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1. Introduction

In recent years the following type of stochastic differential equations (SDEs) has been
brought into attention:

d X(t) = b(t, X(t),Y(t), Z(t))dt + σ(t, X(t),Y(t), Z(t))dW(t),

dY(t) = h(t, X(t),Y(t), Z(t))dt + Z(t)dW(t), t ∈ [0, T ],

X(0) = x, Y(T) = g(X(T)).

(1.1)

Here, processesX,Y andZ are unknown, taking values inRn,Rm andRm×d, respectively,
functionsb, σ , h andg are all given and deterministic with appropriate dimensions, and
W is ad-dimensional standard Brownian motion. Note that an initial value is specified
for the componentX, whereas a terminal value is specified for the componentY. It is
conceivable that the second equation will have to “evolve” in the opposite time direction
as opposed to that of the first one. Therefore (1.1) has been called aforward–backward
stochastic differential equation(FBSDE for short). Our purpose is to find a solution
(X,Y, Z) that is adaptedto the (forward) filtration{Ft } generated by the Brownian
motion W. We should note that it is the extra processZ that makes finding such an
adapted solution possible.

The study of FBSDEs of this kind can be traced back to early 1970s, mainly in the
context of stochastic control (see, e.g., [3] and [2]). The recent development was ignited
by the seminal work of Pardoux and Peng [16] onbackward stochastic differential equa-
tions(BSDE for short). Since the first paper on FBSDEs by Antonelli [1], many methods
have been proposed for various types of FBSDEs over an arbitrary time duration [0, T ]
(see [15], [14], [11], [18], [20], [21], and [17]); and applications, mainly in mathematical
finance, have also been found in recent years (see [8], [6], [4], and also [7]). However,
compared with the pure forward or pure backward SDEs, all the existing works require
conditions on the coefficients that are restrictive and non-standard in different ways, at
times they are quite painful to verify. In fact, as a (stochastic) two-point boundary-value
problem, the theory seems to welcome methods that offer simpler ways of accessing the
adapted solution.

In this paper we revisit a method proposed in our earlier work on the subject [15]:
the method of optimal control; and introduce a new notion ofapproximate solvability
for FBSDEs, by which we mean that for anyε > 0, there exist{Ft }-adapted processes
X, Y andZ, such that (1.1) is satisfied except that the last condition is replaced by the
following:

E|Y(T)− g(X(T))| < ε. (1.2)

Such a notion is particularly useful in applications where the terminal condition in (1.1)
is the main concern and some other approximations (e.g., numerical simulations) are
involved, because then (1.2) becomes a practical way of saying “Y(T) = g(X(T))” if
ε is small enough. Our purpose is to use the equivalent relation between the solvability
of an FBSDE and a stochastic control problem to construct approximate solutions of
FBSDE (1.1) by choosing appropriate initial states and control processes. In the case
when the coefficientsb, σ andh are independent ofZ, we do this by attacking again
the “nodal set” of the value function to the control problem as we did in [15], but in a
general higher-dimensional setting. We prove the non-emptiness of the nodal set under
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standard conditions assuming neither the non-degeneracy of the forward diffusion nor
the monotonicity conditions on the coefficients, hence we considerably extend the result
of [15].

A topic related to approximate solvability is numerical feasibility. We note that
besides the techniques of constructingnearly optimal controlsthat will be naturally
involved in a numerical scheme, the difficulty also lies in finding the correct initial state.
In an ideal situation, one can find a manifold (or “nodal surface”) on which the value
function vanishes, and choose initial values from there (see [15] and [14]). However, in
the general case whenσ is allowed to be degenerate, finding such a nodal set explicitly
seems to be quite remote. In this paper we show how to overcome this difficulty. In
Section 5 we essentially construct anapproximate nodal surface; and in Section 6 we
give a more general scheme.

This paper is organized as follows. In Section 2 we introduce the optimal control
problem associated with our FBSDE (1.1). In Section 3approximate solvabilityis care-
fully discussed. An equivalence relation between the approximate solvability and the
non-emptiness of the nodal set of the value function is established. In Section 4 we
introduce an approximation for the value function. Section 5 is devoted to the synthetic
analysis of a special class of FBSDEs. Finally in Section 6 we propose a general scheme
of constructing approximate solutions with the help of approximate value functions.

2. Formulation of the Optimal Control Problem

Throughout this paper we assume that(Ä,F, P; {Ft }t≥0) is a complete filtered prob-
ability space on which is defined ad-dimensional standard Brownian motionW =
{W(t): t ∈ [0, T ]}. We further assume that the filtration{Ft }t≥0 is generated byW,
augmented by all theP-null sets inF , and thus satisfies the “usual hypotheses” [19]. We
denote by| · | and〈· , ·〉 the usual Euclidean norm and inner product inRn, respectively.
Also, letRm×d be the Euclidean space consisting of all(m× d)-matrices with the inner
product

〈A, B〉 1= tr{ABT }, ∀A, B ∈ Rm×d,

whose induced norm is denoted by| · |. Next, we introduce the following spaces:

• For s ∈ [0, T) and Euclidean spaceE, L2
F (s, T;E) is the set of all{Ft }-

progressively measurable, square-integrable,E-valued processesξ defined on
[s, T ], endowed with the norm

‖ξ‖L2
F (s,T;E)

1=
{

E
∫ T

s
|ξ(t, ·)|2 dt

}1/2

.

• For Euclidean spaceE, L2
F (Ä;C([0, T ];E)) is the set of all{Ft }-progressively

measurable, continuous,E-valued processesξ , endowed with the norm

‖ξ‖L2
F (Ä;C([0,T ];E))

1=
{

E

{
sup

0≤t≤T
|ϕ(t, ·)|2

}}1/2

.

• M[0, T ]
1= L2

F (Ä;C([0, T ];Rn × Rm))× L2
F (0, T;Rm×d).
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We consider the following controlled stochastic system: fors ∈ [0, T),
d X(t) = b(t, X(t),Y(t), Z(t))dt + σ(t, X(t),Y(t), Z(t))dW(t),

dY(t) = h(t, X(t),Y(t), Z(t))dt + Z(t)dW(t), t ∈ [s, T ],

X(s) = x, Y(s) = y.

(2.1)

Here(X,Y) is thestate process, Z ∈ Z[0, T ]
1= L2

F (0, T;Rm×d) is thecontrol process,
s ∈ [0, T) is theinitial time and(x, y) ∈ Rn × Rm is theinitial state.

We make use of the following assumption throughout the paper.

(H1) Functionsb(t, x, y, z), σ(t, x, y, z), h(t, x, y, z) andg(x) are continuous and
there exists a constantL > 0, such that forϕ = b, σ, h, g, it holds that
|ϕ(t, x, y, z)− ϕ(t, x̄, ȳ, z̄)| ≤ L(|x − x̄| + |y− ȳ| + |z− z̄|),
|ϕ(t,0,0,0)|, |σ(t, x, y,0)| ≤ L ,

∀t ∈ [0, T ], x, x̄ ∈ Rn, y, ȳ ∈ Rm, z, z̄ ∈ Rm×d.

