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PATHWISE STOCHASTIC CONTROL PROBLEMS AND
STOCHASTIC HJB EQUATIONS∗

RAINER BUCKDAHN† AND JIN MA‡

Abstract. In this paper we study a class of pathwise stochastic control problems in which the
optimality is allowed to depend on the paths of exogenous noise (or information). Such a phenomenon
can be illustrated by considering a particular investor who wants to take advantage of certain extra
information but in a completely legal manner. We show that such a control problem may not even
have a “minimizing sequence,” but nevertheless the (Bellman) dynamical programming principle
still holds. We then show that the corresponding Hamilton–Jacobi–Bellman equation is a stochas-
tic partial differential equation, as was predicted by Lion and Souganidis [C. R. Acad. Sci. Paris
Sér. I Math., 327 (1998), pp. 735–741]. Our main device is a Doss–Sussmann-type transformation
introduced in our previous work [Stochastic Process. Appl., 93 (2001), pp. 181–204] and [Stochastic
Process. Appl., 93 (2001), pp. 205–228]. With the help of such a transformation we reduce the path-
wise control problem to a more standard relaxed control problem, from which we are able to verify
that the value function of the pathwise stochastic control problem is the unique stochastic viscosity
solution to this stochastic partial differential equation, in the sense of [Stochastic Process. Appl., 93
(2001), pp. 181–204] and [Stochastic Process. Appl., 93 (2001), pp. 205–228].

Key words. pathwise stochastic control, dynamical programming, Bellman principle, Doss–
Sussmann transformation, stochastic viscosity solutions
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1. Introduction. In this paper we are interested in the so-called pathwise stochas-
tic control problem, originally proposed by P.-L. Lions and Souganidis [13]. A version
of such a problem can be described by the following example of optimazation problem
in finance, in which the underlying risky asset follows a “hidden Markovian” stochastic
volatility model:⎧⎪⎨⎪⎩

dSt = St[μ(t, St)dt + σ̂(Yt)dWt],

dYt = h(t, Yt)dt + σ1(t, Yt)dWt + σ2(t, Yt) ◦ dBt,

S0 = ξ, Y0 = y.

(1.1)

where W and B are two independent Brownian motions, St is the asset value at t,
and σ̂(Y ) is the volatility process. Here the Stratonovic differential ◦dB in (1.1) is
used to simplify our future discussion; it can be replaced by an Itô-type integral if
needed.

We note that the extra noise B in (1.1) can be thought of as some extra in-
formation that cannot be detected in the market in general, but is available to the
particular investor. The problem then is to show how this investor can take advantage
of such extra information to optimize his/her utility, but by taking actions that are
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PATHWISE STOCHASTIC CONTROL PROBLEMS 2225

completely “legal,” in the sense that the investor has to choose the optimal strategy
in the usual class of the admissible portfolios.

Mathematically, we can formulate such an optimization problem for this investor
as follows. First recall that if the short rate of the riskless asset in this market is
{rt, t ≥ 0}, and we assume that the (self-financing) portfolios {πt, t ≥ 0} are all
the {FW

t }-progressively measurable, square-integrable processes, then the dynamics
of the wealth process, {Vt, t ≥ 0}, of the investor satisfies the SDE{

dVt = [rtVt + πt(μ(t, St) − rt)]dt + πtσ̂(Yt)dWt,
V0 = v.

(1.2)

Next, denoting {FB
t }t≥0 to be the filtration generated by B, we define the following

“cost functional” (given the extra information):

J(π) = E

{
H(VT ) +

∫ T

0

�(t,Vt, πt)dt
∣∣∣FB

T

}
.(1.3)

Clearly, the purpose of conditioning on FB
T means that we are seeking optimization

given all the possible extra information (some of them might be anticipating!), while
the restriction that all strategies are {FW

t }-adapted indicates that they are completely
“legal.”

To make (1.2) and (1.3) fit more into a stochastic control framework, we combine

(1.1) and (1.2) as follows. Define X
Δ
=(Y, S,V)T and

b(t,Xt, πt)
Δ
= [h(t, Yt), μ(t, St)St, rtVt + πt(μ(t, St) − rt)]

T ,

σ(t,Xt, πt)
Δ
= [σ1(t, Yt), σ̂(Yt)St, σ̂(Yt)πt]

T ,

θ(t,Xt)
Δ
= [σ2(t, Yt), 0, 0]T .

Then the new “state” process X satisfies the following SDE:{
dXt = b(t,Xt, πt)dt + σ(t,Xt, πt)dWt + θ(t,Xt) ◦ dBt,
Xs = (y, ξ, v)T ,

0 ≤ s ≤ t ≤ T,(1.4)

and cost functional (1.3) can be rewritten as

J(s, (y, ξ, v);π) = Es,(y,ξ,v)

{
H(XT ) +

∫ T

s

�(t,Xt, πt)dt
∣∣∣FB

T

}
.(1.5)

Our pathwise stochastic control problem is then to minimize the cost functional (1.5)
over the set of “admissible controls” A, which is by definition all the {FW

t }-adapted
strategies. The value function of this stochastic control problem is defined by

V (s, (y, ξ, v)) = essinf
π∈A

J(s, (y, ξ, v)).(1.6)

Here the essential infimum should be understood as one with respect to the indexed
family of random variables (see, e.g., [5, 7] or [10, Appendix A]; detailed definition
will be given in section 2).

At this point we would like to point out that the pathwise stochastic control
problem of this kind was one of the motivations for the study of the “stochastic
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2226 RAINER BUCKDAHN AND JIN MA

viscosity solution” for fully nonlinear stochastic PDEs (see Lions and Souganidis [13]).
However, while it has long been predicted that the Hamilton–Jacobi–Bellman (HJB)
equation for such stochastic control problem is a fully nonlinear stochastic PDE, to
date the mathematical content of this problem has not been fully explored. One of the
main purposes of this paper is to try to establish a rigorous framework for the pathwise
stochastic control problem and provide some necessary machinery for future study. It
turns out that many of them are interesting in their own right. Among other things, we
shall prove the Bellman dynamic programming principle in this particular situation,
from which we then prove that the value function is a stochastic viscosity solution
of a stochastic HJB equation, in the sense of our previous works (see Buckdahn and
Ma [2, 3]). It should be noted that the special measurability issue involved in the
“legality” of our admissible controls has not been studied before.

We should note that the pathwise control problem defined above is quite different
from a standard stochastic control problem, or even those with partial observations
(see, e.g., Bensoussan [1]). The most essential difference is that the cost functional is
now a random field instead of a deterministic function, and therefore so is the value
function. Consequently, the usual infimum (or supremum) involved in the optimiza-
tion problem should naturally be replaced by the “essential infimum” (or “essential
supremum”). Such a seemingly “routine” change, together with the “legality” re-
quirements for the admissible controls, turns out to be the source of many substantial
difficulties, both from a mathematical point of view and from the control theoretical
point of view. In fact, in the appendix we shall provide an example which shows that in
general there does not exist a minimizing sequence for our pathwise stochastic control
problem. The lack of such a sequence seems to be fatal for the dynamic program-
ming method. To overcome this difficulty we introduce an intermediate stochastic
control problem (called the “wider-sense” control problem in what follows), in which
the stochastic integral against the Brownian motion B is eliminated. We show that
this wider-sense control problem is in some sense equivalent to a traditional stochastic
control problem, and we can use it as a bridge to reach our goal.

Another immediate problem is the stochastic HJB equation itself, mainly in vari-
ous forms of measurability issues including the definition of the stochastic integration
(one should appreciate the fact that an HJB equation is always “backward”!). One of
the main reasons that we insist on using the Stratonovic stochastic integral with regard
to the Brownian motion B is that it is “insensitive” to the direction of integration, as
we can show. Finally, we would like to remark that the notion of stochastic viscosity
solutions has been studied by Lions and Souganidis [12, 13, 14, 15] and Buckdahn and
Ma [2, 3, 4]. The definition of the stochastic viscosity solution in this paper is consis-
tent with our previous works, with slight modifications to suit the present situation.
We note that such a modification will not alter the uniqueness result from [3].

The rest of the paper is organized as follows. In section 2 we formulate the problem
more formally and provide some necessary preliminaries. In section 3 we introduce
some wider-sense control problems and establish some properties and relationship
among them. Section 4 is devoted to a proof of the Bellman principle. Finally, in
section 5 we prove that the value function of the corresponding wider-sense control
problem is the viscosity solution to a randomized HJB equations, and in section 6 we
extend the result to the original problem.

2. Problem formulation and preliminaries. In this section we give a de-
tailed formulation of our pathwise control problem. Let W = (W 1, . . . ,W d) and
B = (B1, . . . , Bm) be two independent, standard Brownian motions defined on some
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PATHWISE STOCHASTIC CONTROL PROBLEMS 2227

complete probability space (Ω,F , P ), and let T > 0 be a given finite time horizon. We
denote FW = {FW

t }t∈[0,T ] and FB = {FB
t }t∈[0,T ] to be the two filtrations generated

by W and B, respectively, and augmented by the P -null sets in F so that they satisfy
the usual hypotheses (see, e.g., [16]). The following two filtrations will be frequently
used in the future:{

F = {Ft}t∈[0,T ]
Δ
={FW

t ∨ FB
t }t∈[0,T ] = FW ∨ FB ,

G = {Gt}t∈[0,T ]
Δ
={FW

t ∨ FB
T }t∈[0,T ] = FW ∨ FB

T .
(2.1)

Here, for two σ-fields F and G, F ∨ G denotes σ(F ∪ G) as usual. The meaning for
those involving filtrations is obvious.

Throughout this paper we let E be a generic Euclidean space, with inner prod-
uct 〈 ·, · 〉 and norm | · |. We denote Ck(E; E1) to be the usual space of E1-valued,
k-times continuously differentiable functions defined on E. Furthermore, we denote
Ck

b (E; E1) ⊂ Ck(E; E1) to be all functions that have uniformly bounded partial deriva-
tives and Ck

p (E; E1) ⊂ Ck(E; E1) to be all functions whose partial derivatives are of

at most polynomial growth. The spaces Ck,�([0, T ] × E; E1), Ck,�
b ([0, T ] × E; E1),

Ck,�
p ([0, T ] × E; E1) are defined similarly. Finally, if E1 = R, we shall omit E1 in the

notation above.
Now let B be a generic Banach space and H = {Ht}t∈[0,T ] a generic Filtration on

(Ω,F , P ). We shall denote the following:
• For any 1 ≤ p < ∞, Lp(H, [0, T ]; B) denotes all B-valued, H-progressively

measurable processes ψ, such that E
∫ T

0
‖ψt‖pBdt < ∞. In particular, we de-

note L0(H, [0, T ]; B) to be all B-valued, H-progressively measurable processes
and L∞(H, [0, T ]; B) to be a subset of L0(H, [0, T ]; B) in which all processes
are uniformly bounded.

• For any 1 ≤ p < ∞, Lp
loc(H, [0, T ] × E; E1) denotes the space of all E1-

valued random fields η defined on [0, T ] × Ω × E, such that for fixed x ∈
E, the mapping (t, ω) → η(t, ω, x) is H-progressively measurable, and that

E
∫ T

0
|η(t, ·, x)|pdt < ∞. In particular, we denote Lp

loc(H, [0, T ];Ck(E,E1)) to

be all Ck(E,E1)-valued, H-progressively measurable random fields η such that
η and all the partial derivatives Dxiη are elements of Lp

loc(H, [0, T ] × E; E1).

• Ck,�(H, [0, T ] × E; E1) (resp., Ck,�
b (H, [0, T ] × E; E1), C

k,�
p (H, [0, T ] × E; E1))

denotes the space of all E1-valued random fields ϕ, defined on [0, T ] × Ω × E

such that for P -a.e. ω ∈ Ω, ϕ(·, ω, ·) ∈ Ck,�([0, T ]×E; E1) (resp., Ck,�
b ([0, T ]×

E; E1), C
k,�
p ([0, T ] × E; E1)), and that for fixed x ∈ E, the process ϕ(·, ·, x) is

H-progressively measurable.
• M0,T (H) denotes all the H-stopping times τ such that 0 ≤ τ ≤ T , P -a.s.,

and M0,∞(H) denotes all H-stopping times that are almost surely finite.
To formulate our control problem let us first specify the admissible control sets.

Let U be a compact metric space. We denote A to be the set of all FW -progressively
measurable processes α : [0, T ] × Ω → U , and denote Ã to be the set of all G-
progressively measurable processes β : [0, T ]×Ω → U . We shall refer to the elements

in A as the admissible controls and those in Ã as the admissible controls in a wider
sense.

For (t, x) ∈ [0, T ]×R
n and α ∈ A, let us consider the following controlled stochas-

tic system: for 0 ≤ s ≤ t ≤ T ,

Xt = x +

∫ t

s

b (r,Xr, αr) dr +

∫ t

s

σ (r,Xr, αr) dWr +

∫ t

s

θ (r,Xr) ◦ dBr.(2.2)

D
ow

nl
oa

de
d 

01
/2

0/
16

 to
 1

28
.1

25
.2

34
.9

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



2228 RAINER BUCKDAHN AND JIN MA

The solution of SDE (2.2) will be denoted by Xα,s,x. The superscripts (α,s,x) will
often be dropped for notational simplicity if the context is clear.

The cost functional of the pathwise control problems is defined by

J(α; s, x)
Δ
=E

{
H(Xα,s,x

T ) +

∫ T

s

�(t,Xα,s,x
t , αt)dt

∣∣∣FB
T

}
,(2.3)

where (s, x) ∈ [0, T ] × R
n, and α ∈ A, and the value function is defined by

V (s, x)
Δ
= essinf

α∈A
J(α, s, x).(2.4)

We note that the definition of essential infimum for a family of nonnegative random
variables can be found in [7] and [10, Appendix A]; we recast it here for ready reference.

