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In this paper, we study a class of stochastic differential equations with additive noise that contains a frac-
tional Brownian motion (fBM) and a Poisson point process of class (QL). The differential equation of this
kind is motivated by the reserve processes in a general insurance model, in which the long term dependence
between the claim payment and the past history of liability becomes the main focus. We establish some
new fractional calculus on the fractional Wiener–Poisson space, from which we define the weak solution of
the SDE and prove its existence and uniqueness. Using an extended form of Krylov-type estimate for the
combined noise of fBM and compound Poisson, we prove the existence of the strong solution, along the
lines of Gyöngy and Pardoux (Probab. Theory Related Fields 94 (1993) 413–425). Our result in particular
extends the one by Mishura and Nualart (Statist. Probab. Lett. 70 (2004) 253–261).
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1. Introduction

In this paper, we are interested in the following stochastic differential equation (SDE):

Xt = x +
∫ t

0
b(s,Xs)ds + σBH

t − Lt , t ∈ [0, T ], (1.1)

where BH = {BH
t : t ≥ 0} is a fractional Brownian motion with Hurst parameter H ∈ (0,1),

defined on a given filtered probability space (�,F ,P;F), with F = {Ft : t ≥ 0} being a filtration
that satisfies the usual hypotheses (cf., e.g., [17]); and L = {Lt : t ≥ 0} is a Poisson point process
of class (QL), independent of BH . More precisely, we assume that L takes the form

Lt =
∫ t

0

∫
R

f (s, x)Np(ds,dx), t ≥ 0, (1.2)

where f is a deterministic function, and p is a stationary Poisson point process whose counting
measure Np is a Poisson random measure with Lévy measure ν (see Section 2 for more details).
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One of the motivations for our study is to consider a general reserve process of an insurance
company, perturbed by an additive noise that has long term dependency. A commonly seen per-
turbed reserve (or surplus) model is of the following form:

Ut = x + c(1 + ρ)t + εWt − Lt , t ∈ [0, T ]. (1.3)

Here x ≥ 0 denotes the initial surplus, c > 0 is the premium rate, ρ > 0 is the “safety” (or ex-
pense) loading, ε > 0 is the perturbation parameter, W = {Wt : t ≥ 0} is a Brownian motion,
which represents an additional uncertainty coming from either the aggregated claims or the pre-
mium income, Lt denotes cumulated claims up to time t , and finally, T > 0 is a fixed time hori-
zon. We refer the reader to the well-referred book [19], Chapter 13, and the references therein
for more explanations of such models.

In this paper, we are particularly interested in the case where the diffusion perturbation term
possesses long-range dependence. Such a phenomenon has been noted in insurance models based
on the observations that the claims often display long memories due to extreme weather, natural
disasters, and also noted in casualty insurance such as automobile third-party liability (cf. e.g.,
[3,5–7,10,13,14] and references therein). A reasonable refinement that reflects the long memory
but also retains the original features of the aggregated claims is to assume that the Brownian
motion W in (1.3) is replaced by a fractional Brownian motion BH , for a certain Hurst parameter
H ∈ (0,1). In fact, if we assume further that in addition to the premium income, the company
also receives interest of its reserves at time with interest rate r > 0, and that the safety loading ρ

also depends on the current reserve value, one can argue that the reserve process X should satisfy
an SDE of the form of (1.1) with

b(t, x) = rx + c
(
1 + ρ(t, x)

)
, (t, x) ∈ [0, T ] ×R.

The main purpose of this paper is to find the minimum conditions on the function b under
which the SDE (1.1) is well posed, in both weak and strong sense. In the case when L ≡ 0, the
SDE (1.1) becomes one driven by an (additive) fBM and the similar issues were investigated
by Nualart and Ouknine [16] and Hu, Nualart and Song [9]. One of the main results is that,
unlike the ordinary differential equation case, the well-posedness of the SDE can be established
under only some integrability conditions, and in particular, no Lipschitz continuity is required
for uniqueness. The main idea is to use a Krylov-type estimate to obtain a comparison theorem,
whence the pathwise uniqueness. Such a scheme was utilized by Gyöngy and Pardoux [8] when
studying the quasi-linear SPDEs, and has been a frequently used tool to treat the SDEs with non-
Lipschitz coefficients, as an alternative to the well-known Yamada–Watanabe theorem. In fact,
this method is even more crucial in the current case, as the usual Yamada–Watanabe theorem
type of argument does not seem to work due to the lack of independent increment property of an
fBM.

The main difficulty in the study of SDE (1.1), however, is the presence of the jumps. In the
case when H > 1/2, Mishura and Nualart [15] studied the existence of weak solution of SDE
(1.1) with L ≡ 0, and the coefficient b is allowed to have finitely many discontinuities in its
spatial variable x. By a simple transformation (e.g., setting X̃ = X − L), our result in a sense
extends their result to a more general case in which b possesses countably many discontinuities
in x. More importantly, we remove the extra assumption that H < (1 + √

5)/4 in [15] when the
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number of jumps is finite. To our best knowledge, the fractional calculus applying to SDE driven
by both fBM and Poisson point process is new.

The rest of the paper is organized as follows. In Section 2, we review briefly the basics on
fBM and some fractional calculus that is needed in this paper. In Section 3, we prove a Girsanov
theorem and in Section 4 we apply it to study the existence of the weak solution. In Section 5,
we address the uniqueness issue, in both weak and strong forms, and in Section 6 we study the
existence of the strong solution.

2. Preliminaries

In this section, we review some of the basic concepts in fractional calculus and introduce the
notion of (canonical) fractional Wiener–Poisson spaces which will be the basis of our study.
Throughout this paper, we denote E (also E1, . . .) for a generic Euclidean space, whose inner
products and norms will be denoted as the same ones 〈·, ·〉 and | · |, respectively; and denote ‖ · ‖
to be the norm of a generic Banach space. Let U ⊂ E be a measurable subset. We shall denote by
Lp(U;E1), 0 ≤ p < ∞, the space of all E1-valued measurable function φ(·) defined on U such
that

∫
U |φ(t)|p dt < ∞ (p = 0 means merely measurable). For each n ∈ N, Cn(U;E1) denotes

all the E1-valued, nth continuously differentiable functions on U , with the usual sup-norm.

2.1. Fractional calculus

We begin with a brief review of the deterministic fractional calculus. We refer to the book Samko,
Kilbas and Marichev [20] for an exhaustive survey on the subject. We first recall some basic
definitions.

Let −∞ < a < b < ∞, and ϕ ∈ L1([a, b]). The integrals

(
Iα
a+ϕ

)
(x) = 1


(α)

∫ x

a

ϕ(t)

(x − t)1−α
dt, x > a, (2.1)

(
Iα
b−ϕ

)
(x) = 1


(α)

∫ b

x

ϕ(t)

(t − x)1−α
dt, x < b, (2.2)

are called fractional integrals of order α, where 
(·) is the Gamma-function and α ∈ [0,∞).
Both Iα

a+ and Iα
b− are the so-called Riemann–Liouville fractional integrals, and they are of-

ten called “left” and “right” fractional integrals, respectively. We shall denote the image of
Lp([a, b]) under the fractional integration operator Iα

a+ (resp. Iα
b−) by Iα

a+(Lp([a, b])) (resp.
Iα
b−(Lp([a, b]))). Moreover, in what follows we shall often use left-fractional integration, which

has the following properties:[
Iα
a+I

β
a+ϕ

]
(·) = [

I
α+β
a+ ϕ

]
(·),

(2.3)
tαI

β

0+t−α−βIα
0+tβϕ(·) = Iα

0+I
β

0+ϕ(·) = I
α+β

0+ ϕ(·), α > 0, β > 0.

We note that (2.3) holds for a.e. x ∈ [a, b]. If ϕ ∈ C([a, b]), then (2.3) holds for all x ∈ [a, b].
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The (Riemann–Liouville) fractional derivatives are defined, naturally, as the inverse operator
of the fractional integration. To wit, for any function f ∈ L0([a, b]), we define(

Dα
a+f

)
(x) = 1


(1 − α)

d

dx

∫ x

a

f (t)

(x − t)α
dt, (2.4)

(
Dα

b−f
)
(x) = − 1


(1 − α)

d

dx

∫ b

x

f (t)

(t − x)α
dt, (2.5)

whenever they exist. We call Dα
a+f (resp. Dα

b−f ) the left (resp. right) fractional derivative of
order α, 0 < α < 1. We note that if f (t) ∈C

1([a, b]), then it is easy to verify that (see [20], page
224)

Dα
a+f = f (x)


(1 − α)(x − a)α
+ α


(1 − α)

∫ x

a

f (x) − f (t)

(x − t)1+α
dt

�= Dα
a+f. (2.6)

The derivative Dα
a+f is called Marchaud fractional derivative. We should note that the right-hand

side of (2.6) is not only well-defined for differentiable functions, but for example, for function
f (x) that is β-Hölder continuous, with β > α. For more general functions, the fractional Mar-
chaud derivative (2.6) should be understood as (cf. [20])

Dα
a+f

�= lim
ε→0

Dα
a+,εf, (2.7)

where the limit is in the space Lp , and

[
Dα

a+,εf
]
(x)

�= f (x)


(1 − α)(x − a)α
+ α


(1 − α)

∫ x−ε

a

f (x) − f (t)

(x − t)1+α
dt. (2.8)

We collect some of the important properties of the fractional integral and derivative in the
follow theorem. The proofs can be found in [20].

Theorem 2.1.

