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A b s t r a c t  In this paper we study a general multidimensional diffusion-type stochastic control problem. 
Our model contains the usual regular control problem, singular control problem and impulse control 
problem as special cases. Using a unified t reatment  of dynamic programming, we show that  the 
value function of the problem is a viscosity solution of certain Hamilton-Jacobi-Bellman (HJB) quasi- 
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1 I n t r o d u c t i o n  

Let  (12,Y, P, {Yt}t>_o) be a comple te  f i l tered p robab i l i t y  space  on which is defined an m-  

d imens iona l  Brownian  mot ion  {Wt : t > 0}. Cons ider  the  following cont ro l led  s tochas t i c  

sys tem:  

X ~ = x +  jsf b(r, X r , u r ) d r +  a(r, X r , u r ) d W r + ~ t ,  s < t < T ,  (1.1) 

where  s >_ 0 is cal led the  initial time; x the  initial state; and the  pa i r  (u, ~) the  control process. 

We assume  t h a t  the  process  ut is {Y~}~>0-adapted and  takes  values in some sepa rab le  me t r i c  
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space, and the process ~t is ~n-valued, cSgls {bvt}t>o-adapted and with locally bounded 

variation paths. We often refer to u as the regular control, and to ~ as the singular control, for 

obvious reasons. 

For each pair of controls (u, ~), we consider the following cost functional: 

Js,~(u, ~) = E h(r, Xr ,ur )dr  + fa(r)H~a~cllldr + fS(r)ld~Cl 

+ (1.2) 
tEStis,T] 

Here, g, h, fa,  f s  and e are some given functions, ~r = ~c+(~c+(d  is the Lebesgue decomposition 

of the path ~, in which (ac denotes its absolutely continuous part, ~sc the singularly continuous 

part, and ~a the pure jump part. Throughout the paper we denote by ]]. I]1 the Ll-norm in 

ll~'~; A(t = ~t+ - (t, and S~[s,T] = {t e Is,T] I A~t ~ 0} (see w for details). Our goal is to 

minimize the cost functional (1.2) over (u, ~) chosen from a certain class of admissible controls. 

It is easily seen that our model covers the classical stochastic regular control problem (~ = 

0); the standard singular stochastic control problem (b, a being independent of u, e(t,~) = 

f(t)HA(~]]l with f~ = f~ = f) ;  and the impulse control problem ( ~  = (~c = 0). We should 

note that  although all three problems have been studied extensively in separate forms (see for 

example, [1-12], to mention a few), the combined models were only studied under special forms 

(cf. e.g. [13-16]). The closest references to our problem are the works of Haussmann and Suo 

[17-18], but in their setting the cost functional is simpler, and it does not seem to be able to 

handle the impulse control problem. Moreover, the uniqueness of the viscosity solution of the 

associated HJB equation was not discussed there. 

The main purpose of the paper is to derive the HJB equation of the control problem via 

dynamic programming; and more importantly, to prove the uniqueness of the viscosity solution 

to such an HJB equation, which, to the best of the best of our knowledge, is not covered by any 

existing literature. We should also note that  by considering function g(t, t?) = Q(t)  + fd(t)lIGl[ ~ 

and allowing eo(t) > co > 0 and 0 < u < 1 in the cost functional, we can treat  the impulse 

control problem (co > 0) and the singular control problem (10 -- 0, u = 1) within a unified 

framework; such a treatment seems to be novel as well. 

This paper is organized as follows. In Sec. 2 we give some necessary preliminaries and a 

formulation of the problem. In Sec. 3 we prove the continuity of the value functions. Sec. 4 

is devoted to the study of HJB equations; and finally we prove that  the value function is the 

unique viscosity solution of the associated HJB equation in Secs. 5 and 6. 

2 P r e l i m i n a r i e s  a n d  P r o b l e m  F o r m u l a t i o n  

Throughout  this paper we let (ft, 5 v, P, {-~'t}t>0) be a filtered probability space satisfying the 

usual conditions, i.e. 9vt is right-continuous in t and 5r0 contains all the P-null  sets in 9 v. Let 

K C_ ~n be a convex and closed cone and let Ko _a {0 E K [ 1[0111 = 1}, where [[. [11 is the 
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L < n o r m  of IR n. 

We shall make use of the  following Standing Assumptions on the functions b, a, f and g 

appear ing in the control  system (1.1) and the cost functional  (1.2): 

(A1) The  functions b and ~ are uniformly continuous from [0, T] • IR n • U to IR n and to 

11{ ~• respectively. Further,  ~L > 0 and u E (0,1], such tha t  for t E [0, T], x ,~  E R n and 

u E U, there  holds tha t  

]b(t,x,u) - b(t,~,u)] + [a(t,x,u) - (7(t, ~, u)[ _< LIz - 2], 
(2.1) 

Ib(t,x,u)[ + [~r(t,x,u)l 2 < L(1 + [x[~). 

(A2) The  functions h : [0, T] x I1{ n x U --4 R, f ~ , f ~  : [0, T] --+ JR, e : [0, T] x R ~ --4 IR 

and g : IR n -4 I1{ are continuous. Further ,  3co > 0, L, L0 > 0, 0 < ~ < 1 and # E (0, u], 

and a nondecreasing continuous function w : [0, oo) --4 [0, oo) with w(0) -- 0, such that  for all 

t , [ E  [0, T], x , 2  E I~ ~ and u E U, there holds tha t  

]h(t,x,u) - h(t ,2,  u)[ <_ L I x -  xl +a;(] t  - tl); 
(2.2) 

0 < h(t ,x ,u) ,  g(x) <_ L(1 + [x[ ') ;  

Ig(x) - g(x)l <- Lo]x - xl; (2.3) 

Co _< fa ( t ) ,  i f ( t )  <_ L, fa(T)  A fS(T) a_ min{ /~ (T) ,  i f (T ) }  >_ Lo; (2.4) 

e(t, o + ~) <_ e(t, o) + e(t, ~), 
e(t ,ao) <__ e(t,o), vt �9 [0,T], 0 �9 K, ~ �9 [0, 1] : (2.5) 

o<_e(t ,o)-e(s,O)<_w(t-s)l lOll; ,  V 0 < s < t < T ,  OEK;  (2.6) 

e(t,o) >_ collOll~', v t  �9 [O,T], 0 E K;  (2.7) 

g(x) < inf [g(x + ~) + e(T, ~)] w �9 K. (2.8) 
-- (6K 

In the case ~, : 1 and g(t, 0) = 0 for some t �9 [0, T], we assume tha t  for some fd  �9 C[0, T], 

Lo <_ fa(T) <_ L; g(t,0) = fd(t)lfOII1, V(t,0) �9 [0, T] x K. (2.9) 

R e m a r k  2.1 Among all the conditions, (2.1), (2.2) are s tandard;  (2.3), (2.4), (2.8) and (2.9) 

are compatibility conditions often seen in singular control  problems, and seem to be indispensable 

(see, for example,  [6,8,18]). Condit ion (2.5) is common in impulse control problems (cf. [2,9,10]); 

and (2.6) is slightly more general than  tha t  given in [9,10]. The  coercivity condit ion (2.7) plays 

an impor tan t  role in proving the continuity of the value function, as well as the uniqueness of 

the viscosity solutions. 

For 0 < s < t < T let us denote by D([s, t]; 11{ ~) the space of all functions ~ : [s, t] ~-4 ll{ ~ 

tha t  are cs (left continuous with right limits). For ( E D([s,t];II{n), we denote  A(r  a 

(r+ - Cr, Sr a= {r E [s,t] [ ACt # 0}; and define the to ta l  variation of ~ on Is, t] by 

]~][s,t] ~ f[s,t] Id~r[ = ~in=l ](i[[s,t] ' where ]~i][s,t] is the total  variation of the i- th component  

of ( on [s,t] in the usual sense. We shall denote  [(it _a I(][o,t] for simplicity; and denote  

BV([s , t ] ;~  '~) = {(  E D([s,t];~'~)]IC[[s,t] < cx~}. 



488 Jin Ma et al. 

Now for each ( �9 BV([O,T]; ~n), by the Lebesgue decomposition we can write (t = (~c + 

~c+~td ,  t �9 [0, T], where ~ c  ~ t ' c  d~c) __ = fo (s ds ( ~  = ~ s  is the absolutely continuous part; cd A 

~--~0_<s<t A(s is the pure jump part; and (sc ~ (t - (ac _ (d is the singularly continuous part of 

r Since [([ �9 BV([0, T]; l~ '~) as well, the same decomposition holds: [([ = [([ac + i(la8 + ]/[d. 

