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1. Introduction

In recent years the following type of stochastic differential equations (SDEs) has been
brought into attention:

dX(t) = b(t, X(1), Y(t), Z(t)) dt + o (t, X (1), Y (1), Z(t)) dW(D),
dY() = h(t, X(t), Y(t), Z®) dt + Z) dWt),  telo,T], (1.1)
X0 =x,  Y(T)=g(X(T)).

Here, processes, Y andZ are unknown, taking valuesRf', R™ andR™<9, respectively,
functionsb, o, h andg are all given and deterministic with appropriate dimensions, and
W is ad-dimensional standard Brownian motion. Note that an initial value is specified
for the componenkX, whereas a terminal value is specified for the compoivert is
conceivable that the second equation will have to “evolve” in the opposite time direction
as opposed to that of the first one. Therefore (1.1) has been cdtdedard—backward
stochastic differential equatioFBSDE for short). Our purpose is to find a solution
(X, Y, 2) that isadaptedto the (forward) filtration{#} generated by the Brownian
motion W. We should note that it is the extra proc&sghat makes finding such an
adapted solution possible.

The study of FBSDEs of this kind can be traced back to early 1970s, mainly in the
context of stochastic control (see, e.g., [3] and [2]). The recent development was ignited
by the seminal work of Pardoux and Peng [16atkward stochastic differential equa-
tions(BSDE for short). Since the first paper on FBSDESs by Antonelli [1], many methods
have been proposed for various types of FBSDEs over an arbitrary time duratioh [0
(see[15], [14], [11],[18], [20], [21], and [17]); and applications, mainly in mathematical
finance, have also been found in recent years (see [8], [6], [4], and also [7]). However,
compared with the pure forward or pure backward SDEs, all the existing works require
conditions on the coefficients that are restrictive and non-standard in different ways, at
times they are quite painful to verify. In fact, as a (stochastic) two-point boundary-value
problem, the theory seems to welcome methods that offer simpler ways of accessing the
adapted solution.

In this paper we revisit a method proposed in our earlier work on the subject [15]:
the method of optimal control; and introduce a new notiommbroximate solvability
for FBSDES, by which we mean that for any> 0, there exis{F;}-adapted processes
X, Y andZ, such that (1.1) is satisfied except that the last condition is replaced by the
following:

EIY(T) —g(X(M)| < e. (1.2)

Such a notion is particularly useful in applications where the terminal condition in (1.1)

is the main concern and some other approximations (e.g., numerical simulations) are
involved, because then (1.2) becomes a practical way of saying)“= g(X(T))” if

¢ is small enough. Our purpose is to use the equivalent relation between the solvability
of an FBSDE and a stochastic control problem to construct approximate solutions of
FBSDE (1.1) by choosing appropriate initial states and control processes. In the case
when the coefficientb, o andh are independent of, we do this by attacking again

the “nodal set” of the value function to the control problem as we did in [15], but in a
general higher-dimensional setting. We prove the non-emptiness of the nodal set under



Approximate Solution of FBSDEs 3

standard conditions assuming neither the non-degeneracy of the forward diffusion nor
the monotonicity conditions on the coefficients, hence we considerably extend the result
of [15].

A topic related to approximate solvability is numerical feasibility. We note that
besides the techniques of constructimearly optimal controlghat will be naturally
involved in a numerical scheme, the difficulty also lies in finding the correct initial state.
In an ideal situation, one can find a manifold (or “nodal surface”) on which the value
function vanishes, and choose initial values from there (see [15] and [14]). However, in
the general case whenis allowed to be degenerate, finding such a nodal set explicitly
seems to be quite remote. In this paper we show how to overcome this difficulty. In
Section 5 we essentially construct approximate nodal surfagend in Section 6 we
give a more general scheme.

This paper is organized as follows. In Section 2 we introduce the optimal control
problem associated with our FBSDE (1.1). In Sectiapproximate solvabilitys care-
fully discussed. An equivalence relation between the approximate solvability and the
non-emptiness of the nodal set of the value function is established. In Section 4 we
introduce an approximation for the value function. Section 5 is devoted to the synthetic
analysis of a special class of FBSDEs. Finally in Section 6 we propose a general scheme
of constructing approximate solutions with the help of approximate value functions.

2. Formulation of the Optimal Control Problem

Throughout this paper we assume th@t F, P; {Fi}i>0) is a complete filtered prob-
ability space on which is defined @g&dimensional standard Brownian motioh =
{W(): t € [0, T]}. We further assume that the filtratidtf; };>0 iS generated by,
augmented by all thB-null sets inF, and thus satisfies the “usual hypotheses” [19]. We
denote by - | and(-, -) the usual Euclidean norm and inner producRIih respectively.
Also, letR™<4 be the Euclidean space consisting of(all x d)-matrices with the inner
product

(A,B) 2 tr{AB"}, VA, BeR™I
whose induced norm is denoted py|. Next, we introduce the following spaces:

e Fors € [0,T) and Euclidean spack, L%E(s, T;E) is the set of all{#}-
progressively measurable, square-integraBlealued processes defined on
[s, T], endowed with the norm

T 1/2
A
1§z TR = {E/ & (t, ')|2dt} .
S

e For Euclidean spack, Lff(sz; C([0, T]; E)) is the set of alf.F;}-progressively
measurable, continuouB;valued processes endowed with the norm

172
A
112 @:cqo,T1:m) = {E {OStUF; lo(t, ')|2” .

o M[0,T] 2 LZ(2; C([0, T; R" x R™) x LZ.(0, T; R™d),
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We consider the following controlled stochastic systemsfer|[0, T),

dX(t) = b(t, X(®), Y(®), Z®))dt + o (t, X (1), Y(1), Z(1)) dW(t),
dY(t) = h(, X(), Y(), Z(t))dt + Z() dW(t), tels T], (2.1)
X(s) = X, Y(S) =Y.