(i) For any ϕ ∈ L1([a, b]) and 0 < α < 1, it holds that

Dα
a+Iα

a+ϕ = lim
ε→0

Dα
a+,εI

α
a+ϕ =Dα

a+Iα
a+ϕ = ϕ. (2.9)

(ii) For any f ∈ Iα
a+(L1([a, b])) and α > 0, it holds that

Iα
a+Dα

a+f = Iα
a+Dα

a+f = f. (2.10)

(iii) Let ψ ∈ Lp([0, b]), b > 0, 1 < p < ∞. Then ψ has the representation ψ(x) =
Iα

0+xμf (x), a.e. x ∈ [0, b], for some f ∈ Lp([0, b]), α > 0, and p(1 + μ) > 1 if and
only if ψ takes one of the following two forms:

(a) ψ(x) = xμ[Iα
0+g](x), a.e. x ∈ [0, b], g ∈ Lp([0, b]);

(b) ψ(x) = xμ−ε[Iα
0+xεg1](x), a.e. x ∈ [0, b], g1 ∈ Lp([0, b]), p(1 + ε) > 1.
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2.2. Fractional Wiener–Poisson space

We recall that a stochastic process BH = {BH
t , t ∈ [0, T ]}, defined on a filtered probability space

(�,F ,P;F = {Ft }t≥0), is called an F-fractional Brownian motion (fBM) with Hurst parameter
H ∈ (0,1) if

(i) BH is a Gaussian process with continuous paths and BH
0 = 0;

(ii) for each t ≥ 0, BH
t is Ft -measurable and EBH

t = 0, for each t ≥ 0;
(iii) for all s, t ≥ 0, it holds that

E
(
BH

t BH
s

)= RH (t, s) = 1
2

(
t2H + s2H − |t − s|2H

)
. (2.11)

It follows from (2.11) that E|BH
t − BH

s |2 = |t − s|2H , that is, BH has stationary incre-
ments. Furthermore, by Kolmogorov’s continuity criterion, BH

t has α-Hölder continuous paths
for all α < H . In particular, if H = 1/2, then BH becomes a standard Brownian motion; and
if H = 1, then {B1

t ; t ≥ 0} has the same law as {ξ t; t ≥ 0}, where ξ is an N(0,1) random vari-
able.

In what follows, we shall consider the canonical space with respect to an fBM or the
fractional Wiener space. Let �1 = C0([0, T ]), the space of all continuous functions, null at

zero, and endowed with the usual sup-norm. Let F1
t

�= σ {ω(· ∧ t)|ω ∈ �1}, t ≥ 0, F1 �= F1
T ,

F
1 = {F1

t , t ∈ [0, T ]} and P
BH

is the probability measure on (�1,F1) under which the canoni-
cal process

BH
t (ω)

�= ω(t), (t,ω) ∈ [0, T ] × �1

is an fBM of Hurst parameter H .
For any H ∈ (0,1), we define

RH (t, s) =
∫ t∧s

0
KH (t, r)KH (s, r)dr, (2.12)

where KH is the square integrable kernel given by

KH (t, s)
�= 


(
H + 1

2

)−1

(t − s)H−1/2F

(
H − 1

2
,

1

2
− H,H + 1

2
,1 − t

s

)
, (2.13)

and F(a, b, c, z) is the Gaussian hypergeometric function:

F(a, b, c, z) =
∞∑

k=0

a(k)b(k)

c(k)k! zk, a, b ∈ R, |z| < 1, c �= 0,−1, . . . ,

where a(k), b(k), c(k) are the Pochhammer symbol for the rising factorial: x(0) = 1, x(k) =

(x+k)

(x)

.
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Now, let E be the set of all step functions on [0, T ], and let H be the so-called Reproducing
Kernel Hilbert space, defined as the closure of E with respect to the scalar product

〈I[0,t], I[0,s]〉H = RH (t, s), s, t ∈ [0, T ]. (2.14)

For any H ∈ (0,1), we define a linear operator KH :L2([0, T ]) → L2([0, T ]) by

[KH f ](t) �=
∫ t

0
KH (t, s)f (s)ds, f ∈ L2([0, T ]), t ∈ [0, T ]. (2.15)

Also, for any f ∈ L0([0, T ]) and β > 0, we shall denote

[[f ]]β(t)
�= tβf (t), t ∈ [0, T ], (2.16)

and I
α,β

0+ (Lp([0, T ])) = {f ∈ L0([0, T ]) : [[f ]]β ∈ Iα
0+(Lp([0, T ]))}. Then we have the following

result (cf., e.g., [2], Theorem 2.1, or [20], Theorem 10.4).

Theorem 2.2. For each H ∈ (0,1), the operator KH is an isomorphism between L2([0, T ]) and
I

H+1/2
0+ (L2([0, T ])). Furthermore, it holds that

KH f =
{

I 2H
0+
[[
I

1/2−H

0+ [[f ]]H−1/2
]]1/2−H

, H < 1/2,

I 1
0+
[[
I

H−1/2
0+ [[f ]]1/2−H

]]H−1/2
, H > 1/2.

(2.17)

From (2.17) it is easy to check that the inverse operator K−1
H on an absolutely continuous

function h satisfies

K−1
H h =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[[
I

1/2−H

0+
[[
h′]]1/2−H ]]H−1/2

,

if h′ ∈ L1
([0, T ]), and H < 1/2,[[

D
H−1/2
0+

[[
h′]]1/2−H ]]H−1/2

,

if h′ ∈ I
H−1/2,1/2−H

0+
(
L1
([0, T ]))∩ L1

([0, T ]), and H > 1/2,

(2.18)

where h′ is the derivative of h (cf., e.g., [20], Theorem 10.6, and [16]).
Next, let K∗

H be the adjoint of KH on L2([0, T ]), that is, for any f ∈ E , g ∈ L2([0, T ]),∫ T

0

[
K∗

H f
]
(t)g(t)dt =

∫ T

0
f (t)[KH g](t)dt.

Then, it can be shown by Fubini and integration by parts that for any f ∈ E ,

[
K∗

H f
]
(t) = KH (T , t)ϕ(t) +

∫ T

t

(
f (s) − f (t)

)∂KH

∂s
(s, t)ds, t ∈ [0, T ].

In particular, for ϕ,ψ ∈ E , we have (see, e.g., [1])〈
K∗

H ϕ,K∗
H ψ

〉
L2((0,T ))

= 〈ϕ,ψ〉H.
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Consequently, the operator K∗
H is an isometry between the Hilbert spaces H and L2([0, T ]).

Furthermore, it can be shown that the process W = {Wt, t ∈ [0, T ]} defined by

Wt = BH
((

K∗
H

)−1
(I[0,t])

)
(2.19)

is a Wiener process, and the process BH has an integral representation of the form

BH
t =

∫ t

0
KH (t, s)dWs, t ∈ [0, T ]. (2.20)

We now turn our attention to the Poisson part. We first consider a Poisson random mea-
sure N(·, ·) on [0, T ] × R, defined on a given probability space (�,F,P), with mean measure

N̂(dt,dx) = dtν(dx), where ν is the Lévy measure, a σ -finite measure on R
∗ �=R\{0} satisfying

the standard integrability condition:∫
R∗

(
1 ∧ |x|2)ν(dx) < +∞.

In this paper, we shall be interested in a Poisson point process of class (QL), namely a
point process whose counting measure, defined by NL((0, t] × A) = #{s ∈ (0, t] :�Ls ∈ A} =∑

0<s≤t 1{�Ls∈A}, t ≥ 0, A ∈ B(R∗), has a deterministic and continuous compensator (cf. [11]).
In light of the representation theorem [11], Theorem II-7.4, we shall assume without loss of
generality that the process L takes the following form:

Lt =
∫ t

0

∫
R∗

f (s, x)N(ds,dx), t ≥ 0, (2.21)

where f ∈ L1(dt × dν) is a deterministic function. Then, the counting measure NL(dt,dx) can
be written as

NL

(
(0, t] × A

)=
∫ t

0

∫
R∗

1A

(
f (s, x)

)
N(ds,dx), (2.22)

and its compensator is therefore N̂L(dt,dx) = ENL(dt,dx) = f (t, x)dtν(dx). Clearly, if
f (s, x) ≡ g(x), then L is a stationary Poisson point process. In particular, if we assume that
g(x) ≡ x and ν(dx) = λF(dx), where F(·) is a probability measure on R, then L is a compound
Poisson process with jump intensity λ and jump size distribution F .

Throughout this paper, we shall assume that

E

{∫ T

0
|L|2t dt + eβ|L̃|T

}
< ∞, ∀β > 0, (2.23)

where |L|t �=∑
0≤s≤t |�Ls | and |L̃|t �=∑

0≤s≤t (|�Ls | ∨ 1), t ∈ [0, T ].

Remark 2.1. We note that (2.23) contains in particular the compound Poisson case. Indeed, if
Lt =∑Nt

i=1 Ui , where N is a standard Poisson process with intensity λ > 0, and {Ui} are i.i.d.
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random variables with finite moment generating function M|U1|(t)
�= E{et |U1|} < ∞, ∀t ≥ 0.

Then we can easily calculate that

E

{∫ T

0
|L|2t dt + eβ|L̃|T

}

= (λE|U1|)2T 3

3
+ λE{|U1|2}T 2

2
+

∞∑
k=0

E
{
eβ
∑k

i=1(|Ui |∨1)|NT = k
} (λT )k

k! e−λT (2.24)

= (λE|U1|)2T 3

3
+ λE{|U1|2}T 2

2
+ eλT (E[eβ(|U1|∨1)]−1) < ∞.

We can also consider the canonical space for a given Poisson point process of class (QL). Let
�2 = D([0, T ]), the space of all real-valued, càdlàg (right-continuous with left limit) functions,

endowed with the Skorohod topology, and let F2
t

�= σ {ω(· ∧ t)|ω ∈ �2}, t ≥ 0, F2 �= F2
T , F2 =

{F2
t , t ∈ [0, T ]}. Let PL be the law of the process L on D([0, T ]). Then, the coordinate process,

by a slight abuse of notations,

Lt(ω) = ω(t), (t,ω) ∈ [0, T ] × �2,

is a Poisson point process, defined on (�2,F2,PL), whose compensated counting measure is
N̂L(dt,dz) = E[NL(dt,dz)] = f (t, z)ν(dz)dt , where ν is a Lévy measure and (2.23) holds.

Combining the discussions above, we now consider two canonical spaces (�1,F1,PBH ;F1)

and (�2,F2,PL;F2), where �1 = C([0, T ]) and �2 = D([0, T ]). We define the fractional
Wiener–Poisson space to simply be the product space:

�
�= �1 × �2; F �=F1 ⊗F2;

(2.25)
P

�= P
BH ⊗ P

L; Ft
�=F1

t ⊗F2
t , t ∈ [0, T ].

We write the element of � as ω = (ω1,ω2) ∈ �. Then, the two marginal coordinate processes
defined by

BH
t (ω)

�= ω1(t), Lt (ω)
�= ω2(t), (t,ω) × [0, T ] × �, (2.26)

will be the fractional Brownian motion and Poisson point process, respectively, with the given
laws. Note that under our assumptions BH and L are always independent (cf., e.g., [11], Theorem
II-6.3). Also, we can assume without loss of generality that the filtration F is right continuous,
and is augmented by all the P-null sets so that it satisfies the usual hypotheses.

