q(x, .) + {(SPu)(s,x, .) + ( , f fq ) ( s ,x , . )  + f ( s ,x ,  .)} ds 

j{t T - {q(s,x,.),  d~.}, (3.1) 

where the random differential operators S and , / /  are given as (in vector forms): 

( S u ) ( t , x ,  eJ) = V " (A(t, to)Vu(t .x ,  t,))) + {a(t.x, o)). Vu(t ,x ,  (~))} 

+ ao(t,x, e))u(t,x, u)), (3.2) 

( . / /q) ( t ,x ,e) )  tr{B(t, t o ) rVq( t . x , . ) ) }  + (b(t ,x,(o),q(t .x,  to)); 

and 

A = (aU): [0, T] x P ---, R ' '× ' ,  

B = (b ~/) : [0, T] × ~2 --+ ~,,x~t 

a = ( a  I . . . . .  a") : [0, T] x R" x ~2 --+ IR", 

b (b I . . . . .  b J ) ' [ O , T ] x ~ " x ( 2 - - + ~  d, (3.3) 

a0, j :  [0, T] × ~" x f2 ~ R, 

.q : ~'~ x .Q --,'. R.  

In the sequel, the dependence of  all the functions on u) will be suppressed for the 

simplicity of  notation. We shall make the following assumptions: for an integer m >~ 0. 
(A 1 )m functions A, a, a0, B, b, f and g satisfy: A E L~-(0, T; R ~ × ~); B C L2,,~(0, T; ~" x,t ): 

a E L2-(0, T" c'ml"~,,. ~ L ~ C" R" ' ' ~t, ~°" , I~")); b C Lsz(O. T; C~(IR"; NJ) ) ;  a0 . ~ b - ( o , r ;  ~,i )), 
f EL~-(O, T ;C~ ' (R" )NHm(~" ) ) ;  ~t(=_L{z,(O;C'~(a')~Hm(Nn)). Further, the partial 

derivatives of  a, ao, b , f  and g in x up to order m are bounded unitbrmly in (t,u)). 
by a constant K >0 ;  

(A2) it holds that 2A(t) - B(t)B( t )  r >~0,Vt E [0, T] a.s. 

We remark here that the assumption (A2) allows the degeneracy of  the operator '_/ 

in the sense of  stochastic PDEs. It is such a degeneracy and our intention of  finding 

the adapted solutions to be defined below that distinguish the BSPDE (3.1) from the 

existing ones in the literature, as we pointed out in Section 1. 

D e f i n i t i o n  3.1. (i) A pair of  random fields {(u(t ,x;~o),q(t ,x;eD),  ( t ,x,~o)d [0, T] × 
~ × f2} is called a classical solution of  (3.1), if u E C7([0,  T];L2(f2; C2(~")) )  and 

q E L~-(0, T; Cl (~" ;  ~d)), such that (3.1) is satisfied ['or all it, x )E  [0, T] × R", almost 

surely. 

(ii) A pair of  random fields {(u(t,x; ~,)),q(t,x; u.~)), it, x, eg) c [0, T] × ~" x ~2} is 
called a stronq solution of  (3.1), if u ¢  C~([0, T];L2(f2;H2(R")))  and q CL~,(0, T: 
HI([Rn; [RJ)), such that (3.1) holds for all t ~ [0, T], a.e. x ¢ ~ ,  almost surely. 
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(iii) A pair o f  random fields {(u(t,x;co),q(t,x;~o)), (t,x,e))E[O,T] × Nn × O} is 
called a weak solution of  (3.1), if  u ECg([O,T];L2(g2;HI(Nn))) and q EL~(O,T; 

L 2 ( ~ ; N d ) ) ,  such that VcpEH~(Nn), VtE[0, T], it holds almost surely that (Qt~ 
[t, r ]  × ~') 

~ ,, u(t,x)~o(x) dx 

= f~ng(x)qo(x)dx + ~ ,  {-(A(s)Vu(s,x),Vqo(x)) 

+(a(s,x), Vu(s,x))~o(x) + ao(s,x)u(s,x)~o(s,x)-(Vp(x),e(s)q(s,x)) 

+(b(s,x),q(s,x))~o(x) + f(s,x)~o(x)}dxds- f r  ( ~  q(s,x)~o(x)dx, dm,). 
(3.4) 

The main theorem of  this paper is stated below. The proof  of  the theorem will be 
carried out in the following two sections. 

Theorem 3.2. Let (A1)m and (A2) hold with m >/1. Then, (3.1) admits a unique weak 
solution (u, q) with 

{2A(-) - B(.)B(.)r} I/2Vu( ., .) E L2(0 ,  T;Hm(~n; ~n)), 
(3.5) 

q(. , . )  + B( . ) rVu( . ,  .) E L!f (0, T; Hm(Nn; R a)), 

and the following estimate holds': 

i *  T 
max Ellu(t,-)IF2,,, + E l  Irq(t, ")ll2,,, , dt 

tE[0,T] J0 

+E ~[o'T]xR" { ~< ID~q(t'x) + B(t)TV(D~u(t'x))- ~m 

+ ~ ((2A(t) - B(t)B(t)T)v(O~u(t,x)), V(D~u(t,x))) dx dt 
I~l~<m ) 

C 2 2 {IIUIILg~(O,T;H,,,) + IIglIL%¢~;H,,,)}, (3.6) 

where the constant C depends only on m, T and K. 
Furthermore, if m )2,  the weak solution (u, q) becomes the unique strong solution; 

and if m > 2 + d/2, then (u, q) is the unique classieal solution. 

Remark 3.3. We note that in the case either A ( t ) -  B(t)B(t)v>~6I, a.e. t E [0, T], for 
some 6 >0 ;  or A(t)>~O, B(t)= 0, a.e. t E [0, T], one can easily show that (3.6) leads 
to similar estimates given in Zhou (1993). 

Remark  3.4. The square root o f  the left-hand side of  (3.6) is a norm, under which 
the set o f  all processes (u,q)E C~([0,  T];H m) × L2(O T;H m-l ) with (3.5) being true 
is a Banach space. We will denote this space by ~ m .  
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4. A priori estimates 

In order to prove Theorem 3.2, we first provide an a priori estimate for the solutions 

of  (3.1). We begin by assuming that the coefficients a, ao, b , f  and ,q of  the equation 
(3 . l )  are infinitely differentiable in x with all the partial derivatives up to order m 
being bounded by a constant K , , > 0  for all m>~0. We also assume that (u,q) is an 
adapted solution of  (3.1) such that 

u e C~([0,  r ] ;  L2(~2; C ~ ( R  ") n H ' + ~ ( A " ) ) ) ,  

q ~ L~; (0, T: C ~ ( N  ", R d ) fq Hm(~n; Nd)). 
(4.1) 

We remark here that a random field u (resp. q) satisfying (4.1) can be roughly described 
as one that is continuous (resp. square-integrable) in t, square-integrable in u), and 
infinitely differentiable in x, with all the partial derivatives up to order m + I (resp. m) 
being square-integrable on R n. 