(2.2)

Clearly, under (H1), for any initial datum(s, x, y) ∈ [0, T)×Rn×Rm and control
Z ∈ Z[s, T ], SDE (2.1) admits a unique strong solution(X,Y) ≡ (Xs,x,y,Z,Ys,x,y,Z).
We define thecost functional:

J(s, x, y; Z) 1= E f (Xs,x,y,Z(T),Ys,x,y,Z(T)), (2.3)

where

f (x, y) =
√

1+ |y− g(x)|2− 1, ∀(x, y) ∈ Rn × Rm. (2.4)

It is clear thatf (x, y) ≥ 0, for all(x, y) ∈ Rn×Rm; f (x, y) = 0 if and only ify = g(x);
and the following elementary inequality holds:

| f (x, y)− f (x̄, ȳ)| ≤ |y− ȳ| + |g(x)− g(x̄)|, ∀(x, y) ∈ Rn × Rm. (2.5)

Therefore, assumption (H1) would imply thatf is uniformly Lipschitz in(x, y) as well.
The following is the optimal control problem associated with FBSDE (1.1).

Problem (OC)s. For any given(s, x, y) ∈ [0, T)× Rn × Rm, minimize (2.3) subject
to (2.1) overZ(·) ∈ Z[s, T ].

We define thevalue functionof Problem (OC)s as follows:V(s, x, y)
1= inf

Z(·)∈Z[s,T ]
J(s, x, y; Z(·)), s ∈ [0, T),

V(T, x, y) = f (x, y).
(2.6)

We are particularly interested in the case whens = 0, which is directly related to
the (approximate) solvability of FBSDE (1.1). Thus, we set

V̄(x, y)
1= V(0, x, y), (x, y) ∈ Rn × Rm. (2.7)
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Finally, we denote thenodal setof function V̄ : Rn × Rm→ R by

N (V̄) 1= {(x, y) ∈ Rn × Rm|V̄(x, y) = 0}. (2.8)

In [15] we proved that FBSDE (1.1) admits an adapted solution if and only if the
following two conditions are satisfied:

Condition (N). N (V̄) ∩ [{x} × Rm] 6= ∅.

Condition (E). For some(x, y) ∈ N (V̄), there exists anoptimal control Z(·) ∈
Z[0, T ], such thatJ(0, x, y; Z(·)) = V̄(x, y) = 0.

Here, Condition (N) amounts to saying that the nodal set ofV̄ is non-empty, while
Condition (E) is a problem of the existence of optimal controls. Since this paper deals
only with approximate solvability, the problem of the existence of optimal control will be
naturally relaxed to finding the nearly optimal controls; and the main technical difficulty
will therefore lie in the treatment of Condition (N). We note that in [15] only a very special
one-dimensional case was discussed, this paper can thus be regarded as a continuation
of [15] as well.

3. Approximate Solvability

The precise definition of theapproximate solvabilityof an FBSDE is the following.

Definition 3.1. For givenx ∈ Rn, (1.1) is said to beapproximately solvableif for any
ε > 0, there exists a triple(Xε,Yε, Zε) ∈ M[0, T ], such that (1.1) is satisfied except
for the last condition, which is replaced by the following:

E|Yε(T)− g(Xε(T))| < ε. (3.1)

We call(Xε,Yε, Zε) anapproximate adapted solutionof (1.1) with accuracyε.

It is clear that for a givenx ∈ Rn, if (1.1) is solvable, then it is approximately
solvable. On the other hand, for an FBSDE, even if all the coefficients are all uniformly
Lipschitz continuous, we still cannot guarantee its approximate solvability. Here is a
simple example, adopted from [20].

Example 3.2. Consider the following simple FBSDE:
d X(t) = Y(t)dt + dW(t),

dY(t) = −X(t)dt + Z(t)dW(t),

X(0) = x, Y(T) = −X(T),

(3.2)

with T = 3π/4 andx 6= 0. It is obvious that the coefficients of this FBSDE are all
uniformly Lipschitz. However, we claim that (3.2) is not approximately solvable. To see
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this, note that by the variation of constants formula withy = Y(0), we have(
X(t)
Y(t)

)
=
(

cost sint
− sint cost

)(
x
y

)
+
∫ t

0

(
cos(t − s) sin(t − s)
− sin(t − s) cos(t − s)

)(
1

Z(s)

)
dW(s). (3.3)

Pluggingt = T = 3π/4 into (3.3), we obtain that

X(T)+ Y(T) = −
√

2x +
∫ T

0
η(s)dW(s),

whereη is some process inL2
F (0, T;R). Consequently, by Jensen’s inequality we have

E|Y(T)− g(X(T))| = E|X(T)+ Y(T)| ≥ |E[X(T)+ Y(T)]| =
√

2|x| > 0,

for all (y, Z) ∈ Rm×Z[0, T ]. Thus, by Definition 3.1, FBSDE (3.2) is not approximately
solvable (whence not solvable, as was concluded in [20]).

The following result establishes the relationship between the approximate solvability
of FBSDE (1.1) and the value function of the associated control problem.

Proposition 3.3. Let(H1)hold. For a given x∈ Rn, the FBSDE(1.1)is approximately
solvable if and only if the following holds:

inf
y∈Rm

V̄(x, y) = 0. (3.4)

Proof. We first claim that inequality (3.1) in Definition 3.1 can be replaced by

E f (Xε(T),Yε(T)) < ε. (3.5)

Indeed, by the following elementary inequalities,

r ∧ r 2

3
≤
√

1+ r 2− 1≤ r, ∀r ∈ [0,∞), (3.6)

we see that if (3.1) holds, so does (3.5). Conversely, (3.6) implies

E f (Xε(T),Yε(T)) ≥ 1
3 E(|Yε(T)− g(Xε(T))|2I(|Yε(T)−g(Xε(T))|≤1))

+ 1
3 E(|Yε(T)− g(Xε(T))|I(|Yε(T)−g(Xε(T))|>1)).

Here I A is the indicator function ofA. Consequently, we have

E|Yε(T)− g(Xε(T))| ≤ 3E f (Xε(T),Yε(T))+
√

3E f (Xε(T),Yε(T)). (3.7)

Thus (3.5) implies (3.1) withε being replaced byε′ = 3ε + √3ε. Namely, (3.4) is
equivalent to the approximate solvability, by Definition 3.1 and the definition ofV̄ .
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Using Proposition 3.3 we can now claim the non-approximate solvability of the
FBSDE (3.2) in a different way. By a direct computation using (3.7), one shows that

J(x, y; Z(·)) = E f (X(T),Y(T)) ≥ 1
3

[√√
2|x| + 1

4 − 1
2

]2

> 0, ∀Z(·) ∈ Z[0, T ].

Thus,

V̄(x, y) ≥ 1
3

[√√
2|x| + 1

4 − 1
3

]2

> 0,

violating (3.4), whence not approximately solvable.
Next, we relate the approximate solvability to Condition (N). To this end, we intro-

duce the following supplementary assumption.