To end this section, we recall that if X is a metric space, X is a X -valued Gaussian random
variable, and g(·) is a seminorm on X , such that and P(g(X) < ∞) > 0. Then it follows from
the Fernique Theorem (cf. [4]) that there exists ε > 0 such that E[exp(λg2(X))] < ∞, for all
0 < λ < ε. It is then easy to see that for all 0 < ρ < 2, one has

E
[
exp

(
λgρ(X)

)]
< ∞, ∀λ > 0. (2.27)
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This fact is useful in our analysis, similar to, for example, [16].

3. The problem

In this paper, we are interested in the following stochastic differential equation with additive
noise:

Xt = x +
∫ t

0
b(s,Xs)ds + BH

t − Lt , t ∈ [0, T ], (3.1)

where b is a Borel function on [0, T ] × R, BH is an fBM with Hurst parameter H ∈ (0,1)

and L is a Poisson point process of class (QL), both defined on some filtered probability space
(�,F ,P;F). We assume that BH and L are both F-adapted, and they are independent. We often

consider the filtration generated by (BH ,L), denoted by F
(BH ,L) = {F (BH ,L)

t : t ≥ 0} where

F (BH ,L)
t

�= σ
{(

BH
s ,Ls

)
: 0 ≤ s ≤ t

}
, t ≥ 0, (3.2)

and we assume that F(BH ,L) is augmented by all the P-null sets so that it satisfies the usual
hypotheses. As usual, we have the following definitions of solutions to the SDE (3.1).

Definition 3.1. Let (�,F,P) be a complete probability space on which are defined an fBM BH ,
H ∈ (0,1), and a Poisson point process L, independent of BH and of class (QL). A process X

defined on (�,F ,P) is called a strong solution to (3.1) if

(i) X is F(BH ,L)-adapted;
(ii) X satisfies (3.1), P-almost surely.

Definition 3.2. A seven-tuple (�,F ,P ,F,X,BH ,L) is called a weak solution to (3.1) if

(i) (�,F ,P ;F) is a filtered probability space;
(ii) BH is an F-fBM, and L is an F-Poisson point process of class (QL);

(iii) (X,BH ,L) satisfies (3.1), P-almost surely.

For simplicity, we often say that (X,BH ,L) (or simply X) is a weak solution to (3.1) without
specifying the associated probability space (�,F ,P;F) when the context is clear. It is readily
seen from (3.1) that if (X,BH ,L) is a weak solution, then F

(BH ,L) ⊆ F
X . The well-known exam-

ple of Tanaka indicates that the converse is not necessarily true, even in the case when H = 1/2
and L ≡ 0.

Throughout this paper, we shall make use of the following standing assumptions:

Assumption 3.1. The function b : [0, T ] × R �→ R satisfies the following assumptions for H ∈
(0,1/2) and H ∈ (1/2,1), respectively:
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(i) If H < 1/2, then for some 0 < ρ ≤ 1 and K > 0, it holds that∣∣b(t, x)
∣∣≤ K

(
1 + |x|ρ), ∀(t, x) ∈ [0, T ] ×R. (3.3)

(ii) If H > 1/2, then b is Hölder-γ continuous in t and Hölder-α in x, where γ > H − 1/2,
and 1 − 1

2H
< α < 1. That is, for some K > 0,∣∣b(t, x) − b(s, y)

∣∣≤ K
(|x − y|α + |t − s|γ ), ∀(t, x), (s, y) ∈ [0, T ] ×R. (3.4)

Remark 3.1. (1) We note that in the case when H < 1/2 we do not require any regularity on
the coefficient b. To discuss the well-posedness under such a weak condition on the coefficient,
is only possible due to the presence of the “noises” BH and L (see also [16] for the case when
L ≡ 0), and it is quite different from the theory of ordinary differential equations, for example.

(2) Compared to [16], we require that b grows only sub-linearly in the case H < 1/2. This is
due to the possible infinite jumps of L. In fact, Remark 4.1 below shows that the problem could
be ill-posed if ρ > 1/2. Such a constraint can be removed when L has only finitely many jumps.

We end this section by making the following observation. Denote X̃ = X + L, and

b̃(t, x,ω)
�= b

(
t, x − Lt(ω)

)
, (t, x,ω) ∈ [0, T ] ×R× �.

Then the SDE (3.1) becomes

X̃t = x +
∫ t

0
b̃(s, X̃s)ds + BH

t , t ∈ [0, T ]. (3.5)

Thus the problem is reduced to the case studied by [16], except that the coefficient b̃ is now
random. However, if we consider the problem on the canonical Wiener–Poisson space in which
(BH

t (ω),Lt (ω)) = (ω1(t),ω2(t)), t ∈ [0, T ], then we can formally consider the SDE (3.5) as

one on (�1,F1,PBH
):

X̃t = x +
∫ t

0
bω2

(s, X̃s)ds + BH
t , t ∈ [0, T ], (3.6)

where bω2
(t, x)

�= b(t, x − ω2(t)) = b̃(t, x,ω2), for each fixed ω2 ∈ �2. In other words, we
can apply the result of [16] to obtain the well-posedness for each ω2 ∈ �2, provided that the
coefficient bω2

satisfies the assumptions in [16]. We should note, however, that such a seemingly
simple argument is actually rather difficult to implement, especially for the weak solution case,
due to some subtle measurability issues caused by the lack of regularity of b in the case H < 1/2,
and the discontinuity of the paths of L (whence b̃ in the temporal variable t ), in the case H > 1/2.

4. Existence of a weak solution (H < 1/2)

In this section, we shall validate the argument presented at the end of the last section, in the case
H < 1/2. Namely, we shall prove that the SDE (3.5) possesses a weak solution, along the lines
of the arguments of [16].
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Recall from Assumption 3.1 that in the case H < 1/2 the function b satisfies (3.3). Consider
the canonical Wiener–Poisson space (�,F ,P), where P = P

BH ⊗ P
L, with a given Hurst pa-

rameter H ∈ (0,1/2), a Lévy measure ν(dz), and a deterministic function f : [0, T ]×R �→R so
that N̂L(dt,dz) = E[NL(dt,dz)] = f (t, z)ν(dz)dt satisfies (2.23). Let (BH ,L) be the canonical

process. Define ut
�= −b(t,BH

t − Lt + x) and

vt
�= −K−1

H

(∫ ·

0
b
(
r,BH

r − Lr + x
)

dr

)
(t) = K−1

H

(∫ ·

0
ur dr

)
(t), t ∈ [0, T ], (4.1)

where K−1
H is defined by (2.18). We have the following lemma.

Lemma 4.1. Assume H < 1/2 and (3.3) is in force with 0 < ρ < 1/2. Then the process v defined
by (4.1) enjoys the following properties:

(1) P{v ∈ L2([0, T ])} = 1;
(2) v satisfies the Novikov condition:

E

{
exp

(
1

2

∫ T

0
|vt |2 dt

)}
< ∞. (4.2)

Furthermore, if L has only finitely many jumps, then the results hold under (3.3) for any ρ ∈
(0,1].

Proof. (1) In what follows, we denote C > 0 to be a generic constant depending only on the
coefficient b, the constants in Assumption 3.1, and the Hurst parameter H ; and is allowed to
vary from line to line. Since H < 1/2, and (3.3) holds, some simple computation, together with
assumption (2.23), shows that

E

∫ T

0
|ut |2 dt = E

∫ T

0

∣∣b(t,BH
t − Lt + x

)∣∣2 ds ≤ CE

∫ T

0

(
1 + ∣∣BH

t − Lt + x
∣∣)2 dt

≤ C

[(
1 + |x|)2T +E

∫ T

0

∣∣BH
t

∣∣2 dt +E

∫ T

0
|L|2t dt

]
= C

[(
1 + |x|)2T + T 2H+1

2H + 1
+E

∫ T

0
|L|2t dt

]
< ∞.

Therefore,
∫ T

0 |ut |2 ds < ∞, P-a.s. Since H < 1/2, [[u]]1/2−H belongs to L2([0, T ]), P-a.s.

as well. Thus, applying [20], Theorem 5.3, I
1/2−H

0+ [[u]]1/2−H ∈ Lq([0, T ]), P-a.s., for some

q = 2
1−2(1/2−H)

= 1
H

> 2. In particular, I
1/2−H

0+ [[u]]1/2−H ∈ L2([0, T ]), P-a.s. Let N ⊂ � be

the exceptional P-null set. Then for any ω /∈ N , we can apply Theorem 2.1(iii)(a) to find
hω ∈ L2([0, T ]) such that[

I
1/2−H

0+ [[u]]1/2−H (ω)
]
(t) = t1/2−H

[
I

1/2−H

0+ hω
]
(t), ω /∈ N.
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Now recall from (2.18) we see that this implies that for each ω /∈ N , it holds that

K−1
H

(∫ ·

0
ur(ω)dr

)
= I

1/2−H

0+ hω.

Thus, applying [20], Theorem 5.3, again we have K−1
H (

∫ ·
0 ur(·)dr) ∈ Lq([0, T ]), P-a.s., for some

q = 2
1−2(1/2−H)

= 1
H

> 2. In particular, (1) holds.
(2) Using the Assumption 3.3 again we have, P-almost surely,

|vs | = ∣∣sH−1/2I
1/2−H

0+ [[u]]1/2−H (s)
∣∣

= CsH−1/2
∣∣∣∣∫ s

0
(s − r)−1/2−H r1/2−H b

(
r,BH

r − Lr + x
)

dr

∣∣∣∣
≤ CT 1/2−H

(
1 + |x|ρ + ∥∥BH

∥∥ρ

∞ + |L|ρT
)
,

where ‖BH ‖∞
�= sup0≤s≤T |BH

s |. Note that L and BH are independent we have

E

{
exp

(
1

2

∫ T

0
|vt |2 dt

)}
(4.3)

≤ eCT 2−2H (1+|x|2ρ)
E
{
exp

(
CT 2−2H

∥∥BH
∥∥2ρ

∞
)}
E
{
eCT 2−2H |L|2ρ

T
}
.