Let ~ be any multi-index, ]~1 ~<m. In this case, by using the fact (2.1) we can apply 
the operator D ~ to both sides of  (3.1) to obtain (suppressing ~)): 

I 
T 

(D~u)(t,x) = (D~g)(x) + D~{(2"u)(s,x) + ( . / /q)(s ,x)  + f ( s , x ) }  ds 

t T - ((D~q)(s,x), dg.,(), (t,x) E [0, T] × E ". (4.2) 

Next, for each n C N, let (p,, E CL([R) such that 

0 ~< q),,(p) ~< 2p A n, 

qMP)  t 2p, q~,,(p) -~ 2, Vp c [~, n --~ oc. 

t? Define 4~,,(p)-= f l  (p,,(r)dr. It is clear that q),, is C 2 and ~,,(p) T p 2, Vpc  ~. Now, by 

It6's formula we have, for each n ~ ~q, that 

~,((D~.q)(x)) cb,,((D~u)(t,x)) 

ft r q~,,((D~u)(s,x))D~{( Pu)(s ,x )  + ( . / /q)(s ,x)  + f ( s , x ) }  ds 

/ 3( 3( 9 + 5 qo,,(D u(s, x l ) l D  ql"(s ,x)ds+ (p,,((D~u)(s,x))(D~q(s,x). dW,). 
, I t  

(4.3 ~ 

Since q),, is bounded, the last term above is a martingale. We can first take expectation, 
and integrate with respect to x over N", then let n---+ 9c by using the Dominated 
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Monotone Convergence Theorem to obtain that (recall Qt = [t, T] x ~n and note (4 .2 ) )  

O ~ E f {(D~g)2(x) - (D:~u)2(t,x)} dx 
JR n 

= - 2 E  f .  (D~u)(s,x)D~{(~u)(s,x) + (Jgq)(s,x) + f ( s , x ) }  dx ds 
a~ 

t 

+ E  f [D~q]Z(s,x)dxds. (4.4) 
a(2 t 

We shall now do a detailed analysis of the right-hand side of (4.4). To begin with, let 
us denote by I the d x d identity matrix, and define 

A =  B 2A -Bb  , q =  V ( D ~ u ) ] .  (4.5) 

- b  T -bT B T l + lbl 2 (D~u) ,] 

Then a direct computation shows that 

qTAq = [D~q] 2 + (2AV(D~u), V(D~u)) + (D~u)2(1 + Ib[ 2) 

+ 2(B(D~q), V(D~u)) - 2(D~u)(b,D~q) - 2(D~u)(Bb, V(D~u)). 

On the other hand, we have 

(: °i)(i 0 i)(' rlT Arl = qT I 2A - BB T 0 I 0 

- b  v 0 0 0 0 1 

(4.6) 

= ]D~q + BT~7(D:~u) - (O~u)bl 2 + ((2A - BBT)~7(D~u), ~(D~u)) + (D~u) 2. 

(4.7) 

Therefore, recalling the definition of the operators 5~ and .~. (see (3.2)), and using 
standard techniques of integration by parts (note that all the coefficients together with 
their partial derivatives in x up to order m are bounded and (4.1) holds), we see 
that (4.4) can be written as follows (suppressing all variables): 

0 = E f {ID~ql 2 - 2(D~u)[V • {AV(D~u)} + tr{BV(D~q)} 
a~ 

t 

+ D~((a, Vu)) +D~(aou) +D~(b,q) + D~f]} dx ds 

= E f .  ~ ]D~q] 2 + (2AV(D~u), V(D~u))+ 2(B(D~q), V(D~u)) 
aQ ( t 

- 2(D~u)(a, V(D~u)) - 2ao(D~u) 2 - 2(D~u)(b,D~q) 

- 2 E C~fl(D~u){(D~-~a'V(D~u)) + (D~-l~a°)(Dl~u) 

+ (D~-13b, Dl3q) } - 2(D~f')(D~u) ~ dx ds, (4.8) 
J 
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where C~I~ > 0 are some constants depending only on ~ and [L Comparing the right-hand 

side of  (4.6) with the integrand on the right-hand side of (4.8), and noting that 

E [ (D~u)(Bb a,V(D~u)}dxds'= 1 - E l  (Bb a,V[(D~u)2]}dxds 
h, , 2 ,]Q, 

=-- I -E l "  V . (Bb  a)(D~u) 2dxds, 
2 ,1o_ 

we see that (4.8) (hence (4.4)) becomes 

E ./~. {(D~.q)2(x) - (D~u)2(t,x)} dx 

-- 2 2~  C~I ~{(D~-tJ a'VDI~u)(D~u) + (D~-l~a°)(Dl~u)(D~u) 
()~</~<:~ 

+ (O~-[;b, Dl~q)(D~u)} -2(O~f)(D~u) cLrds. (4.9) 

We now replace the quadratic form tlrA~l by (4.6), then from (4.9) we obtain that 

E./~, (D~u(t,x))2 dx + E /i),{[D~q + BrV(D~u)--(D~u)bl2 

+ ((2A - BB T)V(o~u), V(D~u)) } dx ds 

-- E ,/~' (D~u(t'x))2 dx + E ./~, [qrAt1-(D~u)2]dxds 

=E./~,,(D~#)2dx+E./Q {('h' 2 ,  + 2 a o + V ' ( B b  a))(D~u) 2 

+ 2  Z C~/~{<D~ /Ja'VDl~u')(D~u)+(D2-l~a{})(Dl~u)(D~u) 
o~</J<~ 

(D ~ I~b, Dl~q)(D~u)} ÷ 2(D~,/)(D~u)} dxds. (4.10) + 

With the help of (4.10), we can now prove the main result of this section. 

Proposition 4.1. Let m ~ N. Suppose that the co{jficients a, ao and bo are inlinitely 
d(ff~'rentiable in x, and their partial derivatives in x up to order m are un(lbrmly 
bounded by an absolute constant K>0 .  Suppose also that (u,q) is a classical s'olution 
of(3.1) ,  such that both u and q are C ~ in x and 

max E l l u ( t ,  ~ I[q(t,.)lJh,,,dt<.~,. • )117,,.+, + E  ' ( 4 . ~ )  :c[o.r] 

Then the es'timate (3.6) holds'. 
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Proof. First, by (4.11), we see that (4.10) is true for all multi-indices a with ]~] ~<m 
(if ]~] =0, the term Y~'~0~</~<~ "" does not show up). We now add up (4.10) for all 
la[ ~<m, and recalling the norms of H m and 2 Lj(O, T; Hm), we obtain 

E[lu(t,.)llL, +Efo ' { ~_, ID~q + BTU(D=u) - (D~u)bl 2 
I~l~<m 

+ I<~ <m~ ((2A - BBT)V(D~u), U(D~u)) } dx ds 

~<E[Ig]]2,,, + E  fQ' { ([b]2 +2ja°[+l~7"(Bb-a)[) I~[Z~m (D~u)2 

+2 ~ ~ C~{ID~-~aIIVD~ulID%I+ D=-/~aolJJul]D~u I 

+ dD~-/~bIJD~qlID~ul} ÷2 t~l<m ~ [D~flJD~ul } dxds. 

