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 BLACK'S CONSOL RATE CONJECTURE

 BY DARRELL DUFFIE,' JIN MA2 AND JIONGMIN YONG3

 Stanford University, Purdue University and Fudan University

 This paper confirms a version of a conjecture by Fischer Black regard-

 ing consol rate models for the term structure of interest rates. A consol
 rate model is one in which the stochastic behavior of the short rate is
 influenced by the consol rate. Since the consol rate is itself determined, via
 the usual discounted present value formula, by the short rate, such
 models have an inherent fixed point aspect. Under an equivalent martin-

 gale measure, purely technical regularity conditions are given for the
 stochastic differential equation defining the short rate and the consol rate
 to be consistent with the definition of the consol rate as the yield on a
 perpetual annuity. The results are based on an extension of the theory for
 the forward-backward stochastic differential equations to infinite-horizon
 settings. Under additional compatibility conditions, we also show that the
 consol rate is uniquely determined and given as a function of the short
 rate.

 1. Introduction. The main objective of this paper is to confirm and
 explore a conjecture by Fischer Black regarding consol rate models for the
 term structure of interest rates. A consol rate model is one in which the

 stochastic behavior of the short rate is influenced by the consol rate. Since the
 consol rate is itself determined, via the usual discounted present value
 formula, by the short rate, such models have an inherent fixed-point aspect.

 Under purely technical conditions, we show whether or not a stochastic
 differential equation defining the short rate and the consol rate is consistent
 with the definition of the consol rate as the yield on a perpetual annuity. The
 results are based on an extension of the theory for the forward-backward
 stochastic differential equations to infinite-horizon settings.

 We fix a filtered probability space (Q, Y, P; {t}t2 ?0), satisfying the usual
 conditions. [See, e.g., Protter (1990) for background technical definitions]. A
 consol is a perpetual annuity, that is, a security paying dividends continually
 and in perpetuity at a constant rate, which can be taken without loss of
 generality to be 1. A short rate process is a nonnegative progressively
 measurable process. We are interested in models of a short rate process r and
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 BLACK'S CONSOL RATE CONJECTURE 357

 a price process Y for the consol that satisfy the expected discounted value
 formula

 (1.1) Yt=E[f exp(-frudu)dsSj], t> 0

 where E denotes expectation under P. Without getting into the associated
 definitions and related notions of arbitrage, (1.1) is consistent with the role of
 P as an "equivalent martingale measure," in the sense of Harrison and Kreps

 (1979), which can be consulted for the associated theory. It is not unusual in
 applications to work from the beginning under such a probability measure,
 and we do so. Since the yield on a consol is the reciprocal of its price, and

 since reciprocation is a smooth mapping from (0, oo) to (0, oo) with a smooth
 inverse, it makes no difference whether we work in terms of the price process

 Y or its yield process 1 = Y-1, also known as the consol rate process.
 Since the work of Brennan and Schwartz (1979), there has been interest in

 term-structure models based on a stochastic differential equation for the
 short rate r and the consol rate 1. Since Y = 1-1, we can equally well work in
 terms of a stochastic differential equation for (r, Y) of the form

 (1.2) drt = pu(rt,Yt) dt + a(rt,Yt) dWt

 (1.3) dYt = (rtYt - 1) dt +A(rt,YYt) dWt,

 where W is a standard Brownian motion in R 2 and where A, a, and A are
 measurable functions on (0,oo) x (0, oo) into R, R2, and R2, respectively,
 satisfying technical conditions. The drift rtYt - 1 shown for Y is implied
 directly by (1.1) and Ito's formula, and is interpreted as a statement that the
 expected rate of return on the consol (under the measure P) is the short
 (riskless) rate r.

 Our first objective is to show how to determine whether the diffusion
 function A on the consol price process is consistent with the characterization
 (1.1) of the consol price. It is clear that not any choice for A will work. For
 example, we cannot have a(r, y)TA(r, y) = 0 for all (r, y), unless both a and
 A are identically zero, since the increments of r and Y must be correlated in
 a very particular fashion, given the definition (1.1) of Y. Indeed, we want to
 resolve whether any A can be chosen in a manner consistent with (1.1). Since

 Yt depends on the conditional distribution of {rs: s 2 t}, which in turn
 depends at least on A and a (not to mention the dependence of r, through Y,
 on A itself), we should expect that the diffusion function A for Y depends in

 a particular way on A and a.
 In a private communication, Black has conjectured that, under at most

 technical conditions, for any (,, a) there is always a choice for A that works.
 We confirm that conjecture. We also provide additional technical conditions

 under which (1.2) and (1.3) are consistent with (1.1) if and only if Yt = p(rt)
 and (consequently) A(rt, Y) = p'(rt) a(rt, P(rt)), where fP is a C2 solution of
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 the ordinary differential equation

 cp'(x)A( x, (P x))

 (1.4) - x9(x) + 1SP"(x)IJa(x, P(x)) 112 + 1 = 0, x E (0,xo).
 Under the same technical conditions, there is a unique solution to this
 ordinary differential equation (ODE). This result, connecting the ODE (1.4)
 with solutions to the model (1.1)-(1.3) of short rate and consol rate, is based
 on recent developments in the theory of forward-backward stochastic differ-
 ential equations reported in Ma and Yong (1993) and Ma, Protter and Yong
 (1993).

 The conclusion that the consol price Yt is, under technical regularity
 conditions, necessarily of the form p(rt) is somewhat surprising, in that one
 of the main objectives of the Brenann-Schwartz model is to provide two state
 variables for the term structure: the short rate rt and the consol rate lt. From
 the above, we have It = 1/p(rt), and the single state variable rt is therefore
 sufficient. It may be that the technical regularity conditions that we impose
 rules out some interesting cases.

 An easy illustration is the following mild extension of an example due to
 Fischer Black, from a private communication:

 k2
 (1.5) drt = kirt + y dt + rtv dWt,

 (1.6) dYt = (rtYt - 1) dt +A(rt,Yt) dWt,

 where k1 and k2 are constants, W is a standard Brownian in 2 and v E R2.
 We can think of the function A as unknown and to be determined in terms of
 the other information. With 1v1 112 = k1 + k2, we conjecture that it is possible
 to take Yt = c/rt p(rt), for some constant c. Plugging this conjecture for f0
 into (1.4) uniquely yields c = 1 and A(r, y) = A(r, p(r)) = -v/r. Is there
 some other choice for A that works and that perhaps generates a model in
 which we cannot treat Yt as qP(rt) for some function p? We do not know the
 answer to this question, since (1.5) does not satisfy the regularity conditions
 for uniqueness of solutions that we provide in this paper. (For example, our
 regularity implies the property that the short rate r stays in some interval
 [r, r ], for positive constants r and r.)