Here(X, Y) is thestate proces«Z € Z[0, T] = L%_(O, T; R™9) is thecontrol process
s € [0, T) is theinitial time and(x, y) € R" x R™M is theinitial state
We make use of the following assumption throughout the paper.
(H1) Functiond(t, x,y, 2),0(t, X, Y, 2), h(t, X, y, ) andg(x) are continuous and
there exists a constaht> 0, such that fopp = b, ¢, h, g, it holds that

lo(t,X,¥,2) — o, X, ¥,2)| < L(X =X| + |y =yl + 12— 2),
lp(t,0,0,0), lo(t,x,y,0)] <L, (2.2)
vte[0,T], x,XeR", vy yeR™ zzeR™I

Clearly, under (H1), for any initial datutgs, X, y) € [0, T) x R" x R™ and control
Z € Z[s, T], SDE (2.1) admits a unique strong solutio, Y) = (XSX¥:2 YSX¥.Z),
We define thecost functional

IS, X, Y; Z) 2 EF(XSXY2(T), YSXY2(T)), (2.3)
where
fX,y)=vV31+|ly—gXx)|2-1, V(X,y) e R" x R™. (2.4)

Itis clearthatf (x, y) > 0, forall(x, y) € R"xR™; f(x, y) = 0ifand only ify = g(x);
and the following elementary inequality holds:

Fxy) = FX P <ly—Y+19(x) —gX)|, V(x,y) e R" xR™.  (2.5)

Therefore, assumption (H1) would imply thiis uniformly Lipschitz in(x, y) as well.
The following is the optimal control problem associated with FBSDE (1.1).

Problem (OC)s. For any given(s, x, y) € [0, T) x R" x R™, minimize (2.3) subject
to (2.1) overZ(-) € Z[s, T].

We define thevalue functiorof Problem (OC) as follows:

A . . .
Vex,y) = i JE&Xy:20),  se0,T),

V(T,x,y) = f(x,y).

We are particularly interested in the case wisea 0, which is directly related to
the (approximate) solvability of FBSDE (1.1). Thus, we set

(2.6)

Vx,y) =VO.xy),  (X.y) €R"xR™ @2.7)
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Finally, we denote thaodal setof functionV: R" x R™ — R by

NN 2 (X, y) € R" x R"|V (X, y) = 0}. (2.8)

In [15] we proved that FBSDE (1.1) admits an adapted solution if and only if the
following two conditions are satisfied:

Condition (N). N (V) N[{x} x RM # @.

Condition (E). For some(x,y) € N(V), there exists amptimal control Z-) €
Z[0, T], such thatJ (0, x, y; Z(-)) = V(X,y) = 0.

Here, Condition (N) amounts to saying that the nodal s&t & non-empty, while
Condition (E) is a problem of the existence of optimal controls. Since this paper deals
only with approximate solvability, the problem of the existence of optimal control will be
naturally relaxed to finding the nearly optimal controls; and the main technical difficulty
will therefore lie in the treatment of Condition (N). We note thatin [15] only a very special
one-dimensional case was discussed, this paper can thus be regarded as a continuation
of [15] as well.

3. Approximate Solvability
The precise definition of thepproximate solvabilitpf an FBSDE is the following.

Definition 3.1. For givenx € R", (1.1) is said to bapproximately solvablé for any
e > 0, there exists a tripléX,, Y., Z.) € M[O, T], such that (1.1) is satisfied except
for the last condition, which is replaced by the following:

EIY.(T) — g(X:(T))] < e. (3.1)
We call (X,, Y., Z.) anapproximate adapted solutiaf (1.1) with accuracy.

It is clear that for a giverx € R", if (1.1) is solvable, then it is approximately
solvable. On the other hand, for an FBSDE, even if all the coefficients are all uniformly
Lipschitz continuous, we still cannot guarantee its approximate solvability. Here is a
simple example, adopted from [20].

Example 3.2. Consider the following simple FBSDE:

dX(t) = Y(t)dt + dW(t),
dY(t) = —X(t)dt + Z(t) dW(t), (3.2)
X(0) = x, Y(T) = —=X(T),

with T = 37 /4 andx # 0. It is obvious that the coefficients of this FBSDE are all
uniformly Lipschitz. However, we claim that (3.2) is not approximately solvable. To see
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this, note that by the variation of constants formula witk Y (0), we have
X®\ cost sint) /X
Y(#))  \—sint cost) \y
Y/ cogt—s) sint—s) 1
+/0 (—sin(t —S) cogt— s)) <Z(s)> dW(s). (3:3)

Pluggingt = T = 3r/4 into (3.3), we obtain that
T
Xﬂ)+YU)=—Jﬂ+fﬂn®dW@L
0

wheren is some process ihff(o, T; R). Consequently, by Jensen’s inequality we have
EIY(T) — g(X(T)| = E[X(T) + Y(T)| = [E[X(T) + Y(D)]| = v2|x| > 0,

forall (y, Z) € R™x Z[0, T]. Thus, by Definition 3.1, FBSDE (3.2) is not approximately
solvable (whence not solvable, as was concluded in [20]).

The following result establishes the relationship between the approximate solvability
of FBSDE (1.1) and the value function of the associated control problem.

Proposition 3.3. Let(H1)hold. For a given xe R", the FBSDH1.1)is approximately
solvable if and only if the following holds

inf V(x,y) =0. (3.4)
yeRM

Proof. We first claim that inequality (3.1) in Definition 3.1 can be replaced by
Ef(X:(T), Yo(T)) < €. (3.5)

Indeed, by the following elementary inequalities,

2
r/\3r <Vv1+rZ-1<r, vr € [0, c0), (3.6)

we see that if (3.1) holds, so does (3.5). Conversely, (3.6) implies

Ef(Xe(T), Yo(T)) = FE(Ye(T) — g(Xe (TN Pl gy, m—gex. (Ty1<1)
+ FE(Ye(T) = g(Xe (M) v, (m—gix. () 1>1)-

Herel 4 is the indicator function ofA. Consequently, we have

EIY(T) — g(Xe(T)] < BEF(X(T), Ye(T)) + v/BEF(Xc(T), Y (T)). (3.7

Thus (3.5) implies (3.1) witle being replaced by’ = 3¢ + +/3¢. Namely, (84)is
equivalent to the approximate solvability, by Definition 3.1 and the definitiov.of
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Using Proposition 3.3 we can now claim the non-approximate solvability of the
FBSDE (3.2) in a different way. By a direct computation using (3.7), one shows that

2
J(X, y; Z()) = Ef(X(T), Y(T)) = 3 |:\/\/§|X| +3- %}

>0, VZ()e Z[o,T].