<~el[gfH"'+E fo~ { (ib[2+2la°l+rv(Bb-a)[+l) P~I~<"Z (D~u)2 

q-(Zl~l~<m0~<H <~ZC~{21D~-/ta[+JD~-/3aOI+~ID~-#b]2}) '~1 ~-< 

+e I~r-<m0-</~<~ ~ ~ C~ID~ql2+ I~p-<mZ ID~f[2} dxds. (4.12) 

1 2 + glbl 2. Now recall that all the coefficients Here we have used the inequality 2ab -.~ 7 a 
a, ao,B and b as well as their partial derivatives in x up to order m are uniformly 
bounded by a constant K >0, and note that there exists a constant Cl > 0, depending 
only on m, such that 

Z Z C~JD~ql2<~C' Z ]Dl~ql2; 

2 
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Thus, there exists a constant C(e,)>0,  such that the right-hand side of  (4.12) is dom- 
inated by 

EII,qll~,,, + C(~:)E llu(s, )11~4,,, ds 

+ c C ,  E Z IDl~ql2dxds+ I[fJtLS~0,r:ft,,,,- (4.13) 
' ' l / ~ i ~ m - I  

Now note that for I/~l < m ,  one has 

E.~), [D l;ql 2 dxds~<3E fC), {Ibl2lO/~ul2 + Lel2lV(Dl~u)12 

+ [D[~q + BTV(DI~u) - (D/~u)b] 2 } dxds. (4.14) 

Summing up both sides of  (4.14) with respect to ]/~] ~<m - 1, we have 

; / E ~ Ijql2dxds<~6KZE Ilu(s,.)ll~,, as 
• , i/~l~<m_l 

/ + 3 E  Z ID~q+BT(VD~u)--(D~u)bl zdxds" (4.15) 
a(2, I~1 ~<m 

Plugging (4.15) into (4.13), we see that the right-hand side of  (4.12) is now dominated 
by 

jr 
EIIgll~,,,, +(C(~:)+6eC, K2)E ]]u(s, ')Ll~,,ds+ f l~510, r:tf,,, , 

+3~:C~ ~ E f ]D~q+BT(VD~u)-(D~u)bl2dxds. (4.16) 
i~ l~<m ~ 

Now let us replace the right-hand side of  (4.12) by (4.16) with the choice that 

~:= 1/6Cl, and C2=C(1/6CI)+K 2, then after a slight rearrangement of  terms we 
obtain from (4.12) that 

Ellu(t, • ) IIH,,,2 + ~l I~l<~ mZ E J'Q, {ID~q + BWV(O=u)-(O~u)bl 2 

+ ((2A - BB T)V(D~u), V(D~u)) } dx ds 

t T • 2 ~<EII,qll~,,, + C2E Ilu(s, )ll~,,,, a s +  IlJll~%~o,T:~,,,~. (4.17) 
• t 
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Applying Gronwall 's  inequality, one can easily derive, with a suitable choice of  the 
constant C which depends only on m, T and K, that 

max EIlu(t,.)lleH,,,+E f { E ID~q+BTV(D~u)--(D~u)bl2 
O<~t<~T [O,T] x[R" ]:~1~< m 

4- [~l ~<m~ ((2A-BBT)V(D~u),V(D~u)}} dxds 

f 2  -<C{EIJylI,~,,, + II IL?/o pH,,,))' (4.18) 

Finally, note that by (4.15) we have 

E Ilq(t,.)ll2H,, , dt<<.6KeT max Ellu(t,.)llZH,,, 
t6[0, T] 

+ 3 E l l . r ] ×  R,, E IO~q+BTV(O~u)-(O~u)bl2dxdt" (4.19) 

By (4.18) we see that both terms on the right-hand side above can be dominated 

by C'{EIIglI~,,, + Ilfll2Lf{0, r;H,,)}, with some absolute constant C ' > 0 .  Combining this 

with (4.18), we derive (3.6). D 

5. Proof  of  Theorem 3.2 

Let us first assume that the coefficients a, a0, b, g and f are all infinitely differentiable 
in x. For any e > 0, we consider the following approximate problem: 

du':(t,x) = -{(~:u':)(t,x) + (J//q':)(t,x) + f(t,x)} dt + (q':(t,x) dWt), 

(t,x) • [0, T] x ~', 

u':(T,x)=g(x), xc  ~', 

where 

(5.1) 

(S~u)(t,x)=V. {(A(t)+~:l)Vu(t,x)} + (a(t,x),Vu(t,x)) +ao(t,x)u(t,x). (5.2) 

We note that (5.1) is a nondegenerate BSPDE. Then, using the result of  (Zhou, 1992), 
we know that there exists a unique classical solution (u%q';) to (5.1), such that both 
u ~: and q~' are infinitely differentiable in x, thanks to the Sobolev Imbedding Theorem; 
and (4.11) holds for any m ~> 1. Therefore, we can apply Proposition 4.1 to get 

Jo m a x  El i ,% )1@,,, + f  IIq'~( t, ')1@ ..... d t  
tc [o, 7-] 

+ E l  ~ ~ ID~q ':+ BTV(D~ ff~) - (D~u~)b{ 2 
[0, T]x~" [ M~<m 
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+ I~1 ~-<-m ((2A + 2 c i  BBT)V(I_)~u':),V(D~u':))} dxdt  

.~ c{  IIfll?-; ~0. ~;.,,,~ + I/glib-; ~Q:.,,, ~}, (5.3) 

with the constant C depending only on m, T and K (independent of  c > 0 ) .  Now, fi~r 

any c, c ' >  0, we have 

d(u ' : -u / ) ( t , x )  -{L,e(u ~: u':')(t,x)+,d(q': q")(t ,x) 

+ cAu':(t,x) - ~;'Au':'(t,x)} dt + {q';(t,x) - q / ( t , x )d  W(t)), 

(t,x) ~ [0, T] × ~", 

(u': - zd:')(T,x) - O, x E ~", (5.4) 

where A is the Laplacian operator. Let m >~3 and apply Proposition 4.1 again. Noting 
that for any multi-index :<((2A BBT)V(D~u),V(D~u)}>~O, V(t,x), a.s., wc obtain 

that 

max Ell(.':-.':')(t,-)ll 2. (R,,) F E  II(q~:--q ': )(t,.)H~t ..... (F~,.tdt 
tq[O, TI 

~t 1Ac 2 ] <~ c(cll."ll~: (o.r;.,,,) + .,, "~2 o.T:.,,,), 

~< c(~: ÷ ~:'){ II.,+ll ~ ~o. r~.,,,~ ÷ II.q II ~--~:.,,,)}- (5.5) 

Therefore, by letting m ) 4 ,  we can find a random field (u,q) with u m L~,(O, T: H"' 2) 
L ~ H m 3 and q ¢ ;,~(0, T; ), such that 

{ } lim ,:~0 # ~ I 0 . r l  ' ~ I l q ' : ( t , ' )  - q(t,.)ii~s .... dt 0. 

It is easily seen, by passing to the limits in (5.1), that (u,q) is an adapted stron q 

solution to (3.1) satisfying (3.6). The uniqueness tbllows easily from the estimate (3.6). 
In the general case when only Assumptions (Al)m and (A2) are satisfied, we adopt 

the standard technique of  "smoothing coefficients" (see, for example, Rozovskii, 1990). 