Definition 2.1. Let X be a nonempty family of nonnegative random variables
defined on a probability space (Ω,F , P ). The essential infimum of X , denoted by
essinf X , is a random variable X∗ satisfying the folowing:

(i) for all X ∈ X , X∗ ≤ X, P -a.s.; and
(ii) if Y is a random variable such that Y ≤ X for all X ∈ X , then Y ≤ X∗,

P -a.s.
Throughout this paper we shall make use of the following standing assumptions:

(H1) The functions b : R
n × U → R

n, σ : R
n × U → R

n×d are bounded, uniformly
continuous, and uniformly Lipschitz with respect to x ∈ R

n, uniformly in
u ∈ U .

(H2) The function θ belongs to C4
�,b(R

n; Rn×m).
(H3) The function H : R

n → R is uniformly bounded and continuous.
The Lipschitz constants in (H1)–(H3) will be denoted by a generic one K > 0.
We would like to remark here that in (2.4) the value function V (·, ·) is obtained by

taking an “essinf” instead of an “inf” as in the usual stochastic control problem. Such
a change on the one hand is necessary due to the randomness of the cost functionals, as
it is often seen in optimization problems involving random objectives (see, e.g., [10]);
it does, on the other hand, generate a great deal of subtleties to the otherwise standard
control problem. In fact, in the Appendix we shall provide a counterexample which
shows that with such an “essinf” one does not even have a “minimizing sequence”
to the control problem. This gives rise to some substantial difficulties in proving the
dynamic programming principle, as well as in deriving the stochastic HJB equations.
We will show how to get around of this difficulty by studying the related “wider-sense
control problems” in section 4.

We should also note that since we do not require any “nondegeneracy” condition
on the coefficient σ (or σσT ) in this framework, we can apply a standard treatment
to reduce the system to a time-homogeneous one and to eliminate the running cost �
in (2.3) by adding the extra states

X0
t = t and Xn+1

t =

∫ t

s

�(r,Xr, αr)dr.

For example, in this case the cost functional can be written as

J(α; s, (s, x, 0)) = E{H̃(X
α,s,(s,x,0)
T )

∣∣FB
T },

where H̃(x0, x, xn+1) = H(x) + xn+1. Therefore, in the rest of the paper we shall
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PATHWISE STOCHASTIC CONTROL PROBLEMS 2229

consider the following simplified version of (2.2), (2.3), and (2.4):

Xt = x +

∫ t

s

b (Xr, αr) dr +

∫ t

s

σ (Xr, αr) dWr +

∫ t

s

θ (Xr) ◦ dBr,(2.5)

J(α; s, x)
Δ
=E

{
H(Xα,s,x

T )
∣∣∣FB

T

}
,(2.6)

and

V (s, x)
Δ
= essinf

α∈A
J(α, s, x).(2.7)

To conclude this section we remark that under (H1) and (H2), for any admissible

control α ∈ A the SDE (2.2) has a unique (F-adapted) solution. But if α ∈ Ã, the
situation would be much more complicated, although it could be made sensible if we
allow the integral

∫
θ(Xr) ◦ dBr to be the anticipating Stratonovic integral. But we

shall avoid such complexity by introducing the wider-sense problems. Finally, we note
that the value function defined by (2.7) is an FB

T -measurable random field. We shall
prove that it is indeed FB

s,T -measurable for any s ∈ [0, T ], and hence the stochastic
HJB equation, which is “backwardly” defined (given the terminal condition at time
T ), would simply be a time-reversed stochastic PDE in the usual sense.

3. A Doss–Sussmann-type transformation. In this section we introduce the
first step towards our wider-sense control problem. In light of the idea of “stochastic
characteristics” (cf. Lions and Souganidis [12, 13, 14, 15]) and/or “Doss–Sussmann”
transformation (cf. Buckdahn and Ma [2, 3, 4]), we would like to remove the stochastic
integral “

∫
θ(X) ◦ dB” so it becomes less “problematic.” We note that such a step is

essential in the study of stochastic viscosity solutions as well.
We proceed as follows. First consider the following SDE with parameters: for any

0 ≤ s ≤ T , and z ∈ R
n,

ηst (z) = z +

∫ t

s

θ(ηsr(z)) ◦ dBr s ≤ t ≤ T.(3.1)

We note that this SDE can be converted easily into the following “Itô form”:

ηst (z) = z +

∫ t

s

θ(ηsr(z))dBr +
1

2

∫ t

s

[Dxθ ⊗ θ](ηsr(z))dr, s ≤ t ≤ T.(3.2)

Here [Dxθ ⊗ θ] denotes the product of the tensor Dxθ and the matrix θ, defined by

[Dxθ ⊗ θ]i
�
=

m∑
j=1

n∑
k=1

∂θij

∂xk
θkj = tr {[Dxθ

i]θT }, i = 1, . . . , n,(3.3)

where θi is the ith row vector of the matrix θ. We note that in this paper the
dimensions of the Brownian motion are not essential. Thus, to simplify notation, in
what follows we shall assume m = 1. Thus the tensor product is simplified to the
usual matrix product: Dθ ⊗ θ = [Dθ]θ.

Next, we note that the stochastic flow z → ηst (z) is a diffeomorphism for all
s ≤ t ≤ T , P -a.s., and

Dzη
s
t (z) = I +

∫ t

s

Dzη
s
r(z)Dθ(ηsr(z)) ◦ dBr, s ≤ t ≤ T.(3.4)
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2230 RAINER BUCKDAHN AND JIN MA

Consequently, [Dzη
s
t ]

−1(·) exists; and it can be shown (see, e.g., [2]) that the inverse
flow of ηst (·), denoted by ζst (·), exists and satisfies the first order stochastic PDE:

ζst (z) = z −
∫ t

s

Dzζ
s
r (z)θ(z) ◦ dBr, 0 ≤ s ≤ t ≤ T, z ∈ R

n,(3.5)

and it holds that ηst (ζ
s
t (z)) = ζst (η

s
t (z)) = z for 0 ≤ s ≤ t ≤ T , z ∈ R

n, P -a.s. Let us
now define the following random fields: for (t, z, u) ∈ [0, T ] × R

n × U ,

σ̃(t, z, u)
�
= [Dzη

0
t (z)]

−1σ(η0
t (z), u);(3.6)

b̃(t, z, u)
�
= [Dzη

0
t (z)]

−1

{
b(η0

t (z), u)(3.7)

−1

2
tr {[Dzη

0
t (z)]

−1σσT (η0
t (z), u)[(Dzη

0
t (z))

T ]−1[D2
zzη

0
t (z)]}

}
.

Clearly, b̃ and σ̃ are F-progressively measurable. The following lemma is essential.
Lemma 3.1. Assume (H1) and (H2). Then for any 0 < γ < 1

12 , there exist a
sequence of FB-stopping times 0 ≤ τ1 ≤ τ2 ≤ · · · ≤ τ� ≤ · · · satisfying P{τ� = T} ↑ 1,
as � → ∞, and some constant C > 0, depending only on the coefficients b, σ, and
θ, such that for all � ≥ 1 and t ∈ [0, T ], z, z′ ∈ R

n, and u ∈ U , it holds P -a.s. on
{τ� = T} that

|σ̃(t, z, u)| ≤ C�(1 + |z|2)γ ≤ C�(1 + |z|);
|̃b(t, z, u)| ≤ C�4(1 + |z|2)4γ ≤ C�4(1 + |z|);

|σ̃(t, z, u) − σ̃(t, z′, u)| ≤ C�3(1 + |z|2 + |z′|2)3γ |z − z′|
≤ C�3(1 + |z| + |z′|)|z − z′|;

|̃b(t, z, u) − b̃(t, z′, u)| ≤ C�6(1 + |z|2 + |z′|2)6γ |z − z′|
≤ C�6(1 + |z| + |z′|)|z − z′|.

Proof. First, let E be any Euclidean space, and let f ∈ L2
loc(G; [0, T ], C1(Rn; E))

(that is, f(t, ω, ·) ∈ C1(Rn; E), and all components of f and Dzf belong to the space
L2(G; [0, T ]×R

n; E)). For any constant γ > 0 and p ≥ 2 ∨ n, we can apply the Sobolev
imbedding theorem (cf. section 7.10 of [9]), the Burkholder–Gundy–Davis inequality,
and the Hölder inequality to conclude that there exists a constant Cp,γ > 0 (which
we allow to vary from line to line) such that, for all s ∈ [0, T ],

E

⎧⎨⎩ sup
t∈[s,T ]
z∈Rn

[
(1 + |z|2)−γ

∣∣∣ ∫ t

s

f(r, z)dBr

∣∣∣]2
⎫⎬⎭

≤ Cp,γE

{
sup

t∈[s,T ]

∫
Rn

(1 + |z|2)−pγ

{∣∣∣ ∫ t

s

f(r, z)dBr

∣∣∣p +
∣∣∣ ∫ t

s

Dzf(r, z)dBr

∣∣∣p} dz

} 2
p

≤ Cp,γ

{∫
Rn

(1 + |z|2)−pγ

{
E

[
sup

t∈[s,T ]

∣∣∣ ∫ t

s

f(r, z)dBr

∣∣∣p]

+ E

[
sup

t∈[s,T ]

∣∣∣ ∫ t

s

Dzf(r, z)dBr

∣∣∣p]} dz

} 2
p

≤ Cp,γ

⎧⎨⎩
∫

Rn

(1+|z|2)−pγ

⎧⎨⎩E

[∫ T

s

|f(r, z)|2 dr
] p

2

+E

[∫ T

s

|Dzf(r, z)|2 dr
] p

2

⎫⎬⎭ dz

⎫⎬⎭
2
p

.

(3.8)
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PATHWISE STOCHASTIC CONTROL PROBLEMS 2231

Here we note that, as we pointed out before, if E = R
n×m, then Dzf should be under-

stood as a “tensor.” But such a notational complexity does not cause any substantial
difficulty; therefore to simply presentation in the rest of the proof we consider only
the case n = m = 1.

Now, differentiating (3.1) twice we have, for s ≤ t ≤ T ,

Dzη
s
t (z) = 1 +

∫ t

s

θ′(ηsr(z))Dzη
s
r(z) ◦ dBr,

D2
zη

s
t (z) =

∫ t

s

{D2
zη

s
r(z)θ

′(ηsr(z)) + θ′′(ηsr(z))[Dzη
s
t (z)]

2} ◦ dBr.

Here and in what follows Dk
z denotes the kth derivative of the flow z → ηst (z). Thus,

noting assumption (H2) it is readily seen that for any q ≥ 2,

E

{
sup

t∈[s,T ]

(
|Dzη

s
t (z)|q + |D2

zη
s
t (z)|q

)}
≤ C̃q ∀z ∈ R

n.(3.9)

Setting f(s, ·, z) = θ′(ηst (z))Dzη
s
t (z) in (3.8) and using (3.9) we obtain that

E

⎧⎨⎩ sup
t∈[s,T ]
z∈Rn

[(
1 + |z|2

)−γ
∣∣∣ ∫ t

s

θ′(ηst (z))Dzη
s
t (z)dBr

∣∣∣]2
⎫⎬⎭

≤ Cp,γ

⎧⎨⎩
∫

Rn

(1 + |z|2)−pγ

[
E

(∫ T

s

∣∣∣θ′(ηsr(z))∣∣∣2dr
)p]1/2

dz

⎫⎬⎭
2/p

(3.10)

+Cp,γ

⎧⎨⎩
∫

Rn

(1 + |z|2)−pγ

[
E

(∫ T

s

∣∣∣θ′′(ηsr(z))∣∣∣2dr
)p]1/2

dz

⎫⎬⎭
2/p

≤ Cp,γ

{∫
Rn

(1 + |z|2)−pγdz

}2/p

≤ Cp,γ ,

provided 2pγ > 1. Moreover, from (H2) we also have

E

⎧⎨⎩ sup
t∈[s,T ]
z∈Rn

[(
1 + |z|2

)−γ
∣∣∣ ∫ t

s

[θ′θ]′(ηsr(z))Dzη
s
r(z)dr

∣∣∣]2
⎫⎬⎭ ≤ Cp,γ .(3.11)

This, together with (3.10), gives that

E

⎧⎨⎩ sup
t∈[s,T ]
z∈Rn

[
(1 + |z|2)−γ

∣∣∣ ∫ t

s

θ′(ηsr(z))Dzη
s
r(z) ◦ dBr

∣∣∣]2
⎫⎬⎭ ≤ Cp,γ ,(3.12)

and consequently

E

⎧⎨⎩ sup
t∈[s,T ]
z∈Rn

[(
1 + |z|2

)−γ |Dzη
s
t (z)|

]2⎫⎬⎭ ≤ Cp,γ .(3.13)
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2232 RAINER BUCKDAHN AND JIN MA

Repeating the similar argument one also shows that, for all γ > 0 and 2pγ > 1, there
is some constant Cp,γ > 0 such that

E

⎧⎨⎩ sup
s∈[t,T ]
z∈Rn

[
(1 + |z|2)−γ

{
|[Dzη

s
t ]

−1(z)| + |D2
zη

s
t (z)| + |D3

zη
s
t (z)|

}]2⎫⎬⎭ ≤ Cp,γ .(3.14)

We now fix 0 < γ < 1/12, and define a sequence of F-stopping times: for � ≥ 1,

τ�
�
= inf

{
s ≥ 0 : sup

z∈Rn

(1 + |z|2)−γ

[
|[Dzη

0
s ]

−1(z)| +
3∑

i=1

|Di
zη

0
s(z)|

]
> �

}
∧ T.(3.15)

Clearly, by virtue of (3.13) and (3.14), this sequence of stopping times {τ�} satisfies
the following properties:

(i) 0 ≤ τ1 ≤ τ2 ≤ · · · ;
(ii) {τ� = T} ↑ Ω, P-a.s., as � → +∞;
(iii) for each s ∈ [t, τ�), z ∈ R

n, and � ≥ 1, it holds P -a.s. that

|[Dzη
0
s ]

−1(z)| + |Dzη
0
s(z)| + |D2

zη
0
s(z)| + |D3

zη
0
s(z)| ≤ �(1 + |z|2)γ .(3.16)

We can now easily derive the desired properties of σ̃ and b̃ by combining the
definitions (3.6), (3.7) and the estimate (3.16), proving the lemma.