An easy application of Radon-Nikod~m Theorem leads to the following representation: 

~ = f 0rdl(l,, Vt �9 [s,T], (2.10) 
,t) 

where 0 is some measurable function such that  It0111 - 1. We denote this relation by ~ ~ (0, I(I). 

It is fairly easy to show that,  for any 0 < s < t < T, 

= I(d[[s,t] 
t t 

r Ordlr = Ordbr ~ + Ordlr + ~_, Ora]r (2.11) 
,t) r~slcj[s,t ) 

~2~= Ordl~l~ ~, ~2~= Ordlr ~, /x~ = OtAlr 

Finally, we denote by BV~ K) the subset of BV([s ,  T]; I~ ~) consisting of all elements 

,-, (0, ]~1) such that Or �9 Ko, r �9 [s, T]. 

L2'~lf~ �9 BV([s ,  r]; R~)) the space of To describe the singular control process, we denote by ~- t , 

all {~-t}-adapted processes {(t}~<t<r with paths in BV([s ,  r]; IR~), such that  

1 

s,rl,2m = E d~t < oe. 
,r] 

We denote II~l][s,r] = ][~[l[s,r],2 for simplicity. Since ~ is left continuous, it is predictable. By a 

stochastic version of the Radon-NikodCm Theorem (see, for example, Dellacherie-Meyer [19], 

VI), we still have the representation ~ ~ (0, I~1), where both ]~1 and 0 are predictable. Further, 

by redefining 0 on a set of d]~] | dP-measure zero if necessary, we shall assume that  tlOtl]l = 1, 

t �9 [s, T], a . s . P .  

We are now ready to formulate the control problem. Let U be a separable metric space and 

K C 1R ~ be a convex and closed cone. Set 

His, T] A { u : Is, T] x f~ ~ U I u is {~-t }-progressively measurable}; 
(2.12) 

IC[s,T] ~- {~ �9 L ~ ( f ~ ; B V ~  [ ~ = 0 ,  a.s.}. 

We call (u, () �9 H[0, T] x K[0, T] an admissible control, in which u is called the regular part and 

is called the singular part. Our optimal control problem is then formulated as follows. 

For any given (s, x) �9 [0, T) x ~ ,  find a pair (f~, ~) �9 lJ[s, T] x IC[s, T], such that 

J~,~(fi,~) = inf Js,~(u,~) A Y ( s , x ) .  , (2.13) 
(u,() El.l[s,T] x K.[s,T] 

The function V(s ,  z) is called the value function of the control problem. 
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To conclude this section we note that  under the assumption (A1), for any s E [0, T), x E It~ ~ 

and (u, ~) E /4[s, T] • ]C[s,T], the state equation (1.1) admits a (pathwise) unique solution 

(the initial state x can actually be replaced by any square integrable ~s-measurable random 

vector X~). We shall denote such a solution by X s'X''~''~, which will be simplified as X ~,X',~, 

or X s'X', or even X, when the dependence on the missing factor(s) in the superscript is clear 

or not important. The following proposition gives some useful estimates for the solutions to 

(1.1). 

P r o p o s i t i o n  2.1 There exists a constant C > O, such that for all 0 < s < t < T,  u E U[s, T], 

~, ~ E ]C[s, T] and 2:s-measurable random variables Xs and fgs, there holds that 

E[X[ ,x <_ CE{I + IX~l + I~%,<1 + I~dlI~,~)}, (2.14) 
--C - d  EIX: 'x .... e - x : ' X ' " e l < - C E { I X ~ - 2 , 1 + l ( ( - ( )  II,,,l+l(~-~)lie.<)}, (2.15) 

E ~ t b ( r , X ~ ' X  .... e,ur)dr + E  f f a ( r ,X , 'X"~"r  

c d v _< C{ (1 + EIX, I ~ + EI,~ II,,~l + Ele II,,~l) ( t -  s) 
d v 1/2 (1 + EIX, i ~ + EI,~%,~I + EI,~ II~,=,) ( t -  s ) ' ' } .  (2.16) + 

Proof Denote Xt = X~ 'x .... 4, and (x) = (1 + [x[2) 1/2. Applying It6's formula to (Xt), and 

noting that  ]xl ~, Ix[ ~12 < 1 + Ix[, and [(x) - (y)[ _< Ix - Yl, for all x, y E [0, ~ ) ,  we have 

// E(X~) = Et (XD + ( X r ) - l ( X r , b ( r ,  Xr ,  ur))dr 

1 t + "~ f tr [ ( -  i(Xr)-3X, Xf + (Xr)-iI)aaT(r,X,,ur)]dr 
~ $  

// 
tEStis,t) 

{ S.' // ) <CE I+ (XA+  (X,)dr+ IdfTl+ ~ IA&I �9 
rESe[s,t) 

Applying Gronwall's inequality to (2.17), we get (2.14). 

(2.17) 

Next, we let (x)~ = (~ + Ix]2) 1/~, )(t = X~ '~''~'~ and Xt as above. A similar argument to 

that  before then leads to that  

L' - d  

First applying the Gronwall inequality and then letting r --~ 0, we obtain (2.15). Finally, by 

(2.14) and (2.2), we obtain (2.16) immediately. 
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3 P r o p e r t i e s  of  Value F u n c t i o n s  

J in  Ma et al. 

In this section we present some basic properties of the value function. We note that  although 

these properties are more or less standard in form, special attention is still necessary because 

of the generality of the model that  we are dealing with. To simplify the arguments, in what 

follows we denote by C > 0 a generic constant depending only on T > 0 and those constants 

appearing in (A1) and (A2), and we allow C to vary from line to line. We have the following 

result. 

T h e o r e m  3.1 Let (A1)-(A2) hold. Then, there exists C > O, such that for any s E [0, T] 

and x, �9 E xI~ n, and the constant # in (2.2), there holds that 

( i)  0 < V(s, x) <_ C(1 + I x l ' ) ;  

(ii) IV(s ,x)  - V(s,~)l < CIx - ~1: 
(iii) For any fixed x E ~'~, the rnapp*ng s ~+ V(s ,x )  is continuous on [0, T]. 

Proof (i) The nonnegativity of V(s ,x)  is obvious. Setting { = 0 in (1.1) and (1.2), using 

Condition (2.2) and applying Proposition 2.1 we derive the second inequality in (i). The 

Lipschitz property (ii) is a direct consequence of Proposition 2.1 as well, thanks to (A1) and 

(A2). 

The proof of (iii) is more complex. We first consider the following subset of K:[s, T]: for any 

x E I~ n let 

ICf't[s,T]= (E/~[s ,T]  [EI~ II,,rl+ [,~,T _< [ l + c ( l + l x l " ) ]  , (3.1) 

where C is the generic constant in (i) and (ii). Note that if u E /g[s, T] and ~ E x {/C[s, T] \ 

/clzl[s,T]}, then (recalling (2.4), (2.7)and part (i)) 

J s : ( u , ( )  _> coE[~C[[s,T] + coE ~ [A(~[" 
rESr 

_> co (EICI[~,,I + El(dl "[~,T]) -- > 1 + C ( 1  + Ixl") _> 1 + v(s, x). 

From this one sees easily that V(s, x) = infu[s,7-]x/Cj.l[s,T J Js,x(u, ~). Therefore, in the sequel we 

consider only the case when (u,~) E U[s,T] x/c lx l [s ,T] .  

To prove the continuity of V in s we let s, ~ E [0, T]. Without loss of generality we assume 

that  s < g. For any (~,() E b/[$,T] • K:I~I[$,T], we let u E Lt[s,T] be such tha t  ul[~,T] = ~, 

and define ~ -~ ~-~v~, r E [s, T]. Clearly, ]~I[s,T] = ]~I[~,T}, a.s. P, and ~ E /C I~l[s, T]. Applying 

Proposition 2.1 it is fairly easy to show that 

J,,~(u,~) <_ J~,~(ft,() + I J , ,~ (u ,~ )  - J~,~(a ,  ()l  

_< J~,~ (~2, ~) + C(1 + I x l " ) (a  - s) + c (1  + Ix l ) (~ - s) ' /~ .  (3.2) 

Since (72, 0 is arbitrary and # < 1 (whence Ixl" < 1 + IxI), we deduce that 

v(s,x) < V(~,z) + c( l  + lzl)(~- s) ~/2, V 0 < s < ~ < T .  (3.3) 
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To obtain the other  side of the inequali ty we consider the following two cases. 