Namely, we first apply an "averaging operator" on both sides of  (3.1) so that the coef- 
ficients become infinitely differentiable, and theretbre obtain the corresponding approx- 

imating solutions which are all infinitely differentiable. Then, together with the a priori 
estimates derived in Section 4, we can show that the approximating solution converges 

to the strong solution (or weak solution) of  (3.1), provided the Assumptions (A1),, 
and (A2) are in force. Also, estimate (3.6) holds true since we are taking the limits 

in the space ,#m (see Remark 3.4 for the definition of  i f " ' ) .  Finally, the classical so- 

lution can be obtained by a simple application of  the well-known Sobolev imbedding 
theorem. For the detailed arguments, one is referred to, e.g., Rozovskii (1990). This 

completes the proof of  Theorem 3.2. _] 

Discussion. Recall that in (A1),, we have assumed both .q and f are bounded with 
bounded derivatives. This is sometimes too restrictive in applications, and we would 
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like to consider the following relaxation: suppose that there exists some 0 E C ~,  
0(x) > 0, Vx E N, such that 

Ig(x)l, If(t ,x)l  ~ CO(x), V(t,x) E [0, T] x Nn. (5.6) 

Define 

v(t,x) : O(x)-Ju(t,x), p(t ,x)  = O(x)-lq(t ,x) .  (5.7) 

Then, multiplying Eq. (3.1) by 0 (x )1 ,  and noting that V u = O V v + ( V O ) v ,  
Vq = 0Vp +(V0)p ,  we obtain from some simple computation that 

v(t,x) = ~(x) + f t r { v  • (AVv) + (~, Vv} + ~0v + tr(BVp) + bp + j 7} ds 

f 
T 

- p d ~ ,  ( 5 . 8 )  
t 

where 

~(x) = g(x) 
O(x)'  

"d(t,x) = a(t,x) + 

97(t,x) - f ( t , x )  
O(x) ' 

2A( t )VO(x)  

O(x) ' 
(5.9) 

V .  (A(t)VO(x))  + (a(t,x), V0(x)) 
~(t ,x)=ao(t ,x)  + 

O(x) 

8(t)V0(x) 
"b(t ,x)=b(t ,x)+ 

O(x) 

Therefore, if the new coefficients a, a0,b,9 and 97 satisfy conditions (A1)m and (A2), 
BSPDE (5.8) will have a unique strong solution (v, p), which in tuna shows that (3.1) 
has a unique strong solution (u, q) such that (u, q) and (v, p) are related by (5.7). Thus, 
we have proved the following theorem that slightly generalizes Theorem 3.2. 

Theorem 5.1. Suppose that there exists a function O E C a such that the correspond- 
ing coefficients ~, ao, "b, g and 97 defined by (5.9) satisfy conditions (A1)m and (A2)for  
some m>~ 1. Then, (3.1) admits a unique weak solution (u,q) with (3.5) being true. 
Furthermore, the weak solution (u,q) becomes the unique strong solution if  m~>2; 
and it becomes the unique classical solution if  m >2 + d/2. Finally, the estimate (3.6) 
holds when the functions u , q , f  and g are replaced by O lu, O-l q, f and ~. [] 

To conclude this section we point out that if (A1)m holds for A,a, ao, B and b 
except for f and g, (5.6) holds with 7/( .)= IV0(.)[/0(-)E C~(R"), then, (A1)m holds 
for ~d,~do, b , f  and ~. Some obvious examples for functions 0 with desired properties 
are, e.g., 

O(x) = 1 + [xl 2m or 0(x) = e K ~ ,  x E N n. 
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6. Relations between BSPDEs and FBSDEs 

In this section we discuss how to use the adapted solution of  a BSPDE to obtain the 

adapted solution of  a forward-backward SDE (FBSDE) with random coefficients, based 
on the Four-Step Scheme designed in Ma et al. (1994). We shall start from a general 

discussion that will at least reveal our motivation; and then we content ourselves with 

a special case for which the results in the previous sections apply. 

Let us consider an FBSDE with random coefficients: 

L'  ds l/ Xt = x  + b(s,Xs, ~,,Z,., c~(s,X, E., .) dW~,, 
(6.1) ¢T f T  

Yt=~'I(Xr")+ ./t b(s,X~,g,,Z~,'lds- Z~d~.. 

We assume that the coefficients b, b and a are random fields defined on [0, 7"] × R" 
× 0~ x Nd × f2 such that for fixed (x, y,z), the processes b(. ,x, y,z, .), b(. ,x, y,z,. ) and 

cr( . ,x ,y, . )  are predictable. Also, we assume for the moment that for fixed t and ~,), 
the functions b, b and cr are smooth in x, y and z. Finally, we assume that for fixed 

x, ,q(x, .) is an ,Nr- measurable random variable, and it is smooth in x for fixed (~). 

Our purpose is to find an "adapted solution" (X, Y,Z) to Eq. (6.1). In light of  our 

previous work (Ma et al., 1994), we proceed by the following heuristic argument. 

Supposing that (X, K Z )  is an adapted solution to (6.1), we denote b(t) b(t, Xt, Yt,Z~) 
and ~(t) = cr(t,X, Yt). Suppose that there is a random field {u(t,x, e)):(t,x, ~o)c- [0. T] 

x N" x Q}, which takes the form (suppressing ~,)): 

/0' u(t ,x)=u(x,O)+ p(s ,x)ds  ~- (q(t,x),dK;), 

where pcL!~(O,T;C k) and qEL2-(O,T:C/) with k~>3, />~2, such that Y and X are 

related as Yf = u(t,X, .), VtE[0, T], a.s. Then, by applying a generalized It6-Ventzell 

formula (see [Kunita, 1990, Theorem 3.3.1]) from t to T, together with some com- 

putation using the definition of  the stochastic integral based on semimartingales with 

spatial parameter x, one shows that 

u(t, Xt) u(T, Xr) - {p(s,X,.) + ½tr{~T(s)(D2u)(s, Xs)} 

+(b(s), Vu(s,X~.)) + tr{c~V(s)Vq(s,X,.)} }ds 
T 

- ~ (q(s,X,) + af(s)Vu(s,X,.)dW~}, (6.2) 

where (D2u)(t,x) denotes the matrix (Ux,x,(t,x)). Now noting that ~ =u(t, Xr,.), we 
can compare (6.2) with (6.1) to obtain that 

Z~ ~ q( t, Xt ) + o'T(t, Xt, u( t, Xt ) ) Vu( t, Xt ); 

p(t, Xt)=-{ 'b(t ,X,u(t ,X,) ,Zt)  + ½tr{~r¢T(t,X,u(t, Xt)l(DZu)(t,X,)} 
(6.3) 

+ (b(t, Xt, u(t, Xt), Zt ). Vu(t, Xt)) + tr{a~(t, Xt, u(t, Xt))Vq(t, Xt )} }, 

u(T, Xr) ,q(Xr). 
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Combining the above, we have the following modified Four Step Scheme: 

Step 1: Define a function z(t,x, y ,w,q)  = q + aT(t,x,y)w. 
Step 2: Using the function z ( . . - )  defined above, solve the quasilinear BSPDE: 

f u ( t , x ) = g ( x ) +  {b(s ,x ,u(s ,x ) , z ( s ,x ,u(s ,x ) ,Vu(s ,x ) ,q (s ,x ) ) )  

+ ½tr{aaT(s, x, u(s, x))(D2u)(s, x)} 

÷ (b(s, x, u(s, x),z(s, x, u(s, x), Vu(t ,x),q(t ,x))) ,  Vu(s, x)) 

+ tr{af(s,  x, u(s, x))Vq(s,  x)}}ds - (q(s, x) d ~},  (6.4) 

and denote the (adapted) solution by (u,q). 
Step 3: Using the solution (u,q) from above, define 

b(t,x, co) = ~(t,x, u(t, x, co), z(t,x, u(t,x, co), Vu(t ,x ,  co), q(t,x, co)), co); 

~( t,x, co) = a( t,x, u( t,x, co), co). 