Thus,

2
Vx,y) > 1 [,/«/E|x| +1- %] > 0,

violating (3.4), whence not approximately solvable.
Next, we relate the approximate solvability to Condition (N). To this end, we intro-
duce the following supplementary assumption.

(H2) There exists a constaht > 0, such that for allt, x, y, z2) € [0, T] x R" x
R™ x R™<4 one of the following holds:

lbt,x,y, 2|+ lo(t, X, y,2)| < L(1+ X)), (3.8)

<h(t7X7 y7 Z)v Y> 2 —L(l+|x||y|+|Y|2), .
_ 2

(h(t,x,y,2),y) > LA+ 1y, (3.9)

lg(x)| < L.

Proposition 3.4. Let(H1)hold. Then ConditiorfN) implies(3.4);converselyif V (x, -)
is continuousand (H2) holds then(3.4)implies Condition(N).

Proof. That Condition (N) implies (3.4) is obvious. We need only prove the converse.
We first assume that is continuous and (3.8) holds.

Since (3.4) implies the approximate solvability of (1.1), for every (O, 1], we may
let (X, Ye, Z;) € M[O, T] be the approximate adapted solution of (1.1) with accuracy
¢. Some standard arguments usingjdtformula, Gronwall’s inequality and condition
(3.8) yield the following estimate:

EIX.(1)]> < C@A+ x|, vt €[0,T], €€ (0,1]. (3.10)

Here and in what follows, the constabt> 0 is a generic one, depending only brand
T, and may change from line to line. By (3.10) and (3.1) we obtain

EIY.(T)| < EIg(Xe (M| + EIY(T) — g(X:(T))]
<CA+|X])+e<C@+X). (3.11)
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Next, let(x) = V14 |x|2. Itis not hard to check that bof(x) andD?(x) are uniformly
bounded, thus applyingdis formula to(Y, (t)), and noting (3.8) and (3.10), we have

E(Ye(T)) — E(Ye(1))

T
= E/t <Y(o(S)) {(Ys(s), h(S, XS(S), Y:(S), Ze(s)»

! 2 r Ye(s) |7
+3 [IZS(S)I Z.(s) .9 ]} ds
]
z—LE/ L+ 1X.(5)] + (Ya(s)) ds
t
]
>—-C@A+ |x]) — LE/ (Ye(s))ds, vt € [0, T]. (3.12)
t

Now note thafy| < (y) < 1+ |y|, we have by Gronwall’s inequality and (3.11) that
E(Y:(1)) < CA+ XD, vt [0, T], &€ (0 1] (3.13)

In particular, (3.13) leads to the boundedness of the{|%10)|}.-0, Since Y,(0)’s

are deterministic, thanks to the Blumenthal 0-1 law. Thus, along a sequence we have
Y, (0) — vy, ask — oo. Condition (N) will now follow easily from the continuity of

V(x, -) and the following equalities:

0 < V(X, Y, (0) < Ef(Xe (T), Y (T)) < &x. (3.14)

Finally, if (3.9) holds, then redoing (3.11) and (3.12), we see that (3.13) can be replaced
by E(Y.(t)) < C,Vt € [0, T], ¢ € (0, 1]. Thus the same conclusion holds. O

4. Approximation of the Value Function

In this section we introduce an approximation of the value funcYgs, x, y). This
approximation plays animportantrole in our future discussion: itremoves the degeneracy
of the forward diffusion, and restricts the controls to a compact set.

To begin, we present some basic properties of the value funétaroblem (OC).
We note that these properties are slightly weaker than the standard ones because of the
non-compactness of the control domain, but are sufficient for our purpose.

Proposition 4.1. Let(H1) hold. Then s, x, y) is right-continuous in <« [0, T) and
there exists a constant 6 0, such that for all(s, x, y), (s, X, ¥) € [0, T] x R" x R™,

0<V(s,x,y) <C@A+ x|+ |y, 4.1)
IV(s, X, y) = V(S X, Y| < C(Xx = X|+ |y —¥D. (4.2)

In particular, V (-, -) (defined by(2.7))is continuous inx, y) € R" x R™,
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Proof. The proof of (4.1) follows directly from the following inequalities:
0=<V(s, X, y) =J(s,X,y;0
<CQ@+ x|+ 1yD, V(s, X, ¥) €0, T] x R" x R™.
The proof of (4.2) is standard, by using (H1) and (2.5) (directly estimate the cost

functional with the initial statesgx, y) and (X, ¥), and with the same < [0, T) and
Z € Z[s, T]). It remains to prove the right-continuity &f(s, X, y) ins € [0, T). To

this end, we note that for ar§ € Z[s, T], ands > s, Z8 = Zls 1) € Z[S, T]. There-
fore, denoting(X, Y) & (XS*¥.Z  YsSx¥%.Zy and(X,Y) & (X3*¥-Z° YSX¥.Z%) jtjs
standard to show that

EIX(T) — X(T)| 4+ E|Y(T) — Y(T)| < Czls —§"2, (4.3)

whereCyz is some constant depending &n T, as well asZ|jsg. Now for anyZ e
Z[§, T, let Z € Z[s, T] be such thaZ = 0 on [s, §] and Z® = Z, then we have from
(2.5), (H1) and (4.3) that