A direct consequence of Lemma 3.1 is that we can now consider the following
“transformed” control system of (2.2). Note that W and B are independent, and

W is a G-Brownian motion as well. Also, since both b̃ and σ̃ are G-progressively
measurable random fields, for any β in the wider-sense admissible control set Ã the
following SDE is well-defined:

F s,x,β
t = x +

∫ t

s

b̃(r, F s,x,β
r , βr)dr +

∫ t

s

σ̃(r, F s,x,β
r , βr)dWr, t ∈ [s, T ].(3.17)

The following result validates the name “Doss–Sussmann transformation.”
Lemma 3.2. Assume (H1) and (H2). Let {ηst (z) : (t, z) ∈ [s, T ] × R

n} be the
stochastic flow given by (3.1) or (3.2), {Xs,x,α

t : t ∈ [s, T ]} the solution of the SDE

(2.5), and {F s,x,β
t : t ∈ [s, T ]} the solution of (3.17). Then the following hold:

(i) For each α ∈ A, the solution F s,x,α is F-progressively measurable. Moreover,
it holds that

ηst (F
s,x,α
t ) = X

s,η0
s(x),α

t , t ∈ [s, T ], P -a.s.,

or, equivalently, ηst (F
s,ζ0

s (x),α
t ) = Xs,x,α

t , t ∈ [s, T ], P -a.s.

(ii) For each β ∈ Ã, we define Xs,x,β
t

�
= ηst (F

s,ζ0
s (x),β

t ), t ∈ [s, T ]. Then there
exists a sequence of F-stopping times {τ�}�≥1 with P{τ� = T} ↑ 1, such that

sup
β∈Ã

E

{
sup

t∈[s,τ�]

(∣∣∣Xs,x,β
t

∣∣∣p +
∣∣∣Xs,η0

s(x),β
t

∣∣∣p)} < +∞ ∀ p ≥ 1.

Proof. Again, we shall assume n = 1 to simplify the presentation. The higher-
dimensional case can be treated in exactly the same way without substantial
difficulties.
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PATHWISE STOCHASTIC CONTROL PROBLEMS 2233

(i) Let α ∈ A, and denote Fα
t = F s,x,α

t and ηt = η0
t , t ≥ s, for simplicity. Define

Xα
t = ηt(F

α
t ), t ≥ s. Applying the Itô–Ventzell formula (cf., e.g., [11]) in a differential

form we get, for t ∈ [s, T ],

dXα
t = dηt(F

α
t ) + Dzηt(F

α
t )dFα

t +
1

2
D2

zηt(F
α
t )d[Fα]t

= θ(ηt(F
α
t )) ◦ dBt + Dzηt(F

α
t )σ̃(t, Fα

t , αt)dWt + Dzηt(F
α
t )̃b(t, Fα

t , αt)dt

+
1

2
D2

zηt(F
α
t )|σ̃(t, Fα, αt)|2dt

= θ(ηt(F
α
t )) ◦ dBt + σ(ηt(F

α
t ), αt)dWt

+

{
b(ηt(F

α
t ), αt) −

1

2

[∣∣∣[Dzηt(F
α
t )]−1

∣∣∣2|σ(ηt(F
α
t ), αt)|2D2

zηt(F
α
t )

]}
dt

+
1

2

∣∣∣[Dzηt(F
α
t )]−1

∣∣∣2|σ(ηt(F
α
t ), αt)|2D2

zηt(F
α
s )dt

= θ(Xα
t ) ◦ dBt + σ(Xα

t , αt)dWt + b(Xα
t , αt)dt.

Furthermore, at t = s, one has Xα
s = η0

s(F
s,x,α
s ) = η0

s(x). Thus by uniqueness of the

SDE one must have Xα ≡ Xs,η0
s(z),α.

(ii) We now let β ∈ Ã, and define Xβ
s = ηt(F

β
t ), t ∈ [s, T ]. Note that for all

(t, z) ∈ [s, T ] × R
n we can write

ηt(z) = ηt(0) +

∫ 1

0

Dzηt(θz)dθ.

One can easily show, thanks to Lemma 3.1, that for all γ > 0, there exists an increasing
sequence of F-stopping times (τ�)�≥1 with P{τ� = T} ↑ 1, as � → ∞, such that all the
estimates of Lemma 3.1 are satisfied, and it holds furthermore that

|ηs (z) |2 ≤ �
(
1 + |z|2+γ

)
, s ∈ [t, τ�], z ∈ R

n, P -a.s.

Consequently, we see that the unique G-adapted solution F β of (3.17) must satisfy

E

{
sup

s∈[t,τ�]

|F β
s |p

}
< +∞ ∀ p > 1.

Finally, it is readily seen that Xβ
t = ηt(F

β
t ), t ∈ [s, T ], is a G-adapted continuous

process and it satisfies that E{sups∈[t,τ�]
|Xβ

s |p} < +∞ for all p > 1. The other
estimate is similar. The proof is complete.

4. Wider-sense control problems. In this section we introduce two types of
wider-sense stochastic control problems which will help us attack the original pathwise
control problem. We begin by considering the state equation after the Doss–Sussmann
transformation:

F β
t = x +

∫ t

s

σ̃(r, F β
r , βr)dWr +

∫ t

s

b̃(r, F β
r , βr)dr, s ∈ [t, T ],(4.1)

where β ∈ Ã. Lemma 3.1 guarantees the well-posedness of this SDE, and Lemma 3.2
enables us to rewrite the cost functional (2.6) as

J(s, x;α) = E
{
H (Xs,x,α

T )| FB
T

}
= E

{
H (η0

T (F
s,ζs

0(x),α
T ))

∣∣∣FB
T

}
, P -a.s.,

D
ow

nl
oa

de
d 

01
/2

0/
16

 to
 1

28
.1

25
.2

34
.9

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



2234 RAINER BUCKDAHN AND JIN MA

for all α ∈ A. Let us now define the following two new “cost functionals”:

J̃ (s, x, β) = E{H(η0
T (F s,x,β

T ))|FB
T }, β ∈ Ã,(4.2)

and

Ĵ (s, x, β) = E{J̃(s, x, β)} = E{H(η0
T (F s,x,β

T ))}, β ∈ Ã.(4.3)

Then Lemma 3.2(i) tells us that

J̃(s, x, α) = J(s, η0
s(x), α) ∀α ∈ A.(4.4)

In other words J̃ is in some sense an “extension” of J to the wider-sense admissible
control set Ã. The following two “wider-sense” stochastic control problems are the
building blocks of our method.

Wider-sense control problem I (WSCP-I).

• State: F s,x,β , β ∈ Ã.
• Cost functional: J̃(s, x;β), β ∈ Ã.
• Value function:

Ṽ (t, x) = essinf
β∈Ã

J̃ (t, x, β) .(4.5)

Remark 4.1. (i) The main purpose of introducing WSCP-I is to remove the “prob-
lematic” term involving the Brownian motion B from the state equation. However,
a closer look at the cost functional and the value function should lead to the under-
standing that it is still a far cry from a standard stochastic control problem. For
example, the cost functional not only still contains a conditional expectation, the
terminal cost function is actually random (via the flow η0

· ). As a consequence the

value function Ṽ (s, x) is still a random field(!), and thus the “pathwise” nature of the
problem remains.

(ii) Although the value function in WSCP-I still involves an “essinf,” this time it
is much more benign than the original one. The main difference is that in this case
there do exist minimizing sequences to this problem.

We make a further modification to completely eliminate the “pathwise” nature of
the control problem.

Wider-sense control problem II (WSCP-II).

• State: F s,x,β , β ∈ Ã.
• Cost functional: Ĵ(s, x;β), β ∈ Ã.
• Value function:

V̂ (s, x) = inf
β∈Ã

Ĵ (s, x, β) .(4.6)

It is readily seen that WSCP-II looks almost like a standard stochastic control
problem, except for the form of the terminal cost function (it is still random via the
flow η0). But it is much easier to handle than the previous two control problems.
In the rest of this section we analyze the relationship among the two wider-sense
stochastic control problems and the original pathwise control problem.

We begin by observing some more or less obvious facts. First, it is clear that for
any β ∈ Ã, it holds that

E{Ṽ (s, x)} = E

{
essinf
β∈Ã

J̃(s, x;β)

}
≤ E{J̃(s, x;β)}.
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PATHWISE STOCHASTIC CONTROL PROBLEMS 2235

Thus we must have

E{Ṽ (s, x)} ≤ V̂ (s, x), (s, x) ∈ [0, T ] × R
n.(4.7)

Next, from (4.4) we see that for all α ∈ A and (s, x) ∈ [0, T ] × R
n, it holds that

V (s, η0
s(x)) = essinf

α∈A
J(s, η0

s(x);α) = essinf
α∈A

J̃(s, x;α) ≥ Ṽ (s, x).(4.8)

We now give the main result of this section. Among other things, we show that
the equalities in (4.7) and (4.8) both hold, and we construct a minimizing sequence
for WSCP-I, which is essential for our future discussion.

Theorem 4.2. Assume (H1)–(H3). Then the following statements hold:

(i) Ṽ (s, x) = V (s, η0
s(x)), for all (s, x) ∈ [0, T ] × R

n, P -a.s.

(ii) There exists some sequence {βk}k≥1 ⊂ Ã such that

Ṽ (s, x) = lim
k→∞

↓ J̃(s, x;βk), P -a.s.

Here and in what follows “ lim ↓” stands for the monotone decreasing limit.
(iii) E{Ṽ (s, x)} = V̂ (s, x) for all (s, x) ∈ [0, T ] × R

n.

Proof. (i) From (4.8) we know that Ṽ (s, x) ≤ V (s, η0
s(x)). We need only show the

reverse inequality. To this end, consider a subset Ã0 ⊂ Ã that consists of all elements
of the form

βt(ω) =
∑

1≤i,j≤N

ui,j1[ti−1,ti)×(Ai,j∩Bi,j)(t, ω), 0 ≤ s ≤ t,

where N ≥ 1, s = t0 < t1 < · · · < tN = T , ui,j ∈ U , Ai,j ∈ FW
ti−1

, Bi,j ∈ FB
T with

Bi,j ∩Bi,k = ∅ for j �= k, and ∪N
j=1Bi,j = Ω.

It is not hard to check that Ã0 is a dense subset of Ã in the space L2([s, T ]×Ω;U).

That is, for any β ∈ Ã one can find a sequence (β�)�≥1 ⊂ Ã0 such that

E

{∫ T

s

|βr − β�
r|2dr

}
→ 0 as � → ∞.

It follows that {F s,x,β�}�≥1 converges to F s,x,β in L0(Ω;C([0, T ]; Rn)) as � → ∞,

thanks to Lemma 3.1, and that J̃(s, x;β�) → J̃(s, x, β), in probability, as � → ∞.

Consequently, one has essinf� J̃(s, x;β�) ≤ J̃(s, x;β), P -a.s., and thus it suffices to
show that

V (s, η0
s(x)) ≤ J̃(s, x;β) ∀ β ∈ Ã0.(4.9)

To this end, we fix arbitrarily a β ∈ Ã0. Denote by Λ the set of all finite sequences
λ = {λi}1≤i≤N , where λi’s take values in the finite set {1, 2, . . . , N}. For each λ ∈ Λ,
we denote Bλ = ∩N

i=1Bi,λi , and

αλ
t (ω) =

∑
1≤i≤N

1[ti−1,ti)(t)ui,λi
1Ai,λi

(ω), (t, ω) ∈ [s, T ] × Ω.

Then it is readily seen that all Bλ’s are FB
T -measurable sets, and all αλ’s are elements

of the original admissible control set A(!).
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2236 RAINER BUCKDAHN AND JIN MA

Now let us rewrite β as follows:

βt(ω) =
∑
λ∈Λ

αλ
t (ω)1Bλ

(ω), (t, ω) ∈ [s, T ] × Ω.

Observe that
∑

λ∈Λ Bλ = Ω, and the SDE (4.1) does not contain a stochastic integral
with respect to the Brownian motion B. Using the total probability formula and the
uniqueness of solution to the SDE, one can show that the following decomposition
holds:

F s,x,β
t =

∑
λ∈Λ

F s,x,αλ

t 1Bλ
, t ∈ [s, T ], P -a.s.

Similarly, applying the same arguments and noting Lemma 3.2(i) we also have

η0
t (F

s,x,β
t ) = η0

t

(∑
λ∈Λ

F s,x,αλ

t 1Bλ

)
=
∑
λ∈Λ

η0
t (F

s,x,αλ

t )1Bλ
=
∑
λ∈Λ

X
s,η0(x),αλ

t 1Bλ

for all t ∈ [s, T ]. Therefore, we have

J̃(s, x, β) = E
{
H
(
η0
T (F s,x,β

T )
)∣∣∣FB

T

}
=
∑
λ∈Λ

E
{
H(X

s,η0
s(x),αλ

T )
∣∣∣FB

T

}
1Bλ

=
∑
λ∈Λ

J(s, η0(x), αλ)1Bλ
≥ V (s, η0(x)),

proving (4.9), whence (i).

(ii) Let (s, x) ∈ [0, T ] × R
n be fixed. We first choose a sequence {β̃k}k≥1 ⊂ Ã

such that

Ṽ (s, x) = essinf
k≥1

J̃(s, x; β̃k).

