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Abstract

This paper is a continuation of our previous work (Part I, Stochastic Process. Appl. 93 (2001)
181–204), with the main purpose of establishing the uniqueness of the stochastic viscosity so-
lution introduced there. We shall prove a comparison theorem between a stochastic viscosity
solution and an !-wise stochastic viscosity solution, which will lead to the uniqueness results.
As the byproducts we extend the measurable section theorem of Dellacherie and Meyer (1978),
and a fundamental lemma of Crandall et al. (1992). c© 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

In this paper we continue to study the following nonlinear stochastic PDE (SPDE):

du(t; x) = {Au(t; x) + f(t; x; u(t; x); �∗(x)Du(t; x))} dt

+
d∑

i=1

gi(t; x; u(t; x)) ◦ dBi
t (t; x) ∈ (0; T )× Rn;

u(0; x) = u0(x); x ∈ Rn; (1.1)

where B= (B1; : : : ; Bd) is a standard d-dimensional Brownian motion deAned on some
complete Altered probability space (�;F; P;F), with F = {Ft}t¿0 being a Altration
satisfying the usual hypotheses (see, e.g. Protter, 1990); and the stochastic integral is
in the sense of Stratonovich. Further, the second-order di#erential operator A in (1.1)
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is deAned by

A= 1
2 tr(�(x)�(x)

∗D2) + 〈�(x); D〉; (1.2)

where D = (@x1 ; @x2 ; : : : ; @xn)
T; D2 = (@2xixj)

n
i; j=1; the functions �, � are assumed to be

measurable; and �∗(·) denotes the transpose of �(·). To simplify notations we also
denote, as in Buckdahn and Ma (2001),

F(!; t; x; y; p; A), 1
2 tr(�(x)�(x)

∗A) + 〈�(x); p〉+ f(!; t; x; y; �∗(x)p)

(!; t; x; y; p; A) ∈ � × [0; T ]× Rn × R× Rn ×Sn; (1.3)

where Sn is the space of all symmetric n× n-matrices. In the sequel we will refer to
(1.1) as SPDE(f; g).
In Buckdahn and Ma (2001) we introduced a notion of stochastic viscosity so-

lution, inspired by the earlier results of Lions and Souganidis (1998a,b). By using
a Doss–Sussmann-type transformation and the so-called backward doubly stochastic
di=erential equations introduced by Pardoux and Peng (1994) we established the ex-
istence of stochastic viscosity solution to SPDE(f; g) (1.1). In this paper we shall
prove that the stochastic viscosity solution to SPDE(f; g) is unique among the class of
stochastically bounded random Aelds by establishing a main comparison theorem for
stochastic viscosity solutions, as is done in the deterministic case.
Our line of attack can be roughly described as follows. Following the idea of Buck-

dahn and Ma (2001) we shall Arst convert the SPDE(f; g) (via the Doss–Sussmann-type
transformation) to SPDE(f̃; 0), an SPDE without martingale term. Then we prove a
comparison theorem between the stochastic viscosity solution and the !-wise viscosity
solution of SPDE(f̃; 0), from which the uniqueness will follow. We should note that
the price for such a convertion is that the new non-homogeneous term f̃ becomes
rather ill-behaved, which results in some technicalities with di#erent nature. But we
nevertheless think that this is a good “trade-o#” because SPDE(f̃; 0) is essentially a
PDE with random coeLcients, which seems to be much easier to handle.
As in Buckdahn and Ma (2001) when we introduce the notion of stochastic viscosity

solutions, the main diLculty here is again how to “translate” the pivotal results from
the deterministic theory to the stochastic case. One of the subtle issues is conceivably
the measurability with regard to the variable !, or in particular, the adaptedness of
all the devices involved, so that the stochastic calculus can be applied. In fact, it is
this simple requirement that causes most of the tedious work, as we will see in the
paper. Two main byproducts of this paper are a generalized version of the optional
section theorem of Dellacherie and Meyer (1978) to the combined “space–time” random
vectors; and consequently a generalization of a fundamental theorem of Crandall et al.
(1992, Theorem 3:2) to the stochastic case.
This paper is organized as follows. In Section 2 we recall the notations, deAnitions,

and relevant results from Buckdahn and Ma (2001). In Section 3 we state the main
theorem, and introduce some useful auxiliary functions and discuss their properties. In
Section 4 we prove the measurable selection theorem and the fundamental lemma, and
in Section 5 we prove the main theorem.
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2. Preliminaries