V(s x,y) < J(s, X, y; Z)
=JGE. X, Y; Z) + [EF(X(T), Y(T)) — Ef(X(T), Y(T))]
<JG XY 2) +Cols — 872,
whereCy is some constant depending only brandT, sinceZ|;s 5 = 0. Thus, taking
infimum overZ € Z[S, T], we obtain
V(s X, Y) < VG, X, y) + Cols — |2 (4.4)

Next, note that the mapping, x, y) — J(s, X, y; Z|is11(-)) is continuous for each fixed
Z. Thus, as the infimum of continuous functioNg(s, X, y) is upper semi-continuous.
Now from (4.4) we easily deduce that imy V (S, X, y) = V (s, X, y), proving the right-
continuity ofV ins € [0, T). |

We now introduce the approximation of the value function. First,Vi&t) =
(Wi (t), Wx(t)) be an(n + m)-dimensional Brownian motion which is independent of
W(t) (embedded into an enlarged probability space, if necessary) afsl Jeto be the
filtration generated by (t) andW(t), augmented by all th@-null sets inF. Define

Zo[s, T] 2 Z[s, TI.
Zo[s, T] 2 {Z: [s, T] x Q@ — R™Y|Z is {F;}-adapted (4.5)

T

'/EMmFM<w}
0
Next, for anys > 0, we define
Zs[s, T] £ {Z € Z[s, T] | 1Z(M)| < %,ae. tels, T],a.s.},
L (4.6)

Z[s, T] 2 {Z € Zo[s, T] | 1Z(t)| < saete [s, T],a.s.}.
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The following inclusions are obvious:
Zols, T] D Z5,[S, T] D Zs,[s, T]

N N N Vs > 61 > 0. 4.7)
Zols, T] D Z5[S, T] D Zs,[s, T]

In what follows, for anyZ € Zg[s, T] (resp.Zg[s, T]) ands > 0, we define the
(1/8)-truncationof Z as follows:

1

Z(t, w), if |Zt, w)| <=,

LGOI =1 7, ) 1
— if |Z(t, w)| > =.

S|Z(t, w)| 1)

Clearly, Z; € Z;[s, T] (resp.Z;[s, T)).
We now consider, for any > 0, the followingregularized state equatiofcompare
with (2.1)):
dX(t) = b(t, X(t), Y(t), Z(t)) dt + o (t, X(1), Y(1), Z(t)) dW(t)
+ /28 dWA (D),
dY(t) = h(t, X(t), Y(t), Z(t))dt + Z(t) dW(t) (4.8)
+2edWa(t),  tels T,
X(s) = X, Y(S) =Y.

Define the cost functional by* (s, X, y; Z(-)) (resp.J*#(s, x, y; Z(-))) which has the
same form as (2.3) with the control being takendj(s, T] (resp. Z;[s, T]) and the
state satisfying (4.8), indicating the dependenceé en0 ande > 0. The correspond-

——39,
ing optimal control problem is called Proble(®C)* (resp. Problen’(OC)Sa). The
corresponding (approximate) value functions are then defined as, respectively,

Vi x,y) = inf 3% (s,x,y; Z(),

Z()eZ;[s,T] (4 9)
8,¢ _ H 8,& . . ’
VEE Xy = b XY Z0).

Due to the inclusions in (4.6), we see that for &ayx, y) € [0, T] x R" x R™,
V3E(s, X, y) = V3e(s, X, y) > 0, Vs, e >0,

Vi2e(s, x, y) = VOe(s, X, y), V8, >8, >0, &>0, (4.10)
Vi2e(s, X, y) > Viré(s, X, y), V8 >8,>0, &>0.

Also, it is an easy observation thef (s, x, y) = V (s, X, y), Y(S, X, y). Note that for
8 > 0 ande > 0, the corresponding HJB equation for the value funckiori(s, x, y)
takes the following form:

Ve 4 eAVS + HO(s, x, y, DV%#, D?2V#) = 0,
(5,X,y) € (0, T) x R" x R™,
VEE(T, X, y) = f(x, ),
(X,y) € R" x R™,

(4.11)
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whereA is the Laplacian operator R"™™, andH? is defined by the following:

H%(s, X, Y, 4, Q)

A . b(s, x, Y, 2)
N zeRmxldr,]\fzm/a {<q <h(5, X, Y, Z))>
.
Ll |:Q (a(s, xZ Y, z)) (a(s, xz, Y, z)) ” ’

for (s,x,y,9,Q) € [0, T] x R" x R™ x R™M x S"M whereS""™M is the set of all

(n +m) x (n + m) symmetric matrices. We observe that for- 0, (4.11) is anon-
degeneratenon-linear parabolic PDE. The following proposition collects some basic
properties of the approximate value functions, whose proof can be obtained by slightly
modifying relevant arguments in [10].

Proposition 4.2. Let(H1) hold. Then

(i) V<(s, x, y)and V¢ (s, X, y) are continuous ifx, y) € R" x R™, uniformly
ins e [0,T] and§, e > 0. For fixeds > Oande > 0, V*¢(s, x, y) and
V¥e(s, X, y) are continuous ir(s, X, y) € [0, T] x R" x R™,

(i) Fors > 0ande > 0, V%4(s, x, y) is the unique viscosity solution (4.11),
and fors, ¢ > 0, V%£(s, X, y) is the unique strong solution ¢4.11).

(i) Fors > 0ande > 0, V¥4(s, X, y) is a viscosity super solution ¢#.11),
V%0(s, x, y) is the unique viscosity solution @£.11) (ith ¢ = 0).

The following result gives the continuous dependence of the approximate value
functions on the parametessaands.