(H2) There exists a constantL > 0, such that for all(t, x, y, z) ∈ [0, T ] × Rn ×
Rm × Rm×d, one of the following holds:{
|b(t, x, y, z)| + |σ(t, x, y, z)| ≤ L(1+ |x|),
〈h(t, x, y, z), y〉 ≥ −L(1+ |x| |y| + |y|2), (3.8)

{
〈h(t, x, y, z), y〉 ≥ −L(1+ |y|2),
|g(x)| ≤ L .

(3.9)

Proposition 3.4. Let(H1)hold.Then Condition(N) implies(3.4);conversely, if V̄(x, ·)
is continuous, and(H2) holds, then(3.4) implies Condition(N).

Proof. That Condition (N) implies (3.4) is obvious. We need only prove the converse.
We first assume that̄V is continuous and (3.8) holds.

Since (3.4) implies the approximate solvability of (1.1), for everyε ∈ (0,1], we may
let (Xε,Yε, Zε) ∈M[0, T ] be the approximate adapted solution of (1.1) with accuracy
ε. Some standard arguments using Itˆo’s formula, Gronwall’s inequality and condition
(3.8) yield the following estimate:

E|Xε(t)|2 ≤ C(1+ |x|2), ∀t ∈ [0, T ], ε ∈ (0,1]. (3.10)

Here and in what follows, the constantC > 0 is a generic one, depending only onL and
T , and may change from line to line. By (3.10) and (3.1) we obtain

E|Yε(T)| ≤ E|g(Xε(T))| + E|Yε(T)− g(Xε(T))|
≤ C(1+ |x|)+ ε ≤ C(1+ |x|). (3.11)
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Next, let〈x〉 1=
√

1+ |x|2. It is not hard to check that bothD〈x〉 andD2〈x〉 are uniformly
bounded, thus applying Itˆo’s formula to〈Yε(t)〉, and noting (3.8) and (3.10), we have

E〈Yε(T)〉 − E〈Yε(t)〉

= E
∫ T

t

1

〈Yε(s)〉

{
〈Yε(s), h(s, Xε(s),Yε(s), Zε(s))〉

+ 1
2

[
|Zε(s)|2−

∣∣∣∣Zε(s)T Yε(s)

〈Yε(s)〉
∣∣∣∣2
]}

ds

≥ −L E
∫ T

t
(1+ |Xε(s)| + 〈Yε(s)〉)ds

≥ −C(1+ |x|)− L E
∫ T

t
〈Yε(s)〉ds, ∀t ∈ [0, T ]. (3.12)

Now note that|y| ≤ 〈y〉 ≤ 1+ |y|, we have by Gronwall’s inequality and (3.11) that

E〈Yε(t)〉 ≤ C(1+ |x|), ∀t ∈ [0, T ], ε ∈ (0,1]. (3.13)

In particular, (3.13) leads to the boundedness of the set{|Yε(0)|}ε>0, sinceYε(0)’s
are deterministic, thanks to the Blumenthal 0–1 law. Thus, along a sequence we have
Yεk(0) → y, ask → ∞. Condition (N) will now follow easily from the continuity of
V̄(x, ·) and the following equalities:

0≤ V̄(x,Yεk(0)) ≤ E f (Xεk(T),Yεk(T)) < εk. (3.14)

Finally, if (3.9) holds, then redoing (3.11) and (3.12), we see that (3.13) can be replaced
by E〈Yε(t)〉 ≤ C, ∀t ∈ [0, T ], ε ∈ (0,1]. Thus the same conclusion holds.

4. Approximation of the Value Function

In this section we introduce an approximation of the value functionV(s, x, y). This
approximation plays an important role in our future discussion: it removes the degeneracy
of the forward diffusion, and restricts the controls to a compact set.

To begin, we present some basic properties of the value functionV of Problem (OC)s.
We note that these properties are slightly weaker than the standard ones because of the
non-compactness of the control domain, but are sufficient for our purpose.

Proposition 4.1. Let (H1) hold. Then V(s, x, y) is right-continuous in s∈ [0, T) and
there exists a constant C> 0, such that for all(s, x, y), (s, x̄, ȳ) ∈ [0, T ] × Rn × Rm,

0≤ V(s, x, y) ≤ C(1+ |x| + |y|), (4.1)

|V(s, x, y)− V(s, x̄, ȳ)| ≤ C(|x − x̄| + |y− ȳ|). (4.2)

In particular, V̄(· , ·) (defined by(2.7)) is continuous in(x, y) ∈ Rn × Rm.
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Proof. The proof of (4.1) follows directly from the following inequalities:

0≤ V(s, x, y) ≤ J(s, x, y;0)
≤ C(1+ |x| + |y|), ∀(s, x, y) ∈ [0, T ] × Rn × Rm.

The proof of (4.2) is standard, by using (H1) and (2.5) (directly estimate the cost
functional with the initial states(x, y) and (x̄, ȳ), and with the sames ∈ [0, T) and
Z ∈ Z[s, T ]). It remains to prove the right-continuity ofV(s, x, y) in s ∈ [0, T). To

this end, we note that for anyZ ∈ Z[s, T ], ands̄ > s, Zs̄ 1= Z|[s̄,T ] ∈ Z[s̄, T ]. There-

fore, denoting(X,Y)
1= (Xs,x,y,Z, ,Ys,x,y,Z) and(X̄, Ȳ)

1= (Xs̄,x,y,Zs̄
,Ys̄,x,y,Zs̄

), it is
standard to show that

E|X(T)− X̄(T)| + E|Y(T)− Ȳ(T)| ≤ CZ|s− s̄|1/2, (4.3)

whereCZ is some constant depending onL, T , as well asZ|[s,s̄] . Now for any Z̄ ∈
Z[s̄, T ], let Z ∈ Z[s, T ] be such thatZ = 0 on [s, s̄] and Zs̄ = Z̄, then we have from
(2.5), (H1) and (4.3) that

V(s, x, y) ≤ J(s, x, y; Z)
= J(s̄, x, y; Z̄)+ [E f (X(T),Y(T))− E f (X̄(T), Ȳ(T))]

≤ J(s̄, x, y; Z̄)+ C0|s̄− s|1/2,
whereC0 is some constant depending only onL andT , sinceZ|[s,s̄] = 0. Thus, taking
infimum overZ̄ ∈ Z[s̄, T ], we obtain

V(s, x, y) ≤ V(s̄, x, y)+ C0|s̄− s|1/2. (4.4)

Next, note that the mapping(s, x, y) 7→ J(s, x, y; Z|[s,T ](·)) is continuous for each fixed
Z. Thus, as the infimum of continuous functions,V(s, x, y) is upper semi-continuous.
Now from (4.4) we easily deduce that lims̄↓ s V(s̄, x, y) = V(s, x, y), proving the right-
continuity ofV in s ∈ [0, T).

We now introduce the approximation of the value function. First, letW̃(t) ≡
(W̃1(t), W̃2(t)) be an(n + m)-dimensional Brownian motion which is independent of
W(t) (embedded into an enlarged probability space, if necessary) and let{F̃t }t≥0 be the
filtration generated byW(t) andW̃(t), augmented by all theP-null sets inF . Define

Z0[s, T ]
1= Z[s, T ],

Z̃0[s, T ]
1=
{

Z: [s, T ] ×Ä→ Rm×d|Z is {F̃t }-adapted,∫ T

0
E|Z(t)|2 dt <∞

}
.