To do this, we borrow the idea of [8]. For any ε > 0, define

δ = inf
{βk}⊂Ã

P

{
Ṽ (s, x) ≤ essinf

k≥1
J̃(s, x;βk) − ε

}
.(4.10)

(Note that the infimum above is taken over all the sequences {βk} in Ã!) We claim
the following two facts:

(a) the infimum in (4.10) is always attained, and
(b) δ = 0.
To prove (a), we first use the definition of “inf” to find, for n = 1, 2, . . . , sequences

{βn,k}k≥1, n = 1, 2, . . . , such that

δ ≤ P

{
Ṽ (s, x) ≤ essinf

k≥1
J̃(s, x;βn,k) − ε

}
< δ +

1

n
.

Let us consider the sequence {βn,k}n≥1,k≥1, and denote

An
ε

�
=

{
ω : Ṽ (s, x) ≤ essinf

k≥1
J̃(s, x;βn,k) − ε

}
;

Āε
�
=

{
ω : Ṽ (s, x) ≤ essinf

n≥1,k≥1
J̃(s, x;βn,k) − ε

}
.
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PATHWISE STOCHASTIC CONTROL PROBLEMS 2237

Then it is easily seen that Āε ⊆ An
ε for all n. This, together with the definition of δ,

leads to

δ ≤ P{Āε} ≤ P{An
ε } = P

{
Ṽ (s, x) ≤ essinf

k≥1
J̃(s, x;βn,k) − ε

}
< δ +

1

n

for all n ≥ 1. Letting n → ∞ we obtain that

δ = P

{
Ṽ (s, x) ≤ essinf

n≥1,k≥1
J̃(s, x;βn,k) − ε

}
.

This proves (a).
(b) By a rearrangement of indices let us denote the minimizer in part (a) by

{β̃k}k≥1. For any ε > 0 and β ∈ Ã we denote

Āε
�
=

{
Ṽ (s, x) ≤ essinf

k≥1
J̃(s, x; β̃k) − ε

}
, Aε(β)

�
=
{
Ṽ (s, x) ≤ J̃(s, x;β) − ε

}
.

Suppose that P (Āε) = δ > 0. Then we claim that for each ε > 0 there exists a β̄ ∈ Ã
such that

P{Āε \A ε
2
(β̄)} > 0.(4.11)

Indeed, if for all β ∈ Ã one has P{Āε \A ε
2
(β)} = 0, then for all β ∈ Ã one must have

Ṽ (s, x) +
ε

2
1Āε

≤ J̃(s, x;β), P -a.s.

But then it follows that

Ṽ (s, x) +
ε

2
1Āε

≤ essinf
β∈Ã

J̃(s, x;β) = Ṽ (s, x), P -a.s.,

contradicting P (Āε) = δ > 0. Hence (4.11) must hold, and consequently

P

{
Ṽ (s, x) ≤ J̃(s, x; β̄) ∧ essinf

k≥1
J̃(s, x; β̃k) − ε

}
≤ P{Āe ∩Aε(β̄)}(4.12)

≤ P{Āe ∩A ε
2
(β̄)} = P{Āε} − P{Āε \A ε

2
(β̄)} < δ.

Let us now modify the sequence {β̃k} slightly: define

β̄κ �
=

{
β̃k on {J̃(s, x; β̃k) ≤ J̃(s, x; β̄)},
β̄ on {J̃(s, x; β̃k) > J̃(s, x; β̄)},

k ≥ 1.(4.13)

Since J(s, x, β̄) and J(s, x, β̃k)’s are all FB
T -measurable, {β̄k}k≥1 ⊂ Ã. Furthermore,

by definition it is readily seen that

J̃(s, x; β̄k) ≤ J̃(s, x; β̄) ∧ J̃(s, x; β̃k) ∀k ≥ 1.

Thus, using (4.12) we obtain that

P

{
Ṽ (s, x) ≤ essinf

k≥1
J̃(s, x; β̄k) − ε

}
< δ.

This contradicts the definition of δ, proving (b).
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2238 RAINER BUCKDAHN AND JIN MA

To conclude the proof we use a similar technique to construct the desired mini-
mizing sequence inductively as follows. Let β1 = β̃1, and for k ≥ 2, we define

βκ �
=

{
β̃k on {J̃(s, x; β̃k) ≤ J̃(s, x;βk−1)},
βk−1 on {J̃(s, x; β̃k) > J̃(s, x;βk−1)},

k ≥ 1.(4.14)

Again, we have {βk}k≥1 ⊂ Ã and J̃(s, x;βk) ≤ J̃(s, x;βk−1)∧ J̃(s, x; β̃k) for all k ≥ 1.
Consequently, we have

lim
k→∞

↓ J̃(s, x;βk) ≤ essinf
k≥1

J̃(s, x; β̃k) = Ṽ (s, x).

Finally, that Ṽ (s, x) ≤ limk→∞ ↓ J̃(s, x;βk) is obvious. We proved (ii).
(iii) is a direct consequence of (ii). Thus proof is complete.
We remark that part (ii) in Theorem 4.2 provides us the first version of a “min-

imizing sequence”(!). As we can see, the construction of such a sequence depends

heavily on J̃ , hence FB
T -measurable. Thus the wider-sense admissible class Ã is es-

sential. The counterexample in the appendix shows that this cannot be relaxed.
To end this section let us take a brief look at the existence of optimal control.

Note that WSCP-II is now a rather standard optimal control problem; therefore with
a possible change of probability space, one should always be able to find an optimal
control, at least in a “relaxed” form (cf., e.g., El Karoui, Nguyen, and Jeanblanc-
Picqué [8]). We do not pursue this issue here due to the length of the paper. However,
we give the following corollary of Theorem 4.2 that more or less explains the benefit
of introducing the wider-sense controls.

Corollary 4.3. Assume (H1)–(H3). Then any optimal control β∗ for the
WSCP-II is also an optimal control for WSCP-I. That is, if for (s, x) ∈ [0, T ] × R

n,

β∗ ∈ Ã is such that V̂ (s, x) = Ĵ(s, x;β∗), then it must hold that

Ṽ (s, x) = J̃(s, x;β∗), P -a.s.

Proof. Let β∗ ∈ Ã be an optimal control for WSCP-II, that is, V̂ (s, x) =

Ĵ(s, x, β∗). We show that it actually holds that

J̃(s, x, β∗) ≤ J̃(s, x, β) ∀ β ∈ Ã.(4.15)

To see this let β ∈ Ã be arbitrary. We define, as before, a new control β̃ be such that

β̃ = β1{J̃(s,x,β)<J̃(s,x,β∗)} + β∗1{J̃(s,x,β)≥J̃(s,x,β∗)}.

Again, we have β̃ ∈ Ã, and the optimality of β∗ leads to

E[J̃(s, x, β∗)] ≤ E[J̃(s, x, β̃)]

= E
[
J̃(s, x, β)1{J̃(s,x,β)<J̃(s,x,β∗)} + J̃(s, x, β∗)1{J̃(s,x,β)≥J̃(s,x,β∗)}

]
,

or, equivalently, E[(J̃(s, x, β) − J̃(s, x, β∗))1{J̃(s,x,β)<J̃(s,x,β∗)}] ≥ 0. Thus we obtain

that P{J̃(s, x, β) < J̃(s, x, β∗)} = 0, proving (4.15), whence the corollary.
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PATHWISE STOCHASTIC CONTROL PROBLEMS 2239

5. Properties of the value function Ṽ . In this section we take a closer look
at the value function of WSCP-I, Ṽ (s, x). To be more precise we would like to derive
some finer results on its measurability as well as regularity, as a random field. These
properties will be important for us to derive the Bellman principle, and ultimately
the stochastic HJB equation.

First note that by definition we know immediately that Ṽ (s, x) is FB
T -measurable

for all (s, x) ∈ [0, T ] × R
n, and therefore it is G-progressively measurable. On the

other hand, note that

J̃(s, x, β) = E
{
H(η0

T (F s,x,β
T )

∣∣∣FB
T

}
= E

{
E
{
H
(
η0
T (F s,x,β

T )
)∣∣∣Gs

}∣∣∣FB
T

}
≥ E

{
essinf
β∈Ã

E
{
H
(
η0
T (F s,x,β

T )
)∣∣∣Gs

}∣∣∣∣∣FB
T

}
.

Therefore we can only have

Ṽ (s, x) ≥ E

{
essinf
β∈Ã

E
{
H
(
η0
T (F s,x,β

T )
)∣∣∣Gs

}∣∣∣∣∣FB
T

}
.

Let us first establish a stronger result than the relation above and construct
another version of minimizing sequence, which is essential for us to derive the Bellman
principle.

Theorem 5.1. Assume (H1)–(H3). For all (s, x) ∈ [0, T ] × R
n, there exists a

sequence {βk} ⊂ Ã, such that

Ṽ (s, x) = essinf
β∈Ã

E
{
H
(
η0
T (F s,x,β

T )
)∣∣∣Gs

}
= lim

k→∞
↓E

{
H
(
η0
T (F s,x,βk

T )
)∣∣∣Gs

}
, P -a.s.

Proof. We first show that, for any (s, x) ∈ [0, T ] × R
n,

Ṽ (s, x) ≤ essinf
β∈Ã

E
{
H(η0

T (F s,x,β
T ))

∣∣∣Gs

}
, P -a.s.(5.1)

To this end, we fix (s, x) ∈ [0, T ] × R
n and β ∈ Ã, and construct a special sequence

{βk}k≥1 that approximates β in L2([0, T ] × Ω). We proceed as follows. First, let us
denote for each k ≥ 1 and 0 ≤ a < b ≤ T

Da,b
k

�
=

{
a +

i

2k
(b− a) : i = 0, 1, 2, . . . , 2k

}
,

and denote the generic elements of Da,b
k to be tk,a,bi (= a+ i

2k (b−a)), i = 0, 1, 2, . . . , 2k.

To simplify notation we shall denote Da
k = D0,a

k , and tk,ai = tk,0,ai for a ∈ [0, T ]. Finally

we define Dk = Ds
k ∪Ds,T

k .
Now consider the probability space ([0, T ]×Ω,P, μ), where P is the G-predictable

σ-field on [0, T ]×Ω and μ(dtdω) = 1
T dtP (dω). Let Gs

t
�
= σ{Wr−Ws, r ∈ [s, t]}∨FB

T ,
t ≥ s, and introduce the following σ-fields:

Gk,s
�

�
= σ{ΔWtk,s

i
, ΔBtk,T

j
: 0 ≤ i ≤ �− 1; 0 ≤ j ≤ 2k − 1},

G̃k,s,T
�

�
= σ{ΔWtk,s

i
, ΔWtk,s,T

i′
, ΔBtk,T

j
: 0 ≤ i′ ≤ �− 1; 0 ≤ i, j ≤ 2k − 1}.
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2240 RAINER BUCKDAHN AND JIN MA

where Δξtk,a,b
i

�
= ξtk,a,b

i+1
− ξtk,a,b

i
, ξ = W,B. Now let

Pk
�
= σ

{
(tk,s� , tk,s�+1] ×A�; (tk,s,T� , tk,s,T�+1 ] × Ã� : A� ∈ Gk,s

� , Ã� ∈ G̃k,s,T
�

}
.

It is then clear that {Pk}k≥1 is an increasing family of σ-fields, and Pk ↑P as k → ∞
(cf., e.g., Dellacherie and Meyer [6]). Furthermore, if we define βk �

= Eμ{β|Pk}, then

we must have βk ∈ Ã, and βk → β in L2([0, T ]×Ω) as k → ∞. Consequently, possibly
along a subsequence (we may again denote it by {βk}), one has

E
{
H(η0

T (F s,x,βk

T ))
∣∣∣Gs

}
→ E

{
H(η0

T (F s,x,β
T ))

∣∣∣Gs

}
, P -a.s. as k → ∞.

Now let us use the sequence {βk} to prove (5.1). First note that by a monotone-
class argument and the structure of the σ-fields Pk’s, it can be shown that the pro-
cesses βk’s have the following representations:

βk
t (ω) = γk(t,Wtk,s

1
(ω),Wtk,s

2
(ω), . . . ,Wtk,s

2k−1

(ω), ω), (t, ω) ∈ [0, T ] × Ω,

where, for y = (y1, . . . , y2k) ∈ R
2kd,

γk(t, y, ω) =

2k−1∑
�=0

fk,�(y1, . . . , y�, Btk,T
1

(ω), . . . , Btk,T

2k−1

(ω))1(tk,s
�

,tk,s
�+1

](t)

+

2k−1∑
�=0

gk,�(y,Wtt,s,T1
, . . . ,Wtk,s,T

2k−1

(ω), Btk,T
1

(ω), Btk,T

2k−1

(ω))1(tk,s,T
�

,tk,s,T
�+1

](t),

where fk,� : R
�d ×R

2km → U and gk,� : R
2kd ×R

�d ×R
2km → U are Borel measurable

functions. Note that γk : [0, T ]×R
2kd×Ω → R

n is a Gs-progressive random field (that

is, for each y ∈ R
2kn, the mapping (t, ω) → γk(t, y, ω) is Gs

t -progressively measurable).

We see that for each y ∈ R
2kd, the random variable H(η0

T (F
s,x,γk(y,·)
T )) is independent

of FW
s . Therefore,

E
{
H
(
η0
T (F s,x,β

T )
) ∣∣∣Gs

}
≥ essinf

k≥1
E
{
H
(
η0
T (F s,x,βk

T )
) ∣∣∣Gs

}
≥ essinf

k≥1
inf

y∈R2kd

E
{
H
(
η0
T (F

s,x,γk(y,·)
T )

) ∣∣∣Gs

}
= essinf

k≥1
inf

y∈R2kd

E
{
H
(
η0
T (F

s,x,γk(y,·)
T )

) ∣∣∣FB
T

}
≥ essinf

β∈Ã
E
{
H
(
η0
T (F s,x,β

T )
) ∣∣∣FB

T

}
= Ṽ (s, x), P -a.s.