Theorem 4.3. Let(H1) hold. Then for any se [0, T], there exists a continuous func-
tion ns: [0, 00) x [0, 00) — [0, c0), with ns(0,r) = Ofor allr > 0, such that
IVo(s.x, y) — VOE(s, X, )| < n(18 — 8] + [e — &1, x| + YD),
V(s X, y) — VE(s, X, ) < (18 — 8] + [& — &1, X] + |yD).
¥(s, X, y) € [0, T] x R" x R™, 8,8,¢ 8 €0, 1]. (4.12)

Proof. Fix(s,x,y) €[0, T] x R" x R™, 3, S,6,6 >0andzZ e Z[s, T]. Let Z; (resp.
Z;) be the(1/8)-truncation (resp(1/8))-truncation) ofZ, and let(X, Y) (resp.(X, Y))

be the solution of (4.8) corresponding (g Zs) (resp.(&, Z3)). By Itd’s formula and
Gronwall's inequality,

E{IX(T) = X(MZ+ Y(T) = Y(T)?)
T
sC{E/ |z,s(t>—zg<t>|2dt+|f—«/§|2}, (4.13)

S

whereC > 0 depends only oh andT. Thus, we obtain

|V8Y8(Sv X, Y)_Vaé(& X, y)| S Cl\/—_\/§|9 V(89 X, y)787 Evé 2 0 (414)
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Combining with Proposition 4.2, we see that* (s, x, y) is continuous ine, X, y) €
[0, 00) x R™ x R™ uniformly iné§ > 0 ands < [0, T]. A

Next, for fixed(s, x,y) € [0, T] x R" x R™, ¢ > 0andé > § > 0, by (4.10), we
have

0 < Vhe(s x, y) — V3e(s, X, y). (4.15)
On the other hand, for ardy> 0 andey > 0, we can choosg® € Z[s, T] so that
VEe(s, X, y) 4+ e0 > J*4(s, X, y; Z%). (4.16)

Let Z?’ be the(1/8)-truncation ofZ¢°, and denote the corresponding solution of (4.8) with
2% (resp.Z;) by (X0, Y*) (resp.(Xf, Y¢0)). Setting(X, Y) = (X, Y®), (X, Y) =
(X0, Y¥), 6 = &, Z; = Z* andZ; = Z* in (4.13), we obtain

E{IX(T) — Xo(T)[ 4+ |Y(T) — Y*(T)[?)
T
< CE/ |Zo(t) — z§°(t)|2dt. (4.17)

We consider the following two cases:

Casel:§ > 0. Inthis case note thagZ®(t) — Z§°(t)| <11/8 — l/<§|, ae telsT],
as. By (2.5) and (H1), one easily checks that

. 1 1
I8 %,y Z0) = I (s, %, 1, Z5°) = C ‘5 5
. 1 1
> V(s x,y) — C ‘g it (4.18)
Combining (4.15), (4.16) and (4.18), we obtain (naje- 0 is arbitrary)
0 < VH(s, X, y) — VP(s, X, Y)|
1 1 A
50‘5_5 . Y(S,XY),8,8>0, &>0, (4.19)

whereC is again an absolute constant.

Case2:5 = 0. Now letd > 0 be small enough so that the right side of (4.17) is no
greater tham3. Then, similar to (4.18), we have

J0%e(s, x, y; Z%) > vée(s, x, y) — 0. (4.20)

Combing (4.15), (4.16) and (4.20), one ha$0\/8,s(s’ X,y) — VOi(s, X, y) < 2,
which shows that

Vi X, y) L VO(s X, y), 0. (4.21)

SinceV %4 (s, x, y) is continuous if(e, X, y) (see (4.14) and Proposition 4.2(i)), by Dini’s
theorem, we obtain that the convergence in (4.21) is unifor@,ir, y) on compact sets.
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Thus, for some continuous functian: [0, co) x [0, c0) — [0, oo) with ns(0,r) = 0
forallr > 0, one has

0< V(s %, y) — VO(s, X, )

<ns@, IXI+1yD,  VExy), €01, §=0. (4.22)
Combining (4.14), (4.19) and (4.22), we have tRdt’ (s, x, y) is continuous in(s, ¢,
X, y) € [0, 00) x [0, 00) x R" x R™. The proof forV?? is exactly the same. O

Corollary 4.4. Let(H1) hold. Then
V3O, x, y) = V2O(s, X, y), V(s X, Y) e[0, TIxR"xR™, §>0. (4.23)

Proof. If § > 0, then bothV?? andV*° are the viscosity solutions of the HIB equation
(4.11). Thus, (4.23) follows from the uniqueness. By the continuity & andV?? in
8 > 0, we obtain (4.23) fo8 = 0. O

As a matter of fact, foé > 0, we can regard Proble(ﬁé)i’o and Problerr(OC)g'O
as the same control problem under two different reference probability systems [10].
Thus, (4.23) holds according to Theorem 7.1 on p. 185 of [10] (see also Remark 6.1 on
p. 178 of [10]).

Corollary 4.5. Let V(0,x,y) = 0. Then for any ¢ > 0, there exist§,s > 0 and
Z%¢(.) e Z5[0, T] satisfying

IO, x, y; Z%4() < &, (4.24)
such that if(X%#(.), Y®#(.)) is the solution of2.1)with Z(-) = Z%#(.), then the triplet
(X3¢, Y%e 75¢) is an approximate solution @fl..1) with accuracy3é + +/3¢.

Proof. LetV(0, x, y) = 0. SinceV = V%9, by Theorem 4.3, there exi&te > 0, such
thatV%2(0, x, y) < &. Now by (4.9) we can find &% € Z;[0, T] such that (4.24) is
satisfied. Let(X%¢, Y%¢) be the solutions of (2.1) wite = 0 andZ = Z%¢. Then we
have (see (3.7))

EIYSS(T) — g(X**(T))| < 3EF(X*(T), YO¢(T)) + /3EF(X3(T), Yo#(T))
=3J3%(0, X, y; Z%(-)) +/33%¢(0, X, y; Z54(-))
< 38+ V35, O

To conclude this section we present another property of the approximate value
function V%<, which will be useful in the next section. The following definition is
standard (see, e.g., [12] or [10]).