Note that 2ρ < 1 by (3.3) in Assumption 3.1, we have

E
{
eCT 2−2H |L|2ρ

T
}≤ E

{
eCT 2−2H (|L|T +1)

}
< ∞, (4.4)

thanks to (2.23). Note that ρ < 1/2 also guarantees that E{exp(CT 2−2H ‖BH ‖2ρ∞ )} < ∞ for all
T > 0 with X = C([0, T ]), X = BH , and g(·) = ‖ · ‖∞ in (2.27). This, together with (4.3) and
(4.4), proves (4.2).

Finally, note that if L has only finitely many jumps, then �Lt = 0 for all but finitely many
t ∈ [0, T ]. Thus (4.4) holds for all ρ ∈ (0,1]. This proof is now complete. �

Remark 4.1. We note that unlike the finite jump case (see also [16] for the continuous case)
where we only assume 0 < ρ ≤ 1, in general it is necessary to assume ρ < 1/2 to guarantee

the finiteness of E{e|L|2ρ
T }. In fact, if ρ > 1/2, then even in the simplest standard Poisson case

Lt ≡ Nt we have

Ee(NT )2ρ =
∞∑

n=0

en2ρ λn

n! e−λ.

If we denote an = en2ρ λn

n! , then lnan = n2ρ + n lnλ − lnn!. Since lnn! < n lnn, and

lim
n→∞

n lnn

n2ρ + n lnλ
= 0,
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a simple calculation then shows that

lim
n→∞ lnan = lim

n→∞
{
n2ρ + n lnλ − lnn!}

= lim
n→∞

{
n2ρ + n lnλ

}{
1 − lnn!

n2ρ + n lnλ

}
= +∞.

That is, an → +∞, and consequently Ee(NT )2ρ = ∞.

We can now construct a weak solution to (3.1), in the case H < 1/2, as follows. Define

B̃H
t

�= BH
t −

∫ t

0
b
(
s,BH

s − Ls + x
)

ds = BH
t +

∫ t

0
us ds, t ∈ [0, T ]. (4.5)

Using the representation (2.20), we can write

B̃H
t = BH

t +
∫ t

0
us ds =

∫ t

0
KH (t, s)dWs +

∫ t

0
us ds =

∫ t

0
KH (t, s)dW̃s,

where

W̃t = Wt +
∫ t

0

(
K−1

H

(∫ .

0
us ds

)
(r)

)
dr = Wt +

∫ t

0
vr dr. (4.6)

By Lemma 4.1, the process v satisfies the Novikov condition (4.2). Thus, if we define a new
probability measure P̃ on the canonical fractional Wiener–Poisson space (�,F) by

dP̃

dP

�= exp

{
−
∫ T

0
vs dWs − 1

2

∫ T

0
v2
s ds

}
, (4.7)

then, under P̃ , W̃ is an F-Brownian motion, and B̃H is an F-fractional Brownian motion with
Hurst parameter H (cf. Decreusefond and Üstunel [2]).

Furthermore, since BH and L are independent, we can easily check, by following the argu-
ments of Brownian case (cf., e.g., [21], Theorem 124, [11], Theorem II-6.3) that Lt is still a
Poisson point process of class (QL) with same parameters, and is independent of B̃H . We now
define Xt = x + BH

t − Lt , t ∈ [0, T ]. Then, it follows from (4.5) that

B̃H
t = (Xt − x + Lt) −

∫ t

0
b(t,Xs)ds, t ∈ [0, T ]. (4.8)

In other words, (�,F , P̃,F,X, B̃H ,L) is a weak solution of (3.1). That is, we have proved the
following theorem.

Theorem 4.1. Assume H < 1/2 and that the assumptions of Lemma 4.1 are in force. Then for
any T > 0, the SDE (3.1) has at least one weak solution on [0, T ].
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5. Existence of a weak solution (H > 1/2)

In this section, we study the existence of the weak solution in the case when H > 1/2. We note
that even though the coefficient b is Hölder continuous in both variables by Assumption 3.1(ii)
(3.4), the coefficient b̃ of the reduced SDE (3.5) will have discontinuity on the variable t , thus
the Assumption 3.1(ii) is no longer valid for b̃, and therefore the results of [16] cannot be applied
directly. We shall, however, using the same scheme as in the last section to prove the existence
of the weak solution, although the arguments is much more involved.

We begin with some preparations. Let (�,F ,P,F) be the canonical fractional Wiener–Poisson
space, and let (BH ,L) be the canonical process. For fixed x ∈ R, consider again the process

ut (ω) = −b
(
t,BH

t (ω) − Lt(ω) + x
)= −b

(
t,ω1(t) − ω2(t) + x

)
, (t,ω) ∈ [0, T ] × �,

and define vt (ω) = K−1
H (

∫ ·
0 ur(ω)dr)(t), (t,ω) ∈ [0, T ] × �, where K−1

H is given by (2.18) in
the case H > 1/2. As in the previous section, we shall again argue that Lemma 4.1 holds. The
main difference between our case and [16], however, is that the paths of u are discontinuous
despite the Assumption 3.1(ii), thus the fractional calculus will need to be modified.

We first note that, by the Fubini theorem,

P
{
v ∈ L2([0, T ])}=

∫
�2

P
BH

{∫ T

0

∣∣vs

(
ω1,ω2)∣∣2 ds < ∞

}
P

L
(
dω2).

Thus to show P{v ∈ L2([0, T ])} = 1, it suffices to show that, for PL-a.e., ω2 ∈ �2, it holds that

P
BH

{∫ T

0

∣∣vω2

s

(
ω1)∣∣2 ds < ∞

}
= 1,

where vω2

s (ω1)
�= vs(ω

1,ω2) is the “ω2-section” of vt . But in light of (2.18), we need first show

that, for PL-a.e. ω2 ∈ �2, uω2 ∈ I
H−1/2,1/2−H

0+ (L1([0, T ])) ∩ L1([0, T ]), PBH
-a.s., where

uω2

t (ω1)
�= ut

(
ω1,ω

2)= −bω2,x
(
t,BH

t (ω1)
)
,

(
t,ω1) ∈ [0, T ] × �1 (5.1)

and

bω2,x(t, y)
�= b

(
t, y − ω2(t) + x

)
, (t, y) ∈ [0, T ] ×R. (5.2)

Since we are considering only the canonical process L(ω) = L(ω2) = ω2, which is a Pois-
son process under PL and thus does not have fixed time jumps (i.e., PL{�Lt �= 0} = 0, ∀t ≥ 0).
We can, modulo a P

L-null set, assume without of generality that ω2 is piecewise constant, and
jumps at 0 < σ1(ω

2) < · · · < σNT (ω2)(ω
2) < T , where Nt(ω

2) denotes the number of jumps
of L(ω2) up to time t > 0. For notational convenience in what follows, we shall also denote
σ0(ω

2) = 0, σNT (ω2)+1(ω
2) = T , although they do not represent jump times. Then by Assump-

tion 3.1(ii) we see that t �→ bω2,x(t,BH
t ) is μ-Hölder continuous on every interval (σi, σi+1),

i = 0,1, . . . ,NT (ω2), with μ = H − 1
2 + ε for some ε > 0. Thus, by virtue of Theorem 6.5
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in [20], uω2 ∈ I
H−1/2
σi+ (L2(σi, σi+1)), PBH

-a.s., for all i = 0, . . . ,NT (ω2). It then follows from

Theorem 13.11 of [20] that uω2 ∈ I
H−1/2
0+ (L2([0, T ])), PBH

-a.s. Therefore, there exists a P
BH

-
null set N ⊂ �1, so that for any ω1 /∈ N , we can apply Theorem 2.1(iii)(a) or Lemma 3.2 in [20]
to find a function hω1,ω2 ∈ L2([0, T ]), such that:[[

uω2]]1/2−H (
t,ω1)= t1/2−H uω2

t

(
ω1)= I

H−1/2
0+ t1/2−H hω1,ω2

(t), t ∈ [0, T ].

That is, uω2 ∈ I
H−1/2,1/2−H

0+ (L1([0, T ])), PBH
-a.s. On the other hand, since uω2 ∈ I

H−1/2
0+ (L2[0,

T ]) implies uω2 ∈ L2([0, T ]), thanks to Theorem 5.3 of [20], we conclude that (2.18) holds with
h(·) = ∫ ·

0 ur dr , PBH
-a.s. That is, vt = K−1

H (
∫ ·

0 ur dr)(t), t ∈ [0, T ], belongs to L2([0, T ]), PBH
-

a.s. Note that the argument is valid for PL-a.e. ω2 ∈ �2, we obtain that P{v ∈ L2([0, T ])} = 1.
We now prove an analogue of Lemma 4.1 for the case H > 1/2.

Lemma 5.1. Assume that H > 1/2, and that Assumption 3.1(ii) holds with 1− 1
2H

< α < 1−H .
Then the conclusion of Lemma 4.1 remains valid.

Furthermore, if L has only finitely many jumps, then the constraint α < 1−H can be removed.

Proof. We have already argued that the process vt = K−1
H (

∫ ·
0 ur dr)(t), t ∈ [0, T ], satisfies P{v ∈

L2([0, T ])} = 1 in the beginning of this section. We shall show that the process v also satisfies
the Novikov condition (4.2), whence part (2) of Lemma 4.1.

To this end, first note that on the canonical space �2 =D([0, T ]), and under the probability P
L,

the canonical process L(ω) = ω2 is a Poisson point process of class (QL). Now, for fixed T > 0,

denote �2
n

�= {ω2 :NT (ω2) = n} for n = 0,1, . . .; and for ω2 ∈ �2
n, again denote 0 < σ1(ω

2) <

· · · < σn(ω
2) < T be the jump times of L(ω2), and σ0(ω

2) = 0, σn+1(ω
2) = T . Finally, denote

Sk(ω
2)

�=∑k
i=1 �Lσi

(ω2), k = 1,2, . . . , and S0(ω
2) = 0. In what follows, we often suppress the

variable ω2 when the context is clear.
Now recall from (2.18) that, for H > 1/2,

vω2

t = K−1
H

(∫ ·

0
uω2

r dr

)
(t) = tH−1/2D

H−1/2
0+

[[
uω2]]1/2−H

(t), t ∈ [0, T ]. (5.3)

We shall calculate D
H−1/2
0+ [[uω2 ]]1/2−H for ω2 ∈ �2

n, for each n = 0,1,2, . . . . To see this, fix
n ∈N, and let ω2 ∈ �2

n. For notational simplicity, in what follows we denote

u
ω2,k
t

(
ω1)= −b

(
t,BH

t

(
ω1)− Sk−1

(
ω2)+ x

)
,

(
t,ω1) ∈ [0, T ] × �1, k ≥ 1, (5.4)

so that uω2

t = ∑n+1
k=1 u

ω2,k
t 1[σk−1(ω

2),σk(ω
2))(t), t ∈ [0, T ], P1-a.s. Then, for t ∈ [0, σ1(ω

2)), by

definition (2.7) and (2.8) with p = 2 we have

D
H−1/2
0+

[[
uω2]]1/2−H

(t)
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= 1


(3/2 − H)

[[uω2,1]]1/2−H (t)

tH−1/2
(5.5)

+ H − 1/2


(3/2 − H)

∫ t

0

[[uω2,1]]1/2−H (t) − [[uω2,1]]1/2−H (r)

(t − r)H+1/2
dr

�= �1(t).