C a s e  1 $ < T. For any 0 < e < T - $ we define a (deterministic) t ime change 

~-~(r)={s+S-s+----~(r-~)}l[~,~+~l(r)+rl(~+~,Tl(r),~ r E [ g , T ] .  
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Clearly, re (') is an increasing, continuous, piecewise linear function on [g, T] such tha t  ~-e (r) = r 

for r E [~ + ~ , r l ,  -~(~) = s, and r~(r) <_ r for r E [~,r]  (whence r <_ T~-~(r), for r E [s,T]). 
Next,  for any (u,~) E bl[s,T] x ]C[s,T], we let ~2 = ~li~,rl ~ U[~,TI and define ~ g ~ ( ~ ) .  It is 

easy to check tha t  (~ is {~-t}-adapted and K~I[~,TI = IglIs,T]. 

Using the est imates in Proposi t ion 2.1, the nonnegat ivi ty  of the functions h, f~, f s ,  as well 

as the corresponding assumptions in (A2), one shows that  

Js,~(u, ~) - J~,~(f~, ~)  
T 

+ E  ~ [e(~,zx4~)-e(~-~(~),~4~)] 
rES~[s,~+e] 

_> - L j~  (EIX:,~,r + EIX~ '~'~l)dr 

- (LT + Lo)CEIX~_~; r Y~'~'~ - --~+~ I - E E w(r~-~(r) - ~)11~,~11~. (3.4) 
rES([s,~+e) 

- -  g e - - r  - S i n c e 0 _ < v  E l ( r ) _ r =  t + ~ _ s ( s _ s ) _ < g _ s f o r r  E [ s , g + e ] a n d  Jg,~(~2,(e)_> V($, x), for any 

e > 0, we derive from (3.4) tha t  

Js.~(u,~) > - ( L T  + Lo)ClimEIX;~_; ~ Y~'~'~" 
- -  e - - + 0  

Noting tha t  (~+~ = (-~+~ and using the est imates (2.15) and (2.16) one shows tha t  

hmElX~2; - ~ - ~ + ~  I _ < c  1 + Ixl ~ + E K  [[,,T] + EI4 I[,,rl (s - s) 
e -.~.0 

c E~e" ~1/2(~_ s)1/2}" + (1 + Ixl ~ + E l 4  [[s,T l -}- s,T ] (3.5) 

Consequently,  put t ing  (3.4) and (3.5) together,  taking the infimum for (u , ( )  E H[s,T] • 
]~l~l[s,T], and noting tha t  u < 1 and ( E KI~I[s,T], we get 

v(s,  z) - v(g, x) > - c ( 1  § Izl)[(~ - s) § (~ - s)�89 §  s)], (3.6) 

for 0 < s < ~ < T, which, combined with (3.3), leads to the continui ty of V(., x) for s E [0,T).  

C a s e  2 $ = T. Wi thou t  loss of generality, we may assume tha t  the w(.) appear ing in (A2) 

is also a modulus  of continuity for f~ A fs .  Again, for any (u, ~) E LL[s, T] x K:[s, T], we can 

go through a similar computa t ion  as before, and use the assumptions (2.4)-(2.8),  as well as 
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Proposition 2.1 to get 

Js,~(u,() - g(x) >_ E { g ( X ~  '~'~) g(x) 

eT 

+ fo ( i f (T )  A i f ( T )  - w(T  - s))Id~l + e(T, ~r - ~ ( T  - s,,~ ~,~ J) L[~,TI } 

_> - c ( 1  + t~l ~ + EI~IEs,T1 + EI~alC%,Tj)(T 8)1/2 

- w ( T  - s) EI~ I[~,TI + EI~ II~,TI " 

Taking the infimum over (u, () E U[s, T] x/Cl~l[s, T], we obtain 

V(s ,x )  - 9(x) > -C(1  + I x l ) [ ( T -  s) 1/2 + w ( T -  s)], 0 < s < T. 

This, together with (3.3), proves the continuity of V(., x) at s = T. 

Jin Ma et al. 

(3.7) 

4 Generalized Gradient Constraints 

In this and the following sections we derive the HJB equation associated with our control 

problem. To begin with, let us state the Dynamic Programming Principle (Bellman Principle), 

whose proof (which we omit) can be carried out by combining some standard techniques as 

used in, e.g. [3,4,10,11]. Denote by ~s,T the set of all (?t}-stopping times taking values in 

[s, T]. We have 

B e l l m a n  P r inc ip l e  Let (A1)-(A2) hold. Let (s,x) E [0, T] x II~ n, y > 0 and ~- E ~s,T be 

given; denote X = X s'x'~''~ for (u, ~) ELl[s, T] x ]C[s, T]. Then the following holds: 

{// // V(s, x) = inf E h(r, Xr,  ur)dr + f~(r)[i~C[ildr 
U[s,T] x ~.[s,T] 

+ f~(r)ldSgCl+ ~ e(r, A S r ) + V ( r ,  XT) . (4.1) 
rES~[s,v) 

In light of the existing results involving singular and impulse controls, we know that  our 

HJB equation will take the form of a quasi-variational inequality, and the essential part will be 

the determination of the obstacle(s). However, unlike the well-known gradient constraints as 

one often sees in the literature on singular control the obstacle appearing in our HJB equation 

is quite different due to the generality of our control problem. 

To begin our investigation, let us argue heuristically. First, if we set r = s + e, e > 0, in 

Eq.(4.1), and for any 0 E K \ {0}, and u ~ E U we define ut =- u ~ t E [s,T], and ~t - 01(~,~)(t), 

then (u, ~) E U[s, T] x E[s, T], and as s -~ 0 one derives easily that  V(s,  x) <_ e(s, O) + V(s,  x +0). 

Consequently 
V(s, x + O) - V(s, z) 

+ 1 _> O, V 0 E K \ {0}. (4.2) 
e(s,O) 



Dynamic Programming for Multidimensional Stochastic Control Problems 493 

Next,  let us assume further  tha t  V E CI'2([0, T] • I~). Choosing u _~ Uo E U again, but  

~t = aO(t - s), t >_ s, with any a > 0, It0N~ : 1, o E K.  Using (4.1) and It6's formula (applied 

to V(T, Xr ) ,  7- = s + e) we get 

fi IS/" ," ]}, 0 < E H(r)dr + a {(V:, 0) + (r)}dr 
k , s 8  

where 
1 

H(r) = Vr(r, Xr) + (V~(r, Xr),b(r, Xr,u~)) + 2 t r  [Vx~(r,X~)(aaT)(r, Xr,u~)]. 

Since a > 0 and e > 0 are arbitrary,  we deduce easily from the above tha t  

(V~(s,x),O}+f~(s)>_O, VO ~ ff,  ll01h -- 1. (4.3) 

On the other  hand,  if we let ({ ~ e~(~(t  - s ) ) l%s+d( t )  + el{~+~,m], t E [s ,T],  where ( is the 

Cantor  function defined on [0,1], i.e. ( is continuous, monotone increasing with ( = (s, and 

define for a > 0, 0 E K,  i[0H1 = 1, (t = a0 ( ( t ) ,  t E [s,T], then a similar argument  to tha t  

before will show tha t  (4.3) holds with f~ being replaced by f t .  