We now prove the reversed inequality of (5.1) and construct another “minimizing

sequence.” In fact we will show that there exists a sequence {βk} ⊂ Ã such that

Ṽ (s, x) = lim
k→∞

↓E
{
H
(
η0
T (F s,x,βk

T )
)∣∣∣Gs

}
, P -a.s.(5.2)

Since the right side above is obviously no less than essinf
β∈Ã E{H(η0

T (F s,x,β
T ))|Gs},

the reversed inequality of (5.1), whence the theorem, will follow.
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PATHWISE STOCHASTIC CONTROL PROBLEMS 2241

To construct the desired minimizing sequence, let us first choose a sequence
{β̂k}k≥1 ⊂ Ã such that Ṽ (s, x) = limk→∞ ↓ J̃(s, x, β̂k), P -a.s., thanks to Theorem

4.2(ii), and then modify it as follows. Let β1 �
= β̂1, and for k ≥ 2, we denote recur-

sively that

Ak �
=
{
E
{
H
(
η0
T (F s,x,β̂k

T )
)∣∣∣Gs

}
≤ E

{
H
(
η0
T (F s,x,βk−1

T )
)∣∣∣Gs

}}
,

and define, for (t, ω) ∈ [s, T ] × Ω,

βk
t (ω) = β̂k

t (ω)1([s,T ]×Ak)∪([0,s]×Ω)(t, ω) + βk−1
t (ω)1[s,T ]×[Ak]c(t, ω).

Then obviously {βk}k≥1 ⊂ Ã, since Ak’s are all G-progressively measurable. Further,
it holds that

H
(
η0
T (F s,x,βk

T )
)

= H
(
η0
T (F s,x,β̂k

T )
)
1Ak + H

(
η0
T (F s,x,βk−1

T )
)
1(Ak)c .

Therefore, we have

E
{
H
(
η0
T (F s,x,βk

T )
)∣∣∣Gs

}
≤ E

{
H
(
η0
T (F s,x,β̂k

T )
)∣∣∣Gs

}
∧E

{
H
(
η0
T (F s,x,βk−1

T )
)∣∣∣Gs

}
.

(5.3)

Consequently, the sequence {E{H(η0
T (F s,x,βk

))|Gs} : k ≥ 1} is monotone decreasing,
and by (5.1),

Ṽ (s, x) ≤ lim
k→∞

↓E
{
H
(
η0
T (F t,x,βk

T )
)∣∣∣Gs

}
, P -a.s.(5.4)

But on the other hand, noting the definition of {β̂k}k≥1, the fact (5.3), and applying
the monotone convergence theorem, we also have

E[Ṽ (s, x)] = E

{
lim
k→∞

↓ J̃(s, x, β̂k)

}
= lim

k→∞
↓E{J̃(s, x, β̂k)}

= lim
k→∞

↓E
{
E
{
H
(
η0
T (F s,x,β̂k

T )
)∣∣∣Gs

}}
≥ lim

k→∞
↓E

{
E
{
H
(
η0
T (F s,x,βk

T )
)∣∣∣Gs

}}
= E

{
lim
k→∞

↓E
{
H
(
η0
T (F s,x,βk

T )
)∣∣∣Gs

}}
.

This, together with (5.4), leads to (5.2), completing the proof.

We now turn to the regularity of the value function Ṽ (s, x). It is well understood
that in a standard stochastic control problem the value function is usually (locally)
Lipschitz in the spatial variable, and Hölder-1/2 in the temporal variable. We will
show in the next theorem that this is in principle still true, but with a slight modifi-
cation.

We first give a lemma that concerns the solution F s,x,β of the SDE (3.17). Let
us begin by recalling Lemma 3.1 and the sequence of FB

T -measurable random times
(whence G-stopping times!) {τ�}�≥1 there (see (3.15)):

τ� = inf

{
s ≥ 0 : sup

z∈Rn

(1 + |z|2)−γ

(∣∣∣[Dzη
0
s(z)]

−1
∣∣∣+ 3∑

i=1

∣∣∣Di
zη

0
s(z)

∣∣∣) > �

}
∧ T,(5.5)

for � = 1, 2, . . . . We can localize F s,x,β even further: for any M > 0, and fixed
(s, x) ∈ [0, T ] × R

n and β ∈ Ã, we define

τ s,x,β�,M = inf
{
t ≥ s : |F s,x,β

t | > M, τ� = T
}
∧ T.(5.6)

Then it is clear that τ s,x,β�,M is again a G-stopping time. We have the following lemma.
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2242 RAINER BUCKDAHN AND JIN MA

Lemma 5.2. Assume (H1)—H(3). Then, for any p ≥ 1 and � ≥ 1, there exists a

constant C�,p > 0 such that for any (s, x), (s′, x′) ∈ [0, T ]×R
n, β ∈ Ã, and M > 0, it

holds P -a.s. on the set {τ� = T} that

E
{

sup
t∈[s,T ]

|F s,x,β
t |p

∣∣∣Gs

}
≤ C�,p(1 + |x|p);(5.7)

P
{
τ s,x,β�,M < M

∣∣∣Gs

}
≤ 1

Mp
E
{

sup
t∈[s,T ]

|F s,x,β
t |p

∣∣∣Gs

}
≤ C�,p

(1 + |x|p)
Mp

;(5.8)

E
{

sup
s≤t≤τs,x,β

�,M
∧τs,x′,β

�,M

|F s,x,β
t − F s,x′,β

t |p
∣∣∣Gs

}
≤ C�,pe

Mp |x− x′|p;(5.9)

E
{

sup
s≤t≤τs,x,β

�,M
∧τs′,x,β

�,M

|F s,x,β
t − F s′,x,β

t |p
∣∣∣Gs

}
≤ C�,pe

Mp

(1 + |x|p)|s− s′|
p
2 .(5.10)

Proof. Note that all the following discussions are restricted to the set {τ� = T}.
By virtue of the (localized) Lipschitz conditions and the linear growth properties of

the coefficients b̃ and σ̃, thanks to Lemma 3.1, the estimates (5.7), (5.9), and (5.10)
follow easily from some standard arguments for SDEs. Further, the estimate (5.8) is
a direct consequence of definition (5.6), Chebyshev’s inequality, and (5.7). We leave
the details to the reader.

The second main result of this section is the following. One should note that the
parameter ε > 0 makes our result different from similar ones in standard stochastic
control theory.

Theorem 5.3. Assume (H1)–(H3). Then, for any � ≥ 1, R > 0, and ε > 0,
there exists a C�,R,ε > 0, such that for all (s, x), (s′, x′) ∈ [0, T ] × B

n
R, it holds P -a.s.

on {τ� = T} that

|Ṽ (s, x) − Ṽ (s′, x′)| ≤ ε + C�,R,ε‖H‖∞(|s− s′| 12 + |x− x′|).(5.11)

Here B
n
R

�
= {z ∈ R

n : |z| ≤ R}, and ‖ · ‖∞ is the sup-norm of L∞(Rn).
Proof. We first fix R > 0 and let (s, x), (s′, x′) ∈ [0, T ] × B

n
R be arbitrarily given.

Then by Theorem 5.1 we can choose a sequence {βk}k≥1 such that

Ṽ (s, x) = lim
k→∞

↓E
{
H
(
η0
T (F s,x,βk

T )
)∣∣∣Gs

}
, P -a.s.(5.12)

Since H is uniformly continuous by (H3), for any ε > 0 we can find δ > 0 such that

|H(z) −H(z′)| < ε

4
, whenever |z − z′| < δ.(5.13)

Now fix � such that P{τ� = T} > 0. For each M > 0 and k > 0, we recall the
stopping times defined by (5.6) and denote, for simplicity, that

τk,M
�
= τ s,x,β

k

�,M , τ ′k,M
�
= τ s,x

′,βk

�,M , τ ′′k,M
�
= τ s

′,x′,βk

�,M ,

and define τ̄k,M
�
= τk,M ∧ τ ′k,M ∧ τ ′′k,M . Then using (5.8) (with p = 2) we have

P{τ̄k,M < T |Gs∧s′} ≤ 1

M2
C�,2(1 + |x|2 + |x′|2) ≤ C�,2

(1 + 2R2)

M2
.(5.14)
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PATHWISE STOCHASTIC CONTROL PROBLEMS 2243

Bearing in mind that Ṽ (s, x) is FB
T -measurable, and FB

T ⊂ Gt for all t ≥ 0, we
can easily check that the minimizing sequence in Theorem 5.1 also satisfies

Ṽ (s, x) = lim
k→∞

↓E
{
H
(
η0
T (F s,x,βk

T )
)∣∣∣Gs∧s′

}
, P -a.s.

On the other hand, we observe that

Ṽ (s′, x′) = essinf
β∈Ã

E
{
H
(
η0
T (F s′,x′,β

T )
)∣∣∣Gs∧s′

}
, P -a.s.

Keeping these in mind we now define

Ak
ε,� =

{
τ� = T ; Ṽ (s, x) ≥ E

{
H
(
η0
T (F s,x,βk

T )
)∣∣∣Gs∧s′

}
− ε

4

}
.

Then limk→∞ P{Ak
ε,�} = P{τ� = T} > 0, and hence P{Ak

ε,�} > 0 for k large enough.

Also, on the set Ak
ε,� we have

Ṽ (s′, x′) − Ṽ (s, x)(5.15)

≤ ε

4
+
∣∣∣E {

H
(
η0
T (F s′,x′,βk

T )
)∣∣∣Gs∧s′

}
− E

{
H
(
η0
T (F s,x,βk

T )
)∣∣∣Gs∧s′

}∣∣∣
We now analyze the right-hand side above. Again let us simplify the notation a little
bit. Denote

ΔF k
T

�
= F s′,x′,βk

T − F s,x,βk

T , Δη(F k
T )

�
= η0

T (F s′,x′,βk

T ) − η0
T (F s,x,βk

T ),

ΔH(η(F k
T ))

�
= H

(
η0
T (F s′,x′,βk

T )
)
−H

(
η0
T (F s,x,βk

T )
)
.

Recalling the definition of τ̄k,M and δ we see that the second term on the right-hand
side of (5.15) becomes∣∣∣E {

ΔH(η(F k
T ))

∣∣∣Gs∧s′

}∣∣∣
=
∣∣∣E {

ΔH(η(F k
T ))1{τ̄k,M<T}

∣∣∣Gs∧s′

}
+ E

{
ΔH(η(F k

T ))1{τ̄k,M=T}

∣∣∣Gs∧s′

}∣∣∣
≤ E

{∣∣ΔH(η(F k
T ))

∣∣1{τ̄k,M<T}

∣∣∣Gs∧s′

}
+E

{∣∣ΔH(η(F k
T ))

∣∣1{|Δη(Fk
T

)|<δ,τ̄k,M=T}

∣∣∣Gs∧s′

}
+E

{∣∣ΔH(η(F k
T ))

∣∣1{|Δη(Fk
T

)|≥δ,τ̄k,M=T}

∣∣∣Gs∧s′

}
= I1 + I2 + I3,

(5.16)

where I1, I2, and I3 are defined in an obvious way. Clearly, by (5.14) we see that

I1 = E
{∣∣ΔH(η(F k

T ))
∣∣1{τ̄k,M<T}

∣∣∣Gs∧s′

}
≤ 2‖H‖∞P

{
τ̄k,M < T

∣∣∣Gs∧s′

}
≤ C�,2

1 + 2R2

M2
2‖H‖∞.(5.17)

Also, in light of (5.13) we see that |ΔH(η(F k
T ))| < ε

4 on the set {|Δη(F k
T )| < δ}, which

implies that

I2 = E
{∣∣ΔH(η(F k

T ))
∣∣1{|Δη(Fk

T
)|<δ,τ̄k,M=T}

∣∣∣Gs∧s′

}
<

ε

4
.(5.18)
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2244 RAINER BUCKDAHN AND JIN MA

Now, first applying the Chebyshev inequality and then applying Lemma 5.2 with
p = 1, we have, P -a.s. on {τ� = T},

I3 = E
{∣∣ΔH(η(F k

T ))
∣∣1{|Δη(Fk

T
)|≥δ,τ̄k,M=T}

∣∣∣Gs∧s′

}
≤ 2‖H‖∞P

{
|Δη(F k

T )| ≥ δ, τ̄k,M = T
∣∣∣Gs∧s′

}
(5.19)

≤ 2

δ
‖H‖∞E

{
�
(
1 + |F s′,x′,βk

T | + |F s,x,βk

T |
)
|ΔF k

T |1{τ̄k,M=T}

∣∣∣Gs∧s′

}
≤ 2(1 + 2M)�

δ
‖H‖∞E

{
|F s,x,βk

τ̄k − F s,x′,βk

τ̄k | + |F s′,x′,βk

τ̄k − F s,x′,βk

τ̄k |
∣∣∣Gs∧s′

}
≤ 2(1 + 2M)C�,1�e

M (1 + R)

δ
‖H‖∞(|s− s′| 12 + |x− x′|).

Plugging (5.16)–(5.19) into (5.15) we see that on the set Ak
ε,� one has

Ṽ (s′, x′) − Ṽ (s, x) <
ε

2
+ C�,2

1 + 2R2

M2
2‖H‖∞(5.20)

+
2(1 + 2M)C�,1�e

M (1 + R)

δ
‖H‖∞(|s− s′| 12 + |x− x′|).

We note that since {τ� = T} = ∪k≥1A
k
ε,�, (5.20) actually holds on the set {τ� = T}.

To conclude, for fixed ε > 0, � > 0, and R > 0, we first choose δ = δ(ε) > 0
such that (5.13) holds, and then choose M = M�,R,ε > 2

√
C�,2(1 + 2R2)‖H‖∞/ε.

Denoting

C�,R,ε
�
=

2(1 + 2M)C�,1�e
M (1 + R)

δ(ε)
,

it is then easily seen that (5.20) becomes

Ṽ (s′, x′) − Ṽ (s, x) < ε + C�,R,ε‖H‖∞(|s− s′| 12 + |x− x′|), P -a.s. on {τ� = T}.