Similarly, for σk−1(ω
2) ≤ t < σk(ω

2) with 1 < k ≤ n + 1, we have

D
H−1/2
0+

[[
uω2]]1/2−H

(t)

= 1


(3/2 − H)

[[uω2 ]]1/2−H (t)

tH−1/2

+ H − 1/2


(3/2 − H)

∫ t

0

[[uω2 ]]1/2−H (t) − [[uω2]]1/2−H
(r)

(t − r)H+1/2
dr

(5.6)

= 1


(3/2 − H)

[[uω2,k]]1/2−H (t)

tH−1/2

+ H − 1/2


(3/2 − H)

k−1∑
i=1

∫ σi

σi−1

[[uω2,k]]1/2−H (t) − [[uω2,i]]1/2−H (r)

(t − r)H+1/2
dr

+ H − 1/2


(3/2 − H)

∫ t

σk−1

[[uω2,k]]1/2−H (t) − [[uω2,k]]1/2−H (r)

(t − r)H+1/2
dr

�= �k(t).

Consequently, we obtain the following formula:

D
H−1/2
0+

[[
uω2]]1/2−H

(t) =
n+1∑
k=1

�k(t)1[σk−1(ω
2),σk(ω

2))(t), t ∈ [0, T ),P1-a.s. (5.7)

That is,

vω2

t = tH−1/2D
H−1/2
0+

[[
uω2]]1/2−H

(t) = tH−1/2
n+1∑
i=1

�k(t)1[σk−1(ω
2)<t≤σk(ω

2))(t), (5.8)

where �k’s are defined by (5.5) and (5.6). We now estimate each term in (5.8). Note that for
t ∈ [σk−1, σk) we have

H − 1/2


(3/2 − H)

k−1∑
i=1

∫ σi

σi−1

[[uω2,k]]1/2−H (t)

(t − r)H+1/2
dr

= 1


(3/2 − H)

{
1

(t − σk−1)H−1/2
− 1

tH−1/2

}[[
uω2,k

]]1/2−H
(t).
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It then follows from (5.6) that, for t ∈ [σk−1, σk),

tH−1/2�k(t) = tH−1/2
{

1


(3/2 − H)

[[uω2,k]]1/2−H (t)

tH−1/2

+ H − 1/2


(3/2 − H)

k−1∑
i=1

∫ σi

σi−1

[[uω2,k]]1/2−H (t) − [[uω2,i]]1/2−H (r)

(t − r)H+1/2
dr

+ H − 1/2


(3/2 − H)

∫ t

σk−1

[[uω2,k]]1/2−H (t) − [[uω2,k]]1/2−H (r)

(t − r)H+1/2
dr

}

= CH
1

tH−1/2[[uω2,k]]1/2−H (t)

(t − σk−1)H−1/2
− CH

2 tH−1/2
k−1∑
i=1

∫ σi

σi−1

[[uω2,i]]1/2−H (t)

(t − r)H+1/2
dr

+ CH
2 tH−1/2

k−1∑
i=1

∫ σi

σi−1

[[uω2,i]]1/2−H (t) − [[uω2,i]]1/2−H (r)

(t − r)H+1/2
dr

+ CH
2 tH−1/2

∫ t

σk−1

[[uω2,k]]1/2−H (t) − [[uω2,k]]1/2−H (r)

(t − r)H+1/2
dr

�= Ak(t) + Bk(t),

where CH
1

�= 1

(3/2−H)

, CH
2

�= H−1/2

(3/2−H)

= (H − 1/2)CH
1 , and

Ak(t)
�= CH

1
tH−1/2[[uω2,k]]1/2−H (t)

(t − σk−1)H−1/2
− CH

2 tH−1/2
k−1∑
i=1

∫ σi

σi−1

[[uω2,i]]1/2−H (t)

(t − r)H+1/2
dr, (5.9)

Bk(t)
�= CH

2 tH−1/2
k−1∑
i=1

∫ σi

σi−1

[[uω2,i]]1/2−H (t) − [[uω2,i]]1/2−H (r)

(t − r)H+1/2
dr

(5.10)

+ CH
2 tH−1/2

∫ t

σk−1

[[uω2,k]]1/2−H (t) − [[uω2,k]]1/2−H (r)

(t − r)H+1/2
dr.

It is readily seen that (suppressing ω = (ω1,ω2)’s)

∣∣Ak(t)
∣∣ = ∣∣∣∣∣CH

1

k−1∑
i=1

b
(
t,BH

t − Si−1 + x
)[ 1

(t − σi−1)H−1/2
− 1

(t − σi)H−1/2

]

+ CH
1

b(t,BH
t − Sk−1 + x)

(t − σk−1)H−1/2

∣∣∣∣∣
≤
∣∣∣∣∣CH

1

k−1∑
i=1

[
b
(
t,BH

t − Si−1 + x
)− b

(
t,BH

t + x
)][ 1

(t − σi−1)H−1/2
− 1

(t − σi)H−1/2

]
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+ CH
1

(b(t,BH
t − Sk−1 + x) − b(t,BH

t + x)

(t − σk−1)H−1/2

∣∣∣∣∣
+
∣∣∣∣∣CH

1

k−1∑
i=1

b
(
t,BH

t + x
)[ 1

(t − σi−1)H−1/2
− 1

(t − σi)H−1/2

]
(5.11)

+ CH
1

b(t,BH
t + x)

(t − σk−1)H−1/2

∣∣∣∣∣
≤ CH

1 max
1≤i≤k

∣∣b(t,BH
t − Si−1 + x

)− b
(
t,BH

t + x
)∣∣

×
∣∣∣∣∣
k−1∑
i=1

[
1

(t − σi)H−1/2
− 1

(t − σi−1)H−1/2

]
+ 1

(t − σk−1)H−1/2

∣∣∣∣∣
+ CH

1 t1/2−H
∣∣b(t,BH

t + x
)∣∣

≤ C(t − σk−1)
1/2−H |L|αT + Ct1/2−H

(∣∣b(0, x)
∣∣+ |t |γ + ∥∥BH

∥∥α

∞
)
,

where C is a generic constant depending on H , α, and K , thanks to Assumption 3.1. On the
other hand, we write Bk(t) = −C(Bk

1 (t) + Bk
2 (t)), where

Bk
1 (t) = tH−1/2

k−1∑
i=1

[
b
(
t,BH

t − Si−1 + x
)∫ σi

σi−1

t1/2−H − r1/2−H

(t − r)1/2+H
dr

+
∫ σi

σi−1

b(t,BH
t − Si−1 + x) − b(r,BH

t − Si−1 + x)

(t − r)1/2+H
r1/2−H dr

]

+ tH−1/2b
(
t,BH

t − Sk−1 + x
)∫ t

σk−1

t1/2−H − r1/2−H

(t − r)1/2+H
dr

+ tH−1/2
∫ t

σk−1

b(t,BH
t − Sk−1 + x) − b(r,BH

t − Sk−1 + x)

(t − r)1/2+H
r1/2−H dr,

and

Bk
2 (t) = tH−1/2

k−1∑
i=1

∫ σi

σi−1

b(r,BH
t − Si−1 + x) − b(r,BH

r − Si−1 + x)

(t − r)1/2+H
r1/2−H dr

+ tH−1/2
∫ t

σk−1

b(r,BH
t − Sk−1 + x) − b(r,BH

r − Sk−1 + x)

(t − r)1/2+H
r1/2−H dr.
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Then, it is easy to see that, for each fixed 0 < ε < H − H−1/2
α

(recall Assumption 3.1(ii)), and

denoting G
�= sup0≤t<r≤T

|BH
t −BH

r |
|t−r|H−ε , we have

∣∣Bk
2 (t)

∣∣ ≤ tH−1/2
k−1∑
i=1

∫ σi

σi−1

|BH
t − BH

r |α
(t − r)1/2+H

r1/2−H dr

+ tH−1/2
∫ t

σk−1

|BH
t − BH

r |α
(t − r)1/2+H

r1/2−H dr (5.12)

= tH−1/2
∫ t

0

|BH
t − BH

r |α
(t − r)1/2+H

r1/2−H dr ≤ Ct1/2−H+α(H−ε)Gα.

Furthermore, by the same argument as in (5.11) we also have∣∣Bk
1 (t)

∣∣ = tH−1/2 max
1≤i≤k

∣∣b(t,BH
t − Si−1 + x

)∣∣
×
[

k−1∑
i=1

∫ σi

σi−1

r1/2−H − t1/2−H

(t − r)1/2+H
dr +

∫ t

σk−1

r1/2−H − t1/2−H

(t − r)1/2+H
dr

]

+ KtH−1/2

[
k−1∑
i=1

∫ σi

σi−1

|t − r|γ
(t − r)1/2+H

r1/2−H dr +
∫ t

σk−1

|t − r|γ
(t − r)1/2+H

r1/2−H dr

]

≤ [∣∣b(0, x)
∣∣+ K

(|t |γ + ∣∣BH
t

∣∣α + |LT |α)]tH−1/2
∫ t

0

r1/2−H − t1/2−H

(t − r)1/2+H
dr (5.13)

+ KtH−1/2
∫ t

0

|t − r|γ
(t − r)1/2+H

r1/2−H dr

≤ C
{[∣∣b(0, x)

∣∣+ |t |γ + ∣∣BH
t

∣∣α + |LT |α]t1/2−H + tγ+1/2−H
}

≤ Ct1/2−H
[∣∣b(0, x)

∣∣+ |t |γ + ∥∥BH
∥∥α

∞ + |L|αT
]
.