 More generally, we replace the short rate r in (1.2) with a "state process"
 X in RD, and assume that the short rate is given by rt = h(Xt) for some well
 behaved function h. We give conditions under which there is a solution for
 the consol price in the form Yt = O(Xt), where 0 solves a partial differential
 equation analogous to (1.4). In this general case, however, the conditions
 ensuring the uniqueness of solutions for (X, Y) are given implicitly (see
 Section 4). For the case n = 1, Remark 4.8 treats the case of invertible h, so
 that (1.1)-(1.3) can be recovered.

 Hogan (1993) has shown that special cases of a stochastic differential
 equation proposed by Brennan and Schwartz (1979) for (r, 1) fail to have a
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 BLACK'S CONSOL RATE CONJECTURE 359

 finite-valued solution. Our results indicate caution in proposing any particu-
 lar stochastic differential equation for the short rate and consol rate, whether
 or not it has a finite solution, if the consol rate is intended to represent the
 yield on a consol in a manner consistent with the proposed model. The
 diffusion of the consol must be chosen consistently with the solution of a
 nontrivial fixed point problem involving the drift and diffusion of the short
 rate.

 One could also apply our results to a general class of financial market
 valuation problems. Suppose, for instance, that one wants to develop a model
 in which the stochastic behavior of the state process is influenced in a
 particular way by certain asset prices, which are in turn determined by the
 usual discounted expected valuation approach, with future state prices given
 in terms of future state variables. We show how this can be done consistently,
 and give a differential equation for the asset price in terms of the state
 variables. In the infinite-horizon setting, uniqueness is shown under some-
 what narrower sufficient conditions.

 2. Forward-backward stochastic differential equations, nodal so-
 lutions and asset valuation. We first recall some results in Ma and Yong
 (1993) and Ma, Protter and Yong (1993). Let (fl, , P; {t}) be a fixed filtered
 probability space satisfying the usual conditions. Let W be a d-dimensional

 Brownian motion defined on this space. We further assume that t is U{W:
 0 < s < t}, augmented by the P-null sets in 9 Consider the following for-
 ward-backward stochastic differential equation (SDE) in a finite horizon:

 dXt = b(Xt,I Yt) dt + o-(Xt , Yt) dWt, t GE [0, T],

 (2.1) dYt = -b(Xt,I Yt) dt -Zt dWt, t E [0, T],

 XO = X, YT = g(XT),
 where b, u, b and g are some given functions satisfying certain conditions
 and T > 0. The unknown processes X, Y and Z take values in R', R8m and

 Rmxd, respectively, and we will always assume that they are {Yt}-adapted
 (see Definition 2.1 below).

 We can think of X in (2.1) as a state variable for the problem, which has a
 given initial condition x and whose dynamics are influenced by a variable Y,
 which has a terminal value given in terms of XT. For this reason, one can call
 X the "forward" variable and Y the "backward" variable, hence the term
 "forward-backward stochastic differential equation." Provided Z satisfies the
 usual integrability condition E[ JfT IlZt 12 dt] < oo, we can also write

 (2.2) Yt =E[g(XT) + f b(Xs Ys) ds5jt- t E [0,T].

 In all of our applications in this paper, Y will turn out to be a vector of prices
 of certain financial securities, while X is a state variable that affects both the
 dynamics and the final value of Y. Determining a solution for (X, Y) may be
 thought of as a fixed point problem. In other applications, such as models of
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 recursive utility, we may think of Yt as the vector of current utilities of the
 various economic agents in a given Pareto problem, as in Epstein (1987)
 (deterministic case) or Duffie, Geoffard and Skiadas (1994) (stochastic case).
 In that problem, we may think of X as determined by the aggregate con-
 sumption process and the vector of utility weights. In general, we use the
 following definition.

 DEFINITION 2.1. A process (X, Y, Z) is called an adapted solution of (2.1)

 if it is {8"t}-adapted, square-integrable and satisfies

 Xt = x + ftb(x Y)ds + fo (Xs,Y,) dWs,
 (2.3)?o

 Yt-= g(XT) + TIt (XsYs) ds + tZ dW t E [O,T].

 Moreover, if there exists a function 0: RWn X [O T] - R m, which is C' in t
 and C2 in x, such that the adapted solution (X, Y, Z) satisfies

 (2.4) Yt = 0(Xt, t)I Zt = -(Xt0(X,t))Tx(Xt t), t > 0O
 then (X, Y, Z) is called a nodal solution of (2.1).

 In Section 3 we give conditions on (a, b, b, g) under which there is indeed
 a nodal solution (X, Y, Z).

 We use the term "nodal solution" because 0 in some cases turns out to be
 the "nodal surface" of the viscosity solution to a certain Hamilton-Jacobi-
 Bellman equation [see Ma and Yong (1993) for details]. From Ma, Protter,
 and Yong (1993), we know that under certain conditions, any adapted solu-
 tion of (2.1) must be a nodal solution. Moreover, the nodal solution is unique.
 As a matter of fact, this nodal solution can be constructed in the following
 way: First, find the unique classical solution 0 of the parabolic system:

 0 + 2 tr(0_x.(x9 0)o(xI 0) T) + b(x, 0), ) + bk(x,)=0,

 (2.5) (t, x) E (0, T) x R, 1 < k <m
 0(T, x) = g(x), x EW .

 Second, solve the forward SDE:

 (2.6) dXt =b (Xt I fJ(Xt , t)) dt + o- (Xt I 9( Xt I t)) dWt , t GE [O, T],

 Finally, set Yt and Zt as in (2.4). This will give the nodal solution of (2.1).
 Such a method was called a four step scheme in Ma, Protter and Yong (1993),
 where more general cases were studied.

 In what follows, we restrict ourselves to the case m = 1 and

 (2.7) b(x, y) = 1 -h(x)y, (x, y) EWlRn X R,
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 for some function h: WR - (O, ??). Then, (2.1) becomes

 dXt = b(Xt , Yt) dt + o-(Xt, Yt) dWt , t GE [O, ],

 (2.8) dYt = (h(Xt)Yt -1) dt - Zt, dWt), t E [O,T],
 XO =X, YT =g(XT),

 By the usual variation of constants formula, we have

 g(XT) = YT= exp\th(X) du)Yt - JT(JT() du) ds

 -f exp h(Xu)du)KZs,dWs>, tE[O,T].

 This implies that

 Yt = exp( Th(Xu) du)g(XT) + T exp(-f h(Xu) du) ds

 +fT exp(f h(Xu) du)<Zs,dWs>, t E [0,T].

 Taking conditional expectations and noting that f <Z, dW> is a martingale
 (as is the case under the square-integrability condition on Z), we obtain

 (211 = E[exp(-fTh(Xu) du)g(XT)

 + Texp(- h(Xu) du)dS|At t E [0T].

 Hence, it is expected that (2.8) should be very closely related to the following
 problem, which we call the finite-horizon valuation (FHV) problem:

 PROBLEM FHV. Find an adapted process (X, Y) such that

 dXt = b( Xt , Yt) dt + o- (Xt , Yt) dWt, t GE [O, T], XO = x,

 Yt = E[exp - Th(Xu) du)g(XT)

 + Texp h(Xu) du( dsj) ]t t E [0,T].