Combining the above, let us now define for any ~9 E C([0, T] • I~), and for all (s, x,p) �9 

[0, T] • I~ '~ • ItU ~, the following operators  

( M[~](s,x) ~ inf ~a(s,x + O ) - ~ ( s , x )  
OEK\~o~ { e(s, b~ } +  1; (4.4) 

F(s ,p)= inf {f~(s) A f f (s)+(p,O)},  V(s,p)E[O,T] • ~, 
OEKo 

where Ko ~ {0 E K I II01[~ = 1} (thus K = { ~ 0 : 0  e Ko,~ _> 0}). Then (4.2) implies that 
M[V](s,x) >_ 0, V(s,x) .  Further ,  if V E C 1'2, then F(s, Kx(s,x)) >_ 0, V(s,x). Notice tha t  

if K = I~ ~ and s : fd(s)ll011~, then F(s,p) = 1 - Ilpll~, where IIpll~ - ma~x_<~_<. Ip~[, 
Vp = ( p l , . . .  ,p,~) E 1~; and the inequali ty M[V](s, x) >_ 0 becomes liVe(s, ~)l l~ < fd(s) while 

F(s, V~(s,x)) >_ 0 becomes IIVz(s,x)lic~ _< 1, both  being the gradient  constraints  as we often 

see in the l i tera ture  on singular control.  Therefore,  in the sequel we shall call the equalities 

M[V](s, x) >_ 0 and F(s, V~(s, x)) >_ 0 the  generalized gradient constraints. 

The  main purpose of this section is to prove certain kind of cont inui ty for the function 

M[V](s,x), which will be essential in our  future discussion. For nota t ional  convenience we 

define 

Fl(s,p) ~- inf { fa ( s )  + (p, 0)}, V(s,p).  (4.5) 
0EKo 

Let (A1)-(A2) hold. Let V be the value function of the control problem (1.1) T h e o r e m  4.1 

and (1.2). Then 
(i) M[V] is continuous on the set E0 ~ {s E [0, T]ie(s ,0)  > 0} x ]~n; 

(ii) If u < 1, then M[V] is continuous on the set 

E ~- { ( s , x , y )  E (O,T) • ~" lM[V](s ,x )  < 1}. 

Further, if (g, ~) ~ E, then, for any r > O, there exists a 

f o r  all  Is - ~1, Ix - ~1 < ~. 

(4.6) 

5 > 0 such that M[V](s,x) > 1 - e ,  
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(iii) I f  u = 1, infte[O,Tl e(t, O) = O, and V(s, x) is C 1 in x. Then M[V] is continuous on 

[0, T] x ll~ '~. Moreover, for all (s,x) E [0, T] x ll~ '~, there holds that 

{(s,x) lM[V](s,x) = 0}  = {(s,x) lFl(s,Y=(s,x)) = 0}; 
(4.7) 

{(s,x)  l M[V](s,x) > 0} {(s ,x)  l Fl(s, V~(s,x)) > 0}. 

Proof (i) For any ($,2) E Eo, one has e(g, 0) > 0. Thus there exists a 5 > 0, such that  

e(s, 0) ~ 5 > 0, for all Is - g[ _< 5. Since V(., .) is continuous thanks to Theorem 3.1, we show 
v(~,~+o)-v(~,~) readily that  the function t(s,o) is continuous for (s, x) E [~ - 5, ~ + 5] x ll~ n, uniformly 

in ~ E K. This clearly implies the continuity of M[V] on Eo. 

(ii) Since M[V] is by definition the infimum of a family of continuous functions, it is upper 

semicontinuous. Thus, the set E defined by (4.6) is open. Consequently, for any (g, 2) E E, 

we can find a (~ > 0 and a neighborhood A/" of (g, 2), such that  M[V](s,x) <_ 1 - 5, for all 

(s, x) EAf.  Further, using Theorem 3.1(ii) and (2.7) we see that  if 0 E K and 0 ~ 0, then 

(recalling ~ < 1) 

i Y ( s , z  + 0 )  
g(s ,~  I -< CI0[1-~co --+ 0. (4.8) t 

Therefore we can find an s > 0, such that for all (s, x) EAf 

M[ V] ( s , x ) =  inf { V ( s , x + O ) - V ( s , x )  1}. (4.9) 
oe K,llell~ >_~ ~(t, t~) + 

v(~,~+o)-v(~,~) Note again that  the function l(s,O) is continuous with respect to (s, x), uniformly in 

E K with r <_ [I@]ll < C, M[V](s, x) is continuous on A/', whence at (g, ~), thus proving the 

first part of (ii). 

To see the second part of (ii), let us assume that  (g,~) ~ E, and our assertion is not true. 

To wit, for some r > O, there exists a sequence (sk, Xk) -+ (~, ~.), such that 

M[V](sk, xk) <_ 1 - ~, Vk >_ 1. (4.10) 

Recall from the proof of Theorem 3.1 that for each fixed (s,x),  there holds that  V(s, x) = 

infu[s.T] • X:t~l[s,T] Js,z (u, ~), where/(:1~1 [s, T] is defined by (3.1). Thus in the dynamic program- 

ming equation (4.1) we can actually replace the set ~[s, T] by K:]~l[s, T], for each fixed (s, x). 

Consequently, we may assume that the infimum in the definition of M[V] is taken over all 

t9 E K,  8 ~ 0, such that  [[01[ _< C~ -~ C(1 + Ix['), for each fixed (s,x), with some generic 

constant C > 0 that  is independent of (s, x) (see (3.1)). 

Now by (4.10) we can choose for each k a Ok E K,  such that  r < [10k[I < C ~  and 

E V(sk ,xk  +Ok) -- V(sk, xk) _ M[Y](sk,xk)  + ~ < 1 2 - ~(Sk,0k) + 1 < _ - - ,  k > 1. (4.11) 

Since Xk --+ ~., the sequence {C=~} = {C(1 + [xk[")} is bounded; thus {Ok} is bounded as well. 

Extracting a subsequence if necessary, we may assume that Ok ~ Oo for some 00 satisfying 
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tl0oll >_ e. Then 

M[V](& ~) _< 

< 

v o ,  e + 0k) - v ( a ,  e) 
+ 1  

e(~,0~) 
V(sk ,  zk + ok) - V(s~,  z~) 

e(sk, ok) 
rV(~, ~ + o~) - v (~ ,  ~,) 

+ [ g(~, ok) 

< 1 - ~ + [ . . . ]  ~ 1 - ~ ,  

+ 1  

V(sk ,zk  +Ok) - V(Sk,Zk)] 
- j 

a contradiction, which proves the second part of (ii). 

(iii) Now assume that u = 1, and e(s,0) = fd(s)HOII1, where fd is continuous and satisfies 

(2.9). Since V is C 1 in x by assumption, denoting by coy the modulus of continuity of V~ we 

have 

V(s, z + o) - V(s, x) v(~, ~ + o) - y(~, ~) I 

/o 
Namely, the function v(s,,+o)-v(s,~) is continuous in (s, x), uniformly in 0 7~ 0. Thus M[V] is IIO11~ 
continuous on [0, T] x tR '~. To prove the last assertion of (iii) we note that for any 0o E Ko and 

> 0, one has s a0o) = fd(s)a, and that as a ~ 0, 

<_ fd(s)(. V(s, x +~,~o~Oo) - V(s, x) + 1 fe(s)M[V](s,  z) 

/001 = (V~(s,x+13~Oo),Oo)d/3+fd(s) --+ (V~(s,x),Oo)+fd(s). (4.12) 

Taking the infimum on the right side of (4.12), and noting that  M[V](s, x) > O, V(s,x), as 

we proved before, we get 0 _< fe(s)M[V](s,z) <_ &(s,V~(s,z)), where F1 is defined by (4.5). 

Consequently, we have 

M[V](s,x) >O==~ Fl(s,V~(s,x)) >0 ;  Fl(s,V~(s,x))=O==~ M[V](s,x)=O. (4.13) 

and hence 

On the other hand, for any 0 E K,  one has 

sd/s/{ +1/-- fol{/ /s 
/o 1 > Fl(s,V~(s,x+~O))dl3> inf __1 [ F1 (s, V~ (s, x + ~O))d~, 

- -  - -  O E K  J O  

~o I fd(s)M[V](s,x) > inf Fl(s, V~(s,x + ~O))d~, V(s,x). (4.14) 
- -  OEK 

Now if M[V](s, x) = 0, then we can find some 0 E K such that  f2 Fl(s, V~(s, x + 130))d13 = O. 
Thus Fl(s,V~(s,x +/50)) = 0, for a.e. /3 E [0,1], since the integrand above is nonnegative. 
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Using the continuity of V~, we then conclude that  Fl(s,  V~(s,x)) = O. Combining this with 

(4.13) we can now derive both equalities in (4.7) easily. 

R e m a r k  4.2 It is important  to note that,  in general, M[V] is not necessarily continuous on 

[0, T] x II~ ~ x [0, c~). But, Theorem 4.1(ii) tells us the following: If M[V] is positive at a certain 

point, it will be positive in a neighborhood of that  point. This will be enough for the derivation 

of our result in the next section. 