(4.5)

Next, for anyδ > 0, we define
Zδ[s, T ]

1=
{

Z ∈ Z[s, T ] | |Z(t)| ≤ 1

δ
,a.e. t ∈ [s, T ],a.s.

}
,

Z̃δ[s, T ]
1=
{

Z ∈ Z̃0[s, T ] | |Z(t)| ≤ 1

δ
,a.e. t ∈ [s, T ],a.s.

}
.

(4.6)
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The following inclusions are obvious:

Z0[s, T ] ⊃ Zδ1[s, T ] ⊃ Zδ2[s, T ]
∩ ∩ ∩ ∀δ2 ≥ δ1 ≥ 0.

Z̃0[s, T ] ⊃ Z̃δ1[s, T ] ⊃ Zδ2[s, T ]
(4.7)

In what follows, for anyZ ∈ Z0[s, T ] (resp.Z̃0[s, T ]) and δ > 0, we define the
(1/δ)-truncationof Z as follows:

Zδ(t, ω) =


Z(t, ω), if |Z(t, ω)| ≤ 1

δ
,

Z(t, ω)

δ|Z(t, ω)| , if |Z(t, ω)| > 1

δ
.

Clearly,Zδ ∈ Zδ[s, T ] (resp.Z̃δ[s, T ]).
We now consider, for anyε > 0, the followingregularized state equation(compare

with (2.1)):

d X(t) = b(t, X(t),Y(t), Z(t))dt + σ(t, X(t),Y(t), Z(t))dW(t)

+√2ε dW̃1(t),

dY(t) = h(t, X(t),Y(t), Z(t))dt + Z(t)dW(t)

+√2ε dW̃2(t), t ∈ [s, T ],

X(s) = x, Y(s) = y.

(4.8)

Define the cost functional byJδ,ε(s, x, y; Z(·)) (resp.J̃δ,ε(s, x, y; Z(·))) which has the

same form as (2.3) with the control being taken inZδ[s, T ] (resp.Z̃δ[s, T ]) and the
state satisfying (4.8), indicating the dependence onδ ≥ 0 andε ≥ 0. The correspond-

ing optimal control problem is called Problem(OC)δ,εs (resp. Problem̃(OC)
δ,ε

s ). The
corresponding (approximate) value functions are then defined as, respectively,

Ṽ δ,ε(s, x, y) = inf
Z(·)∈Z̃δ [s,T ]

J̃δ,ε(s, x, y; Z(·)),

V δ,ε(s, x, y) = inf
Z(·)∈Zδ [s,T ]

Jδ,ε(s, x, y; Z(·)).
(4.9)

Due to the inclusions in (4.6), we see that for any(s, x, y) ∈ [0, T ] × Rn × Rm,
V δ,ε(s, x, y) ≥ Ṽ δ,ε(s, x, y) ≥ 0, ∀δ, ε ≥ 0,

Ṽ δ2,ε(s, x, y) ≥ Ṽ δ1,ε(s, x, y), ∀δ2 ≥ δ1 ≥ 0, ε ≥ 0,

V δ2,ε(s, x, y) ≥ V δ1,ε(s, x, y), ∀δ2 ≥ δ1 ≥ 0, ε ≥ 0.

(4.10)

Also, it is an easy observation thatV0,0(s, x, y) = V(s, x, y), ∀(s, x, y). Note that for
δ > 0 andε ≥ 0, the corresponding HJB equation for the value functionṼ δ,ε(s, x, y)
takes the following form:

Ṽ δ,ε
s + ε1Ṽ δ,ε + H δ(s, x, y, DṼ δ,ε, D2Ṽ δ,ε) = 0,

(s, x, y) ∈ (0, T)× Rn × Rm;
Ṽ δ,ε(T, x, y) = f (x, y),

(x, y) ∈ Rn × Rm,

(4.11)
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where1 is the Laplacian operator inRn+m, andH δ is defined by the following:

H δ(s, x, y,q, Q)

1= inf
z∈Rm×d,|z|≤1/δ

{〈
q,

(
b(s, x, y, z)
h(s, x, y, z)

)〉

+ 1
2 tr

[
Q

(
σ(s, x, y, z)

z

)(
σ(s, x, y, z)

z

)T
]}

,

for (s, x, y,q, Q) ∈ [0, T ] × Rn × Rm × Rn+m × Sn+m, whereSn+m is the set of all
(n + m) × (n + m) symmetric matrices. We observe that forε > 0, (4.11) is anon-
degeneratenon-linear parabolic PDE. The following proposition collects some basic
properties of the approximate value functions, whose proof can be obtained by slightly
modifying relevant arguments in [10].

Proposition 4.2. Let (H1) hold. Then:

(i) Ṽ δ,ε(s, x, y) and Vδ,ε(s, x, y) are continuous in(x, y) ∈ Rn ×Rm, uniformly
in s ∈ [0, T ] and δ, ε ≥ 0. For fixed δ > 0 and ε ≥ 0, Ṽ δ,ε(s, x, y) and
V δ,ε(s, x, y) are continuous in(s, x, y) ∈ [0, T ] × Rn × Rm.

(ii) For δ > 0 andε ≥ 0, Ṽ δ,ε(s, x, y) is the unique viscosity solution of(4.11),
and forδ, ε > 0, Ṽ δ,ε(s, x, y) is the unique strong solution of(4.11).

(iii) For δ > 0 and ε ≥ 0, V δ,ε(s, x, y) is a viscosity super solution of(4.11),
V δ,0(s, x, y) is the unique viscosity solution of(4.11) (with ε = 0).

The following result gives the continuous dependence of the approximate value
functions on the parametersδ andε.

Theorem 4.3. Let (H1) hold. Then, for any s∈ [0, T ], there exists a continuous func-
tion ηs: [0,∞)× [0,∞)→ [0,∞), with ηs(0, r ) = 0 for all r ≥ 0, such that

|Ṽ δ,ε(s, x, y)− Ṽ δ̂,ε̂(s, x, y)| ≤ η(|δ − δ̂| + |ε − ε̂|, |x| + |y|),
|V δ,ε(s, x, y)− V δ̂,ε̂(s, x, y)| ≤ η(|δ − δ̂| + |ε − ε̂|, |x| + |y|),
∀(s, x, y) ∈ [0, T ] × Rn × Rm, δ, δ̂, ε, ε̂ ∈ [0,1]. (4.12)

Proof. Fix (s, x, y) ∈ [0, T ]×Rn×Rm, δ, δ̂, ε, ε̂ ≥ 0 andZ ∈ Z[s, T ]. Let Zδ (resp.
Zδ̂) be the(1/δ)-truncation (resp.(1/δ̂))-truncation) ofZ, and let(X,Y) (resp.(X̂, Ŷ))
be the solution of (4.8) corresponding to(ε, Zδ) (resp.(ε̂, Zδ̂)). By Itô’s formula and
Gronwall’s inequality,

E{|X(T)− X̂(T)|2+ |Y(T)− Ŷ(T)|2}
≤ C

{
E
∫ T

s
|Zδ(t)− Zδ̂(t)|2 dt + |√ε −

√
ε̂|2
}
, (4.13)

whereC > 0 depends only onL andT . Thus, we obtain

|V δ,ε(s, x, y)− V δ,ε̂(s, x, y)| ≤ C|√ε−
√
ε̂|, ∀(s, x, y), δ, ε, ε̂ ≥ 0. (4.14)
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Combining with Proposition 4.2, we see thatV δ,ε(s, x, y) is continuous in(ε, x, y) ∈
[0,∞)× Rn × Rm uniformly in δ ≥ 0 ands ∈ [0, T ].