 In the FHV problem (2.12), treating rt = h(Xt) as the short rate of interest
 in a finance setting, we may think of Y as the price of a security claiming a
 continual constant unit dividend until time T, at which time the security is

 valued at g(XT). The unusual aspect of this formulation, relative to the
 typical model, is that the state process X has dynamics that depend on the
 price process Y, while Yt itself depends on the conditional distribution of Xs
 for s ? t. If we take g 0, we have a finite horizon annuity valuation
 problem in which the annuity price influences the short rate. The consol rate
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 362 D. DUFFIE, J. MA AND J. YONG

 problem is the infinite-horizon version of this problem. We will show technical

 conditions (Proposition 3.1) under which Yt = 6(Xt, t) for some unique fimc-
 tion 0, so that there is no role for Y as a separate state variable. Later, under
 additional regularity, we will show that this is also true in the infinite-hori-
 zon setting (Section 4) for some time-independent 0, and that the finite-
 horizon solutions will converge to the infinite-horizon solution as the horizon
 T -> oo (Section 5).

 Any adapted process (X, Y) satisfying (2.12) is called an adapted solution
 of Problem FHV. Moreover, we have the following notion.

 DEFINITION 2.2. An adapted solution (X, Y) of Problem FHV is called a
 nodal solution of Problem FHV if there exists a function 0: RW X [0, T] -*R
 which is C' in t and C2 in x, such that

 (2.13) Yt = o( Xt , t),~ t GE [O, T]E

 We will call (2.8) the forward-backward SDE associated with Problem
 FHV.

 The main purpose of this paper is to study the following problem, which is
 called the infinite-horizon consol rate (IHCR) problem in the sequel.

 PROBLEM IHCR. Find an adapted, locally square-integrable process
 (X, Y), such that

 dXt = b(Xt, Yt) dt + u(Xt, Yt) dWt, t E[0,oo), X0 = x,

 (214) Yt=EIf expn-fh(Xf)1duds8t] t E[O,x).

 Any adapted process (X, Y) satisfying (2.14) is called an adapted solution
 of Problem IHCR. Moreover, we have the following definition similar to
 Definition 2.2.

 DEFINITION 2.3. An adapted solution (X, Y) of Problem IHCR is called a
 nodal solution of Problem IHCR if there exists a bounded C2 function 0 with
 0x being bounded, such that

 (2.15) Yt = 0(Xt), t E[O,oo).

 We note that in Definition 2.3, the function 0 is time-independent because
 of the infinite horizon. Formally, the forward-backward SDE associated with
 Problem IHCR is

 dXt = b(Xt ,Yt) dt + o-(Xt ,Yt) dWt, t E_[O,oo),

 (2.16) dYt = (h(Xt)Yt - 1) dt - Zt, dWt>, t E[O,oo),
 XO = x, Yt is bounded a.s., uniformly in t E [O, oo).

 We shall verify this in the next section. Also, we should note that, in general,
 the asymptotic behavior of Yt at t = oo is not known. We therefore only
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 BLACK'S CONSOL RATE CONJECTURE 363

 impose the boundedness of Y instead. As before, we may introduce the
 following definition.

 DEFINITION 2.4. A process (X, Y, Z) is called an adapted solution of (2.16)

 if it is 1tg}-adapted, locally square-integrable and if

 Xt = x + tb(Xs,Ys) ds + f t (Xs,Ys) dWsI t [0,oo),
 (2.17)

 Yt ='Y. + f[h(Xs)Ys-1] ds - K(Zs,dWs)> O < u < t < oo.

 Moreover, if there exists a bounded C2 function 0 with Ox being bounded,
 such that the adapted solution (X, Y, Z) satisfies the relations

 T

 (2.18) Yt = 0( Xt), Zt = -7(Xt, 0(Xt)) OX(Xt), t E[O,oo),

 then we call (X, Y, Z) a nodal solution of (2.16).

 3. Existence of nodal solutions. In this section we study the existence
 of nodal solutions to both Problem FHV and Problem IHCR. We shall also
 establish the relationship between these problems and the associated for-
 ward-backward SDEs, and some properties of the nodal solutions. Let us
 first make some standing assumptions.

 (H1) The functions a, b and h are C' with bounded partial derivatives
 and there exist constants A, ,u > 0 and some continuous increasing function
 v: [O, oo) - [O, oo), such that

 (3.1) AI < o (x, y) f(x, y)T < jkI, xy Rn X
 (3.2) Ib(x,y)I < v(lyl), (X,y) E I- X [fRI
 (3.3) infnh(x) - > O, sup h(x) y < oo.

 (H2) The function g is bounded in C2+ a(Rn), for some a > 0.

 Let us begin with Problem FHV.

 PROPOSITION 3.1. Let (H1)-(H2) hold. Then, Problem FHR admits a
 unique adapted solution (X, Y). Moreover, it is in fact a nodal solution.

 PROOF. First, from the previous section, we see that if (X, Y, Z) is an
 adapted solution of (2.8), then (X, Y) is an adapted solution of Problem FHV.
 Conversely, let (X, Y) be any adapted solution of Problem FHV. We shall
 prove that there exists an adapted R d-valued process Z such that (X, Y, Z) is
 an adapted solution to (2.8).
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 To this end, let us define a measurable process

 (3.4) Ut exp( Th(Xu) du)g(XT) + f expf h(Xu) du) ds.

 Clearly, for each t E [0, T], Ut is ST-measurable. Let Y t AE[Ut I I, t E [0, TI.
 Then note that the Brownian filtration {gt} is actually continuous [cf. Karatzas
 and Shreve (1988)] and Y is continuous and is indistinguishable from the
 optional (or predictable) projection of U. Furthermore, it holds that

 (3.5) E[T HsU ds _|t= E[T HsYs ds|9t]

 for any t E [0, T], P-a.s., where H is any bounded progressively measurable
 process [see, for example, Dellacherie and Meyer (1982), Section 6].

 On the other hand, for each fixed cl E fl, one can check by direct computa-
 tion that U satisfies the ODE:

 (3.6) Ut( &J) = g(XT( &J)) + T(h(Xs( &))Us( &j) - 1) ds.

 Taking conditional expectation on both sides of (3.6) and applying (3.5), we

 see that Yt satisfies

 (3.7) Yt = E[g(XT) + T(h(Xs)Ys - 1) dsj] P-a.s.

 Now by applying the martingale representation theorem and following an
 argument like that in Ma, Protter and Yong [(1993), Section 5] (note the
 boundedness of g, h and the adaptedness of Y), we see that there exists an
 adapted R d-valued square-integrable process {Zt: 0 < t < T}, such that

 (3.8) Yt = g(XT) + fT (h(Xs)Ys - 1) ds - T <Zs S dWs)

 In other words, (X, Y, Z) solves (2.8). (In some finance applications, the
 Brownian motion W does not generate the given filtration {T}, as assumed in
 this paper, but rather is obtained as the martingale part of a Brownian
 motion under a different measure, via Girsanov's theorem. Even in this more
 general setting, it can be seen that W generates all martingales as stochastic
 integrals in the above sense).