Reversing the role of (s, x) and (s′, x′), we have proved the theorem.
A closer look at the proof of Theorem 5.3 would lead to the following dependence

result for the wider-sense state process Xs,x,β
t = η0

t (F
s,x,β
t ), t ∈ [s, T ], β ∈ Ã.

Corollary 5.4. Assume (H1)–(H3). Then for any � ≥ 1, R > 0, and ε > 0
there exists some constant C�,R,ε > 0, depending only on �, R, and ε, such that for all

β ∈ Ã and all (s, x), (s′, x′) ∈ [0, T ]×R
n with x, x′ ∈ BR, it holds P -a.s. on {τ� = T}

that ∣∣∣E {
Xs′,x′,β

T −Xs,x,β
T

∣∣∣Gs∧s′

}∣∣∣ ≤ ε + C�,R,ε((|s− s′| 12 + |x− x′|).(5.21)

Proof. Noting that Xs,x,β
T = η0

T (F s,x,β
T ), the proof follows from similar arguments

of Theorem 5.3. We leave it to the interested reader.
To conclude this section we note that Theorem 5.3 does not provide us the usual

regularity of the value function (that is, Lipschitz in x, and Hölder-1/2 in s). In fact,

as a random field, even the following property of Ṽ (·, ·) is not completely trivial.

Theorem 5.5. Assume (H1)–(H3). The random field Ṽ (s, x) possesses a con-
tinuous version on [0, T ] × R

n.
Proof. We would like to construct a P -null exceptional set beyond which the

function (s, x) → Ṽ (s, x, ω) is continuous for all fixed ω.
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PATHWISE STOCHASTIC CONTROL PROBLEMS 2245

To this end, let us denote Q to be all the rationals in R. Denote also Q∗
+ =

Q∩ (0,∞) and QT = Q∩ [0, T ]. The notation for the n-dimensional version Qn ⊂ R
n

is defined in an obvious way.
For � ≥ 1 we define the following subset of Ω:

Ω�
�
=

⋂
R∈Q∗

+
ε∈Q∗

+

{τ� = T and (5.11) holds for all (s, x), (s′, x′) ∈ QT × B
n
R ∩ Qn} ,

Ω̃ = ∪∞
�=1Ω�.

Applying Theorem 5.3 we see that for fixed � > 0, R > 0, and ε > 0, (5.11) holds
P -a.s. on the set {τ� = T}. In other words, one must have Ω� ⊆ {τ� = T} and
P{{τ� = T} \ Ω�} = 0 for all �. Since ∪∞

�=1{τ� = T} = Ω, modulo a P -null set, one
has

Ω \ Ω̃ ⊆
∞⋃
�=1

{{τ� = T} \ Ω�}, almost surely.

It then follows that P{Ω̃} = 1.

Now let us fix ω ∈ Ω̃. By (5.11) we see that the mapping (s, x) → Ṽ (s, x, ω)
is continuous on QT × Qn. For general (s, x) ∈ [0, T ] × R

n, we choose a sequence
{(sk, xk)}k≥1 ⊂ QT × Qn, such that (sk, xk) → (s, x), as k → ∞. Applying (5.11)

again we see that {Ṽ (sk, xk)}k≥1 is Cauchy, and we can define the limit by V̄ (s, x, ω)
and show that it is independent of the choice of the sequence {(sk, xk)}. Now define
a random field

V̄ (s, x, ω) =

{
lim
k→∞

Ṽ (sk, xk, ω), QT × Qn � (sk, xk) → (s, x), ω ∈ Ω̃,

0, ω ∈ Ω \ Ω̃.

Then, using a standard “3ε-argument,” one shows that V̄ is continuous on [0, T ]×R
n

for all ω ∈ Ω̃. It remains to verify that V̄ is a version of Ṽ . But by continuity of V̄ we
need only check that V̄ is a modification of Ṽ . To wit, for any (s, x) ∈ [0, T ] × R

n, it

holds that V̄ (s, x) = Ṽ (s, x), P -a.s. But by virtue of Theorem 5.3 and the definition
of V̄ one can check that for fixed (s, x) and any sequence {(sk, xk)}k≥1 ⊂ QT × Qn

such that (sk, xk) → (s, x), it must hold that

Ṽ (s, x) = lim
k→∞

Ṽ (sk, xk) = V̄ (s, x), P -a.s.

We leave the details to the readers. The proof is now complete.

6. The Bellman principle. We are now ready to establish the first fundamental
result of this paper— the “Bellman principle” of dynamic programming for the wider-
sense control problem. We should note that our reduction of the original problem to
problems WSCP-I and WSCP-II enables us to find different versions of minimizing
sequences, which will be essential in our discussions in this section.

Our main result of this section is the following.
Theorem 6.1 (Bellman principle). Assume (H1)–(H3). For any (s, x) ∈ [0, T )×

R
n and h > 0 such that 0 ≤ s ≤ s + h ≤ T , it holds that

Ṽ (s, x) = essinf
β∈Ã

E
{
Ṽ (s + h, F s,x,β

s+h )
∣∣∣Gs

}
, P -a.s.
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2246 RAINER BUCKDAHN AND JIN MA

The proof of Theorem 6.1 is rather lengthy, so we will split it into two lemmas,
each taking care of one direction of the inequality, and each using a special technique.

Lemma 6.2. Assume (H1)–(H3). For all (s, x) ∈ [0, T ) × R
n, h > 0 such that

s + h ≤ T , it holds that

Ṽ (s, x) ≤ essinf
β∈Ã

E
{
Ṽ (s + h, F s,x,β

s+h )
∣∣∣Gs

}
.(6.1)

Proof. Clearly, we need only show that for all (s, x) ∈ [0, T ) × R
n, h > 0 such

that s + h ≤ T , and β ∈ Ã, it holds that

Ṽ (s, x) ≤ E
{
Ṽ (s + h, F s,x,β

s+h )
∣∣∣Gs

}
, P -a.s.(6.2)

The proof depends heavily on the estimates established in Theorem 5.3. First let
us fix � > 0 and ε > 0, and let 0 ≤ s < s + h ≤ T and x ∈ R

n be given and fixed
as well. Applying Lemma 5.2 and the Chebyshev inequality, we have, for any R > 0,
P -a.s. on {τ� = T},

P
{
|F s,x,β

s+h | > R
∣∣∣Gt

}
≤ 1

R2
E

{
sup

t∈[s,T ]

|F s,x,β
t |2

∣∣∣Gt

}
≤ C�,2

R2
(1 + |x|2).

Let us now fix R = R�,x,ε >
√
C�,2(1 + |x|2)‖H‖∞/ε, so that

P
{
|F s,x,β

s+h | > R
∣∣∣Gs

}
<
( ε

‖H‖∞

)
∧ ε, P -a.s. on {τ� = T}.(6.3)

Next, following the main ideas of the proof of Theorem 5.3, we can find a constant
C�,R,ε such that for all y, y′ ∈ B

n
R, it holds almost surely on {τ� = T} that∣∣∣E {

H
(
η0
T (F s+h,y,β

T )
)∣∣∣Gs+h

}
− E

{
H
(
η0
T (F s+h,y′,β

T )
)∣∣∣Gs+h

}∣∣∣
≤ ε

2
+ C�,R,ε‖H‖∞|y − y′|(6.4)

and ∣∣∣Ṽ (s + h, y) − Ṽ (s + h, y′)
∣∣∣ ≤ ε

2
+ C�,R,ε‖H‖∞|y − y′|.(6.5)

Now let us fix δ = δ�,x,ε < ε
2C�,R,ε‖H‖∞

, and choose a finite set of open balls

{Oδ(y
k)}Nk=1, centered at yk’s and with radius δ such that it covers the (compact)

ball B
n
R. That is, B

n
R ⊂

⋃N
k=1 Oδ(y

k). Clearly, on the set {τ� = T}, whenever
y ∈ Oδ(y

k) we have∣∣∣E {
H
(
η0
T (F s+h,y,β

T )
)∣∣∣Gs+h

}
− E

{
H
(
η0
T (F s+h,yk,β

T )
)∣∣∣Gs+h

}∣∣∣ < ε(6.6)

and ∣∣∣Ṽ (s + h, y) − Ṽ ((s + h, yk))
∣∣∣ < ε.(6.7)

Furthermore, we define a partition of B
n
R as follows:

ΓR,1
�
= Oδ(y

1) ∩ B
n
R; ΓR,k

�
=

(
Oδ(y

k) \
k−1⋃
l=1

Oδ(y
l)

)⋂
B
n
R, k > 1.
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PATHWISE STOCHASTIC CONTROL PROBLEMS 2247

Thus it follows from (6.7) that, for any β ∈ Ã, P -a.s. on {|F s,x,β
s+h | ≤ R, τ� = T},

Ṽ (s + h, F s,x,β
s+h ) =

N∑
k=1

Ṽ (s + h, F s,x,β
s+h )1ΓR,k

(F s,x,β
s+h )(6.8)

≥
N∑

k=1

Ṽ (s + h, yk)1ΓR,k
(F s,x,β

s+h ) − ε.

Now for each k we apply Theorem 5.1 (or, in particular, (5.2)) to find a βk ∈ Ã
such that the set

Aε,k
�
=
{
ω : Ṽ (s + h, yk, ω) < E

{
H
(
η0
T (F s+h,yk,βk

T )
)∣∣∣Gs+h

}
(ω) − ε

}
satisfies P (Aε,k) ≤ 2−kε. Next, define

Ã�,ε,k
�
= {|F s,x,β

s+h | ≤ R, τ� = T} ∩Ac
ε,k and Ω̃�,ε

�
=

N⋂
k=1

Ã�,ε,k.(6.9)

Then

P{Ω̃c
�,ε} ≤ P

{
{τ� < T} ∪ {|F s,x,β

s+h | > R, τ� = T} ∪
(

N⋃
k=1

Aε,k

)}

≤ P{τ� < T} + P{|F s,x,β
s+h | > R, τ� = T} +

N∑
k=1

P (Aε,k)(6.10)

≤ P{τ� < T} + 2ε → 0 as � ↑∞ and ε ↓ 0.

Let us now restrict ourselves to the set Ω̃�,ε. Clearly, almost surely on Ω̃�,ε we
have

Ṽ (s + h, yk) ≥ E
{
H
(
η0
T (F s+h,yk,βk

T )
)∣∣∣Gs+h

}
− ε.

Thus on the set Ω̃�,ε ∈ Gs+h the estimate (6.8) can further be written as

Ṽ (s + h, F s,x,β
s+h ) ≥

N∑
k=1

E
{
H
(
η0
T (F s+h,yk,βk

T )
)∣∣∣Gs+h

}
1{F s,x,β

s+h
∈ΓR,k} − 2ε.(6.11)

Now let β ∈ Ã be any control. We modify β as follows: for (t, ω) ∈ [s, T ] × Ω,

β̃t(ω) =

{
βk
t (ω) if t ≥ s + h, ω ∈ {τ� = T} ∩ {F s,x,β

s+h ∈ ΓR,k}, 1 ≤ k ≤ N,
βt(ω) otherwise.

Then clearly β̃ ∈ Ã as well, and, moreover, the pathwise uniqueness of SDE (3.17),
together with the estimate (6.6), shows that for each k, P -a.s. on {τ� = T},

E

{
H
(
η0
T (F s,x,β̃

T )
)∣∣∣Gs+h

}
1{F s,x,β

s+h
∈ΓR,k}

= E

{
H
(
η0
T (F

s+h,F s,x,β
s+h

,βk

T )
)
1{F s,x,β

s+h
∈ΓR,k}

∣∣∣Gs+h

}
(6.12)

≤ E
{
H
(
η0
T (F s+h,yk,βk

T )
)
1{F s,x,β

s+h
∈ΓR,k}

∣∣∣Gs+h

}
+ ε1{F s,x,β

s+h
∈ΓR,k}.
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2248 RAINER BUCKDAHN AND JIN MA

Thus, noting that ∪N
k=1ΓR,k = B

n
R, we can continue from (6.11) to get

Ṽ (s + h, F s,x,β
s+h )

≥
N∑

k=1

E

{
H
(
η0
T (F s,x,β̃

T )
)
1{F s,x,β

s+h
∈ΓR,k}

∣∣∣Gs+h

}
− 2ε− ε

N∑
k=1

1{F s,x,β
s+h

∈ΓR,k}

=E

{
H
(
η0
T (F s,x,β̃

T )
)∣∣∣Gs+h

} N∑
k=1

1{F s,x,β
s+h

∈ΓR,k} − 2ε− ε

N∑
k=1

1{F s,x,β
s+h

∈ΓR,k}

=

[
E

{
H
(
η0
T (F s,x,β̃

T )
)∣∣∣Gs+h

}
−ε

]
−2ε = E

{
H
(
η0
T (F s,x,β̃

T )
)∣∣∣Gs+h

}
− 3ε.

Note that the above inequality holds only on the Ω̃�,ε. Taking conditional expectation

E{·|Gs} over Ω̃�,ε ∈ Gs+h on both sides, we have

E
{
Ṽ (s + h, F s,x,β

s+h )
∣∣∣Gs

}
≥ E

{
Ṽ (s + h, F s,x,β

s+h )1
Ω̃�,ε

∣∣∣Gs

}
≥ E

{
H
(
η0
T (F s,x,β̃

T )
)
1

Ω̃�,ε

∣∣∣Gs

}
− 3ε = E

{
H
(
η0
T (F s,x,β̃

T )
)
[1 − 1

Ω̃c
�,ε

]
∣∣∣Gs

}
− 3ε

≥ E

{
H
(
η0
T (F s,x,β̃

T )
)∣∣∣Gs

}
− ‖H‖∞P{Ω̃c

�,ε|Gs} − 3ε

≥ Ṽ (s, x) − ‖H‖∞P{Ω̃c
�,ε|Gs} − 3ε.