Next, for fixed(s, x, y) ∈ [0, T ] × Rn × Rm, ε ≥ 0 andδ̂ ≥ δ ≥ 0, by (4.10), we
have

0≤ V δ̂,ε(s, x, y)− V δ,ε(s, x, y). (4.15)

On the other hand, for anyδ > 0 andε0 > 0, we can chooseZε0 ∈ Zδ[s, T ] so that

V δ,ε(s, x, y)+ ε0 > Jδ,ε(s, x, y; Zε0). (4.16)

Let Zε0

δ̂
be the(1/δ̂)-truncation ofZε0, and denote the corresponding solution of (4.8) with

Zε0 (resp.Zε0

δ̂
) by (Xε0,Yε0) (resp.(X̂ε0, Ŷε0)). Setting(X,Y) = (Xε0,Yε0), (X̂, Ŷ) =

(X̂ε0, Ŷε0), ε = ε̂, Zδ = Zε0 andZδ̂ = Zε0

δ̂
in (4.13), we obtain

E{|Xε0(T)− X̂ε0(T)|2+ |Yε0(T)− Ŷε0(T)|2}

≤ CE
∫ T

s
|Zε0(t)− Zε0

δ̂
(t)|2 dt. (4.17)

We consider the following two cases:

Case1: δ > 0. In this case note that|Zε0(t)− Zε0

δ̂
(t)| ≤ |1/δ − 1/δ̂|, a.e. t ∈ [s, T ],

a.s. By (2.5) and (H1), one easily checks that

Jδ,ε(s, x, y; Zε0) ≥ J δ̂,ε(s, x, y; Zε0

δ̂
)− C

∣∣∣∣1δ − 1

δ̂

∣∣∣∣
≥ V δ̂,ε(s, x, y)− C

∣∣∣∣1δ − 1

δ̂

∣∣∣∣ . (4.18)

Combining (4.15), (4.16) and (4.18), we obtain (noteε0 > 0 is arbitrary)

0 ≤ V δ̂,ε(s, x, y)− V δ,ε(s, x, y)|
≤ C

∣∣∣∣1δ − 1

δ̂

∣∣∣∣ , ∀(s, x, y), δ, δ̂ > 0, ε ≥ 0, (4.19)

whereC is again an absolute constant.

Case2: δ = 0. Now let δ̂ > 0 be small enough so that the right side of (4.17) is no
greater thanε2

0. Then, similar to (4.18), we have

J0,ε(s, x, y; Zε0) ≥ V δ̂,ε(s, x, y)− ε0. (4.20)

Combing (4.15), (4.16) and (4.20), one has 0≤ V δ̂,ε(s, x, y) − V0,ε(s, x, y) ≤ 2ε0,
which shows that

V δ̂,ε(s, x, y)↓V0,ε(s, x, y), δ̂ ↓0. (4.21)

SinceV0,ε(s, x, y) is continuous in(ε, x, y) (see (4.14) and Proposition 4.2(i)), by Dini’s
theorem, we obtain that the convergence in (4.21) is uniform in(ε, x, y) on compact sets.
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Thus, for some continuous functionηs: [0,∞) × [0,∞)→ [0,∞) with ηs(0, r ) = 0
for all r ≥ 0, one has

0 ≤ V δ̂,ε(s, x, y)− V0,ε(s, x, y)

≤ ηs(δ̂, |x| + |y|), ∀(s, x, y), ε ∈ [0,1], δ̂ ≥ 0. (4.22)

Combining (4.14), (4.19) and (4.22), we have thatV δ,ε(s, x, y) is continuous in(δ, ε,
x, y) ∈ [0,∞)× [0,∞)× Rn × Rm. The proof forṼ δ,ε is exactly the same.

Corollary 4.4. Let (H1) hold. Then

Ṽ δ,0(s,x, y) = V δ,0(s,x, y), ∀(s,x, y) ∈ [0,T ]×Rn×Rm, δ ≥ 0. (4.23)

Proof. If δ > 0, then bothṼ δ,0 andV δ,0 are the viscosity solutions of the HJB equation
(4.11). Thus, (4.23) follows from the uniqueness. By the continuity ofṼ δ,0 andV δ,0 in
δ ≥ 0, we obtain (4.23) forδ = 0.

As a matter of fact, forδ > 0, we can regard Problem̃(OC)
δ,0

s and Problem(OC)δ,0s
as the same control problem under two different reference probability systems [10].
Thus, (4.23) holds according to Theorem 7.1 on p. 185 of [10] (see also Remark 6.1 on
p. 178 of [10]).

Corollary 4.5. Let V(0, x, y) = 0. Then, for any ε̂ > 0, there existδ, ε > 0 and
Zδ,ε(·) ∈ Zδ[0, T ] satisfying

Jδ,ε(0, x, y; Zδ,ε(·)) < ε̂, (4.24)

such that if(Xδ,ε(·),Yδ,ε(·)) is the solution of(2.1)with Z(·) = Zδ,ε(·), then the triplet
(Xδ,ε,Yδ,ε, Zδ,ε) is an approximate solution of(1.1)with accuracy3ε̂ +√3ε̂.

Proof. Let V(0, x, y) = 0. SinceV = V0,0, by Theorem 4.3, there existδ, ε > 0, such
that V δ,ε(0, x, y) < ε̂. Now by (4.9) we can find aZε,δ ∈ Zδ[0, T ] such that (4.24) is
satisfied. Let(Xδ,ε,Yδ,ε) be the solutions of (2.1) withs = 0 andZ = Zδ,ε. Then we
have (see (3.7))

E|Yδ,ε(T)− g(Xδ,ε(T))| ≤ 3E f (Xδ,ε(T),Yδ,ε(T))+
√

3E f (Xδ,ε(T),Yδ,ε(T))

= 3Jδ,ε(0, x, y; Zδ,ε(·))+
√

3Jδ,ε(0, x, y; Zδ,ε(·))
≤ 3ε̂ +

√
3ε̂.

To conclude this section we present another property of the approximate value
function Ṽ δ,ε, which will be useful in the next section. The following definition is
standard (see, e.g., [12] or [10]).