 Finally, since the process Y is one dimensional, the results in Ma, Protter
 and Yong (1993) show that (2.8) possesses a unique adapted solution which
 can be constructed via the four step scheme; namely, any adapted solution of
 (2.8) must be the nodal solution, proving the proposition. C1

 To study the Problem IHCR, we need the following lemma. The proof of the
 lemma is quite standard, but we nevertheless sketch it for the benefit of the
 reader.
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 LEMMA 3.2. Let (H1) hold. Then the following equation admits a classical
 solution 0 E C2+a (R n):

 (3 9) 2 tr(0xxu (x, 0) oT(X, 0)) +(b(x, 0), 0) - h(x)0 + 1 = OS
 x E Rn.

 such that

 1 1
 (3.10) -< 0(X) < xe X Rn.

 y

 SKETCH OF THE PROOF. Let BR(O) be the ball of radius R > 0 centered at
 the origin. We consider (3.9) in BR(O) with the homogeneous Dirichlet bound-
 ary condition. By Gilbarg and Trudinger [(1977), Theorem 14.10] there exists
 a solution OR E C2+ a(BR(O)) for some a > 0. By the maximum principle, we
 have

 (3.11) 0 0R(X) < x E BR(O)

 Next, for any fixed x0 E RWn and R > lxo0 + 2, by Gilbarg and Trudinger
 [(1977), Theorem 14.6], we have

 (3.12) 0,xR(X)I < C, x EB1(x0),
 where the constant C is independent of R > I xo0 + 2. This, together with the
 boundedness of cr and the first partial derivatives of cr, b, h, implies that as
 a linear equation in 0 [regarding o-(x, 0(x)) and b(x, 0(x)) as known func-
 tions], the coefficients are bounded in Cl. Hence, by Schauder's interior
 estimates, we obtain that

 (3.13) II0RIIC2+-(Bj(x0)) < C, R > lxol + 2.
 Then, we can let R -oo along some sequence to get a limit function 0(x). By
 the standard diagonalization argument, we may assume that 0 is defined in
 the whole of Rn. Clearly, 0 E C2+ a(Rn) and is a classical solution of (3.9).
 Finally, by the maximum principle again, we obtain (3.10). [

 Now, we come up with the following existence result for the Problem
 IHCR.

 THEOREM 3.3. Let (H1) hold. Then there exists at least one nodal solution
 (X, Y) of Problem IHCR.

 PROOF. By Lemma 3.2, we can find a classical solution 0 E C2+ a(Rfn) of
 (3.9). Now, we consider the (forward) SDE

 (3.14) dXt = b(Xt. 0(Xt)) dt + (Xt, 0(Xt)) dWt t > O,
 O = X.
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 Since Qx is bounded and b and oa are uniformly Lipschitz, (3.14) admits a
 unique strong solution Xt, t E [0, ??). Next, we define

 (3.15) Yt= O(Xt), t E[O,c).
 We are going to show that (X, Y) is an adapted solution of Problem IHCR. In
 fact, by using It8's formula, we have

 dYt = [( Ox(xt), b(Xt , o(Xt)))

 + 2 tr(Oxx(Xt)u-(Xt, O(Xt))o.T(Xt, O(Xt)))] dt

 (3.16) +( Ox(Xt), (:rXt, I(Xt)) dWt)

 = (h(Xt) O(Xt) - 1) dt + ( uT(Xt , ( Xt))Ox( Xt), dWt)

 = (h(Xt)Yt - 1)dt - <ZtIdWt)>
 where Zt = - o(Xt, O(Xt))TOx(Xt) and (3.9) has been used. Clearly, (3.16) can
 be regarded as a linear nonhomogeneous SDE in Yt. Thus, the usual variation
 of constants formula gives

 YT = exp(f h(Xu) du)Yt - ( fexp( h )

 J(exp(fTh(Xu) du)Z ~dW4 0 ? t ? T < oo.

 The above can also be written as

 Yt = exp( - h(Xu) du)YT + f exp(-f h(Xu) du) ds

 (.f-T(exp(- fh(X) du)Zs,dWs)I O? < t < T < .

 Next, we take conditional expectations, using the local square integrability of
 Z implied by the properties of oa and 0 to obtain

 Yt E[exp - Th(Xu) du'YT
 (3.19)

 + fexp(- h h(Xu) du) dsK, O < t < T < x

 Since 0 is bounded, so is Y [see (3.15)]. Consequently, by condition (3.3),

 (3.20) exp(- Th(Xr) dr)YT < -e-(T t) 0, T c.

 On the other hand, for any T < T',

 (321 exp J - T h( diu) ds

 (3.21) ~~~~~-86T -8T'
 T' ~~e -e

 < e-8(s-t)ds = eat 0 T, T' 0.
 T 8 ,T* 0
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 Namely, for each fixed (t, w), the integral above converges as T -m c. Hence,
 by the dominated convergence theorem, we can send T -m oo in (3.19) to get

 (3.22) Yt = E[ exp(- h(Xu) du) ds8.tj t E[O,cc).

 This shows that (X, Y) is an adapted solution of Problem IHCR. By (3.15),
 this solution is nodal. C1

 Next, we discuss the possibility of representing the solution of Problem
 IHCR as the adapted solution of forward-backward SDE (2.16). As was
 pointed out in the Introduction, in the general infinite-horizon case, we do not
 have a unique solution of the forward-backward SDE if the value at infinity
 cannot be specified. Nevertheless, we shall show below and in the next section
 that uniqueness in a certain class of solutions will still hold, which will be
 sufficient for our purpose.

 To begin with, let us establish a result concerning the nonautonomous

 ODE with infinite duration. Let H: [0, oo) - [ [, oo) be a continuous function,
 where 8 > 0 is given, and consider the ODE:

 dU~
 (3.23) dt =Ht Ut - 1.

 We have the following lemma.

 LEMMA 3.4. There exists a unique bounded solution of (3.23) defined on
 [0, sc). Moreover, such a solution has an explicit expression:

 (3.24) Ut= exp(-SHu du) ds.

 PROOF. The existence follows from a direct verification that the function
 U defined by (3.24) is a bounded solution of (3.23). To see the uniqueness, it
 suffices to show that any bounded solution of (3.23) must be of the form (3.24).
 Indeed, let U be any bounded solution to (3.23) defined on [0, mc). For any

 O < t < T, we can apply the variation of constants formula to get

 (3.25) Ut = expT Hudu)UT + f exp( - Hu du) ds.

 Since UT is bounded (for all T > 0), we have

 (3.26) exp(- Hr dr)UT < Ce _8(T 0 as T 0.