R e m a r k  4.3 We should note that  Theorem 4.1(iii) covers a very important  case: L, -- 1 

and ~(s, 0) = 0, namely, the standard singular control model. By (2.9), we always assume that  

e(t,O) = fd(t)HO][1. Theorem 4.1(iii) then tells us that  in such a case, if the value function 

V(s ,x )  is C 1 (in x), then the constraints M[V] > 0 and Fl(s ,V~(s ,x))  > 0 are actually 

equivalent. Thus, denoting G(s,p) a_ infeeKo {f~(s) A i f ( s )  A fd(s) + (p,O)} we have M[V] A 

F(s ,  > 0 ,: :::, a ( s ,  > 0. 

5 T h e  H J B  E q u a t i o n  

In this section we derive the HJB equation associated with our control problem. Let Sn be the 

set of all (n • n) symmetric matrices, and define 

{ { 1 . } 
H ( s , x , p , A )  = inf h ( s , x , u ) + ( p , b ( s , x , u ) ) + ~ t r [ A a a  (s ,x ,u)]  , 

V(s ,x ,p ,A)  E [0, T] x IE '~ x I~ n x S n. 

Consider the following quasi-variational inequality: 

{ m[n{Vs + H(s, x, Y~, Vx~), F(s,  V..), M[V](s, x)} = O, 
(5.2) 

v I g(x) 

More precisely, we shall prove that  the value function V(s, x) is a viscosity solution of HJB 

variational inequality (5.2) whenever v < 1 or e(s,0) > 0. Further, in light of Remark 4.3, 

we will show that  i f ,  = 1 and e(s,0) = fd(s)]lOI]l, then V will be a viscosity solution to the 

variational inequality 

{ min{V~ + g ( s , x ,  V~, V~) ,G(s ,  V~)} = 0, 
(5.3) 

w g(x) .  

The uniqueness of such a viscosity solution will be proved in the next section. 

First, let us recall the definition of a viscosity solution (see [4,11,20]). 

D e f i n i t i o n  5.1 A continuous function v : [0, T] x IE ~ -~ ll~ is called a viscosity subsolution 

(resp. supersolution) o/(5.2),  if  v (T ,x)  < g(x), (> g(x), resp.) for all x E ll~n; and for any 

E C~([0,  T] x ]R n) /or which v - ~ attains a local maximum (resp. minimum) at (~,2) E 

(0, T) x I~ '~, one has 

m i n { ~  + H ( $ , 2 , ~ , ~ ) , F ( $ , ~ ) , M [ v ] ( ~ , ~ ) }  >_ O, (<_ 0, resp.), 
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where Us, qo~ and ~o~ are evaluated at (g, 2). If  v is both viscosity subsolution and supersolution, 

then it is called a viscosity solution of (5.2)~ 

We remark here that  since the operator M[v] is "non-local", one cannot replace M[v](g, 2) 

in the definition above by M[~o](g, 2), even when V(g, 2) = qo(g, 2) is assumed! This is why our 

obstacle in the HJB equation is different from the standard gradient constraints, where such 

replacement is always possible. 

We have the following theorem. 

T h e o r e m  5.2 Assume (A1)-(A2). Then the value function V(s,  x) is a viscosity solution of 

(5.2). In particular, if v = 1, e(t, O) = O, and (2.9) holds, then V(s,  x) is a viscosity solution of 

(5.3). 

Proof We prove only that V is a viscosity supersolution of (5.2), since that it is a subsolution 

is much easier. Let (g,~) 6 (0, T) x / ~  and let ~ E CI'2([O,T] • I~") be such that Y - ~  attains 

its local minimum at (g, 2). It is known that, one may assume without loss of generality that 

the minimum is V(g, 2) = ~(~, 2). We claim that one of the following inequalities must hold: 

{ ~s(s,2) + H(~,2,~x(~,2),~(~,~)) < 0; 
F ( ~ , ~ ( ~ , 2 ) )  _< 0; M[V](g, 2) < O. 

Suppose this is not the case. Then there exists a 50 > 0 such that 

(5.4) 
F(g,~)~(g, 2)) > ~0; M[V](g,2) > ~0. 

Note that  in Theorem 3.1 we have shown that V(g,2) = infu[~,T]• J~,e(u,~), where 

Klel[g,T] is defined by (3.1). For any (u,~) e Li[g,T] x Klel[g,T], let Xt = X s'i''''~ be the 

corresponding trajectory; and X[ = Xe - ~[z For any 7- 6 ~,.T we apply It6's formula to 

~(t, X~) to get 

y(7-, x~) - v ( s ,  2) > ~(7-, x~) - ~(s, 2) + v(7-, x~ + ~ )  - v(7-, x~) 

//I = ~(r,X~:) + <~,~(r,X.~),b(r,X~,~)> 

/ /  c + ~ t r  ~ ( r , X ~ ) c r ~ * ( r , X ~ , u ~ )  d r +  (~2~(r,X~),d~) 

+ (~(r ,X~),dW~t + V(7-,X~ + ~ ) -  V(7-,X~). (~.~) 

Using the definitions of J~,~, M[V] and F, we derive from an easy computation that 

~,~(~,~) - v(~,2) > E{vI~,x~I - v(~,el + .~h(r ,X~, .~)dr  

+ f~ ( r ) ld~  ~1 + fS(r)ld~SCl + E g(r'A~r) 
r6S~[g,r) 

// > E {  [Tr(r ,X  c) + H(r,  X r , ~ z ( r ,  XC),~zz(r ,  XC))]dr 

+ F ( r , ~ ( r , X r  + e(7-,(a~)M[VI(7-,X~) 
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, ' ~s~  [~,~)  

Now, for any ~ > O, we choose (~,~,,") e U[~, T] • X:I'I [~, T] so that J,,, (~,', ,~ ')-  V(~, ~) < ~, and 

denote by X[ the corresponding trajectory. Note that applying Theorem 4.1(i) if ~(s, 0) > 0, 

Vs; or Theorem 4.1(ii) if u < 1, we deduce from (5.4)-(5.6) that,  for some q > 0, there holds 

for all [r - $[,[x - ~[,[~ - ~[ _< 7/that 

{ ~ ( r , x ) +  H(r,&,qa~(r,x),#~(r,x)) >_ ~ ,  

F(r, ~ (r, x)) > 60 M[Y](r, x) > 60 (5.7) - ~ ,  - ~ ,  

Set Z[ A max{t - ~, [(X~)[ - ~[, IX[ - ~[}. Then Z ~ is also c&gl&d and adapted. 

we define 7~ : inf{t > $[ Z[ > g } A T ,  then ~-,~ E ~ , T .  Replace now 7, u , (  by T~,Ue,( e in 

(5.6). Note that  the function g is nonincreasing in t by (2.6) which, combined with the "triangle 

inequality" in (2.5), shows that  the last [...] on the right side of (5.6) is nonnegative. Therefore, 

using the definition of (u ~, (~) and (5.7) we get 

6o & 60 Co . . . . .  e - d 

We claim that  (5.8) will lead to a contradiction, indeed, since (5.8) implies that,  along a sequence 

if necessary, ~ -+ $, a.s., as e -+ 0, and that  ](( ) [[~,r + EI((e)rdg O(S). Thus it follows 

from Proposition 2.1 that  EtX~.~ - xl = O(~); Et(X~)~,~ - xl : O(~). Note that  

whence 

Thus if 

> + > 

2 
> 1 - -{EIX~ - e l  + EI(X~)~,~ - e l }  ~ 1, a s  e ~ 0 .  

7/ 

Therefore there exists a constant eo E (0,6or//8), such that for all 0 < e < eo, there holds that 

P(7-~ > g +  2 ~) > �89 Hence for such e, (5.8) becomes 

> E(r ~) > E (T~ ) {,- -2}] > 6o ~p{ 

a contradiction. This proves the first part of the theorem. 

Now let us assume that  ~, = 1 and e(s,8) = fd(t)[[O[[1, and prove that  V is a viscosity 

solution to (5.3). Again, we only show that  V(s, x) is a viscosity supersolution. In other words, 

for (~, ~) E [0, T] x I~ n, and ~ E Ct'2([0, T] • I~ ~) such that V - ~ attains its zero minimum at 

(~, ~), we want to show that  one of the following inequalities must hold 

~s(~,~) + H ( ~ , ~ , ~ x ( ~ , ~ ) , ~ = ( < ~ ) )  _< 0; G(~,~x(~,~)) _< 0. 