Then we solve the forward SDE: 

/0 Xt = x +  "b(s,X,, .)ds+ ~(s,X,, .) d ~ .  

Step 4: Define Yt = u(t, Xt, .) and Zt = q(t, Xt, .)+af(t,  Xt, u(t, Xt, .), .)Vu(t, Xt, "), then 
one shows that (X, Y, Z) is the adaptd solution to (6.1). 

It is clear that the most difficult part in the Four-Step Scheme is Step 2, in which 
we have to find a (classical) adapted solution to a quasilinear BSPDE. Notice that in 
this case we have (using the corresponding notations in the previous sections) 

A(t,x, co) = ½aaT(t,x,u(t,x,(~)),co); B(t,x, co) = a(t,x,u(t,x, co),co), 

hence 2A(t,x, co)-B(t,x, co)BX(t,x, co)~O. Namely, the BSPDE is degenerate; and the 
coefficient in front of Vq is a T =/0, which means that the operator Jg in the BSPDE is 
unbounded. Thus the problem becomes very difficult in general. Also, we should point 
out that although the solvability of BSPDEs might imply the solvability of  the FBSDE, 
it does not guarantee the uniqueness of the adapted solution of the latter. We refer the 
interested readers to Duffle et al. (1995) and Ma et al. (1994) for the issue of a "nodal 
solution" of  an FBSDE (a solution that can be obtained by Four-Step Scheme). The 
following is a simplified case where the Four-Step Scheme does go through, thanks to 
the results of previous sections. We note that our attention is not the well-posedness of 
the FBSDE, but rather the relation between the adapted solutions of  the two equations. 

A Special Case. Suppose that in the FBSDE (6.1) we have 

~(t ,x ,y ,z ,  co) = ~( t ,x ,  co), 

a(t,x, y, co) = a(t, co), 

b( t , x ,  y , z ,  co) --  b l ( t , x ,  co)y ÷ b2(t ,x ,  co)z ÷ b3(t ,x ,  co). 
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In other words, we consider the decoupled FBSDE with random coefficients and ter- 

minal condition: 

x~ = x  + ~ (s ,&)  ds + ~r(s) d ~ ;  
(6 .5 )  /; // Yt .q(Xr) + [b,(s,X~)~. + b2(s,~)Z~ + b3(s,X,.)] ds - (Z,., dl~). 

, [ 

Suppose for the moment  that n = d I. Then following the Four-Step Scheme de- 

scribed above, we see that by setting z(t,w,q,c,))=q + wcr(t,c,)), the BSPDE (6.4)  

becomes  (suppresssing variables in the integrals): 

g(x) + . q d I'1'i u(t,x)---- { l~72Uxx +bur  + ~qx + u~l + (q + ura)b2 -- b 3 } d s -  

I .T /,.7 
= 0 ( x ) +  i 2 { ~  Uxv+(-b+ag2)u~+b,u+(Tq, .+b2q+b~}ds-  qdD: 

• I 

(6,6) 

Now, if we define the operators: 

( 5 / g p ) ( t , x )  = 1 2 ~:~ (t)~o~.,. + (~(t,x) + o(t)b~(t,x))o~ + ~(t,x)cp, 

(,//~)(t,x) = o-(t)~ + b2(t,x)~,, 

and ./(t,x)=b3(t,x), then (6.6)  becomes  

7" .T £ / 
u(t,x) = g(x) + ] [(L, Cu)(s, x)+- (.Uq)(s, x) + f (s ,  x)] ds ] q(s, x)dW(s),  

/ t  dt 
(6.7) 

which is exactly the BSPDE (3.1)  with n = d = 1. Returning to the higher-dimensional 
case, we see that the (6.6)  is the same as (3.1)  with 

A(t) = ½c~(t)~(t)t; B(t) = a(t); a(t,x)--=b(t,x) + ~r(t)b2(t,x) 

ao(t,x)=bl(t ,x);  b(t,x)=b2(t,x); ,f(t ,x) h3(t,x). (6.8) 

Thus, we have the following theorem. 

Theorem 6.1. Suppose that the random functions (.fields) b, c~, bl, "b2, b3 and ,q are 
such that the corresponding JJ, nctions A, B, a, ao, h, f ,  g defined b)' (6.8) sati,~{r 
either the conditions of Theorem 3.2 or that q[ Theorem 5.1 with m >~ 2 + d/2. Then 
the FBSDE (6.5) has a unique adapted solution (X\ Y,Z) such that 

Y~ =u(t,X~,.); Zt = q ( t , X , . ) ÷  crT(t)~u(t,X, .) a.c. tC[0, T] a.s. (6.9) 

where (u,q) is the unique adapted classical solution to the BSPDE (6.6). 
h7 particular, if  all the coelficients in (6.5) are deterministic, then the unique so- 

lution of (6.6) is deterministic. More precisely, it is git~en by (u,O), where u is the 
classical solution to a backward PDE, derived /?om (6.6) hy setting q -  O. 
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ProoL Note that since the FBSDE (6.5) is decoupled, it is well known (see Pardoux 

and Peng (1990)) that it possesses a unique adapted solution. Next, by Theorem 3.2 
(or Theorem 5.1), we see that under our assumption, the BSPDE (6.6) has a unique 
classical solution, therefore the Four-Step Scheme goes through (note that in this case 
Step 3 is trivial). Consequently, (6.9) must hold by the uniqueness of the FBSDE and 
the construction of the Four-Step Scheme. 

To see the second assertion, we note that by setting q = 0, the BSPDE (6.6) becomes 
a backward PDE, which, under our assumptions on the coefficients, possesses a unique 
classical solution u since Theorem 3.2 holds regardless of  the data being deterministic 
or random. Thus by the uniqueness of  the BSPDE, the pair (u, 0) must be the only 
solution to the BSPDE. The theorem is proved. [] 

We should point out here that the real issue in Theorem 6.1 is the relation between 
the solutions (X, Y,Z) and (u,q). Such a relation, especially the one between Y and X, 
will lead to a stochastic Feynman-Kac formula, as stated in the following corollary. 
Let us now consider the FBSDE (6.5) on the interval [s, T] with X+. =x, a.s. for some 
O<~s<~T. Denote the solution to such an FBSDE by (X ~'x, YS'~,ZS'X). 