Definition 4.6. A function ¢: R" — R is said to besemi-concavéf there exists a
constanC > 0, such that the functiof® (x) = ¢(x) — C|x|? is concave oR", i.e.,

PAX+ (1 —-21)X) = AD(X) + (1 — 1) DP(X), Vi e[0,1], x,XeR"
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A family of functionsg,: R" — R is said to be semi-concawmiformlyin ¢ if there
exists a constar@ > 0, independent of, such thatp, (x) — C|x|? is concave for alk.
We will need a further assumption.

(H3) Functions, o, h andg are differentiable in(x, y) with the derivatives being
uniformly Lipschitz continuous irix, y) € R" x R™, uniformly in (t, 2) €
[0, T] x R™*d,

The following property of the value functions is a simple modification of those in
[10] or [12], we omit the proof here.

Proposition 4.7. Let(H1)and(H3) hold. ThenV%*(s, x, y) is semi-concave uniformly
inse [0, T], 8 € (0, 1]ande € [0, 1]. In particular, there exists a constant & 0, such
that

Ay (s,X,y) < C, V(s, X, y) € [0, T] x R"x R™,  8,e€(0,1], (4.25)

whereAy = 37, 87 .

5. A Class of Approximately Solvable FBSDEs

In this section we consider the following FBSDE:

dX(t) = b(t, X(t), Y(©)) dt + o (t, X (1), Y(t)) dW(t),
dY() = h(t, X(t), Y) dt + Z() dW(t),  te]0, Tl, (5.1)
X(0) = x, Y(T) = g(X(T)).

It is worth noting that the solvability of this seemingly simple class of FBSDEs has
not yet been completely understood. Our example in Section 3 shows that an FBSDE
of this kind might not even be approximately solvable. However, on the other hand,
in our previous works [15] and [14] we did prove the solvability of (5.1), under the
condition that the coefficient is non-degenerate (i.e., the mateix " is uniformly
positive definite). Unfortunately, the methods we used there seem to fail when
allowed to be degenerate.

The main result of this section is the following theorem.

Theorem 5.1. Let b, o, h be continuousindependent of ZC? in variables x and y
with bounded first- and second-order partial derivativasd

[b(t, X, 0)| + |o(t, X, 0)| + |h(t, x,0)| <L, V(t,x) € [0, T] x R™. (5.2)

Further, let g be bounded in &< (R") for somex € (0, 1). Then(1.1)is approximately
solvable

We note that under the assumption of Theorem 5.1, (H1) and (H3) hold. To prove
Theorem 5.1, we need the following result.
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Lemma5.2. Letthe assumption of Theorénihold. Thenfor anyes > 0,there exists
a unique classical solutiog®:; [0, T] x R" — R™ of the following(non-degeneraje
parabolic system

0 +en0 + Ltrfoo O] +05b—h=0,  (5,% €[0,T) xR", 5:3)
0°ls=1 = 0, '

with6¢, 6 andoy X all being boundedwith the bounds depending en- 0,in genera).
Moreoverthere exists a constant € 0, independent of € (0, 1], such that

|6¢(s, X)| < C, V(s,X) € [0, T] xR", &¢€(0,1]. (5.4)

Proof. We note that under our conditions, the following hold:

0<(oa)(s. X, y) <CA+ |y,
l(ox 0TS, X, V)| + [(0y0T)(S X, Y)| < CA+ 1y,
1<i<n, 1<k<m, (5.5)
lb(s, x, Y)I < L1+ yD,
—(h(s. X, y),y) < LA+ y?.

Thus, it is standard (see, e.g., [13]) that for any O, there exists a unique classical
solutiono® to (5.3) witho®, 6, ando, , all being bounded (with the bounds depending

1 Yy

one > 0). Next, we prove (5.4). To th|s end, we fix are (0, 1] and denote

Acw £ eAw + 2 tr[oaT (s, X, 67 (S, X)) wx] + (B(S, X, 6°(S, X)), wy)

n n
= > ajwyx + ) bfwx. (5.6)
ij=1 i=1
Set
m
B(s, X) = 316°(s, 02 = %Ze*?’k(s, X)2. (5.7)

i=1

Then it holds that (note (5.5)—(5.6))

m m
Bs = Y 070K =3 07K~ 4,67% 4 hK(s, x, 0°)]
k=1

k=1

m n n
=) ok [— > &, Oy — > o biogk + hi(s, x, 98)]
k=1 i,j=1 i=1
m
— _Z Z a”{[( 9° k)z]x.xj _05 kesk
k=1i,j=1
m n

- Zzbf[(les SR M +Z€Ekhk(s X, 0°)
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Thus,w is a bounded (with the bound dependingson 0) solution of the following:

ws + A.w +2Lw > —L, (s,x) € [0, T) x R",

_ (5.8)
Wls=1 < 3/19llco-
By Lemma 5.3 below, we obtain
w(s, X) < C, V(s,x) € [0, T] x R", (5.9)

with the constant only depending @nand||g|« (and independent af > 0). Note that
by definition (5.7) one has

w(s, X) > 0, V(s,X) € [0, T] x R".
Therefore (5.4) follows. O

Lemma5.3. Let.A, be given by5.6)and letw be a bounded solution of the following

(5.10)

ws + A, w + Aow > —ho, (8,x) €[0,T) x R",
w|s=T < o,

for some constantshgy > Oandig € R, where the bound af might depend on > 0,
in general Then for anyx > 1o Vv 0,

w(s, x) < ' [gov -

hok ] V(s, X) € [0, T] x R™. (5.11)
0

Proof. Fix anyA > Ao Vv 0 and denote the right-hand side of (5.11) ®y Define
v(s, X) = €&Sw(s, X) — C, for (s, x) € [0, T] x R". Then a direct computation shows
that

vs + A — (A — Ag)v > —€°L + (A — 1g)C > 0,

andv(T, x) < e*Tgy — C < 0. Hence, by maximum principle (see [13], for example),
we havev(s, x) < 0, for all (s, x) € [0, T] x R". Thus (5.11) follows. O