 Hence a similar argument proving (3.22) shows that (3.24) holds. This proves
 the lemma. [1

 PROPOSITION 3.5. If (X, Y) is an adapted solution to Problem IHCR, then
 there exists an adapted R'd-valued locally square-integrable process Z, such
 that (X, Y, Z) is an adapted solution of (2.16).
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 PROOF. Suppose that (X, Y) is an adapted solution to Problem IHCR.
 Define

 (3.27) Ut exp h (S h(X)du)ds

 By the assumption on the function h, Ut is well defined for each t ? 0.
 Clearly, Y is the optional projection of U; to wit, Yt = E(Ut I t), t 2 0.

 Now for each fixed w e fl, define Ht(w) = h(Xt(co)), t ? 0. Then t -) Ht(w)
 is continuous and bounded below by 8 > 0. Therefore, by Lemma 3.4, we see

 that U is the unique bounded solution of the ODE (with random coefficients):

 dUt
 (3.28) dt= h( Xt) Ut - 1.

 Now, whenever 0 < t < T < oo, we have

 (3.29) Ut=UT-T[h(XS)US - 1] ds,

 whence

 Yt = E(Ut I t)

 = E[UT- |[h(Xs)Us-1] ds|t-

 = E[YT - fc [h(Xs)Ys - 1] ds it

 where we have used the fact that Y is the optional projection of U. Thus, a by
 now standard argument using the martingale representation theorem, as in
 the finite horizon case, leads to the existence of an adapted square-integrable
 process Z(T) defined on [0, T], such that

 (3.31) Yt = YTf- T [h(Xs)YS - 1] ds + T (Z(T), dWs)> t E [0,T].

 It remains to show that there exists an adapted locally integrable process Z
 taking values in R d such that

 (3.32) T (Zs 9dWs =f T|Z(T), dWs>, 0 < t < T < X.

 To see this, note that (3.31) holds for any T > 0, so if 0 < T1 < T2 < c, then
 for t E [0, T1], we have

 - JT1[h(Xs)Y - 1] ds + T1KZTl , dWs>
 (3.33) t T

 = YT- T2[h(Xs)Y - 1] ds + T 2z2)T dWs).
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 Setting t = Ti, we get

 (3.34) TTT = - f[h(Xs)Ys - 1] ds + T2(Z(T2) dWs>.

 Plugging (3.34) into (3.33), we obtain that

 (3.35) JTlKZ(T2) _Z(T1)dW> = 0, forall t E [0,T1].

 This leads to the property

 (3.36) E(Tl[Z(T2) _ Z(Tl)] ds) O.

 In other words, Z(Tl) = Z(T2), dt X dP-almost surely on [0, T1] x fl. Therefore,
 modulo a dt X dP-null set, we can define a process Z by Zt = Z(N), if
 t E [0, N], where N = 1, 2, .. ., and it is fairly easy to check as before that
 (3.32) holds. Therefore, (3.31) can be rewritten as

 (3.37) = - f[h(XS)YS - 1] ds + t (Zs dW>s Yt = Yt t

 for all T > 0, or equivalently, one has

 (3.38) dYt = [h(Xt)Yt - 1] dt - KZt,dWt>, t [[0,).
 Finally, the boundedness of Y follows easily from the definition of Y and the
 fact that Ut < 1/8, Vt > 0, P-a.s., proving the proposition. [1

 It is worth noting that although the bounded solution U of the random
 ODE (3.23) over the infinite horizon is unique, the uniqueness of the adapted
 solution to the forward-backward SDE (2.16) over an infinite duration is still
 unknown. Theorem 3.3 and Proposition 3.5 suggested two ways to construct
 the adapted solutions to such forward-backward SDEs. In the next section
 we shall prove that if both X and Y are one dimensional, then the adapted
 solution to the forward-backward SDE over an infinite horizon is unique,
 under some explicit compatibility conditions, and such adapted solutions
 must be nodal (see Theorem 4.1). In the higher-dimensional case, such a
 result is also proved (Theorem 4.5), but the condition that we have to impose
 is implicit, and the general uniqueness result is far from obvious. Neverthe-
 less, one would expect that the uniqueness should hold at least among the
 nodal solutions. The next result and the remark following it explore its
 possibility. Recall from Definition 2.4 that a nodal solution can be given by an
 arbitrary bounded C2 function 0 with bounded gradient.

 PROPOSITION 3.6. Let (Hi) hold. Suppose that the forward-backward
 SDE (2.16) has a nodal solution (X, Y, Z); namely, (2.18) holds for some
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 bounded C2 function 0 with bounded gradient. Then 0 must satisfy the ODE
 (3.9).

 PROOF. Let (2.18) hold for some bounded C2 function 0 with bounded
 gradient. Since 0 is C2, we can apply It8's formula to Yt = 0(Xt). This leads
 to

 dYt b [ (Xt, 9 0 Xt) ), Ox ( Xt))

 (3.39) + 2 tr(OXX(Xt)0'0'T(Xt 96(Xt)))] dt

 +( Ox(Xt) 9 -(Xt, 9 (Xt)) dWt).

 Comparing (3.39) with (2.16) and noting that Yt = 0(Xt), we obtain that

 (3.40) Kb(Xt, 0(Xt)), Ox(Xt))
 + tr(0xx(Xt)o-T(Xt, 0(Xt))) = h(Xt)0(Xt) - 1,

 for all t ? 0, P-almost surely. Define a continuous function F: Rn -[ R by

 (34) F(x)-A<b( x, 0(x)),9 Ox(x)>
 + 2 tr(0Xx(x)ov T(x, 0(X))) - h(x)0(x) + 1.

 We shall prove that F 0. In fact, note that in this case, X actually satisfies
 the forward SDE

 (3.42) dXt=b(Xt)dt+J&(Xt)dWt, t2>0
 XO =x,

 where b(x) - b(x, 0(x)) and &(x) o-(x, 0(x)). Therefore, X is a time-ho-
 mogeneous Markov process with some transition probability density p(t, x, y).
 Since both b and 5 are bounded and satisfy a Lipschitz condition and since
 0CCT is uniformly positive definite, it is well known [see, e.g., Friedman (1964,
 1975)] that for each y E RnW p(. , - y) is the fundamental solution of the
 parabolic partial differential equation (PDE)

 1 n82 p n~ dp dp
 (3.43) - E dJ(x + E ox

 2 i,j=l dxi dxj i1 dxi adt

 and it is positive everywhere. Now by (3.40), we have that F(Xt) = 0 for all
 t ? 0, P-a.s., whence Eo x[F2(Xt)] = 0, for all t > 0. Since

 (3.44) Eo,X[F2(Xt)] = fp(t, x, y)F2(y) dy, t> 0,

 and p(t, x, y) is positive everywhere, we have F(y) = 0 almost everywhere
 under the Lebesgue measure in R8n. The result then follows from the continu-
 ity of F. C1

 REMARK 3.7. The essence of Proposition 3.6 is that the only possible nodal
 solution for the infinite-horizon forward-backward SDE (2.16) is the one
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 constructed using the solution of ODE (3.9). Therefore, if (3.9) has multiple
 solutions, we do not have uniqueness of the nodal solution and the number of
 the nodal solutions will be exactly the same as that of the solutions to (3.9).
 However, if the solution of (3.9) is unique, then the nodal solution of (2.16) (or
 equivalently, Problem IHCR) will be unique as well.