Suppose this is not the case. Then there exists a 6o > 0, such that 

~s(~,~) + H ( ~ , ~ , ~ ( ~ , ~ ) , ~ = ( < ~ ) )  > 60; G(~ ,~ (~ ,~ ) )  > 6o. (5.9) 
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Similarly to (5.5), for any (u,~) �9 L/[~,T] x/CI~I[g,T], denote Xt = X ~'~'~''~ and X[ = Zt  - ~ .  

Let 7- �9 ~ , T .  This time we apply It6's formula to ~(t, Xt) (instead of qo(t, X~)!) to get 

v ( ~ ,  Xr)  -- V(~, ~) > ~(~,  X~) - ~(~, ~) 

= {~o~(r, X r ) +  (qoz(r, Xr ) ,b ( r ,X~ ,ur ) )+  ~tr ([~oz~<ra*](r,X~,u~))}dr 

+ <~(~,x~),a~>+ <~(r, xc),aN~> 

+ ~ ~ , (~ ,x~  + ~ )  - ~ ( ~ , x ~ ) .  (5.10) 
rE[.~,r) 

On the other hand, notice that for (4.14), similarly to (5.6) we have 

[ I + F(r,  ~ ( r ,  X~))ld~ I + I I ~ l l ~  - F; , (5.11) 

where F~ ~- f2 F l ( r , ~ ( r , X ~  + ~d ) )d~  and F~ is defined by (4.5). Then, by a line to line 

analogy of the proof of the first part, and using Theorem 4.1(iii) if necessary, we can also derive 

a contradiction from (5.10) and (5.11), which shows that V(s, x) is a viscosity supersolution of 

(5.3). The proof is now complete. 

6 Uniqueness of  Viscosity Solutions 

In this section we prove the uniqueness of the viscosity solutions of (5.2), which will complete 

the characterization of the value function V(s, x). 

Let us first recall the notion of (parabolic) super-(sub-)jets (cf. e.g. User's Guide [20]). For 

any v :  [0, T] x ~n __+ [--Cx~, +OO], we define (recalling S 'L in (5.1)) 

P2'+v(s,z) = {(a,p,A) 6 R x ~" x S" [ v(t ,z)  < v(s,x)  + a(t - s) + (p,z - x> 

+ 2 ( d ( z -  x) ,z  - x) + o(It - sl + I z -  xJ2),t $ s ,z  

--2 + 
p ' v ( s , x )  : { ( a , v , A )  e R • ~t ~ • S" [ 3(s~ ,hi )  �9 [0,T] • ~ ,  

(a~, Pi, Ai) �9 792'+v(si, 5~), (si, xi, v(s~, xi), a~, Pi, Ai) --+ (s, 5, v(s, x), a, p, A)}. 

Further, we let 792'-v(s, x) -792'+ ( -v) (s ,  x), --2 - = 79 ' v(s ,x)  = - ~ 2 ' + ( - v ) ( s , 5 ) .  Then, follow- 

ing the standard techniques (cf. [4,11,20]) it is not hard to show that V(s,5) is a viscosity 

subsolution (supersolution, resp.) of (5.2) if and only if V(T, x) < g(x) (resp. V(T, x) >_ 9(x)) 

such that for all (s,x) �9 [0,T) x R ", 

min{a + H(s , x , p ,A ) ,F l ( s , p ) ,Ml [Y] ( s , x ) }  >_ O, (a ,p ,d)  �9 ~2 '+V(s ,x)  

(resp. min{a + H(s , x ,p ,A ) ,F l ( s ,p ) ,Ml[V] ( s , x ) }  < O, (a,p,A) �9 ~ 2 ' - V ( s , z ) ) .  (6.1) 
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Again, we shall prove the  uniqueness in the following two cases separately:  

C a s e  1 0 < # < v2; ei ther  v < 1 or g(s, 0) > go > 0, for all s E [0, T]. We note  tha t  this case 

contains the s tandard  impulse control  problems. 

To simplify the expressions let us define a set of functions 

12 u = {v E C([O,T] x IR n) [ 3C > O, 0 _< v(s ,x)  <_ C(1 + [xlU), 

Iv(s, x) - v (s ,  z)l  < C lx  - zl ,  v s  e [0, r ] ,  =, z e }. 

Clearly, the value funct ion V(s, x) belongs to l?u, thanks to T heo rem 3.1. 

T h e o r e m  6.1 Assume (A1)-(A2),  and that either u < 1 or g(s,O) > go > 0 holds for all 

s E [0, T]. Assume further that 0 < # < u 2 holds. Then the value function V(s,  x) is the unique 

viscosity solution of (5.2) in 12~,. 

Proof Let  V and V be two viscosity solutions of (5.2) in 12 u. We want to show tha t  V(t, x) = 

tY(t, x). Our  line of a t tack  is more  or less s tandard  by now (see, e.g. [9,15,17]), except  for some 

necessary adjus tments  and technicalities tha t  are needed to t rea t  the special form of our HJB 

equation.  To bet te r  demons t ra te  our proof, we proceed with several simpler steps. 

1. Auxil iary functions ~o and 9.  

Take a,13,e,l ,p E (0, 1), m E (# ,u)  with # < mv (this is possible since 0 < /~ < /]2), and 

0 < 77 < T.  Define 

z,  = -f t + 
1 

l + a(T  + r~ - t)((z) m + (z) m) + ~-~r - z] 2, 
t - T  +r/ 

(t, x, z) E ( T -  77, T] • I~" x I~", (6.2) 

where (x} -& (1 + Ixi2)U2; and define 

~ ( t , x , z ) = p V ( t , x ) - V ( t , z ) - i p ( t , x , z ) ,  ( t , x , z )  E ( T - r / , T ] • 2 1 5  (6.3) 

Since V and l)" are all in ~t, with # < m, also by the definition of V~, it is not  hard  to check tha t  

�9 (t, x, z) -~ - o o  as t --+ T - r / ,  x, z -~ oo. Therefore  there  exists (to, xo, zo) E (T-77, T] x 1~" x ~" ,  

which may  depend on a,/3,  e, l, p, m, r/, such tha t  

(I'(to, xo, zo) = max (I)(t, x, z). 
( T - ~ , T ]  x R  ~ x R ~ 

Further ,  since ~I'(t0, Xo, Zo) > ~(T ,  0, 0), plugging into (6.2) and (6.3) we derive 

a(T  + 77 - to)((xo) m + (Zo) m) + l l x o  - zol 2 

<_ pV(to, zo) - V(to, zo) + (1 - p)g(O) + 2arl < C(1 + Ixol u + IzolU). (6.4) 

Noting tha t  # < m and T + r / -  to >__ r/, (6.4) implies tha t  there  exists a cons tan t  C > 0, 

independent  of a ,  ~, r l, p, m, r/, such tha t  

Ixol, Izol < C ( a r / ) -  (6.5)  
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Now using the inequali ty 2(I)(to, Xo, zo) _> r Xo, Xo) + (I)(to, zo, zo) one shows tha t  

Ixo - z o l  ~ _< p(V(to, xo) - V( to ,  zo))  + ? ( to ,  xo) - ? ( to ,  zo) <_ Clxo - zol. 