Definition 4.6. A function ϕ: Rn → R is said to besemi-concaveif there exists a
constantC > 0, such that the function8(x) ≡ ϕ(x)− C|x|2 is concave onRn, i.e.,

8(λx + (1− λ)x̄) ≥ λ8(x)+ (1− λ)8(x̄), ∀λ ∈ [0,1], x, x̄ ∈ Rn.
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A family of functionsϕε: Rn → R is said to be semi-concaveuniformly in ε if there
exists a constantC > 0, independent ofε, such thatϕε(x)− C|x|2 is concave for allε.

We will need a further assumption.

(H3) Functionsb, σ , h andg are differentiable in(x, y) with the derivatives being
uniformly Lipschitz continuous in(x, y) ∈ Rn × Rm, uniformly in (t, z) ∈
[0, T ] × Rm×d.

The following property of the value functions is a simple modification of those in
[10] or [12], we omit the proof here.

Proposition 4.7. Let(H1)and(H3)hold. ThenṼ δ,ε(s, x, y) is semi-concave uniformly
in s ∈ [0, T ], δ ∈ (0,1] andε ∈ [0,1]. In particular, there exists a constant C> 0,such
that

1yṼ δ,ε(s,x, y) ≤ C, ∀(s,x, y) ∈ [0,T ] × Rn × Rm, δ,ε ∈ (0,1], (4.25)

where1y =
∑m

j=1 ∂
2
yj

.

5. A Class of Approximately Solvable FBSDEs

In this section we consider the following FBSDE:
d X(t) = b(t, X(t),Y(t))dt + σ(t, X(t),Y(t))dW(t),

dY(t) = h(t, X(t),Y(t))dt + Z(t)dW(t), t ∈ [0, T ],

X(0) = x, Y(T) = g(X(T)).

(5.1)

It is worth noting that the solvability of this seemingly simple class of FBSDEs has
not yet been completely understood. Our example in Section 3 shows that an FBSDE
of this kind might not even be approximately solvable. However, on the other hand,
in our previous works [15] and [14] we did prove the solvability of (5.1), under the
condition that the coefficientσ is non-degenerate (i.e., the matrixσσ T is uniformly
positive definite). Unfortunately, the methods we used there seem to fail whenσ is
allowed to be degenerate.

The main result of this section is the following theorem.

Theorem 5.1. Let b, σ , h be continuous, independent of Z, C2 in variables x and y
with bounded first- and second-order partial derivatives; and

|b(t, x,0)| + |σ(t, x,0)| + |h(t, x,0)| ≤ L , ∀(t, x) ∈ [0, T ] × Rn. (5.2)

Further, let g be bounded in C2+α(Rn) for someα ∈ (0,1). Then(1.1) is approximately
solvable.

We note that under the assumption of Theorem 5.1, (H1) and (H3) hold. To prove
Theorem 5.1, we need the following result.
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Lemma 5.2. Let the assumption of Theorem5.1hold. Then, for anyε > 0, there exists
a unique classical solutionθε: [0, T ] × Rn → Rm of the following(non-degenerate)
parabolic system:{

θεs + ε1θε + 1
2 tr[σσ Tθεxx] + θεx b− h = 0, (s, x) ∈ [0, T)× Rn,

θε|s=T = g,
(5.3)

withθε, θεxi
andθεxi xj

all being bounded(with the bounds depending onε > 0, in general).
Moreover, there exists a constant C> 0, independent ofε ∈ (0,1], such that

|θε(s, x)| ≤ C, ∀(s, x) ∈ [0, T ] × Rn, ε ∈ (0,1]. (5.4)

Proof. We note that under our conditions, the following hold:

0≤ (σσ T )(s, x, y) ≤ C(1+ |y|2)I ,
|(σxi σ

T )(s, x, y)| + |(σykσ
T )(s, x, y)| ≤ C(1+ |y|),

1≤ i ≤ n, 1≤ k ≤ m,

|b(s, x, y)| ≤ L(1+ |y|),
−〈h(s, x, y), y〉 ≤ L(1+ |y|2).

(5.5)

Thus, it is standard (see, e.g., [13]) that for anyε > 0, there exists a unique classical
solutionθε to (5.3) withθε, θεxi

andθεxi xj
all being bounded (with the bounds depending

on ε > 0). Next, we prove (5.4). To this end, we fix anε ∈ (0,1] and denote

Aεw 1= ε1w + 1
2 tr[σσ T (s, x, θε(s, x))wxx] + 〈b(s, x, θε(s, x)), wx〉

≡
n∑

i, j=1

aεi jwxi xj +
n∑

i=1

bεi wxi . (5.6)

Set

w̄(s, x)
1= 1

2|θε(s, x)|2 ≡ 1
2

m∑
i=1

θε,k(s, x)2. (5.7)

Then it holds that (note (5.5)–(5.6))

w̄s =
m∑

k=1

θε,kθε,ks =
m∑

k=1

θε,k[−Aεθε,k + hk(s, x, θε)]

=
m∑

k=1

θε,k

[
−

n∑
i, j=1

aεi j θ
ε,k
xi xj
−

n∑
i=1

bεi θ
ε,k
xi
+ hk(s, x, θε)

]

= −
m∑

k=1

n∑
i, j=1

aεi j {[( 1
2θ

ε,k)2]xi xj − θε,kxi
θε,kxj
}

−
m∑

k=1

n∑
i=1

bεi [( 1
2θ

ε,k)2]xi +
m∑

k=1

θε,khk(s, x, θε)

≥ −Aεw̄ − 2Lw̄ − L .
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Thus,w̄ is a bounded (with the bound depending onε > 0) solution of the following:{
w̄s +Aεw̄ + 2Lw̄ ≥ −L , (s, x) ∈ [0, T)× Rn,

w̄|s=T ≤ 1
2‖g‖∞.

(5.8)

By Lemma 5.3 below, we obtain

w̄(s, x) ≤ C, ∀(s, x) ∈ [0, T ] × Rn, (5.9)

with the constant only depending onL and‖g‖∞ (and independent ofε > 0). Note that
by definition (5.7) one has

w̄(s, x) ≥ 0, ∀(s, x) ∈ [0, T ] × Rn.

Therefore (5.4) follows.

Lemma 5.3. LetAε be given by(5.6)and letw be a bounded solution of the following:{
ws +Aεw + λ0w ≥ −h0, (s, x) ∈ [0, T)× Rn,

w|s=T ≤ g0,
(5.10)

for some constants h0, g0 ≥ 0andλ0 ∈ R, where the bound ofwmight depend onε > 0,
in general. Then, for anyλ > λ0 ∨ 0,

w(s, x) ≤ eλT

[
g0 ∨ h0

λ− λ0

]
, ∀(s, x) ∈ [0, T ] × Rn. (5.11)

Proof. Fix any λ > λ0 ∨ 0 and denote the right-hand side of (5.11) byC. Define
v(s, x) = eλsw(s, x) − C, for (s, x) ∈ [0, T ] × Rn. Then a direct computation shows
that

vs +Aεv − (λ− λ0)v ≥ −eλsL + (λ− λ0)C ≥ 0,

andv(T, x) ≤ eλT g0 − C ≤ 0. Hence, by maximum principle (see [13], for example),
we havev(s, x) ≤ 0, for all (s, x) ∈ [0, T ] × Rn. Thus (5.11) follows.