Proof of Theorens.1.  We define (note (4.10)%(s, x) = V¢(s, X, 5(s, X)) > 0,
Y(s, x) € [0, T] x R". Then we obtain (using (4.11), (4.25) and (5.3))

0= V2 + AV + oo TV + (b, Vo) + (h, Vo)
1 78,eNT T 73, T 738, T
+3 ‘lesnl‘/a trl(Vyy') 0z + Vyzo' + Vyfzz ]
= {wg's + eAwd® + %tr[aoTwi’)f] + (b, wi’s)} + sAy\7‘S"E
—(Vy©. 05 + eA0° + Jtr{oo T 65,] + 65b — h)
1 Tv\76, T T T\\76,
+3 ‘z.'QI/a tr[2(z — 630)0 " Vi + (22 — 0500 (65) HVyy

< {wdf +eAw™* + trlooTwif] + (b, wi*)} + C. (5.12)
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The above is true for alf, § > 0 such thatf:(s, X)o (S, X, 6°(s, X))| < 1/8, which is
always possible for any fixed ands > 0 sufficiently small. Then we obtain

wl® + Aw = —eC,  ¥(s,x) € [0, T] x R",

w5’£|s=T =0.

On the other hand, by (5.2) and (H1), we see that, corresponding to the cojitiok
0 € Zs[s, T], we have (by Gronwall's inequality)Y (T)| < C(1 + |y|), almost surely.
Thus, by the boundness gf we obtain (using Lemma 5.3)

0 < w'(s, x) = VO(s, X, 6°(s, X)) < J**(s, X, 6°(S, X); 0)
< C@A+10%(s, x)]) <C.

Next, by Lemma5.3 (withg = go = 0,1 = 1 andhg = ¢C), we must havev®* (s, x) <
eCe', ¥(s, x) € [0, T] x R". Thus, we obtain the following conclusion: There exists a
constantCy > 0, such that for any > 0, one can find & = §(¢) with the property that

0 < V%¢(s, X, 6°(s, X)) < &Co, V8 < 8(¢). (5.13)
Then, by (4.12), (4.23) (with = 0) and (5.13), we obtain
0 < V(0, x, 6°(0,x)) < [V90(0, x, #5(0, X)) — V¥¢(0, x, 8°(0, X))| + £Co
< no(e + 8, x| +16°(0, x)|) + Co.

Now, we let§ — 0 and there — 0 to get the right-hand side of the above going to
0. This can be achieved due to (5.4). Finally, sifiées, x) is bounded, we can find a
convergent subsequence. Thus, we obtain @ x, y) = 0, for somey € R™. This
implies (3.4). O

6. Construction of Approximate Adapted Solutions

Inthis section we turn our attention to the general scheme of constructing the approximate
adapted solutions. We note that in Corollary 4.5 such a scheme was actually outlined,
provided that one is able to start from the right initial positiony) € N (V) (or,
equivalently,V (0, x, y) = 0). A scheme based on such an assumption, however, is not
practical, because we usually do not have a way to access the value fovidticectly,
because of the possible degeneracy of the forward diffusion coeffigiant the non-
compactness of the admissible controlZf, T]; which in turn makes starting from the
nodal set practically difficult. In a special case, as presented in Section 5, we were able
to approximate the nodal s&f(V) without using the information d¥ , and showed that
the correct initial position could be chosenyis= 6¢(0, x), whered? is the classical
solution of (5.3). However, unfortunately the applicability of such a method still seems
to be very limited, because it involves some other subtleties such as, among others, the
estimate (5.4).

In what follows we propose a scheme for general approximately solvable FBSDES,
which will overcome the difficulty mentioned above. The mainideais to try to start from
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some initial state that is “close” to the nodal #étV) in a certain sense. We note that

the unique strong solution/*¢, to the HIB equation (4.11) is the value function of a
regularizedcontrol problem with the state equation being (4.8) which is non-degenerate
and with compact control set, thus many standard methods can be applied to study its
analytical and numerical properties, on which our scheme will rely.

For notational convenience, in this section we assume that all the processes involved
are one-dimensional (i.e3,= m = d = 1). However, one should be able to extend the
scheme to general higher-dimensional cases without substantial difficulties. Furthermore,
throughout this section we assume that

(H4) Letg e C2. There exists a constaht > 0, such that for allt, x, y, z) €
[0, T] x R®, it holds that

lbt,x,y, 2|+ lot, X, y, 2|+ |h(t, X, y, 2)| < LA+ [X]);

6.1
19 (X)| + 19" (¥)| < L. (6.1)

We first give a lemma that will be useful in our discussion.

Lemma6.1. Let(H1)and(H4) hold. Then there exists a constant£ 0, depending
only on L and T, such that for alls, ¢ > 0,and s, x, y) € [0, T] x R?, it holds that

V(s %, y) = F(x, ) = C(L+ [xP), (6.2)
where f(x, y) is defined by2.4).

Proof. First, it is not hard to check that the functidnis twice continuously differen-
tiable, such that for allx, y) e R?, the following hold:

| fx(X, Y < 1g' (X1, Ify(x, I <1,

fux, y) = 9 =Y)g'(0 gx)?

T T L+ (v - g0)AY2 T L+ (y - 92 (6.3)
1

fyy(X,y) = >0, fey(X, ¥) = =g'(X) fyy(X, y).