Letting � → ∞ and then ε ↓ 0, we obtain (6.2), whence (6.1).
The next lemma will show the reversed inequality.
Lemma 6.3. Assume (H1)–(H3). Then, for all (s, x) ∈ [0, T )×R

n, and s+h ≤ T ,

Ṽ (s, x) ≥ essinf
β∈Ã

E
{
Ṽ (s + h, F s,x,β

s+h )
∣∣∣Gs

}
.(6.13)

Proof. This time we shall prove that for all (s, x) ∈ [0, T ) × R
n, and s + h ≤ T ,

there exists a sequence {βk} ⊂ Ã, such that

Ṽ (s, x) = lim
k→∞

↓E
{
Ṽ (s + h, F s,x,βk

s+h )
∣∣∣Gs

}
, P -a.s.(6.14)

We note that this “minimizing sequence” is different from all the previous ones, and
that (6.13) follows from (6.14) trivially.

To prove (6.14), we fix (s, x) ∈ [0, T ) × R
n and h > 0 such that s + h ≤ T . First

applying Theorem 5.1 we know that there exists a sequence {βk} ⊂ Ã such that

Ṽ (s, x) = lim
k→∞

↓E
{
H
(
η0
T (F s,x,βk

T )
)∣∣∣Gs

}
.

Next, applying Lemma 6.2 we have

Ṽ (s, x) ≤ E
{
Ṽ (s + h, F s,x,βk

s+h )
∣∣∣Gs

}
≤ E

{
E
{
H
(
η0
T

(
F

s+h,F s,x,βk

s+h
,βk

T

))∣∣∣Gs+h

}∣∣∣Gs

}
(6.15)

= E
{
H
(
η0
T (F s,x,βk

T )
)∣∣∣Gs

}
, P − a.s., ∀k ≥ 1.
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PATHWISE STOCHASTIC CONTROL PROBLEMS 2249

We will use the by now standard technique to modify the sequence {βk} to derive the

desired minimizing sequence. Let β̃1 = β1. For k > 1, we define, for t ∈ [s, T ],

β̃k
t =

⎧⎨⎩ βk
t on

{
E
{
Ṽ (s + h, F s,x,βk

s+h )
∣∣∣Gs

}
≤ E

{
Ṽ (s + h, F s,x,β̃k−1

s+h )
∣∣∣Gs

}}
,

β̃k−1
t otherwise,

and set β̃k
t ≡ β̃1

t for all k for t ∈ [0, s). Then, clearly {β̃k} ⊂ Ã, and for all k ≥ 1, one
has

E

{
Ṽ (s + h, F s,x,β̃k

s+h )
∣∣∣Gs

}
≤ E

{
Ṽ (s + h, F s,x,β̃k−1

s+h )
∣∣∣Gs

}
∧ E

{
Ṽ (s + h, F s,x,βk

s+h )
∣∣∣Gs

}
≤ E

{
Ṽ (s + h, F s,x,β̃k−1

s+h )
∣∣∣Gs

}
∧ E

{
H
(
η0
T (F s,x,βk

T )
)∣∣∣Gs

}
, P -a.s.

Consequently we have

Ṽ (s, x) ≤ lim
k→∞

↓E
{
Ṽ (s + h, F s,x,β̃k

s+h )
∣∣∣Gs

}
≤ lim

k→∞
↓E

{
H
(
η0
T (F s,x,βk

T )
)∣∣∣Gs

}
= Ṽ (s, x),

thanks to Theorem 5.1 again. This proves the lemma.
Remark 6.4. By modifying the proof slightly one can easily show that the Bellman

principle (Theorem 6.1) also holds if the initial states (s, x) and the increment h
are replaced by FB

T -measurable random variables, since FB
T ⊂ Gt for all t ≥ 0. In

particular, if (s, x) is replaced by FB
T -measurable random variables (τ, ξ) and h > 0

remains a deterministic constant, then we make the convention that τ +h = (τ +h)∧
T .

7. Stochastic HJB equation. In this section we shall derive two versions of
the stochastic HJB equations: one for the value function of WSCP-I and the other
for the original pathwise control problem.

7.1. HJB equation for WSCP-I. We first consider the HJB equation for the
value function Ṽ . Let us denote

L̃s,x,u
�
=

1

2
tr {σ̃σ̃T (s, x, u)D2

xx} + b̃(t, x, u)Dx.

Note that in the above the coefficients b̃ and σ̃ are FB
T -measurable random fields, and

thus L̃ is a “random” differential operator. We then consider the following (random)
PDE: ⎧⎪⎨⎪⎩

−∂v

∂s
(s, x) − essinf

u∈U
[L̃s,x,uv](s, x) = 0, (s, x) ∈ [0, T ] × R

n;

v(T, x) = H
(
η0
T (x)

)
, x ∈ R

n.

(7.1)

We should note that since this randomized PDE does not involve any stochastic
integrals, it could be studied in an ω-wise manner. However, the “adaptedness” nature
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2250 RAINER BUCKDAHN AND JIN MA

of the random field is by no means obvious from such a treatment. As an alternative,
in what follows we shall consider the random PDE as a special (degenerate) stochastic
PDE with a time reversal, and introduce a definition of “stochastic viscosity solution”
of this equation that is in the spirit of Buckdahn and Ma [2, 3, 4].

Definition 7.1. A continuous, B ([0, T ] × R
n) ⊗ FB

T -measurable random field v
is a stochastic viscosity subsolution (resp., supersolution) if

(i) v(T, x) ≤ (resp., ≥) H
(
η0
T (x)

)
, x ∈ R

n;

(ii) for all τ ∈ L0
FB

T

(Ω; [0, T ]), ξ ∈ L2
FB

T

(Ω; Rn), and ϕ ∈ C1,2

FB
T

([0, T ] × R
n), it

holds that

−∂ϕ

∂s
(τ, ξ) − essinf

u∈U
[L̃τ,ξ,uϕ](τ, ξ) ≤ 0 (resp., ≥ 0),(7.2)

on the (ω-)set {v−ϕ achieves a local maximum (resp., minimum) at (τ, ξ)} ∈
FB

T .
A random field v is called a stochastic viscosity solution if it is both a stochastic

subsolution and a stochastic supersolution.
We remark here that the main difference between Definition 7.1 and those of

[2, 3, 4], besides the time reversal, is that in [2, 3, 4] we require τ to be a stopping
time and ξ to be an FB

τ -measurable random variable. Due to the special structure here
we assume only that τ is an FB

T -measurable random time. But one should appreciate
again that any FB

T -measurable random time τ is a G-stopping time!
Our first main result of this section is the following theorem.
Theorem 7.2. Assume (H1)—(H3). The value function Ṽ is a stochastic vis-

cosity solution of (7.1) in the sense of Definition 7.1. Furthermore, the solution is
unique in the class CFB

T
([0, T ] × R

n).

Proof. We first show that Ṽ is a subsolution. Let τ ∈ L0
FB

T

(Ω; [0, T ]), ξ ∈
L2
FB

T

(Ω; Rn), and ϕ ∈ C1,2

FB
T

([0, T ] × R
n) be given. We assume that the set

Γ = Γτ,ξ �
= {Ṽ − ϕ achieves a local maximum at (τ, ξ)}

satisfies P (Γ) > 0 (for otherwise there is nothing to prove).
We begin by the following “localization” procedure. First, let {τ�} be the sequence

of G-stopping times defined by (3.15). We can then choose � > 0 and ε > 0 such that
the set

Γ�,ε
�
= {Ṽ − ϕ achieves in B

n+1
ε (τ, ξ) its maximum at (τ, ξ), τ� = T}(7.3)

also satisfies P (Γ�,ε) > 0, where B
n+1
ε (s, x) denotes the (closed) ball in R

n+1 centered
at (s, x) with radius ε.

Next, noting that the random fields Ṽ and ϕ are both B([0, T ] × R
n) ⊗ FB

T -

measurable, and Ṽ is uniformly bounded (by ‖H‖∞!), we can modify the value of ϕ
outside of B

n+1
ε/2 (τ, ξ) so that ϕ is uniformly bounded,

P
{

sup
(s,x)∈[0,T ]×Rn

[
|Dtϕ(s, x)| + |Dxϕ(s, x)| + |D2

xxϕ(s, x)|
]
< ∞

}
= 1,

and Γ�,ε ⊂ {(τ, ξ) ∈ argmax{Ṽ − ϕ}} ∩ {τ� = T}. Consequently, we can find ρ > 0
small enough, and a set Γρ

�,ε ∈ FB
T , such that

(i) P (Γρ
�,ε) > P (Γ�,ε) − ρ > 0;
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PATHWISE STOCHASTIC CONTROL PROBLEMS 2251

(ii) Γρ
�,ε ⊆ {(τ, ξ) ∈ argmax{Ṽ − ϕ}} ∩ {τ� = T};

(iii) Dtϕ(τ, ξ), Dxϕ(τ, ξ), D2
xxϕ(τ, ξ) are all bounded on Γρ

�,ε.
Now let us recall from Remark 6.4 that the Bellman principle (Theorem 6.1)

can be extended to the case where the initial state (τ, ξ) is a pair of FB
T -measurable

random variables (with the convention that τ +h = (τ +h)∧T ). Thus, for any h > 0
and βs ≡ u ∈ U we can apply such a version of Theorem 6.1 and Itô’s formula to get
the following: on the set Γρ

�,ε,

0 ≤ 1

h
E
{
Ṽ (τ + h, F τ,ξ,β

τ+h ) − Ṽ (τ, ξ)
∣∣∣Gτ

}
≤ 1

h
E
{
ϕ(τ + h, F τ,ξ,β

τ+h ) − ϕ(τ, ξ)
∣∣∣Gτ

}
=

1

h
E

{∫ τ+h

τ

[
∂t + L̃s,F τ,ξ,β

s ,u

]
ϕ(s, F τ,ξ,β

s )ds

∣∣∣∣∣Gτ

}
(7.4)

≤
[
∂t + L̃τ,ξ,u

]
ϕ(τ, ξ) + rτ,ξ(h),

where

rτ,ξ(h)
�
= E

{
sup

s∈[τ,τ+h]

∣∣∣ [∂t + L̃s,F τ,ξ,β
s ,u

]
ϕ(s, F τ,ξ,β

s ) −
[
∂t + L̃τ,ξ,u

]
ϕ(τ, ξ)

∣∣∣∣∣∣∣∣Gτ

}
.

Note that Γρ
�,ε ⊂ {τ� = T}, and applying Lemma 3.1 and 3.2(ii) we have, on the set

Γρ
�,ε,

E

{
sup

s∈[τ,T ]

|(∂t + L̃s,F τ,ξ,β
s ,u)ϕ(s, F τ,ξ,β

s )

}
≤ C

(
1 + E

{
sup

s∈[τ,T ]

(|σ̃(s, F τ,ξ,β
s , u)|2 + |̃b(s, F τ,ξ,β

s , u)|)
}

≤ C�2
(
1 + E

{
sup

s∈[τ,T ]

|F τ,ξ,β
s |2

})
< ∞.

Thus, applying the dominated convergence theorem we see that limh ↓ 0 rτ,ξ(h) = 0,
in probability, on the set Γρ

�,ε, and (7.4) leads to

essinf
u∈U

[
∂t + L̃τ,ξ,u

]
ϕ(τ, ξ) ≥ 0, P -a.s. on the set Γρ

�,ε.

Therefore, first letting ρ → 0, then ε → 0, and then � → ∞, we obtain that

− essinf
u∈U

[
∂t + L̃τ,ξ,u

]
ϕ(τ, ξ) ≤ 0, P -a.s. on Γ.

In other words, Ṽ is a stochastic subsolution.
The proof that Ṽ is also a supersolution is a little more involved. We again fix

τ ∈ L0
FB

T

(Ω; [0, T ]), ξ ∈ L2
FB

T

(Ω; Rn) and ϕ ∈ C1,2

FB
T

([0, T ] × R
n). Also, for any ε > 0,

� > 0, ρ > 0, we again find Γρ
�,ε that satisfies (i)–(iii) before, with “max” being

replaced by “min.”
To derive the desired inequality, we argue slightly differently. First we mod-

ify Lemma 6.3 to obtain a sequence {βk} ⊂ Ã such that (6.14) holds for the FB
T -

measurable pair (τ, ξ) and 0 < h � 1, that is,

Ṽ (τ, ξ) = lim
k→∞

↓E
{
Ṽ (τ + h, F τ,ξ,βk

τ+h )
∣∣∣Gτ

}
, P -a.s.
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2252 RAINER BUCKDAHN AND JIN MA

Here we note that the convention τ + h = (τ + h) ∧ T is used again and that the
sequence {βk} may depend on h. Let us denote, for fixed h > 0 and each k ≥ 1,

Ak
h

�
=
{
ω : E

{
Ṽ (τ + h, F τ,ξ,βk

τ+h )
∣∣∣Gτ

}
(ω) − Ṽ (τ, ξ, ω) ≤ h2

}
.

Then by definition of {βk} we have limk→∞ P{Ω \ Ak
h} = 0. Since P (Γρ

�,e) > 0, we

must also have limk→∞ P{Ak
h ∩ Γρ

�,ε} = P (Γρ
�,e) > 0.

Now, using the definition of ϕ and applying Itô’s formula, one has, P -a.s. on the
set Ak

h ∩ Γρ
�,ε,

h ≥ 1

h
E
{
Ṽ (τ + h, F τ,ξ,βk

τ+h ) − Ṽ (τ, ξ)
∣∣∣Gτ

}
≥ 1

h
E
{
ϕ(τ + h, F τ,ξ,βk

τ+h ) − ϕ(τ, ξ)
∣∣∣Gτ

}
=

1

h
E

{∫ τ+h

τ

(
∂t + L̃

s,F τ,ξ,βk
s ,βk

)
ϕ(s, F τ,ξ,βk

s )ds

∣∣∣∣∣Gτ

}
(7.5)

≥ essinf
u∈U

[
∂t + L̃τ,ξ,u

]
ϕ(τ, ξ) − r̃τ,ξ(h),

where

r̃τ,ξ(h)
�
= sup

k≥1
E

{
sup

s∈[τ,τ+h]

∣∣∣[∂t+L̃
s,F τ,ξ,βk

s ,βk
s

]
ϕ(s, F τ,ξ,βk

s )−
[
∂t+L̃τ,ξ,βk

s

]
ϕ(τ, ξ)

∣∣∣∣∣∣∣∣Gτ

}
.