This implies t ha t  ~ < v ~ C ,  and hence 4 ;  - 

l im Ix~ - z~ - O. (6.6) 
e--+O 

2. Apply ing  T h e o r e m  8.3 of [20] to the funct ions pV, ? and ~o , we conclude tha t  there exist  

al,a2 E ~ and A1,A2 E S" such tha t  

. al  1 1 1 
m m { p + H ( t o , X O ,  p~Z~,pA1),F(to, p(p~),M[V]} _>0, (6.7) 

m i n { - a 2  + H(to, Zo, - ~ ,  -A2), F(to, - ~ ) ,  M [ ? ] }  < 0, 

/ (t, z)  x ,  
in which a t  + a2 = ~t (to, xo, Zo), and, denot ing B(t, x, z) = | \~( t ,z ,z)  
holds t h a t  

( .e- A2 - 

S i n c e r n - 2 < 0 a n d q _ < T + 7 7 - t _ < 2 q ( n o t i n g t E  (T - q, T]), we have 

~,z(t,x,z)~, 
Pzz (t, x, z) ] there  

(6.8) 

- e - I  I + 2aq (z>m_2i 

Consequently,  

e - I  + 4a2772 e (x>2m-4I 0 
--  - 0 ( z > Z m - 4 I  

3(x>m_21 - (<x)  m-2 + (z>'~-2)l '~ 
+ 2~,;  _ (<~>~_~ + <z>,,,_~)z 3<z>m-~z ] (6.9) 

3. Show tha t  for a > 0 small  enough, there  holds t ha t  M[?](to,zo) > O. 
Since V and ? are viscosity solutions of (5.2), one can easily show tha t  M[V](to, xo) >_ 0 

and M [ ? ] ( t o , z o )  _> 0. Let us assume tha t  M[? ] ( t o ,  zo) = 0. Then,  there exists a sequence 
~" ( to,~o+O H -  e ( to,~o ) 1 Ok E K \ {0}, such tha t  t(to,Ok) + 1 _ < ~, Vk > _ 1. Therefore ,  by (2.7) and (6.5), we 

have (not ing t h a t  ?(to, zo + Ok) >_ O) 

k 
collOkll~' <_ g(to,Ok) <_ -~-2--i(?(to,zo) - ?(to,zo + Ok)) 

_< c(1 + Izor)___ c{1 + (,~,7)-~--~-. }. ( 6 . ~ o )  

v ( to,~o +O~ ) - V ( to,xo ) On the o ther  hand,  since ~(to,O~) - + 1 > M[V](to, xo) >_ O, noting t ha t  m < 1 and  

mu > #, one has  

I<m> m - <x + o k > " l  < I0,~1 < IlOkll~; i # ( I  - u) > O, 
(.~ - .)~ 
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and one derives from the definitions of % ~, and (6.10) that 

, ( t o ,  ~o + o~, zo + o~) - , ( t o ,  ~o, zo) 

+ a(T + 77 - to) (<xo) m - <Xo + 0~) m + <Zo) m - <Zo + Ok) m) 

I I 
> ( 1 -  p -  -~)g(to,Ok)--da~l]Ok] >_ { ( 1 -  p -  -~)co--4a~l][Okl]~-~}]IOk[Ir 

>_ { ( 1 - p - 1 ) c o - 4 a r l C ( 1  + ( a r / ) - ~ ) } l [ 0 k n ~ '  > 0 ,  (6.t l)  

provided a > 0 is small enough (depending only on p) and k is large enough. Thus the point 

(to, Xo, zo) cannot be a maximum point of r a contradiction. Thus M[?](to,  Zo) > 0. 

4. Show that  for a > 0 small, there holds that  F(to, - ~ ( t o ,  Xo, zo)) > O. 
Since rn < 1, a direct computation shows that  t~z(to, xo, zo) + ~Oz(to, xo, zo)I <_ 4aT. Thus 

(6.7) and the fact that  F(to, 1 ~ ( t o ,  x0, z0)) _> 0 lead to (recalling the (4.4) for the definition 

of F) the  following: 

F(to, - ~o~(to, xo, zo)) = f~(to) A if(to) + inf (-cp~(to, Xo, Zo), 0o) 
OoEKo 

>_f"(to) A if(to) + inf <T,(to,xo,zo),Oo) - 4aT 
Oo E Ko 

=(1-- P)f~(to) A f f  (to) + P{ f~(t~ A f f  (t~ + o oinfeKo < ~o~(to,xo, zo),Oo> } - 4aT 

1~o~ (to, Xo, zo)) - 4aT =(1 - p)f~(to) A if(to) + pFI (to, P 

_>(1 - p)f~(to) A fS(to) - 4aT > (1 - p)co - 4aT > O, 

provided a > 0 is small enough (depending only on p). 
5. Show that  to = T. 

Suppose to < T. Since the facts proved in Steps 3 & 4 above imply tha t  (6.7) should 

actually read 

al ( 1 ~ ) 
- - + H  t o , x o , - ~ ,  A1 >_ 0 ,  -a2+H(to ,  zo,-~z,-A2)<_O, (6.12) 
P P 

and (6.5) and (6.6) enable us to assume without loss of generality that  x0, zo -+ ~, as c -+ 0 for 

some ~ E ~ satisfying (6.5), using the definitions of ~o and H (see (5.1)), as well as (6.12) we 

have 

Z + ~ ( ( z o )  m + (zo>")  ___ - ~ t ( t o ,  zo,  zo) = - a l  - a2 

_< pH to,xo, -pCp~, A1 - H ( t o , z o , - p ~ , - A 1 )  

- ,,~u ~tr  a*(to,xo,u)Ala(to,xo, u) + a*(to,zo, u)A2a(to, zo,u) 

+ [<~,(to, ~o, zo), b(to, ~o, ~) + b(to, ~o, ~,)>] + [pa(to, xo, ~) - h(to, zo, ~)] } 

sup{/l(u) + /2(u)  +/3(u)} ,  
uEU 

(6.13) 
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where I1(.), /2( ') a n d / 3 ( ' )  are three [...]'s inside the sup{. . .}  above, which we now estimate. 

First,  using (6.8) and (6.9) we have, for each u e U, 

0 
2 I i ( u ) : t r  {(a*(to,xo,u),a*(to,zo,u)) (Ao I A2)  \a*(to,zo,u)  ) a*(t~176 

_<tr {(cr*(to,zo,u),cr*(to, zo,u))(B +r  2) \fa*(t~176 (to, Zo, u) ] 

< -3 I~(to, xo, u) - ~(to, zo, u)l 2 
c 

+ xo,  + <zo> m-4  l (to, zo, 
I 

2arl[3<xo>m-elcr(to, xo, u)l 2 + 3<Zo>m-21cr(to, zo, u)l e + 

+ 2(<Zo> m-2 + <zo>r"-2)l~r(to, Xo, u)llcr(to, zo, u)l] 

-+ ___ 40a,TLZ<2> "~, as ~ -+ 0, (6.14) 

thanks to assumption (A1). Similarly, we have, as ~ --+ 0, 

1 
I2(u) = ( a(T + rl - to)m(xo> ~-2 xo + -(xo~ - zo), b(to, xo, u) } 

+ (a (T  + r7- to)m(zo} m-2zo - l(xo~ - zo),b(to, zo, u)} 

--+ 2<a(T + ,7 - t--)rn<2>m-2e, b(t, ~, u)> < 4v~ar/L<e>m; (6.15) 

and 

Ia(u) <_ L[xo - zol + (1 - p)L(1 + Ixol ~) 

-~ (1 - p )L(1  + I~1") ~ (x - p )L(1  + (2)'~).  (6.16) 

Consequently, if we let ~ --+ 0 on both sides of (6.13) and apply (6.14)-(6.16), then we obtain 

tha t  
~+ 2a<2>m <_ [ (40L2+4v/ -2L)~7+(1-p)L]a<2)m+(1-p)L .  (6.17) 

Choosing ,7 and p such tha t  

(40L2 + 4v/2L)~7 < 1, (1 - p)L < min {1, ~ } ,  (6.18) 

then (6.17) leads to/3 < 2 ~, a contradiction since ~3 > 0. Therefore, we must  have to = T. 

6. Complete  the proof. 

Since to = T, for any (t,x) E (T - 77, T] x t~ '~, ~( t ,x ,x)  <_ ~p(T, xo, Zo). Namely, by the 

definitions of ~, (I' and (to, xo, zo) and a little computat ion,  we have 

l 
~ ~  t - T + ~  

< pg(xo) - g(zo) - a~7((xo) TM + (zo) '~) - l l x o  - zol 2 + 13T - 
t_ 

- L e  77 

< pg(xo) - g(zo) + ~T --~ (p - 1)g(xo) + ~T  < ~T, 
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as e --~ 0. In the last inequality, we have used g(xo) >_ 0 (see (2.2)) and p < 1. We now let 

a -~ 0, I -+ 0, p -~ 1 and/3 -+ 0 to get V(t, x) <_ V(t, x) on (T - ~, T] x ~ .  Changing the roles 

of V and V, we obtain that  V(t, x) = V(t, x) on [T - ~, T] • I~ ~. Since ~ > 0 depends only on 

L (see (6.18)), by repeating the above argument finitely many times we complete the proof. 