 4. Uniqueness of the nodal solution. In this section we study the
 uniqueness of the nodal solution of Problem IHCR. We first consider the
 one-dimensional case, that is, when X and Y are both one-dimensional
 processes. For simplicity, we denote

 (4.1) a(x,y) = 2j|"(X,y)XI2Y (Xy) E 2
 Let us make some further assumptions:

 (H3) Let m = n = 1 and the functions a, b, h satisfy the following:

 (4.2) h is strictly increasing,

 a(x,y)h(x)-(h(x)y - 1)| ay(x,(1 - ,f)y + ,13) d,3? q>0,

 [a(x, y)by(x, (1 - f3)y + 13S)

 -ay(x, (l- f3)y + f9)b(x,y)] d,f ? 0,
 _1 1 x

 Condition (4.3) essentially says that the coefficients b, o- and h should be
 somewhat "compatible." Although a little complicated, it is still quite explicit
 and easily verifiable. For example, a sufficient conditions for (4.3) are

 a(x ,y)h(x) - (h(x)y - 1)ay(x, w) 2 7 > 0,

 (4.4) a( x, y) by( x, w) - ay( x, w) b( x, y) 2 0,

 y, w [E -, a-], x E R.

 It is readily seen that the following equations will guarantee (4.4):

 (4.5) ay(x,y) = 0, by(x9 y) 20, (x,y) E- 1R x -9 ,

 In particular, if both a and b are independent of y, then (4.3) holds automati-
 cally.

 Our main result of this section is the following uniqueness theorem.

 THEOREM 4.1. Let (H1) and (H3) hold. Then Problem IHCR has a
 unique adapted solution. Moreover, this solution is nodal.
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 To prove the above result, we need the following lemmas.

 LEMMA 4.2. Let h be strictly increasing and let 0 solve

 (4.6) a(x, 0)0,? + b(x, 0)0x-h(x)0 + 1 = O, x E R8.

 Suppose XM is a local maximum of 0 and Xm is a local minimum of 0 with
 O(Xm) < O(xM). Then, xm > XM.

 PROOF. Since h is strictly increasing, from (4.6) we see that 0 is not
 identically constant in any interval. Therefore Xm # XM. Now let us look at
 XM. It is clear that OX(xM) = 0 and OXX(xM) < 0. Thus, from (4.6) we obtain
 that

 (4.7) O(XM) < h(xm)

 Similarly, we have

 (4.8) 0(Xm) ? h(xm)

 Since 0(Xm) < 0(xM), we have

 1 1

 (4.9) ~~~~h( xm) h( XM)
 whence XM < Xm because h is strictly increasing. El

 LEMMA 4.3. Under the conditions of Theorem 4.1, (4.6) admits a unique
 solution 0.

 PROOF. From Lemma 4.2, we see that if xm is a global minimum, then
 there will be no local maximum on (xm,oo). Thus, 0 is strictly monotone
 increasing on (xm, mc) since h is so. By the boundedness of 0, Ox and Oxx, we
 see that

 (4.10) lim ox(x) = lim oxx(x) = 0

 and limx 0(x) exists. Thus, by (4.4), we have

 1

 (4.11) lim 0(X) = h(+ )
 x --* 0 (

 On the other hand, we have seen that

 1 1
 (4.12) lim 0(x) > 0 (xm) 2

 X-4 co ~h( xm) > h+ 00)'
 which contradicts (4.11). This means that 0 has no global minimum. From
 Lemma 4.2, we see that 0 can have at most one global maximum point xM.
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 Thus, on (- 00, XM), 0 is strictly monotone increasing. Hence, we have [similar
 to (4.10) and (4.11)]

 lim Ox(x) = lim ox (x) = 0,
 x - xo -0

 (4.13) 1
 lim 0(x) = h-c
 Xlm 00 h(-oo)

 but from Lemma 4.2,

 1 1
 (4.14) lim 0(x) < 0(XM) < h(xM) h(-)

 which contradicts (4.13). Hence, 0 cannot have any maximum points either.
 Consequently, 0 is monotone on 0R. Finally, since

 1 1

 (4.15) 0(-0c) =h(-o) h(+oo)

 it is necessary that 0 is monotone decreasing.
 Next, let 0 and 0 be two solutions of (4.6). Then, w 0 - 0 satisfies

 0 = a(x, &)wXx + b(x, O)wx

 - (h(x) - [ay(x, 0 + pw)Oxx + by(x, 0 + pw)0x] dp) w

 = a(x, 0)wxx + b(x, O)wx

 - h(x) ay(x,0 ) |13w (h(x)0 - 1 - b(x, 0)0x
 a(x, 0)

 +by(x, 0 + 3w)Ox d13)w
 (4.16)

 - a(x, 0)wXx + b(x, &)wx

 a(x, 0) (a(x0 )h(x) - (h(x)- 1)f ay(x, (1 - 13) 0 + pf) di3

 +10xlI [a(x, 0)by(x (1 - /3)0+ 130)

 -a y ( x, ( 13)0+ 10)b(x, 0) d 3)w

 - d(x)wXX + b(x)wX - c(x)w.

 Here, we used the fact that ox(x) = -I 0x(x)l (since 0 is decreasing). By (H3),
 we see that c(x) 2 ij/li > 0 for all x E ll (note that by (3.10), 0, 0 E
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 [l/-y, 1/81). From (Hi), we also see that d and b are bounded. Thus, by the
 lemma that will be proved below, we obtain w = 0, proving the uniqueness.

 El

 LEMMA 4.4. Let w be a bounded classical solution of

 (4.17) a(x)wxx + b(x)wX - c(x)w = 0, x E R,

 with c(x) ? co > 0, a(x) ? 0, x E W,Rn and with a and b bounded. Then,
 w(x) 0.

 PROOF. For any a > 0, let us consider ?D(x) = w(x) - aIx12. Since w is
 bounded, there exists some xo at which P attains its global maximum. Thus,
 (D'(xo) = 0 and V'(xo) ? 0, and which means that

 (4.18) wx(xo) = 2 axo, wxx(xo) < 2a-

 Now, by (4.17),

 (4.19) cow(xo) = a(xo)wx.(xo) + b(xo)wx(xo)

 < 2a(d(xo) + b(xo)xo).

 For any x E DR, by the definition of xo, we have (note the boundedness of d
 and b)

 (4.20) w(x) - aIx2 w(xa)- aix0!2

 < a(2&(xo) + 2b(xo)xo -_x 012) < Ca.
 Sending a 0, we obtain w(x) < 0. Similarly, we can show that w(x) ? 0.
 Thus w(x) 0. [1

 This lemma is not new. Since the proof is simple, we have provided it for
 completeness. Also, it is not hard to see that similar results hold for higher-
 dimensional cases. Actually, much more general comparison results can be
 found in the literature [see Crandall, Ishii, and Lions (1992)].