Let us now denote Ψ = (∂tϕ,Dxϕ,D
2
xxϕ) and for fixed (τ, ξ),

Gk
τ,ξ(s)

�
= |σ̃σ̃T (s, ξ, βk

s ) − σ̃σ̃T (τ, ξ, βk
s )| + |̃b(s, ξ, βk

s ) − b̃(τ, ξ, βk
s )|, s ∈ [0, T ].

Clearly, Ψ is bounded and continuous on Γρ
�,ε. Furthermore, a tedious but straight-

forward argument using Lemmas 3.1 and 5.2 ((5.7) in particular) and the Chebyshev
inequality, one can show that for any h > 0, k ≥ 1, and δ > 0, there exists a constant
C�,ε,ρ > 0 such that, P -a.s., on Γρ

�,ε, it holds that

E

{
sup

s∈[τ,τ+h]

[
∂t + L̃

s,F τ,ξ,βk
s ,βk

s

]
ϕ(s, F τ,ξ,βk

s ) −
[
∂t + L̃τ,ξ,βk

s

]
ϕ(τ, ξ)

∣∣∣Gτ

}

≤ C�,ε,ρ

(
1+

1

δ2

)(
1+|ξ|4

)⎧⎨⎩ sup
s∈[τ,τ+h],

|x|≤δ

|Ψ(s, ξ + x)−Ψ(τ, ξ)| + sup
τ≤s≤τ+h

E{Gk
τ,ξ(s)|Gτ}

⎫⎬⎭ .

Consequently, for all h > 0, δ > 0, it holds, P -a.s. on Γρ
�,ε that

r̃τ,ξ(h) ≤ C�,ερ

(
1 +

1

δ2

)
(1 + |ξ|4)

×

⎧⎨⎩ sup
s∈[τ,τ+h],

|x|≤δ

|Ψ(s, ξ + x) − Ψ(τ, ξ)|
}

+ sup
s∈[τ,τ+h]

k≥1

E{Gk
τ,ξ(s)|Gτ}

⎫⎬⎭ .

Now from the definition of σ̃ and b̃ ((3.6) and (3.7)) and the assumption (H1) we
see that Gk

τ,ξ(s) is continuous in s, uniformly in k. Thus applying the dominated
convergence theorem we have

lim
h ↓ 0

sup
s∈[τ,τ+h],k≥1

E{Gk
τ,ξ(s)|Gτ} = 0, P -a.s.
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PATHWISE STOCHASTIC CONTROL PROBLEMS 2253

It then follows that r̃τ,ξ(h) → 0, P -a.s. on Γρ
�,ε as h ↓ 0. In other words, we obtain

essinf
u∈U

[
∂t + L̃τ,ξ,u

]
ϕ(τ, ξ) ≤ 0, P -a.s. on Γρ

�,ε.

Again, first sending ρ → 0, then ε → 0, and then � → ∞, we obtain that

− essinf
u∈U

[
∂t + L̃τ,ξ,u

]
ϕ(τ, ξ) ≥ 0, P -a.s.

That is, Ṽ is a stochastic viscosity supersolution of (7.1).
To conclude, note that the uniqueness of the viscosity solution can be proved by

following the almost identical idea of Buckdahn and Ma [3], with even easier arguments
since in the present case there is no “martingale” term in the degenerated stochastic
PDF (7.1). The proof is complete.

7.2. HJB equation for the original control problem. We now turn to our
last objective of this paper: to derive the stochastic HJB equation for the original value
function V . The idea is straightforward, that is, we shall apply the “inverse” Doss–
Sussmann transformation and see what will happen to the stochastic HJB equation
(7.1). We first observe the following simple fact: if ϕ ∈ C1,2

FB
T

([0, T ] ×Rn), then by

the Itô–Ventzell formula (cf., e.g., Kunita [11]), one has (recall the process {ζst } from
(3.5))

d[ϕ(t, ζ0
t (x))] =

∂ϕ

∂t
(t, ζ0

t (x))dt + (Dxϕ)(t, ζ0
t (x)) ◦ dζ0

t (x)

=
∂ϕ

∂t
(t, ζ0

t (x))dt− (Dxϕ) (t, ζ0
t (x))Dzζ

0
t (x)θ(x) ◦ dBt(7.6)

=
∂ϕ

∂t
(t, ζ0

t (x))dt−Dx[ϕ(t, ζ0
t (x))]θ(x) ◦ dBt.

Now recall from Theorem 4.2(i) that Ṽ (s, x) = V (s, η0
s(x)), and hence V (s, x) =

Ṽ (s, ζ0
s (x)). Thus if Ṽ ∈ C1,2

FB
T

, then in light of (7.6) we should have

dV (s, x) = d[Ṽ (s, ζ0
s (x))] =

∂Ṽ

∂t
(t, ζ0

s (x))ds−Dx[Ṽ (t, ζ0
s (x))]θ(x) ◦ dBs.(7.7)

Combining (7.1) for Ṽ and relation (7.7) we can then formally write down the stochas-
tic HJB equation for the original value function V :⎧⎪⎨⎪⎩

dV (s, x) + essinf
u∈U

[Lx,uV ](s, x)ds + DxV (s, x)θ(x) ◦ dBs = 0,

(s, x) ∈ [0, T ) × R
n,

V (T, x) = H(x), x ∈ R
n.

(7.8)

Again, we remark that this stochastic PDE is a “terminal value” problem; there-
fore it would become a complicated issue if we were to seek an {FB

t }-adapted solution.
However, the following modification of the definition of stochastic viscosity solution
for the stochastic PDE (7.8) given in [2, 3, 4] proves sufficient for our purpose.

Definition 7.3. A random field v ∈ CFB
T

([0, T ] × R
n) is said to be a (stochastic)

viscosity subsolution (resp., supersolution) of equation (7.8) if
(i) v(T, x) ≤ (resp., ≥) H(x) for all x ∈ R

n;
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2254 RAINER BUCKDAHN AND JIN MA

(ii) for any (τ, ξ) ∈ L2(FB
T ; [0, T ] × R

n), and ϕ ∈ C1,2

FB
T

([0, T ] × R
n), it holds that

−∂ϕ

∂t

(
τ, ζ0

s (ξ)
)
≤ (resp., ≥) essinf

u∈U
Lτ,ξ,u

[
ϕ(τ, ζ0

τ (·))
]
(ξ),

P -a.s. on the set

Γϕ
τ,ξ

�
= {ω : (τ(ω), ξ(ω)) ∈ argmaxloc[v(s, x, ω)−ϕ(s, ζs0(x), ω)] (resp., argminloc)}

We have the following theorem.
Theorem 7.4. Assume (H1)–(H3). Then the value function V is the unique

stochastic viscosity solution of (7.8).
Proof. Having proved Theorem 7.2, we need only prove the following equivalence

relation: a random field v ∈ CFB
T

([0, T ] × R
n) is a stochastic viscosity subsolution

(resp., supersolution) of the stochastic HJB equation (7.8) if and only if

ṽ(t.x) = v(t, η0
t (x)), (t, x) ∈ [0, T ] × R

n,

is a stochastic viscosity subsolution (supersolution) of the (random) HJB equation
(7.1).

To this end, we observe that for any given (τ, ξ) ∈ L2(FB
T ; [0, T ] × R

n) and

ϕ ∈ C1,2

FB
T

([0, T ] × R
n},

Γϕ
τ,ξ = {ω : (τ(ω), ξ(ω)) ∈ argmaxloc[v(s, x, ω) − ϕ(s, ζ0

s (x), ω)]}
= {ω : (τ(ω), ζ0

τ (ξ)(ω)) ∈ argmaxloc[v(s, η
0
s(x), ω) − ϕ(s, x, ω)]}

= {ω : (τ(ω), ζ0
τ (ξ)(ω)) ∈ argmaxloc[ṽ(s, x, ω) − ϕ(s, x, ω)]}.

On the other hand, it is easy to check that

Lx,u[ϕ(t, ζ0
t (·))](x) = (L̃t,ζ0

t (x),uϕ)(t, ζ0
t (x)) ∀(t, x, u) ∈ [0, T ] × R

n × U ;

we see that ṽ is a viscosity subsolution of equation (7.1) if and only if for all (τ, ξ) ∈
L2(FB

T ; [0, T ] × R
n) and ϕ ∈ C1,2

FB
T

([0, T ] × R
n}, it holds, P -a.s. on the set Γϕ

τ,ξ, that

−
[(

∂

∂t
+ essinf

u∈U
L̃τ,ζ0

τ (ξ),u

)
ϕ

]
(τ, ζ0

τ (ξ)) ≤ 0.

But this amounts to saying that for any such given (τ, ξ) and ϕ, it holds, P -a.s. on
Γϕ
τ,ξ, that

−∂ϕ

∂t
(τ, ζs0 (ξ)) ≤ essinf

u∈U
Lτ,ξ,u [ϕ (τ, ζτ0 (·))] (ξ) .

But by Definition 7.3 it shows exactly that v is a stochastic viscosity subsolution of
(7.8). The proof for the supersolutions is analogous. Thus the theorem follows from
Theorem 7.2.

8. Appendix (a counterexample). We give an example showing that the
original pathwise stochastic control problem does not possess any minimizing sequence
in A. Let us assume that n = 1, U = [0, 1], and (s, x) = (0, 0). Assume also that
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PATHWISE STOCHASTIC CONTROL PROBLEMS 2255

b(t, x, u) ≡ u, σ ≡ 0, and θ(x) ≡ x. Finally, let H(x) = |x − 1|. That is, the system
dynamics is {

dXα
t = αtdt + Xα

t ◦ dBt, t ∈ [0, T ],
Xα

0 = 0.

Furthermore, the Doss–Sussmann transformation is η0
t (z) = z+

∫ t

0
η0
r(z) ◦ dBr, which

can be solved explicitly as η0
t (z) = zeBt , t ∈ [0, T ]. Therefore, the “transformed”

coefficients are σ̃ ≡ 0 and b̃(t, z, u) =
[
Dzη

0
t (z)

]−1
b(η0

t (z), u) = e−Btu; and the
“transformed” system equation becomes

dF β
t = b̃(t, F β

t , βt)dt = e−Btβtdt, β ∈ Ã,

which can also be solved explicitly as F β
t =

∫ t

0
e−Brβrdr. Consequently we have

η0
T (F β

T ) =
∫ T

0
eBT−Brβrdr.

We can now easily check that, at (s, x) = (0, 0),

V (0, 0) = Ṽ (0, 0) = essinf
β∈Ã

E
{
|η0

T (F β
T ) − 1|

∣∣∣FB
T

}
=

[
1 −

∫ T

0

eBT−Brdr

]+

,

with a wider sense optimal control being

β∗
t =

⎧⎪⎪⎨⎪⎪⎩
(∫ T

0
eBT−Brdr

)−1

on
{∫ T

0
eBT−Brdr > 1

}
,

1 on
{∫ T

0
eBT−Brdr ≤ 1

}
.

We should note that such an optimal control is unique on the set {
∫ T

0
eBT−Brdr ≤ 1}.

On the other hand, we observe that if α ∈ A, then so is E[α], and by Jensen’s
inequality we have

J(0, 0;α) = E

{∣∣∣∣∣
∫ T

0

eBT−Brαrdr − 1

∣∣∣∣∣
∣∣∣∣∣FB

T

}
≥
∣∣∣∣∣
∫ T

0

eBT−BrE[αr]dr − 1

∣∣∣∣∣
= J(0, 0, E[α]) ≥ V (0, 0).

Now let us assume that there exists a minimizing sequence {αk}k≥1 ⊂ A. Then
it holds, P -a.s., that limk→∞ J(0, 0;αk) = V (0, 0). But the above argument shows
that

J(0, 0, E[αk]) =

∣∣∣∣∣
∫ T

0

eBT−BrE[αk
r ]dr − 1

∣∣∣∣∣ −→ V (0, 0) =

[
1 −

∫ T

0

eBT−Brdr

]+

(8.1)

as well. Since 0 ≤ E[αk
t ] ≤ 1 for all t, we see that on the set {

∫ t

0
eBT−Btdr ≤ 1} it

must hold that ∫ T

0

eBT−BrE[αk
r ]dr −→

∫ T

0

eBT−Brdr as k → ∞,

or, equivalently,
∫ T

0
eBT−Br [1 − E[αk

r ]]dr → 0, on {
∫ t

0
eBT−Btdr ≤ 1}. But again

notice that 0 ≤ E[αk
t ] ≤ 1, which implies that E[αk

· ] −→ 1, as k → ∞ in (Lebesgue)
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2256 RAINER BUCKDAHN AND JIN MA

measure, and consequently one must have∣∣∣∣∣
∫ T

0

eBT−BrE[αk
r ]dr − 1

∣∣∣∣∣ −→
∣∣∣∣∣
∫ T

0

eBT−Brdr − 1

∣∣∣∣∣ , P -a.s.

Since ∣∣∣∣∣
∫ T

0

eBT−Brdr − 1

∣∣∣∣∣ > V (0, 0) on

{∫ T

0

eBT−Brdr > 1

}
,

and P{
∫ T

0
eBT−Brdr > 1} > 0, we obtain that

lim
k→∞

J(0, 0, E[αk]) =

∣∣∣∣∣
∫ T

0

eBT−Brdr − 1

∣∣∣∣∣ > V (0, 0) on
{∫ T

0
eBT−Brdr > 1

}
.

This contradicts (8.1). Therefore such a minimizing sequence cannot exist.
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