Case  2 s 0) = fd(s)llO]tl. This case contains the standard singular control problems. 

In this case the result is essentially the same, and the proof is very similar to that  of Theorem 

6.1. Thus we only briefly sketch it and point out the difference. 

T h e o r e m  6.2 Let (A1)-(A2) and (2.9) hold. Then the value function V(s ,x )  is the unique 

viscosity solution of (5.3) in )21. 

Sketch of the Proof We define qo and (~ as in (6.2) and (6.3) with a,13, e , l ,p  �9 (0, 1), 0 < ~ < T 

and 1 < m < 2 (instead of rn < 1). Since V and V are in )21 and m > 1, similarly to Step 1 in 

the proof of Theorem 6.1, we can find a maximum point (to, Xo, zo) �9 (0, T] x ~ x ~n for the 

function ft. It follows that 

o,(T + O - + ( z o ) " )  + l l x o  - Z0[ 2 

< pV(to,xo) - 17(to,Zo) + (1 - p)g(O) + 2a77 <_ C(1 + Ixol + Izol), 

and we have (comparing with (6.5) and (6.6)) [xo[, [z0[ <: C(a77)- m~, and I'~176 -+ 0, since 
E 

m < 2. Applying Theorem 8.3 of [3] to the function pV(t, z) - I7(t, z) - ~o(t,x,z), we can 

similarly to Steps 2-4  of Theorem 6.1, also derive (comparing with (6.12)) tha t  

al ( 1 ~ ) 
- - + H  t o , x o , - ~ ,  A1 >_0, - a 2 +  H ( t o , z o , - ~ , - A 2 )  <_0. 
P P 

and prove further that to -- T. The rest of the proof is essentially the same as that  of Theorem 

6.1. 

7 F i n i t e  Fue l  P r o b l e m  

In this section we discuss the possible extension of our results to the "finite-fuel" setting, that  

is, the singular control is subject to a constraint on its total resources available. To begin with 

let us denote 

lCy[s,T] ~= {~ E IC[s,T] I I(I[s,T ] <_ y, a.s.}. 

We call an element (u, ~) E L/[0,T] x K:[0,T] an admissible control of finite-fuel if ~ e g:y[0, T] 

for some y > 0, where the y > 0 stands for the total initial fuel available for the singular control 

~. Naturally, ~ is said to be of unlimited-fuel if y = c~. 

The "Finite-Fuel" control problem is then formulated as follows. 

F i n i t e - F u e l  P r o b l e m  For any given (s, x, y) e [0, T) x ~n x [0, oo), find a pair (fi, ~) �9 

IA[s,T] x lCy[s,T], such that 

Js,x(fi,~) = inf Js,x(u,~) ~= Y( s , x , y ) .  
lg[s,T] x IC u [s,T] 
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We call V(s, x,y)  the value function of the Finite-Fuel problem. It is clear tha t  we must  

also have V ( T , x , y )  = g(x), V(x,y)  �9 ~'~ x [0, oo). Note tha t  if y = 0, then the Finite-Fuel 

Prob lem is reduced to a regular (or classical) control  problem, and one has 

Vo(s,x) ~- inf Js,~(u,O) = V(s,x,O),  
blLs,T] 

V(s, x) �9 [0, T] • ]1{", (7.1) 

where V0(s, x) is the value function of the pure regular opt imal  control problem. It is easily 

seen tha t  for fixed (s ,x) ,  V(s , x , y )  is nonincreasing in y. In fact we can actual ly show tha t  

l i m y _ ~  V(s, x, y) = V(s, x). To see this, note  tha t  for any fixed (s, x) 6 [0, T] • II~ ~, and any 

r > 0, there  exists a (u,{) �9 l~[s,T] x /C[s,T], such tha t  V(s ,x )  +~ >_ J~,~(u,{). For each 

integer N > 0, we define a stopping t ime T N ~-~ inf{t �9 [s,T] : ]{][s,t] -> N} A T and a s topped 

= x~,~,~',~ X}  N) = x[,~,~',~ (~) process ~ g )  a ~ t / ~ .  Denote Xt = , , . It is easy to check that  each 

~(N) �9 1CN[s,T] C LJy>o]Cy[s,T], and r = sr No(N) for t > r N, P-a.s.  Also, one can show tha t  

for P-a.s .w �9 fl, ~-g(w) is nondecreasing and tha t  7-N(w) = T for N large enough. Thus by 

Proposi t ion  2.1 with/3 = 1, we have 

- L I x , -  xW)td  + LolX  - 

>_ V(s, z, N)  - CE  I~ I[~,T] + I~ I(~",T] = V(s, z, N) - o(1). 

Tha t  is, l i m y ~  V(s, x, y) = V(s, x). 
V(s ,  z,  y) < c (1  + t~l"), V(s, z, y); 

Similarly to Theorem 3.1, one can show tha t  ]V(s,x ,y)  - V(s ,~ ,9 )  < C(]x - ~[ - ]y - 9[), 

v(~, z, y), (s, ~, 9). 
Moreover,  it can be shown tha t  the Bellman Principle for the Finite-Fuel Prob lem takes the 

form 

V ( s , x , y )  = inf E h(r, Xr ,ur )dr  + p ( ~ ) l l ~ l l # ~  
U[~,TI• 

// } + F0") td~FI  + ~ e (~ ,A~)  + v 0 - , x ~ , ~  - t~li~,,l) , (7.~.) 
r6S~[s,r) 

and if we define 

M'[V](s ,x ,y)  = inf V ( s , x  + e , y -  110111) - V(s , x , y )  

V(s, z, y) e [0, T] x I~ ~ x II~; (7.3) 

F'(s ,p ,q)  = inf {fa(s)  A fS(s) + (p,O) - q } ,  V(s,p,q) e [O,T] x Il~ ~ xI~.  
OEKo 

then the H I B  equation for the Finite-Fuel Prob lem reads as follows. 

min{Vs + H(s,  x, Vz, V~,), F'(s,  V,, Vy), M'[V](s, z, y)} = 0, 

y Is=r= g(x), v Iv=o = v ~  x), (7.4) 

where V~ x) is defined by (7.1). 

To conclude this section we state  wi thout  proof  a theorem which is an analogue of Theorems 

5.1, 6.1 and 6.2 combined. The  proof  of this result  is essentially parallel to tha t  of the theorems 
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we have  proved,  if no t  easier  ( n o t i n g  t h a t  the  b o u n d  posed on  the  to ta l  va r i a t i on  of the  s i n g u l a r  

con t ro l  ~ will make  m a n y  a r g u m e n t s  easier;  for e x a m p l e  no r e d u c t i o n  to the  set  Elzl[s,T], 

def ined by (3.1), will be necessary  in th is  case!). However,  we shou ld  no t e  t h a t  the  u n i q u e n e s s  

p roof  of t he  F i n i t e - F u e l  P r o b l e m  is m u c h  l eng th ie r  t h a n  the  u n l i m i t e d  fuel case, due  to m o r e  

c o m p l i c a t e d  n o t a t i o n s .  

Let  us i n t r o d u c e  ])~ = {v E C([0,  T] x ~ x [0, oo)) [ 3 C  > 0, 0 < v(s,x,y)  <_ C(1 + 

Ix["), ]v(s, x, y) -v(s,~:,~)[ < C([x - 2 1  + ] y -  ~[), Vs E [0, T], z , 2  E I~ '~, y , ~  E [0, co)},  a n d  

recall  t he  two cases in Sec.6. We have the  fol lowing resul t .  

T h e o r e m  7 .1  Let ( A 1 ) - ( A 2 )  hold. Then in Case 1, the value function V(s,x ,y)  is the 

unique viscosity solution of (7.4) in ~;~,; in Case 2, the value function V(s, x, y) is the unique 

viscosity solution of (7.4) in I;1. Further, if we define for (s, p, q) E [0, T] • il~ '~ x ~,  

G'(s ,p,q)= inf  {fa(s) A fS(s)A fd (s )+(p ,O)- -q} ,  
OEKo 

(7.5) 

then in Case 2, (7.4) is equivalent to the following: 

min{Vs + H(s,x ,  Vz, Vxz),G'(s, V~, V,j)} = O, 

v I :r= v I :o: v~ s, z). 
(7.6) 
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