 PROOF OF THEOREM 4.1. Let (X, Y) be any adapted solution of Problem
 IHCR. Then, by Proposition 3.4, there exists an adapted process Z such that
 (X, Y, Z) is an adapted solution of (2.16). Now, under (Hi) and (H3), (4.6)

 admits a unique classical solution 0 with Ox < 0. We set

 (4.21) Yt = O(Xt), Zt = -u_(Xt, 0(Xt))TOx(Xt), t E[0,oo).
 By Ito's formula, we have [note (4.1)]

 dYt = [Ox(Xt)b(Xt,Yt) + Oxx(Xt)a(Xt,Yt)] dt
 (4.22) +( X o( X,y)T t),dwt).
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 Hence, with (2.16), we obtain [note (4.6)] that for any 0 < u < t < oo,

 E( - = E -(ft -t)2
 YU~~~~~

 - E| 2(fs -Ys)[ Ox(Xs) b(Xs ,Ys)

 + Oxx (X,) a(X8, Ys8) - h(X8 ) Ys + 1]

 + 1 (Xsg yS) OX(Xs)+ Zs 112 dS
 2

 =E(Yt - Yt)

 - E [2(Y Ys) )[ox(Xs) (b(Xs Ys) - b(Xs8Ys))

 + Oxx(Xs)(a(Xs Ys) - a(Xs,1Y))

 -h(Xs)(Ys-Ys + ls - Z8112] ds

 <E(Yt-Yt)

 2ftE[(YS - Y)(h(Xs) +I Ox(Xs) I

 x| by(Xs Ys + 13( - Ys)) d f3

 Oxx(Xs) ay (Zs,Ys + P(YS - Ys)) d3)}] ds
 2

 E(Y - )2

 (4.23) -2 tE[(Y - Ys)2 h(Xs) +IOX(XS)I

 x| by(Xs,Ys + ( - YS)) d13

 b(Xs, Y8)Ox(Xs) - h(Xs8)Ys + 1
 + Y

 a(Xs, & )

 x 1ay(Zs YS + (Ys - YS))) d3] ds

 yt2 =E(Yt-Yt)

 - 2 tE[ y)( (a(Xs Ys) h(Xs)
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 - (h(Xs)Ys- 1)f ay(Xs,'s + o3(Ys - Ys)) d3

 + I Ox(Xs) I [a(XsgYs)by(Xs YS + P(Ys - fs))

 - b(Xs9s ) ay (Xs s + i3(Ys - Ys))) do3 ds

 < t( _y)2 _ 27 t(y_y)2

 Define (p(t) = E(Yt - Yt)2 and a = 2,q/tk > 0. Then (4.23) can be written as

 (4.24) fp(u) < ?p(t) - aft|p(s) ds, O < u < t < oo.

 Thus,

 (4.25) +t ( e - a peat f P(s) ds) = e-at (p(t) - aft p(s) ds)

 2 ea t~(pu) , t E-[u900).
 Integrating over [u, T], we obtain (note Y and Y are bounded, and so is p)

 e-au _ -aT
 (4.26) - p(u) < e-aTfT p(s) ds < CTe,aT T > O.

 a o

 Therefore, it is necessary that ~p(u) = 0. This implies that

 (4.27) Y=Y-(X), u e [0, oo), a.s. w e l.

 Hence, (X, Y) is a nodal solution. Finally, suppose (X, Y) and (X, Y) are any
 adapted solutions of Problem IHCR. Then, by the above proof, we must have

 (4.28) Yt = 0(Xt), Yt = (Xt), t E[0,oo).
 Thus, by (2.16), we see that Xt and Xt satisfy the same forward SDE with
 the same initial condition. Thus, by the uniqueness of the strong solution to
 such an SDE, X = X. Consequently, Y = Y. This proves the theorem. [1

 Let us indicate an obvious extension of Theorem 4.1 to higher dimensions.

 THEOREM 4.5. Let (Hi) hold and suppose there exists a solution 0 to (3.9)
 satisfying

 h( x) -| f[ EayJ(x, ( 1- 3)H( x) + I3O) Oxx( x)

 n

 (4.29) -E bh(x,(1-)0(x) + d/3 X )>0,
 i=1l

 XE n e-
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 Then Problem IHCR has a unique adapted solution. Moreover, this solution is
 nodal and is determined by the given solution 0.

 SKETCH OF THE PROOF. First of all, by an estimate similar to (4.16), we can
 prove that (3.9) has no other solution except 0(x). Then, by a proof similar to
 that of Theorem 4.1, we obtain the conclusion here. O

 COROLLARY 4.6. Let (H1) hold and both a and b be independent of y. Then
 Problem IHCR has a unique adapted solution which is nodal.

 PROOF. In the present case, condition (4.29) trivially holds. Thus, Theo-
 rem 4.5 applies. O

 REMARK 4.7. We note that for the case in which a and b are independent
 of y, the forward equation for X is decoupled from Y. This special case has
 been studied by Duffie and Lions (1993) in the context of recursive utility
 models (under weaker regularity conditions). In other words, we can treat the
 infinite-horizon recursive utility model as a special case.

 REMARK 4.8. The fact that h is strictly increasing implies that it has an
 inverse h-1, so the unique solution (X, Y) to Problem IHCR can be treated as
 the unique solution (r, Y) to the consol rate problem described in the Intro-
 duction, by taking X = h-1(r). Moreover, if h is C2, Ito's formula implies
 that we have the unique solution (r, Y) to (1.2) and (1.3), with

 p4(r, y) = h'(h'(r))b(h'(r), y)

 (4.30) + 1h" (h' (r))jj o- (h- l(r) Y) 112

 a (r, y) = h'(h (r))r(h-1(r), y).
 Indeed, this unique solution is obtained at Y = 0(h-1(r)), where 0 is the
 unique solution of (4.6). The use of X rather than r as the "forward" state
 variable for this problem is due simply to the fact that it is easier to state

 regularity conditions in terms of (b, o-, h) than directly in terms of ( /-t, a).

 REMARK 4.9. As a point of reference, we note that Ito's formula implies
 that (r, Y) solves (1.2) and (1.3) if and only if (r, 1 = Y-1) solves the SDE

 drt = ( rt , It) dt + r(rt, It) dWt

 (4.31) dlt = (2 - rl + 2LIIA(rt.lt)1 ) dt +A (rt,lt) dWt,

 where

 /R(r,I) =

 (4.32) a'(r, 1) = (r, 1

 A (r 1) = A(r 1-

This content downloaded from 128.125.208.57 on Fri, 02 Dec 2016 07:35:53 UTC
All use subject to http://about.jstor.org/terms



 378 D. DUFFIE, J. MA AND J. YONG

 Thus the same characterization given above can equally well be given in
 terms of(j,, a, A).