[L+ (v — 90072

Now for anys,e > 0, (s,X,y) € [0,T] x R2andZ € Z;[s, T], let (X, Y) be the
corresponding solution to the controlled system (4.8). Applyiot iSrmula we have

J%E(s, X, y; Z) = Ef(X(T), Y(T))

T
fx,y)+ E/ TI(t, X(1), Y(t), Z(t)) dt, (6.4)

where
I, x,y, 2
= fk(x, y)bt, x,y,2) + fy(x, y)ht, X, y, 2)
+ 31 fx (6, VIO, X, ¥, 2) + 2Fxy (X, Y)o (t, X, Y, DZ+ fyy(X, ¥)77]
fx (X, yb(t, x, y, 2) + fy(x, yh(t, X, y, 2)

v
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f2
+ % |:fxx - %} (Xv y)Uz(t, X, yﬂ Z)
yy

> —C(L+[x%), (6.5)
whereC > 0 depends only on the constdnin (H4), thanks to the estimates in (6.3).
Note that (H4) also implies, by a standard argument using Gronwall’'s inequality, that

E|X(1)|2 < C(L+ [x|?), Vt € [0, T], uniformly in Z(-) € Z,[s, T], § > 0. Thus we
derive from (6.4) and (6.5) that
Vie(s, x,y) = inf  J%(s,x,y; Z)
ZGZj[S,T]

N

=f(x,y)+ inf E/ TI(t, X(t), Y(t), Z(t)) dt
ZeZ[s,T] s

f(x,y) = C@+ [xP).

proving the lemma. O

v

Next, for anyx € R andr > 0, we define

Q) 2(yeR: f(x,y) <r +C@L+[xP)},

whereC > 0Oisthe constantin (6.2). Since Iy, « f (X, y) = 400, Qx(r) is a compact
set for anyx € R andr > 0. Moreover, Lemma 6.1 shows that, for &l > 0, one has

{y e R: V¥*(0,x,y) <1} S Qy(N). (6.6)

From now on we set = 1. Recall that by Proposition 4.2 and Theorem 4.3, for any
p > 0, and fixedx € R, we can first choos&, ¢ > 0 depending only ox and Qy(1),
so that

0< V> (0,x,y) <V(@OX,Y) +p, forall ye Qy(1). (6.7)

Now suppose that the FBSDE (1.1) is approximately solvable, we have from Propo-
sition 3.3 that infer V (0, X, y) = 0 (note that (H4) implies (H2)). By (6.6), we have

O=infV(O,x,y) = min V(,X,YV).
ot ( y) yoar, ( y)
Thus, by (6.7), we conclude the following:

Lemma 6.2. AssumégHl)and(H4),and assume thatthe FBSIDE1)is approximately
solvable Then for anyp > 0, there exis$, ¢ > 0, depending only op, x and Q(1),
such that

0<inf V¥4(0,x,y) = min V%40, x,y) < p.
= ( y) o ( y) <p

Our scheme for finding the approximate adapted solution of (1.1) starting from
X (0) = x can now be described as follows: for any integewe want to find{y®} c
Qx(1) and{Z®} c Z[0, T] such that

Ef(X® M), YRO(T)) < % (6.8)
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Here and belovC, > 0 denotes the generic constant depending onli 0h andx. To
be more precise, we propose the following steps for each kixed

Stepl. Choose O< § < 1/k and O< ¢ < 8%, such that
- - 1
inf V%(0 = min V*¢(0 =,
;/eR 0, x,y) ytex(l) O, x,y) < K
Step2. For the givers ande, choosey® e Q,(1) such that
- - 1
Ve, x, y® min V%0, X, y) + —.
( y) < ,in, 0, x,y) ”
Step3. For the givers, ¢ andy®, find Z® e Z;[0, T], such that
~ C
3(0,x,y¥; 2) = EF (XYM, YOT)) = V0, %, y*) + =7,

where(X®, Y®) is the solution to (2.1) witty ¥ (0) = y® andz = z®;
andCy is a constant depending only &n T andx.

It is obvious that a combination of the above three steps will serve our purpose
(6.8). We would like to remark here that in the whole procedure we do not use the exact
knowledge about the nodal s&t(V), nor do we have to solve any degenerate parabolic
PDEs, which are the two most formidable parts in this problem. Now that the Step 1 is
a consequence of Lemma 6.2 and Step 2 is a standard (non-linear) minimizing problem,
we only briefly discuss Step 3. Note thdt-* is the value function of a regularized
control problem, and by standard methods of construetiogtimal strategies using the
information of value functions (see, e.g., Chapter 5 of [12]), we can find a Markov type
controlZ® (t) = a®(t, X®(t), YW (1)), wherex® is some smooth function satisfying
SUR..y le® (. x, y)| < 1/8 and(X®, Y®) is the corresponding solution of (4.8) with

Y®(0) = y®, so that
- A ~ 1
(0. %, y¥; 20) < VP4 (0, x, y¥) 4+ (6.9)

The last technical point is that (6.9) is only true if we use the state equation (4.8),
which is different from (2.1), the original control problem that leads to the approximate
solution that we need. However, if we deno¥®, Y 0) to be the solutions to (2.1) with
Y®(0) = y® and the feedback contrd® (t) = «®(X®(t), Y®(t)), then a simple
calculation shows that

0 < JO,x,y®¥; 20y = Ef(X®(T), Y®(T))
n ~ ~ 1
<EHWWUNWG»+QJZ<v“@an+E+qJZ, (6.10)

thanks to (6.9), wher€, is some constant depending only bnT and the Lipschitz
constant of:®. However, on the other hand, in light of Lemma 5.1 of [12], the Lipschitz
constant ofa® can be shown to depend only on the bounds of the coefficients of
the system (2.1) (i.eh, h, o ands(z2) = z) and their derivatives. Therefore using
assumptions (H1) and (H4), and noting that $48 (t)| < supa®| < 1/5, we see
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that, for fixeds, C, is no more thai€ (1+ |x|+1/8) whereC is some constant depending
only on L. Consequently, noting the requirement we posed @mds in Step 1, we
have

1 Cy—1
Cov/2e < C (1+ IX| + §> V254 < 23/2C(A+ |X])S < Xk , (6.11)

whereCy 2 C(1 + |x)2¥/2 + 1. Finally, we note that the procegs®(-) obtained
above iq F;}-adapted and hence is#}[0, T] (instead ofZ;5[0, T]). This, together with
(6.10)—(6.11), fulfills Step 3.
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