Combining (5.12) and (5.13), we have for any t ∈ [0, T ],∣∣Bk(t)
∣∣≤ Ct1/2−H

[∣∣b(0, x)
∣∣+ |t |γ + ∥∥BH

∥∥α

∞ + |L|αT + tα(H−ε)Gα
]
. (5.14)

Now, combining (5.11) and (5.14), and denoting En[·] = E[·|NT = n], we have

E

{
exp

{
1

2

∫ T

0
v2(t)dt

}}

=
∞∑

n=0

En

{
exp

{
1

2

n∑
k=1

∫ σk

σk−1

t2H−1�2
k(t)dt (5.15)
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+ 1

2

∫ T

σn

t2H−1�2
n+1(t)dt

}}
P(NT = n)

=
∞∑

n=0

En

{
exp

{
C

n+1∑
k=1

∫ σk

σk−1

(|Ak(t)| + |Bk(t)|)2 dt

}}
P(NT = n).

By (5.11) and (5.14) and using the fact∑n+1
i=1 x2−2H

i

n + 1
≤
(∑n+1

i=1 xi

n + 1

)2−2H

, xi > 0,

we have
n+1∑
k=1

∫ σk

σk−1

(∣∣Ak(t)
∣∣+ ∣∣Bk(t)

∣∣)2 dt

≤ C

n+1∑
k=1

∫ σk

σk−1

(t − σk−1)
1−2H |L|2α

T dt

+ C

∫ T

0
t1−2H

(∣∣b2(0, x)
∣∣+ |t |2γ + ∥∥BH

∥∥2α

∞ + t2α(H−ε)G2α
)

dt

(5.16)

≤ C

n+1∑
k=1

(σk − σk−1)
2−2H |L|2α

T

+ C

∫ T

0
t1−2H

(∣∣b2(0, x)
∣∣+ |t |2γ + ∥∥BH

∥∥2α

∞ + t2α(H−ε)G2α
)

dt

≤ C(n + 1)2H−1|L|2α
T + C

[
1 + ∥∥BH

∥∥2α

∞ + G2α
]
.

Putting (5.16) into (5.15), we obtain

E
{
e1/2

∫ T
0 v2(t)dt

}
(5.17)

≤ E
{
exp

{
C
[
1 + ∥∥BH

∥∥2α

∞ + G2α
]}}

E
{
exp

{
C(NT + 1)2H−1|L|2α

T

}}
.

By the same argument as Lemma 4.1, it is easy to prove that E{eC‖BH ‖2α∞+G2α } < ∞.
We need to show that E{eC(NT +1)2H−1|L|2α

T } < ∞. Note that α < 1 − H in Assumption 3.1(ii)
implies that 2H − 1 + 2α < 1, and recall L̃ from (2.23), we have

E exp
{
C(NT + 1)2H−1|L|2α

T

} ≤ E exp

{
C

(
NT∑
i=1

(|�Lσi
| ∨ 1

)+ 1

)2H−1+2α}
(5.18)

≤ E exp

{
C

(
NT∑
i=1

|�L̃σi
| + 1

)}
< ∞.
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Therefore, we can show that E{e1/2
∫ T

0 v2(t)dt } < ∞.
Finally, note that if L has only finitely many jumps, then |�Lσi

| = 0 for all but finitely many
i’s. Thus, (5.18) always holds for any α > 0. The proof is complete. �

Remark 5.1. We observe that 1 − 1
2H

< α < 1 − H implies H <
√

2
2 . This is again due to the

presence of possible infinite number of jumps. We note that a similar constraint H < 1+√
5

4 was
also placed in [15], where only finitely many jumps were considered. But in that case we need
only 1 − 1

2H
< α < 1, thus our result is still much stronger than that of [15].

We have the following analogues of Theorem 4.1.

Theorem 5.1. Assume H > 1/2 and that the assumptions in Lemma 5.1 are in force. Then the
SDE (3.1) has at least one weak solution on [0, T ].

6. Uniqueness in law and pathwise uniqueness

In this section, we study the uniqueness of the weak solution. We shall first show that the weak
solutions to (3.1) are unique in law. The argument is very similar to that of [16], we describe it
briefly.

Let (X,BH ,L) be a weak solutions of (3.1), defined on some probability space (�,F ,P;F),
with the existence interval [0, T ]. Let W be the F-Brownian motion such that

BH
t =

∫ t

0
KH (t, s)dWs, t ∈ [0, T ]. (6.1)

Define

vt = K−1
H

(∫ ·

0
b(r,Xr)dr

)
(t), t ∈ [0, T ], (6.2)

and let us assume that v satisfies the assumption (1) and (2) in Lemma 4.1. Then applying the
Girsanov theorem we see that the process W̃t = Wt + ∫ t

0 vs ds, t ∈ [0, T ], is an F-Brownian

motion under the new probability measure P̃, defined by

dP̃

dP
= ξT (X)

�= exp

{
−
∫ T

0
vt dWt − 1

2

∫ T

0
|vt |2 dt

}
. (6.3)

Thus B̃H
t

�= ∫ t

0 KH (t, s)dW̃s , t ∈ [0, T ], is an fBM under P̃, and it holds that

Xt + Lt − x =
∫ t

0
b(s,Xs)ds + BH

t =
∫ t

0
KH (t, s)dW̃s = B̃H

t , t ∈ [0, T ].

Since under the Girsanov transformation the process L remains a Poisson point process with the
same parameters, and is automatically independent of the Brownian motion W̃ under P̃ (cf. [11],
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Theorem II-6.3), we can then write X as the independent sum of B̃H and −L:

Xt = x + B̃H
t − Lt , t ∈ [0, T ].

Since the argument above can be applied to any weak solution, we have essentially proved the
following weak uniqueness result.

Theorem 6.1. Suppose that the assumptions of Lemma 4.1 (resp. Lemma 5.1) for H < 1/2 (resp.
H > 1/2) are in force. Then two weak solutions of SDE (3.1) must have the same law, over their
common existence interval [0, T ].

Proof. We need only to show that the adapted process v defined by (6.2) satisfies (1) and (2)
in Lemma 4.1. In what follows we let C > 0 denote a generic constant depending only on the
constants H , K , α, γ in Assumption 3.1 and T > 0, and is allowed to vary from line to line. In
the case H < 1

2 , denoting u = b(·,X·), for any t ∈ [0, T ] we have

E

∫ t

0
|ur |2 dr = E

∫ t

0

∣∣b(r,Xr)
∣∣2 dr ≤ CE

∫ t

0

(
1 + |Xr |2

)
dr

≤ CE

∫ t

0

[
1 + |x|2 +

∣∣∣∣∫ r

0
b(s,Xs)ds

∣∣∣∣2 + ∣∣BH
r

∣∣2 + |Lr |2
]

dr

≤ C

{
E

∫ t

0
r

∫ r

0
|us |2 ds dr + (

1 + |x|2)t + t2H+1

2H + 1
+E

∫ T

0
|L|2T dr

}
≤ CL

{(
1 + |x|2)+

∫ t

0
E

∫ r

0
|us |2 ds dr

}
,

where CL > 0 depends on C and L, thanks to (2.23). Thus by Growall’s inequality, we obtain

E

∫ T

0
|us |2 ds = E

∫ T

0

∣∣b(s,Xs)
∣∣2 ds ≤ CL

(
1 + |x|2)eCLT < ∞.

Then, by the same argument as Lemma 4.1, we can check that v = K−1
H (

∫ ·
0 ur dr) satisfies (1) of

Lemma 4.1. Furthermore, similarly to the proof Lemma 4.1 we can obtain that

|vs | ≤ CLT 1/2−H
(
1 + ‖X‖ρ∞

)
,

where ‖X‖∞
�= sup0≤s≤T |Xs |. Applying Grownall’s inequality again it is easy to show that

‖X‖∞ ≤ (|x| + ∥∥BH
∥∥∞ + CLT + |L|T

)
eCLT , (6.4)

which then leads to (2) of Lemma 4.1.
We now assume H > 1

2 . Following the same argument of Lemma 5.1, it suffices to show

that between two jump times of L, the process u = b(·,X·) ∈ I
H−1/2
σk−1+ (L2([σk−1, σk))), P-almost



SDE driven by FBM and Poisson point process 325

surely. But note that between two jumps we have, by Assumption 3.1,∣∣b(t,Xt ) − b(s,Xs)
∣∣

≤ C
{|t − s|γ + |Xt − Xs |α

}
≤ C

{
|t − s|γ +

∣∣∣∣∫ t

s

b(u,Xu)du

∣∣∣∣α + ∣∣BH
t − BH

s

∣∣α}
≤ C

{
|t − s|γ +

∣∣∣∣∫ t

s

(∣∣b(0, x)
∣∣+ |u|γ + |Xu − x|α)du

∣∣∣∣α + ∣∣BH
t − BH

s

∣∣α}
≤ C

{|t − s|γ + (∣∣b(0, x)
∣∣+ |T |γ + ‖X‖α∞ + |x|α)|t − s|α + ∣∣BH

t − BH
s

∣∣α}.
Since γ > H − 1

2 and α > 1 − 1
2H

> H − 1
2 , we see that between jumps the paths t �→ b(t,Xt )

are Hölder continuous of order H − 1
2 + ε for some ε > 0. By the same argument as in Section 4,

it can be checked that P{v ∈ L2([0, T ])} = 1. Using the estimates∣∣b(t,Xt )
∣∣≤ C

(∣∣b(0, x)
∣∣+ tγ + |Xt − x|α)

and ‖X‖∞ ≤ C(1 + |x| + ‖BH ‖∞ + |L|T ), we deduce that, for any 0 ≤ r < t ≤ T ,∣∣∣∣∫ t

r

|us |ds

∣∣∣∣α ≤ C
(∣∣b(0, x)

∣∣+ tγ + |x|α + ‖X‖α∞
)α

(t − r)α. (6.5)

In particular, we have∣∣∣∣∫ t

0
|us |ds

∣∣∣∣α ≤ C
(∣∣b(0, x)

∣∣+ tγ + |x|α + ‖X‖α∞
)α

tα

≤ C
(
1 + ∣∣b(0, x)

∣∣+ |t |γ + |x|α + (|x| + ∥∥BH
∥∥∞ + |L|T

))α
T α (6.6)

≤ C
[
1 + ∣∣b(0, x)

∣∣α + tαγ + |x|α + ∥∥BH
∥∥α

∞ + |L|αT
]
.