Corollary 6.2. (Stochastic Feynman-Kac Formula). Suppose that the conditions of  
Theorem 6.1 are in force, with b 2 ~ 0 .  Let (u,q) be the classical solution to the 
corresponding B S P D E  (6.6). Then, for any (s, x) C [0, T] ×/2 and a.e. co E £2, u(s, x, ~o) 
has the following representation: 

u(s,x, co) = u(s,X;'x,o)) = Ys s'x 

= E { e f  r"b~(r'X'~")drg(x~ 'x) [T f/A X/ )d Jr  e bl(u 'Xz~~)du ,x 
3 ( F ,  F . 

, i s  I 2 

(6.10) 

Proof. Since in this case the backward SDE in (6.5) is linear in Y and the drift is 
independent of  Z, thus solution Yt s'x can be written as, for s ~< t ~< T, 

T A ~ ~ f T  r ~  ~ 
yts, x = e f  b,(r,X;" )drg(x~"x)+ I e f  b'(u'X'7 )dU[bg(r, X S ' X ) d r -  ZS'XdWrr], 

,1l 

by taking the conditional expectation on both sides above, noting the adaptedness of 
the solution (X s'x, YS'x,ZS'X) and setting s = t, we see that (6.10) follows from (6.9). 
[] 

Remark 6.3. Except for our restriction on the coefficient a, Corollary 6.2 extends the 
classical Feynman-Kac formula and (partially) the one in Pardoux and Peng (1992) in 
which all the coefficients were assumed to be deterministic. We note that the Feynman- 
Kac formulas involving backward stochastic integrals or Malliavin calculus/Skorohod 
integrals were studied by many authors, e.g., Krylov and Rozovskii (1982), Pardoux 
(1979), and Ocone and Pardoux (1993). But with the adaptedness requirement, our 
version is different. 



J. el&Z, J. Yong/ Stochastic Processes and their Applications 70 (I997) 59 ,~¢4 77 

7. A look via Malliavin calculus 

The relation between an FBSDE and a BSPDE can be further studied by using 

Malliavin calculus. In this section, we shall establish such a relation for (6.5) and 

(6.6), based on the results o f  Pardoux and Peng (1992) and El Karoui, Peng and 

Quenez (1997). In order to keep the paper to a proper length, we refer the reader to 
the recent book of  Nualart (1995) for all undefined notation concerning derivation on 

Wiener Space, and here we give only some less standard ones which will be useful in 

the discussion. To simplify notation, throughout this section we assume n - d I, the 

higher-dimensional cases can be obtained analogously. 
Let D:L2(Q)---~L2([O, T] × g2) be the Malliavin derivation operator, and [Di.p. p ~ 2 

be the set of  all {C L2(f2) such that 

[l~]ll4, H~HL,,(.~) + ]lllDgllL-~t[0,rj)llL,.(m < ° c .  (7.1) 

For any /-dimensional random vector r/, and any random field f :  [0, T] × ~/  × ~2, we 

shall distinguish D. (f(t ,  r/(w), ¢o)) from D. f( t ,x ,  w)]~ ,~,,) by use of  the notation (see 

also Ocone and Pardoux (1993): [D.f](t ,  rl(eJ),¢o):=D.f(t,x,¢o)l~ ,7~,,I. Further, for 
p >/2, we define []-l,p = LP(0, T; [DL~, ); and we denote L~'.p to be the set of  all elements 

u~ IL~,z,, such that u . ( . )  is progressively measurable, and 

IluH~,¢ ~=E { /o'r lurlP dt + . £ r . £ r  lD,u, lP dsdt}  < oc. (7.2) 

Finally, we give a definition that is an adaptation of  Definition 2.1 in Ocone and 

Pardoux ( 1993 ). 

Definition 7.1. We say that a random field qo = {~p(x,w): x l N ,  w l f 2 }  satisfies hy- 

pothesis (B) with moment p, if qo is a measurable function such that 

(1) (p(- ,w)~ C~(~) almost surely, and there exists a constant K > 0 such that 

(2) q0(x,')~[Dl,v for every x; and the map (s,x,w)~-+D,g(x,w) admits a measur- 
able version that is continuous in x for a.e. (s,w). Further, there exists a process 

c E U ' ( [ 0 ,  T] x f2) and a constant f i>0 ,  such that for all x and a.s. wc~2, it holds that 

[D,~o(x,¢o)l ~c(s , (o ) (1  + Ixl/¢), v x < ~  a.e. sEK0, T] a.s. ¢oCf2. 

Let us now consider again the FBSDE (6.5) and BSPDE (6.6) with n = d - I .  Be- 

sides the assumption of  Theorem 6.1 on the coefficients b, a, bt - b 3  and g, we further 
assume that they satisfy the following: 

Assumption 7.2. (i) For fixed xC ~, b(.,x,.), ~(.,.), bl( . ,x, . ) ,  b2(-,x,.), ,~3(.,x,.) 

C L~.s. 

(ii) The functions b, bl,b2, and t)3 and their first order partial derivatives in x are 

uniformly bounded and Lipschitz continuous in x, uniform in (t,w), with a common 
constant K > 0 .  Further, b is C 2 in x, and there exists a version of  D . b  that is C I in x. 
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(iii) There exist a random field {Cl(S,t, co)} satisfying E l f  fo ~ ]c,(s,t,~o)lP' dsd t  <~c, 
and a process c2 ELPr([0, T] × O) for some Pl >4,  such that for all s, t ,x ,y and a.s. 
09 E O, it holds that 

ID2b(t, 0, o~)l + IVDsb(t,x, o9)l + [D~a(t, 0,~o) I + IDsb~(t,x, eg)l <~ct(s,t,¢o); 

IDsb2(t,x, o9)] + IDs'b3(t,x, o9)l ~<c2(s,~3). 

(iv) The function g(x, .) satisfies the hypothesis (B) with p > 4  and f i=  1. 

Theorem 7.3. Suppose that the assumptions of  Theorem 6.1 and Assumptions 7.2 
hold. Let (X, Y,Z) be the adapted solution to the FBSDE (6.5) and (u,q) be the 
adapted classical solution to (6.6). Then the process u(.,X., .) E DJ.2; and Jbr t E [0, T], 
it holds that 

Dtu(t, Xt, .)=DIYt =Zt =q(t, Xt, .) + a(t, .)27u(t, Xt, .) a.s. (7.3) 

Moreover, i f  for each t E [0, T], u(t,., .) satisfies hypothesis (B) with p > 2  (see D e f  
inition 7.1 ), then one has 

q(t, Xt,.)=[Dtu](t, Xt,.), VtC[0, T] a.s. (7.4) 

Remark 7.4. We note that when the function g and the coefficients b, o ,b  I and b2 
are all deterministic, the relation Zt =DtYt was proved by Pardoux and Peng (1992). 
E1 Karoui et al. (1997)generalizedA the result to the random coefficient case, but es- 
sentially assumed that bj and b2 are independent of X. Theorem 7.3 is a further gen- 
eralization of the latter, with the drift coefficient of the backward SDE being linear in 
y and z; and the connection with solutions of BSPDE is new. 