Proof of Theorem5.1. We define (note (4.10))wδ,ε(s, x)
1= Ṽ δ,ε(s, x, θε(s, x)) ≥ 0,

∀(s, x) ∈ [0, T ] × Rn. Then we obtain (using (4.11), (4.25) and (5.3))

0 = Ṽ δ,ε
s + ε1Ṽ δ,ε + 1

2 tr[σσ T Ṽ δ,ε
xx ] + 〈b, Ṽ δ,ε

x 〉 + 〈h, Ṽ δ,ε
y 〉

+ 1
2 inf
|z|≤1/δ

tr[(Ṽ δ,ε
xy )

TσzT + Ṽ δ,ε
xy zσ T + Ṽ δ,ε

yy zzT ]

= {wδ,εs + ε1wδ,ε + 1
2 tr[σσ Twδ,εxx ] + 〈b, wδ,εx 〉} + ε1yṼ δ,ε

− 〈Ṽ δ,ε
y , θεs + ε1θε + 1

2 tr[σσ Tθεxx] + θεx b− h〉
+ 1

2 inf
|z|≤1/δ

tr[2(z− θεxσ)σ T Ṽ δ,ε
xy + (zzT − θεxσσ T (θεx )

T )Ṽ δ,ε
yy ]

≤ {wδ,εs + ε1wδ,ε + 1
2 tr[σσ Twδ,εxx ] + 〈b, wδ,εx 〉} + εC. (5.12)
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The above is true for allε, δ > 0 such that|θεx (s, x)σ (s, x, θε(s, x))| ≤ 1/δ, which is
always possible for any fixedε, andδ > 0 sufficiently small. Then we obtain{

wδ,εs +Aεwδ,ε ≥ −εC, ∀(s, x) ∈ [0, T ] × Rn,

wδ,ε|s=T = 0.

On the other hand, by (5.2) and (H1), we see that, corresponding to the controlZδ(·) =
0 ∈ Z̃δ[s, T ], we have (by Gronwall’s inequality)|Y(T)| ≤ C(1+ |y|), almost surely.
Thus, by the boundness ofg, we obtain (using Lemma 5.3)

0 ≤ wδ,ε(s, x) ≡ Ṽ δ,ε(s, x, θε(s, x)) ≤ J̃δ,ε(s, x, θε(s, x);0)
≤ C(1+ |θε(s, x)|) ≤ C.

Next, by Lemma 5.3 (withλ0 = g0 = 0,λ = 1 andh0 = εC), we must havewδ,ε(s, x) ≤
εCeT , ∀(s, x) ∈ [0, T ] × Rn. Thus, we obtain the following conclusion: There exists a
constantC0 > 0, such that for anyε > 0, one can find aδ = δ(ε) with the property that

0≤ Ṽ δ,ε(s, x, θε(s, x)) ≤ εC0, ∀δ ≤ δ(ε). (5.13)

Then, by (4.12), (4.23) (withδ = 0) and (5.13), we obtain

0 ≤ V(0, x, θε(0, x)) ≤ |Ṽ0,0(0, x, θε(0, x))− Ṽ δ,ε(0, x, θε(0, x))| + εC0

≤ η0(ε + δ, |x| + |θε(0, x)|)+ εC0.

Now, we letδ → 0 and thenε → 0 to get the right-hand side of the above going to
0. This can be achieved due to (5.4). Finally, sinceθε(s, x) is bounded, we can find a
convergent subsequence. Thus, we obtain thatV(0, x, y) = 0, for somey ∈ Rm. This
implies (3.4).

6. Construction of Approximate Adapted Solutions

In this section we turn our attention to the general scheme of constructing the approximate
adapted solutions. We note that in Corollary 4.5 such a scheme was actually outlined,
provided that one is able to start from the right initial position(x, y) ∈ N (V̄) (or,
equivalently,V(0, x, y) = 0). A scheme based on such an assumption, however, is not
practical, because we usually do not have a way to access the value functionV̄ directly,
because of the possible degeneracy of the forward diffusion coefficientσ and the non-
compactness of the admissible control setZ[0, T ]; which in turn makes starting from the
nodal set practically difficult. In a special case, as presented in Section 5, we were able
to approximate the nodal setN (V̄)without using the information of̄V , and showed that
the correct initial position could be chosen asyε = θε(0, x), whereθε is the classical
solution of (5.3). However, unfortunately the applicability of such a method still seems
to be very limited, because it involves some other subtleties such as, among others, the
estimate (5.4).

In what follows we propose a scheme for general approximately solvable FBSDEs,
which will overcome the difficulty mentioned above. The main idea is to try to start from
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some initial state that is “close” to the nodal setN (V̄) in a certain sense. We note that
the unique strong solution,̃V δ,ε, to the HJB equation (4.11) is the value function of a
regularizedcontrol problem with the state equation being (4.8) which is non-degenerate
and with compact control set, thus many standard methods can be applied to study its
analytical and numerical properties, on which our scheme will rely.

For notational convenience, in this section we assume that all the processes involved
are one-dimensional (i.e.,n = m = d = 1). However, one should be able to extend the
scheme to general higher-dimensional cases without substantial difficulties. Furthermore,
throughout this section we assume that

(H4) Let g ∈ C2. There exists a constantL > 0, such that for all(t, x, y, z) ∈
[0, T ] × R3, it holds that{
|b(t, x, y, z)| + |σ(t, x, y, z)| + |h(t, x, y, z)| ≤ L(1+ |x|);
|g′(x)| + |g′′(x)| ≤ L .

(6.1)

We first give a lemma that will be useful in our discussion.

Lemma 6.1. Let (H1) and (H4) hold. Then there exists a constant C> 0, depending
only on L and T, such that for allδ, ε ≥ 0, and(s, x, y) ∈ [0, T ] × R2, it holds that

Ṽ δ,ε(s, x, y) ≥ f (x, y)− C(1+ |x|2), (6.2)

where f(x, y) is defined by(2.4).

Proof. First, it is not hard to check that the functionf is twice continuously differen-
tiable, such that for all(x, y) ∈ R2, the following hold:

| fx(x, y)| ≤ |g′(x)|, | fy(x, y)| ≤ 1,

fxx(x, y) = (g(x)− y)g′′(x)
[1+ (y− g(x))2]1/2

+ g′(x)2

[1+ (y− g)2]3/2
,

fyy(x, y) = 1

[1+ (y− g(x))2]3/2
> 0, fxy(x, y) = −g′(x) fyy(x, y).