Furthermore, one can also check that, by applying (6.5) and (6.6), respectively,

∣∣Ak(t)
∣∣ ≤ CH

1 max
1≤i≤k

∣∣∣∣b(t,BH
t +

∫ t

0
us ds − Si−1 + x

)
− b

(
t,BH

t +
∫ t

0
us ds + x

)∣∣∣∣
×
∣∣∣∣∣
k−1∑
i=1

[
1

(t − σi)H−1/2
− 1

(t − σi−1)H−1/2

]
+ 1

(t − σk−1)H−1/2

∣∣∣∣∣
+ CH

1 t1/2−H

∣∣∣∣b(t,BH
t +

∫ t

0
us ds + x

)∣∣∣∣
≤ C

{
(t − σk−1)

1/2−H |L|αT (6.7)
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+ t1/2−H

(∣∣b(0, x)
∣∣+ |t |γ + ∥∥BH

∥∥α

∞ +
∣∣∣∣∫ t

0
|us |ds

∣∣∣∣α)}
≤ C

{
(t − σk−1)

1/2−H |L|αT
+ t1/2−H

∥∥BH
∥∥α

∞ + t1/2−H
[
1 + |x| + ∣∣b(0, x)

∣∣+ |t |γ + |L|αT
]}

≤ C
{
(t − σk−1)

1/2−H |L|αT + t1/2−H
∥∥BH

∥∥α

∞ + t1/2−H
(
1 + |x| + ∣∣b(0, x)

∣∣+ |t |γ )}
and ∣∣Bk

1 (t)
∣∣ ≤ max

1≤i≤k

∣∣∣∣b(t,BH
t +

∫ t

0
us ds − Si−1 + x

)∣∣∣∣t1/2−H + Ktγ+1/2−H

≤ Ct1/2−H

{∣∣b(0, x)
∣∣+ |t |γ + ∥∥BH

∥∥α

∞ + |LT |α +
∣∣∣∣∫ t

0
us ds

∣∣∣∣α} (6.8)

≤ Ct1/2−H
{
1 + |x| + ∣∣b(0, x)

∣∣+ |L|αT + ∥∥BH
∥∥α

∞ + |t |γ },
∣∣Bk

2 (t)
∣∣ ≤ tH−1/2

∫ t

0

| ∫ t

r
us ds + |BH

t − BH
r ||α

(t − r)1/2+H
r1/2−H dr

≤ tH−1/2
∫ t

0

| ∫ t

r
us ds|α

(t − r)1/2+H
r1/2−H dr + tH−1/2

∫ t

0

|BH
t − BH

r |α
(t − r)1/2+H

r1/2−H dr

≤ tH−1/2C
(
1 + ∣∣b(0, x)

∣∣+ |x|α + ‖X‖α∞
)α

(6.9)

×
∫ t

0

(t − r)αr1/2−H

(t − r)1/2+H
dr + Ct1/2−H+α(H−ε)Gα

≤ tα+H−1/2C
(
1 + ∣∣b(0, x)

∣∣+ |x|α + ∥∥BH
∥∥α

∞ + |L|αT
)+ Ct1/2−H+α(H−ε)Gα

≤ tα+1/2−H C
{
1 + |x| + ∣∣b(0, x)

∣∣+ ∥∥BH
∥∥α

∞ + |L|αT
}+ Ct1/2−H+α(H−ε)Gα.

We can follow the same arguments of Lemma 5.1 to show that v also satisfies the Novikov
condition (4.2), proving the theorem. �

Next, we show that the pathwise uniqueness holds for solutions to (3.1). The proof is more or
less standard, see [18] or [21], we provide a sketch for completeness.

Theorem 6.2. Suppose that Assumption 3.1 holds. Then two weak solutions of SDE (3.1) defined
on the same filtered probability space with the same driving fBM BH and Poisson point process
L must coincide almost surely on their common existence interval.

Proof. Let X1 and X2 be two weak solutions defined on the same filtered probability space with

the same driving BH and L. Define Y+ �= X1 ∨ X2, and Y− �= X1 ∧ X2. One shows that both
Y+ and Y− both satisfy (3.1). In fact, note that X1 − X2 involves only Lebesgue integral, the
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occupation density formula yields that the local time of X1 − X2 at 0 is identically zero. Thus,
by Tanaka’s formula,

(
X1

t − X2
t

)+ =
∫ t

0

(
b
(
s,X1

s

)− b
(
s,X2

s

))
I{X1

s −X2
s >0} ds.

Then, note that Y+ = X2 + (X1 − X2)+, we have

Y+
t = x +

∫ t

0
b
(
s,X2

s

)
ds + BH

t − Lt +
∫ t

0

(
b
(
s,X1

s

)− b
(
s,X2

s

))
I{X1

s −X2
s >0} ds

= x +
∫ t

0
b
(
s,X1

s

)
I{X1

s −X2
s >0} ds +

∫ t

0
b
(
s,X2

s

)
I{X1

s −X2
s ≤0} ds + BH

t − Lt

= x +
∫ t

0
b
(
s, Y+

s

)
ds + BH

t − Lt .

Similarly one shows that Y−
t satisfies SDE (3.1) as well. We claim that

P

{
sup

0≤t≤T

(
Y+

t − Y−
t

)= 0
}

= 1. (6.10)

Indeed, if P{sup0≤t≤T (Y+
t − Y−

t ) > 0} > 0, then there exists a rational number r and t > 0 such
that P(Y+

t > r > Y−
t ) > 0. Since {Y+

t > r} = {Y−
t > r} ∪ {Y+

t > r ≥ Y−
t }, we have

P
(
Y+

t > r
)= P

(
Y−

t > r
)+ P

(
Y+

t > r ≥ Y−
t

)
> P

(
Y−

t > r
)
.

This contradicts with the fact that Y+
t and Y−

t have the same law, thanks to Theorem 6.1. Thus,
(6.10) holds, and consequently, X1 ≡ X2, P-a.s., proving the theorem. �

7. Existence of strong solutions

Having proved the existence of the weak solution and pathwise uniqueness, it is rather tempting
to invoke the well-known Yamada–Watanabe Theorem to conclude the existence of the strong
solution. However, there seem to be some fundamental difficulties in the proof of such a result,
mainly because of the lack of the independent increment property for an fBM, which is crucial
in the proof. It is also well known that, unlike an ODE, in the case of stochastic differential equa-
tions, the existence of the strong solution could be argued with assumptions on the coefficients
being much weaker than Lipschitz, due to the presence of the “noise”. We note that the argument
in this section is quite similar to [8] and [16], with some necessary adjustments for the presence
of the jumps.

We begin by observing that the SDE (3.1) can be solved pathwisely, as an ODE, when the
coefficient b is regular enough (e.g., continuous in (t, x), and uniformly Lipschitz in x). Second,
we claim that, under Assumption 3.1 it suffices to prove the existence of the strong solution when
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the coefficient b is uniformly bounded. Indeed, if we consider the following family of SDEs:

Xt = x +
∫ t

0
bR(s,Xs)ds + BH

t − Lt , t ∈ [0, T ],R > 0, (7.1)

where bR is the truncated version of b: bR(t, x) = b(t, (x ∧ R) ∨ (−R)), (t, x) ∈ [0, T ] × R,
then for each R, bR is bounded, hence (7.1) has a strong solution, denoted by XR , defined on
[0, T ], and we can now assume that they all live on a common probability space. Now note that
for R1 < R2, one has bR1 ≡ bR2 whenever |x| ≤ R1, thus by the pathwise uniqueness, it is easy

to see that X
R1
t ≡ X

R2
t , for t ∈ [0, τR1], P-a.s., where τR

�= inf{t > 0 : |XR
t | ≥ R} ∧ T . Therefore,

we can almost surely extend the solution to [0, τ ), where τ
�= limR→∞ τR . Furthermore, it was

shown (see, e.g., (6.4)) that X will never explode on [0, τ ). Consequently, we must have τ = T ,
P-a.s.

We now give our main result of this section.

Theorem 7.1. Assume that b(t, x) satisfies Assumption 3.1. Then there exists a unique strong
solution SDE (3.1).

The proof of Theorem 7.1 follows an argument by Gyöngy and Pardoux [8], using the so-
called Krylov estimate (cf. [12]). We note that by the argument preceding the theorem we need
only consider the case when the coefficient b is bounded. The following lemma is thus crucial.

Lemma 7.1. Suppose that the coefficient b satisfies Assumption 3.1 and is uniformly bounded by
a constant C > 0. Suppose also that X is a strong solution to SDE (3.1). Then, there exist β > 1
and ζ > 1 + H such that for any measurable nonnegative function g : [0, T ] ×R �→ R+, it holds
that

E

∫ T

0
g(t,Xt )dt ≤ M

(∫ T

0

∫
R

gβζ (t, x)dx dt

)1/βζ

, (7.2)

where M is a constant defined by

M
�= J 1/ζ ′βF 1/α, (7.3)

in which

F
�=
{
Ẽ exp

{
2α2

∫ T

0
v2
t dt

}}1/2

, J
�= (2π)1/2−ζ ′/2T 1+(1−ζ ′)H

√
ζ ′(1 + (1 − ζ ′)H)

(7.4)

and 1
α

+ 1
β

= 1, 1
ζ

+ 1
ζ ′ = 1.

Proof. Let (�,F ,P;F) be a filtered probability space on which are defined a fBM BH , a Pois-
son point process L of class (QL) and independent of BH , and X is the strong solution to the
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corresponding SDE (3.1). Let W be an F-Brownian motion such that BH = ∫ ·
0 KH (t, s)dWs .