Proof  of Theorem 7.3. Since the proof is merely technical, and many estimates are 
more or less standard in the context of Malliavin calculus, we shall give only a sketch 
without going through all the details. First, it is clear that the first and last equalities 
in (7.3) are the direct consequence of Theorem 6.1, therefore we need only show 
that DtYt =Zt, VtC [0, T]. Note that i f X  is the solution to the forward SDE in (6.5), 
then by the uniform Lipschitz property of the function b and the boundness of a, and 
following the proof of Lemma 3.16 in Ocone and Pardoux (1993), one shows that 

X C L'~,4+~: NLP(~2; C[0, T]), (7.5) 

for all p > l  and all ~>0 such that 4 + e < p l ,  where pl >0  is the constant appeared 
in Assumption 7.2(iii). Further, for fixed s E [0, T], the process D,.X. satisfies a linear 
SDE: 

{ S' OsXt= l{s~t } i f(s)+ {Vb(r, Xr,.)DsXr+[Dsb](r, Xr , . )}dr  

+ Dsa(r,.)dW~ , O<~s, t<~T. (7.6) 
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Thus, by standard arguments one derives from (7.6) that, for any 2<<,p'<pl AS, 

: ! : D E sup ID,.X,I p <~CE Iv(s)] p + (ID,.a(r)l:' +][D,.b](r,X,,) )dr  . 
rE[0. T1 

(7.7) 

Since U]. 8 C IYI.p, , using Assumption 7.2(i) (iii), Definition (7.2), and H61der's in- 
equality, it can be shown that the right side of (7.7) is finite. Consequently, we havc 

E sup ID,,X:lP'ds<cxD for all 2 ~ < Y < p l A 8 .  17.8) 
. t ~ l o . r l  

Now, let us define a random variable ~ = g(XT,) ,  and a random field 

f(t,~o, y,z)  bl(t, XtOo),m)y +~l)2(t,X, Oo),~,~)z + b3(t,X,(<,,~),¢o), 

for (t,y,:,<,~)~ [0, T] × R 2 × Q. Then by Assumption 7.2(ii) (iv) and (7.5), 

El~l"=el,(x>.)l"~<K:'U(l + [Xr[)"<.x, Vp>l; (7.~) 

and 

2 .7"  P 

E { / f  I /(,, 0, 0)la d, 1 =E {~, I~3U, X,,.)I=d,} - <~. 

Thus by Theorem 5.1 in E1 Karoui et al. (1997), the unique solution (Y,Z) of the 
backward SDE in (6.5) satisfies { },,,2 

E sup I):,1" + E  ]Z,12dt <x: .  Vp>l .  (7.10) 
O~t<T 

Further, by (7,5) and (7.8), XT~r~I.4q,; for any ;:>~0 such that 4 + ~:<pl (recall 
Definition (7.1)), and it has finite moments of all orders. Applying Lemma 2.2 m 
Ocone and Pardoux (1993) again we obtain that .q(Xr(. ), .) ~ ©i,k for any 2 ~<k <PI Ap 
with p > 4, and 

Ds~=Ds(~,I(XT,.)) ~7,q(XT, ")D~XT + [D,.g](Xr, .). (7.11) 

Now, using hypothesis (B)- (2) ,  and H61der's inequality, one shows that both terms 
on the right side of (7.11) belong to L4(Q × [0, T]). Consequently, one has 

E. ID,~I4 ds <,>c. (7.121 

Finally, following a similar argument using Assumption 7.2(ii) and (iii), and applying 
Lemma 2.2 of Ocone and Pardoux (1993 )  to get that for each s, t ~ [0, T], 

[Dsf](t, Y:,Z:) = Ds(bl(t, Xt)y + t)2(t, Xt )z)l,=~5.:=z. 

Vbl(t,  Xr)(D,.X,)Yt + [D,.b,](t,X,)Yt + Vge(t,X,)(D,.X,)Z, + [D,~b2](t,.¥r)Z: 

+ VbB(t, Xt)(DsXt) + [D,.b3](t,X:). 



80 J. Ma, J. Yong/Stochastic Processes and their Applications 70 (1997) 59-84 

Again, analysing right-hand side above term by term, using Assumption 7.2(ii), H61der's 

inequality (7.10), and the fact that X E U~+e, V4 + e<pl ,  one shows that 

Ejo[ [[D~f](t, Yt,Zt)12 dt ds<cx~. (7.13) 

Now by using (7.12) and (7.13), together with Assumption 7.2, we can apply Propo- 

sition 5.4 in E1 Karoui et al. (1997) to obtain that Yt E [Dj,2 such that DtYt=Zt, 
Vt E [0, T], a.s., whence (7.3). 

To see the second part o f  the theorem, we note that if u satisfies hypothesis (B), 
then by Lemma 2.2 of  Ocone and Pardoux (1993) and (7.6), we have 

Dtu(t, Xt )-~ ~7u(t, Xt )DtXt + [Dtu](t, Xt )= ~7u(t, Xt )cr(t ) + [Dtu](t, Xt ). 

Comparing this with (7.3), we have q(t, X t )=  [Dt u] (t, Xt). This completes the proof  of  
the theorem. [] 

8. An application in option pricing 

In this section we apply our result to a problem in option pricing. For the detailed 
formulation of  an option pricing problem (or the problem of  hedging a contingent 
claim), we refer the reader to the book of  Karatzas and Shreve (1988); or the expository 
paper of  El Karoui et al. (1997) for the formulation involving backward SDEs. Here 
we give only a brief  description. 

Let us consider a financial market consisting of  1 bond and d stocks. For notational 
simplicity, we assume d = 1. Suppose that their prices per share at any time t are 
described by the following differential equations, respectively, 

dPt ° = r(t)Pt ° dt; (bond), (8.1) 

dPt =Pt[b(t)dt + cr(t)dWtt], (stock), 

where r is the interest rate, b is the appreciation rate, and a is the volatility. We as- 
sume that r, b and a are bounded, progressively measurable processes and a is bounded 
away from zero. Furthermore, i f  we denote by Y the wealth process and ~z the portfolio 
process, that is, the amount of  money that the investor puts in the stock at time t (there- 

fore what he puts in the bond is Yt - nt), then the process Y (with no consumption) 
satisfies the following SDE: 

dYt = [Ytr(t) + ~zt(b(t) - r ( t ) ) ]  dt  + 7ztcr(t) dWt. (8.2) 