(6.3)

Now for anyδ, ε ≥ 0, (s, x, y) ∈ [0, T ] × R2 and Z ∈ Z̃δ[s, T ], let (X,Y) be the
corresponding solution to the controlled system (4.8). Applying Itˆo’s formula we have

J̃δ,ε(s, x, y; Z) = E f (X(T),Y(T))

= f (x, y)+ E
∫ T

s
5(t, X(t),Y(t), Z(t))dt, (6.4)

where

5(t, x, y, z)

= fx(x, y)b(t, x, y, z)+ fy(x, y)h(t, x, y, z)

+ 1
2[ fxx(x, y)σ 2(t, x, y, z)+ 2 fxy(x, y)σ (t, x, y, z)z+ fyy(x, y)z2]

≥ fx(x, y)b(t, x, y, z)+ fy(x, y)h(t, x, y, z)
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+ 1
2

[
fxx −

f 2
xy

fyy

]
(x, y)σ 2(t, x, y, z)

≥ −C(1+ |x|2), (6.5)

whereC > 0 depends only on the constantL in (H4), thanks to the estimates in (6.3).
Note that (H4) also implies, by a standard argument using Gronwall’s inequality, that
E|X(t)|2 ≤ C(1+ |x|2), ∀t ∈ [0, T ], uniformly in Z(·) ∈ Z̃δ[s, T ], δ ≥ 0. Thus we
derive from (6.4) and (6.5) that

Ṽ δ,ε(s, x, y) = inf
Z∈Z̃δ [s,T ]

J̃δ,ε(s, x, y; Z)

= f (x, y)+ inf
Z∈Z̃δ [s,T ]

E
∫ T

s
5(t, X(t),Y(t), Z(t))dt

≥ f (x, y)− C(1+ |x|2),
proving the lemma.

Next, for anyx ∈ R andr > 0, we define

Qx(r )
1= {y ∈ R: f (x, y) ≤ r + C(1+ |x|2)},

whereC > 0 is the constant in (6.2). Since lim|y|→∞ f (x, y) = +∞, Qx(r ) is a compact
set for anyx ∈ R andr > 0. Moreover, Lemma 6.1 shows that, for allδ, ε ≥ 0, one has

{y ∈ R: Ṽ δ,ε(0, x, y) ≤ r } ⊆ Qx(r ). (6.6)

From now on we setr = 1. Recall that by Proposition 4.2 and Theorem 4.3, for any
ρ > 0, and fixedx ∈ R, we can first chooseδ, ε > 0 depending only onx andQx(1),
so that

0≤ Ṽ δ,ε(0, x, y) < V(0, x, y)+ ρ, for all y ∈ Qx(1). (6.7)

Now suppose that the FBSDE (1.1) is approximately solvable, we have from Propo-
sition 3.3 that infy∈R V(0, x, y) = 0 (note that (H4) implies (H2)). By (6.6), we have

0= inf
y∈R

V(0, x, y) = min
y∈Qx(1)

V(0, x, y).

Thus, by (6.7), we conclude the following:

Lemma 6.2. Assume(H1)and(H4),and assume that the FBSDE(1.1)is approximately
solvable. Then for anyρ > 0, there existδ, ε > 0, depending only onρ, x and Qx(1),
such that

0≤ inf
y∈R

Ṽ δ,ε(0, x, y) = min
y∈Qx(1)

Ṽ δ,ε(0, x, y) < ρ.

Our scheme for finding the approximate adapted solution of (1.1) starting from
X(0) = x can now be described as follows: for any integerk, we want to find{y(k)} ⊂
Qx(1) and{Z(k)} ⊂ Z[0, T ] such that

E f (X(k)(T),Y(k)(T)) ≤ Cx

k
. (6.8)
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Here and belowCx > 0 denotes the generic constant depending only onL, T andx. To
be more precise, we propose the following steps for each fixedk:

Step1. Choose 0< δ < 1/k and 0< ε < δ4, such that

inf
y∈R

Ṽ δ,ε(0, x, y) = min
y∈Qx(1)

Ṽ δ,ε(0, x, y) <
1

k
.

Step2. For the givenδ andε, choosey(k) ∈ Qx(1) such that

Ṽ δ,ε(0, x, y(k)) < min
y∈Qx(1)

Ṽ δ,ε(0, x, y)+ 1

k
.

Step3. For the givenδ, ε andy(k), find Z(k) ∈ Zδ[0, T ], such that

J(0, x, y(k); Z(k)) = E f (X(k)(T),Y(k)(T)) ≤ Ṽ δ,ε(0, x, y(k))+ Cx

k
,

where(X(k),Y(k)) is the solution to (2.1) withY(k)(0) = y(k) andZ = Z(k);
andCx is a constant depending only onL, T andx.

It is obvious that a combination of the above three steps will serve our purpose
(6.8). We would like to remark here that in the whole procedure we do not use the exact
knowledge about the nodal setN (V̄), nor do we have to solve any degenerate parabolic
PDEs, which are the two most formidable parts in this problem. Now that the Step 1 is
a consequence of Lemma 6.2 and Step 2 is a standard (non-linear) minimizing problem,
we only briefly discuss Step 3. Note thatṼ δ,ε is the value function of a regularized
control problem, and by standard methods of constructingε-optimal strategies using the
information of value functions (see, e.g., Chapter 5 of [12]), we can find a Markov type
controlẐ(k)(t) = α(k)(t, X̂(k)(t), Ŷ(k)(t)), whereα(k) is some smooth function satisfying
supt,x,y |α(k)(t, x, y)| ≤ 1/δ and(X̂(k), Ŷ(k)) is the corresponding solution of (4.8) with

Ŷ(k)(0) = y(k), so that

J̃δ,ε(0, x, y(k); Ẑ(k)) < Ṽ δ,ε(0, x, y(k))+ 1

k
. (6.9)

The last technical point is that (6.9) is only true if we use the state equation (4.8),
which is different from (2.1), the original control problem that leads to the approximate
solution that we need. However, if we denote(X(k),Y(k)) to be the solutions to (2.1) with
Y(k)(0) = y(k) and the feedback controlZ(k)(t) = α(k)(X(k)(t),Y(k)(t)), then a simple
calculation shows that

0 ≤ J(0, x, y(k); Z(k)) = E f (X(k)(T),Y(k)(T))

< E f (X̂(k)(T), Ŷ(k)(T))+ Cα

√
2ε < Ṽ δ,ε(0, x, y(k))+ 1

k
+ Cα

√
2ε, (6.10)

thanks to (6.9), whereCα is some constant depending only onL, T and the Lipschitz
constant ofα(k). However, on the other hand, in light of Lemma 5.1 of [12], the Lipschitz
constant ofα(k) can be shown to depend only on the bounds of the coefficients of
the system (2.1) (i.e.,b, h, σ and σ̂ (z) ≡ z) and their derivatives. Therefore using
assumptions (H1) and (H4), and noting that supt |Z(k)(t)| ≤ sup|α(k)| ≤ 1/δ, we see



Approximate Solution of FBSDEs 21

that, for fixedδ, Cα is no more thanC(1+|x|+1/δ)whereC is some constant depending
only on L. Consequently, noting the requirement we posed onε andδ in Step 1, we
have

Cα

√
2ε < C

(
1+ |x| + 1

δ

)√
2δ4 ≤ 2

√
2C(1+ |x|)δ ≤ Cx − 1

k
, (6.11)

whereCx
1= C(1 + |x|)2√2 + 1. Finally, we note that the processZ(k)(·) obtained

above is{Ft }-adapted and hence is inZδ[0, T ] (instead ofZ̃δ[0, T ]). This, together with
(6.10)–(6.11), fulfills Step 3.
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