Recall from (6.2) the process v = K−1
H (

∫ ·
0 b(r,Xr)dr), and define a new measure P̃ by

dP̃

dP
�= exp

{
−
∫ T

0
vt dWt − 1

2

∫ T

0
v2
t dt

}
�= Z−1

T . (7.5)

Then, in light of Lemmas 4.1 and 5.1, we know that P̃ is a probability measure under which
W̃t = Wt + ∫ t

0 vr dr is a Brownian motion, B̃H
t = ∫ t

0 KH (t, s)dW̃s is a fBM, and L remains a

Poisson point process with same parameters and is independent of B̃H . Hence, under P̃, Xt =
x + B̃H

t − Lt has the density function:

pt (y) =
∫
R

1√
2πtH

e−(y+z−x)2/2t2H

fL(t, z)dz, (7.6)

where fL(t, ·) is the density function of Lt .
Now, applying Hölder’s inequality we have

E

∫ T

0
g(t,Xt )dt = Ẽ

{
ZT

∫ T

0
g(t,Xt )dt

}
≤ {

Ẽ
[
Zα

T

]}1/α
{
Ẽ

∫ T

0
gβ(t,Xt )dt

}1/β

, (7.7)

where 1/α + 1/β = 1. Rewriting vt as vt = K−1
H (

∫ ·
0 b(r, B̃H

r − Lr + x)dr)(t), we can follow

the same argument as the proof of Lemmas 4.1 and 5.1 to get, Ẽe2α2
∫ T

0 v2
t dt < ∞. Therefore,

exp{2α
∫ t

0 vs dW̃s −2α2
∫ t

0 v2
s ds} is a P̃-martingale, and consequently, applying Hölder’s inequal-

ity we obtain

Ẽ
[
Zα

T

] = Ẽ exp

{
α

∫ T

0
vt dWt + α

2

∫ T

0
v2
t dt

}
= Ẽ exp

{
α

∫ T

0
vt dW̃t − α

2

∫ T

0
v2
t dt

}
= Ẽ exp

{
α

∫ T

0
vt dW̃t − α2

∫ T

0
v2
t dt +

(
α2 − α

2

)∫ T

0
v2
t dt

}
(7.8)

≤
(
Ẽ exp

{
2α

∫ T

0
vt dW̃t − 2α2

∫ T

0
v2
t dt

})1/2(
Ẽ exp

{(
2α2 − α

)∫ T

0
v2
t dt

})1/2

≤
(
Ẽ exp

{
2α2

∫ T

0
v2
t dt

})1/2

< ∞.

On the other hand, applying Hölder’s inequality with 1/ζ + 1/ζ ′ = 1, ζ > H + 1 yields

Ẽ

∫ T

0
gβ(t,Xt )dt =

∫ T

0

∫
R

gβ(t, y)pt (y)dy dt

(7.9)
≤ ∥∥gβ

∥∥
Lζ ([0,T ]×R)

∥∥p·(·)
∥∥

Lζ ′
([0,T ]×R)

.
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Now, by the generalized Minkowski inequality (cf., e.g., [20], (1.33)), we have∫
R

[
pt (y)

]γ ′
dy =

∫
R

{∫
R

1√
2πtH

e−(y+z−x)2/2t2H

fL(t, z)dz

}ζ ′

dy

≤
{∫

R

[∫
R

(
1√

2πtH
e−(y+z−x)2/2t2H

fL(t, z)

)ζ ′

dy

]1/ζ ′

dz

}ζ ′

(7.10)

=
{∫

R

fL(t, z)

[∫
R

(
1√

2πtH
e−(y+z−x)2/2t2H

)ζ ′

dy

]1/ζ ′

dz

}ζ ′

.

The direct calculation gives∫
R

(
1√

2πtH
e−(y+z−x)2/2t2H

)ζ ′

dy = (2π)1/2−ζ ′/2(ζ ′)−1/2
t (1−ζ ′)H .

Plugging this into (7.10), we obtain∫
R

[
pt(y)

]ζ ′
dy = (2π)1/2−ζ ′/2(ζ ′)−1/2

t (1−ζ ′)H
(∫

R

fL(t, z)dz

)ζ ′

= (2π)1/2−ζ ′/2(ζ ′)−1/2
t (1−σ ′)H .

Since ζ > H + 1, this leads to that∥∥p·(·)
∥∥

Lζ ′
([0,T ]×R)

≤ J 1/ζ ′
, (7.11)

where J is defined by (7.4). Finally, noting that ‖gβ‖1/β

Lζ ([0,T ]×R)
= ‖g‖Lβζ ([0,T ]×R), the estimate

(7.2) then follows from (7.7), (7.8), (7.9), and (7.11). �

Proof of Theorem 7.1. Since the proof is more or less standard, we only give a sketch for the
completeness. We refer to [12], [8] and/or [16] for more details.

We need only prove the existence. We assume that the coefficient b is bounded (by C > 0) and
satisfies Assumption 3.1. Let {bn(·, ·)}∞n=1 be a sequence of the mollifiers of b, so that all bn’s are
smooth, have the same bound C, and satisfy Assumption 3.1 with the same parameters.

Next, for n ≤ k we define b̃n,k
�=∧k

j=n bj and b̃n
�=∧∞

j=n bj . Then clearly, each b̃n,k is con-
tinuous, and uniformly Lipschitz in x, uniformly with respect to t . Furthermore, it holds that

b̃n,k ↓ b̃n, as k → ∞, b̃n ↑ b, as n → ∞,

for almost all x. Now for fixed n, k, consider SDE

Xt = x +
∫ t

0
b̃n,k(s,Xs)ds + BH

t − Lt , t ≥ 0. (7.12)
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As a pathwise ODE, (7.12) has a unique strong solution X̃n,k , and comparison theorem holds, that
is, {X̃n,k} decrease with k. Furthermore, since b̃n,k’s are uniformly bounded by C, the solutions

X̃n,k are pathwisely uniformly bounded, uniformly in n and k. Thus Xn
t

�= limk→∞ X̃
n,k
t exists,

for all t ∈ [0, T ], P-a.s. Since bn’s are still Lipschitz, the standard stability result of ODE then
implies that X̃n solves

Xt = x +
∫ t

0
b̃n(s,Xs)ds + BH

t − Lt , t ∈ [0, T ].

Furthermore, the Dominated Convergence theorem leads to that the estimate (7.2) holds for all
Xn’s, for any bounded measurable function g.

Next, since X̃n,k ≤ X̃m,k , for n ≤ m ≤ k, we see that X̃n increases as n increases, thus X̃n

converges, P-almost surely, to some process X. The main task remaining is to show that X

solves SDE (3.1), as b is no longer Lipschitz. In other words, we shall prove that

lim
n→∞E

∫ T

0

∣∣b̃n

(
t,Xn

t

)− b(t,Xt )
∣∣dt = 0. (7.13)

To see this, we first note that

E

∫ T

0

∣∣b̃n

(
t,Xn

t

)− b(t,Xt )
∣∣ds ≤ In

1 + In
2 , (7.14)

where

In
1

�= sup
k

E

∫ T

0

∣∣b̃k

(
t,Xn

t

)− b̃k(t,Xt )
∣∣dt,

(7.15)

In
2

�= E

∫ T

0

∣∣b̃n(t,Xt ) − b(t,Xt )
∣∣dt.

Let κ :R → R be a smooth truncation function satisfying 0 ≤ κ(z) ≤ 1 for every z, κ(z) = 0 for
|z| ≥ 1 and κ(0) = 1. Then by Bounded Convergence theorem one has

lim
R→∞E

∫ T

0

(
1 − κ(Xt/R)

)
dt = 0. (7.16)

Now for any R > 0, we apply Lemma 7.1 with βζ = 2 and note that both b̃n and b are bounded
by C to get

In
2 = E

∫ T

0
κ(Xt/R)

∣∣b̃n(t,Xt ) − b(t,Xt )
∣∣dt

+E

∫ T

0

(
1 − κ(Xt/R)

)∣∣b̃n(t,Xt ) − b(t,Xt )
∣∣dt (7.17)

≤ M

(∫ T

0

∫ R

−R

∣∣b̃n(t, x) − b(t, x)
∣∣2 dx dt

)1/2

+ 2CE

∫ T

0

(
1 − κ(Xt/R)

)
dt.



332 L. Bai and J. Ma

First letting n → ∞ and then letting R → ∞, we get limn→∞ In
2 = 0.

To show that limn→∞ In
1 = 0, we first note that by (7.16), for any ε > 0, there exists R0 > 0

such that

E

∫ T

0

∣∣1 − κ(Xt/R0)
∣∣dt < ε. (7.18)

Second, since {bn} converge to b almost everywhere, the Bounded Convergence theorem then

shows that b̃n converges to b in L2
T ,R0

�= L2([0, T ] × [−R0,R0]), hence {bn, b}n≥1 is a compact

set in L2
T ,R0

. Thus, we can find finitely many bounded smooth function H1, . . . ,HN such that for
each k, there is a Hik so that(∫ T

0

∫ R0

−R0

∣∣b̃k(t, x) − Hik (t, x)
∣∣2 dr dt

)1/2

< ε. (7.19)

Now, we write

In
1 = sup

k

E

∫ T

0

∣∣b̃k

(
t,Xn

t

)− b̃k(t,Xt )
∣∣dt ≤ sup

k

I1(n, k) + I2(n) + sup
k

I3(k),

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

I1(n, k) = E

∫ T

0

∣∣b̃k

(
t,Xn

t

)− Hik

(
t,Xn

t

)∣∣dt;

I2(n) =
N∑

j=1

E

∫ T

0

∣∣Hj

(
t,Xn

t

)− Hj(t,Xt )
∣∣dt;

I3(k) = E

∫ T

0

∣∣b̃k(t,Xt ) − Hik (t,Xt )
∣∣dt.

It is obvious that limn→∞ I2(n) = 0. Furthermore, since the estimate (7.2) holds with βζ = 2
for all Xn’s, similar to (7.17) we have

I1(n, k) ≤ M

(∫ T

0

∫ R0

−R0

∣∣b̃k(t, x) − Hik (t, x)
∣∣2 dx dt

)1/2

+ C1E

∫ T

0

(
1 − κ

(
X

(n)
t /R0

))
dt,

where C1 is a constant depending on C and max1≤i≤N ‖Hi‖∞. Hence, by (7.18), (7.19), and the
Dominated Convergence theorem again we have

lim
n→∞ sup

k

I1(n, k) ≤ Mε + C1E

∫ T

0

(
1 − κ(Xt/R0)

)
dt ≤ (M + C1)ε.

Similarly, we have supk I3(k) ≤ (M +C1)ε. Letting ε → 0 we obtain limn→∞ In
1 = 0. The proof

is now complete. �
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