Finally, a contingent claim is by definition some given ~r -measurab le  random vari- 
able ¢ satisfying some integrability conditions. We shall assume that ~ is o f  the form 
~(o9) = 9(Pr(og), co), where 9 : ~ x (2 ~ ~ is such that it is jointly measurable; and for 
each fixed x,y(x,.) is ~-r-measurable. Note that if 9~-y(x) is deterministic, then we 
have an option; while if  9 -~ 9(o9) is independent of  x, then we have a general con- 
tingent claim. Moreover, a hedging price (or fair price) at t = 0 is defined to be the 
smallest initial endowment Y0 such that there exists a portfolio process ~z for which the 
corresponding wealth process satisfies: Yt~>O, Vt E [0, T], a.s., and YT>~g(Pr, .), a.s. 
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In the case where r(.)=~r, b(.)=-h, and a ( . ) ~ a  are all constants and .q is deter- 

ministic (,q(x) = ix - q)+ for the European call option), the celebrated Black Schoh, s 
Option Valuation Formula (see, for example, Karatzas and Shreve, 1988) tells us that 

the fair price of  the option at any time t ¢: [0, T] is given by 

Y, = [~{e-r(T-')g(Pr) l .N}, (8.3) 

Here E" is the expectation with respect to some risk-neutral probability measure (or 

"equivalent martingale measure"). Furthermore, if we denote v(t,x) to be the (classical) 

solution to the backward PDE: 

I 2 2 ,  t : t + ~ o - x  t . ~ . + r x v ~ - r v = O ,  ( t , x )E[O,T)×(O, .yc) ;  
(8.4) 

~,( T, x ) - ~ji x ), 

then it holds that Yt = v(t, Pt), Vt ~ [0, T], a.s. Using the theory of  backward SDE, it 
can be shown (see, El Karoui et al., 1997) that, if we denote (Y ,Z)  to be the unique 

adapted solution of  the backward SDE: 

T t ' T  i "  

~ l = , q ( P T )  / [P'Y.s ~- (J" l ib  - r ) e ~ ] d s -  / Z, d ~ ,  (8.5:, 
I t  Ii 

then Y coincides with that in (8.3); and the optimal hedging strategy is given by 

~zt - ~r- l Zt = Cx( t, Pt ). 
We note that the option (or contingent claim) valuation formula (8.3) has been 

proved to be valid for more general cases in which the coefficients r,b.~ and the 

terminal condition 9 are allowed to be random (see, e.g., Karatzas and Shreve, 1988 

and E1 Karoui et al., 1997), but as far as the "'Black Scholes PDE" (8.4) is con- 

cerned, no significant progress has been made when the coefficients are random, since 
in such a case a PDE is no longer appropriate to handle the situation. In the rest of  

this section we apply our results in the previous sections to derive a new result in this 

regard. 

Let us consider the price equation i8.1) with random coefficients r,b,G; and we 

consider the general terminal value .q as described at the beginning of  the section. We 
allow further that r and b may depend on the stock price in a nonanticipating way. In 

other words, we assume that rit,  co) = r(t, Pt((o), {o); b(t, ~o) = b(t, Pt(~,J), ~o), where for 

each fixed p C  R, r ( . , p , . )  and b(., p,-)  are predictable processes. Thus we can write 
(8. l )  and (8.5) as an FBSDE: 

P r = p +  ~ b ( s , ~ ) d s +  p ~ ( s )  d ~., 
(8.6) ic .T 

Y t = g i P r ) - f [ ~ r ( s ' ~ ' ) ) + Z ~ O ( s ' ~ ) ] d s ~  

where 0 is the so-called risk premium process defined by 

0(t, P t ) = ~  l(t)[b(t, Pt) r(t,P~)], VtE[0 ,  t]; (8.7) 

and Zt ~ 7rt~(t). We do a slight transformation so that the results in the previous 
sections can be applied. First we note that the process P can be written as an stochastic 
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exponential: 

Pt = p e x p {  fot 
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[b(s ,~ ) -  ~a2(s) 1 dS + ~ota(s)dW(s) } • (8.8) 

Thus P, > 0, Vt E [0, T], a.s., provided p > 0. (In the higher dimensional case, we can use 
the same arguments as those in (Cvitanic and Ma (1996) to show that every component 
is positive, a.s.). Therefore, we can define a log-price process X by X, = logPt, Vt, 
and by It6's formula we have 

/0' X~ =x + b(s, Xs)ds + a(s) d ~ ,  
(8.9) T 

Yt = ~(XT) - . I  [Ys~(S, Xs)+ZsO(S, Xs)]ds-  ZsdWs, 
t 

where x = log p, and 

~(t,x, oo)=b(t,e~,co)- ½az(t,~o); ~(x, co) = q(eX,~o); 
(8.10) 

-f(t,x, co)=r(t, eX, oJ); O(t,x,o))=O(t,e~,~o); 

Note that (8.9) is exactly the same as (6.5), with bl begin replaced by -7;  b2 by -0 ;  
and g by ~. Therefore, we can now apply Theorem 6.1 to obtain the following result. 

Theorem 8.1. (Stochastic Black-Scholes Formula). Suppose that the random functions 
b,~,O and ~ defined in (8.10) satisfy the conditions of Theorem 6.1. Let the unique 
adapted solution of (8,9) be (X, Y, Z). Then the hedging price against the contingent 
claim ~ = ,q(Pr, ") at time an), t E [0, T] is given by 

gt~r, ")l~} = / ? { e - f  r(s'e)J~'qCPr, ")l.~ }, (8.11) 

where E{. I~t} is" the conditional expectation with respect to the equivalent martingale 
measure P defined by 

d-~=exp  - 0(t, X t ) d W t -  ~ ]O(t, Xt)ladt • 

Furthermore, the backward SPDE 

u(t,x)=~(x) + j . r  { ~a2(S)Uxx(S,X) + (_~(s,x)_ a(s)_O(s,x))u~(s,x) 

} /7 - T(s,x)u(s,x) + ~r(s)qx(s,x) - q(s,x)O(t,x) ds - q(s,x)d 
, t 

(8.12) 

has a unique adapted solution (u, q), such that the log-price X and the wealth process 
Y are related by 

Yt=u(t,X,,.), VtE[0, T] a.s. (8.13) 
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Finally, the optimal hedqin9 strategy ~z is 9it:en by, .fi~r all t ~ [0, T], 

7z~ =cr-I(t)Zt = V u ( t ,  X t , ' )  + a(t)--tq(t, X t , . ) = a  I(t)Dt(u(t, Xz, .))  a.s., (8.14) 

where D is the Malliavin derivative operator. In particular, (/ u satL}'lies the hypothesi.s 
(B) in Section 7, then 

q(t ,X, , . )=[D,u]( t ,  Xt, .) ,  VtCI0, T] a.s. (8.15) 

Proof. First, it is by now well known that in this setting the hedging price at any time 
t is just Y, (see E1 Karoui et al., 1997 or Cvitanic and Ma, 1996), and (8.11) holds. 
The rest of  the theorem, including (8.13) and (8.14), is now a direct consequence of  
Theorem 6.1 and 7.3, the definition Zt a(t)~t,  and the fact that or-I(t) exists for 
any t. LZ 

Remark 8.2. In the case when all the coefficients are constants, we see from Theo- 
rem 6.1 that the unique solution of  the BSPDE (8.12) is (u,O), where u is the classical 
solution to a backward PDE which, after a change of  variable x = l o g x '  and by set- 
ting v(t,x ~) = u(t, logx'), becomes exactly the same as (8.4). Thus, by setting q :~ 0 m 
(8.13) and (8.14), we see that the Theorem 8.1 recovers the classical Black Scholes 
tbrmula. 
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