 5. The limit of Problem FHV. In Section 2 we posed the consol rate
 problems in both finite- and infinite-horizon cases. Practically, it would be
 nice to know whether the limit of the Problem FHV is the Problem IHCR. The
 purpose of this section is to show that this is indeed the case, under certain
 conditions.

 We first prove the following lemma.

 LEMMA 5.1. Let w be the classical solution of the equation

 n n

 W- E ait(x, t)w Xi. - E b( x, t)wx. + c(x, t)w = O,
 (5.1) t j ixji1

 (x, t) E R'n X [0 ,o), wIt=o = Wo(X).

 Suppose that

 AI< (aij(x,t)) <? /tI,

 (5.2) Jb'(x,t)< C, 1 i n,
 c(x, t) 2 q) > ?, (x,t) E- San X[0,??),

 Iwo(x)I M,

 for some positive constants A, ,t, -q, C and M. Then

 (5.3) 1 w( x, t) I < Me-"It, ( x, t) E- R8n X [O~ ??)

 PROOF. First, let R > 0 and consider the following initial-boundary value
 problem:

 n n

 w R E a' i(x, t)WXJ E bi(x, t)wR + c(x, t)WR = O,
 (5.4) i,j=l Xi =1 Xi

 (x, t) E BR X[0,??), WRI BR = 0, wRIt=o = Wo(x)xR(x),

 where BR is the ball of radius R > 0 centered at 0 and X R is some "cutoff"
 function. Then, we know that (5.4) admits a unique classical solution wR E
 C2+a,l+a/2(BR x [0,oo)) for some a > 0, where C2+a,l+a/2 is the space of all
 functions v(x, t) which are C2 in x and C1 in t with Holder continuous vxix;
 and vt of exponent a and a/2, respectively. Moreover, we have

 (5.5) I WR(X, t) I < M, (x, t) ER BR X [OS oo) ,
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 and for any x0 E R'8 and T > 0 (0 < a' < a),

 (5.6) wR > w in C2+ a',1+ a/2(Bl(xo) x [0,T]) as R > oo,
 where w is the solution of (5.1). Now, we let qi(x, t) = Me-("-')t (e > 0).
 Then

 n n

 - E ait(x,t)qxix. - E bt(x,t) /xi + c(x,t)q,
 i,j=l i=l

 (5.7) = (c(x, t) - vi + e)M-(71- )t > 8M-0q- s)t > 0,

 qJIdBR > 0 = WRIBR, qlt=O = M 2 wO(x) = wRIt=o.
 Thus, by Friedman [(1964), Chapter 2, Theorem 16], we have

 (5.8) WR(x, t) < q(x, t) =M-(m18)t, (X, t) E BR X[O,oo).
 Similarly, we can prove that

 (5.9) wR(x,t) ? -Me-(7-_)t (X, t) E BR x[0,00).
 Since the right-hand sides of (5.8) and (5.9) are independent of R, we see that

 (5.10) | w( x, t) I < Me-(--6)t, (x, t) E Rn X [0, ??).

 Hence, (5.3) follows by sending e -> 0. r-

 Our main result of this section is the following theorem.

 THEOREM 5.2. Let (H1) and (H2) hold and let 0 be a solution of (3.9)
 with the property (4.29). Let (XK, yK) be the nodal solution of Problem FHV
 in [0, K] and let (X, Y) be the nodal solution of Problem IHCR determined by
 0. Then,

 (5.11) lim ElYtK t Y12 + EIXtK _ XtI2 = 0,
 K--->oo

 uniformly in t on compacts.

 PROOF. By Proposition 3.1, we see that (Xt/, YtK) satisfies

 (5.12) ytK = OK(x/c t), t E [0, K], a.s. a) E Q,

 where OK is the solution of the parabolic equation
 n n

 K/+ E aii(X ,K)x0K + Eb (x, 0 )0 h(x)

 ( x, t) E- R8n x [O,T), OK It=T = g( x).
 Next, we define 'p to be the solution of

 n n

 -E ai, ( x, jD) =OX, x b1( x, =1) 9Dx, + h( X) =1 - 1 = 0,

 ( dr t) c= Rn X (0{n) 801t.o = grt +

This content downloaded from 128.125.208.57 on Fri, 02 Dec 2016 07:35:53 UTC
All use subject to http://about.jstor.org/terms



 380 D. DUFFIE, J. MA AND J. YONG

 Clearly, we have

 (5.15) 0K(x, t) = (p(x, K- t), (x, t) E R'n X [O, K].

 Now, we let w(x, t) = (p(x, t) - 0(x). Then
 n n

 wt- E aij(x, Ow,j - E b(x, p)wx.
 i,j=l i=l

 n
 (5.16) -h [(x) - 0tE aij(x 0 + '8w) xixj

 + Eby(x, 0 + 3w)Ox,I d/3Iw= ,O

 wIt=O =g(x)- 0(x).

 We note that both p(x, t) and 0(x) lie in [1/y, 1/8]. Thus, by condition (4.29)
 and Lemma 5.1, we see that

 I0 K(x,t) - 0(x) =Ip(x, K- t) - 0(x)
 (5.17) 1

 < -e-(K) (x~ t) E- RO X[OSK], K > O.

 Now, we look at the following forward SDEs:

 (5.18) dXtK = b(XtK, O K (XtK, t)) dt + u(XtK/, OK(XtK, t)) dWt,
 XyK =_X (5.18) X=X;S

 (5.19) dXt = b(Xt, 0(Xt)) dt + ur(Xt, 0(Xt)) dWt,
 Xo = X.

 By Ito's formula, we have

 EIXI -Xt_t = Ef [2( Xf -Xs , b(Xf , 0K(Xf , S)) - b(Xs, 0(Xs)))

 + tr( [ O (Xf , OK(Xf , s)) - cr(Xs, 0(Xs))]

 X [ (X , 0 K (XK, S)) - o=(XS, 0 (XS))] T)]

 (5.20) < CEf [|IXf -Xsl(lXX -Xsl + I 0K(Xfc, s) - 0(Xf ) )

 + (IXf - Xsl + I OK(Xf, s) - 0(Xf )I) ds

 < Cf [EIXf - XsI2 + exp( -2T)(K - s))] ds

 < C tIXf - Xs82 ds + C exp( - 2T)(K - t)).
 0
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 Applying Gronwall's inequality, we obtain that

 (5.21) E(IXtK - XtI2) < Ce-2-q(K-t), t E [O,K], K> 0.
 Furthermore,

 E(lYtK - Yt12) = E(| OK(Xt/, t) - O(Xt) 2)

 (5.22) < 2E(|OK(X/,t) - 0(Xt/) 2) + 2E( (X (Xt)

 < Ce-2'(K-t) + CE(lXtK _ XtI2) < Ce? (K ,

 t E [O,K], K> 0.

 Finally, let K -> oo, the conclusion follows. C1

 REMARK 5.3. From Section 4, we see that for the one-dimensional case,
 under (H3), the solution 0 of (3.9) satisfies (4.29). Thus, the result of Theorem
 5.2 holds under (H1)-(H3).
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