In this paper we inherit all the notations from Buckdahn and Ma (2001). Let
(�;F; P) be a complete probability space on which is deAned a d-dimensional Brow-
nian motion B = (Bt)t¿0, let FB , {FB

t }t¿0 be the natural Altration generated by B,
augmented by the P-null sets of F; and let FB=FB

∞. Let E and E1 be two Euclidean
spaces, whose inner products and norms will be denoted as the same 〈· ; ·〉 and | · |,
respectively. Further, we denote

• L2(FB; E) to be all E-valued, FB-measurable, square-integrable random variables;
• for any sub-�-Aeld G⊆FB

T , let L0(G; E) be all E-valued, G-measurable random
variables (when there is no danger of confusion, we often write � ∈ G, instead of
� ∈ L0(G; E), for simplicity);

• Lq(FB; [0; T ]; E) to be all E-valued, FB-progressively measurable processes  , such
that E

∫ T
0 | t |q dt ¡∞. In particular, let L0(FB; [0; T ]; E) denote all E-valued, FB-

progressively measurable processes; and let L∞(FB; [0; T ]; E) denote those processes
in L0(FB; [0; T ]; E) that are uniformly bounded;

• Ck;‘([0; T ]× E; E1) to be the space of all E1-valued functions deAned on [0; T ]× E
which are k-times continuously di#erentiable in t ∈ [0; T ] and ‘-times continuously
di#erentiable in x ∈ E; let Ck;‘

b ([0; T ]×E; E1) be the subspace of Ck;‘([0; T ]×E; E1) in
which all functions have uniformly bounded partial derivatives; and let Ck;‘

p ([0; T ]×
E; E1) be the subspace of Ck;‘([0; T ]× E; E1) in which all the partial derivatives are
of at most polynomial growth;

• for any sub-�-Aeld G⊆FB
T , let Ck;‘(G; [0; T ]× E; E1) (resp. Ck;‘

b (G; [0; T ]× E; E1);
Ck;‘

p (G; [0; T ] × E; E1)) be the space of all Ck;‘([0; T ] × E; E1) (resp. Ck;‘
b ([0; T ] ×

E; E1); Ck;‘
p ([0; T ] × E; E1))-valued random variables that are G ⊗ B([0; T ] × E)-

measurable;
• Ck;‘(FB; [0; T ]× E; E1) (resp. Ck;‘

b (FB; [0; T ]× E; E1); Ck;‘
p (FB; [0; T ]× E; E1)) to be

the space of all random Aelds ’ ∈ Ck;‘(FB
T ; [0; T ]× E; E1) (resp. Ck;‘

b (FB
T ; [0; T ]×

E; E1); Ck;‘
p (FB

T ; [0; T ] × E; E1)), such that for Axed x ∈ E, the mapping (t; !) �→
’(t; x; !) is FB-progressively measurable.
If E1 = R, we shall simply denote Ck;‘([0; T ] × E;R) as Ck;‘([0; T ] × E), and so

on; and we denote C0;0([0; T ] × E; E1) = C([0; T ] × E; E1), and C0;0(FB; [0; T ] × E) =
C(FB; [0; T ]× E), etc.
In light of the results of Buckdahn and Ma (2001), throughout this paper we shall

make use of the following standing assumptions:

(A1) The functions �:Rn → Rn×k and � :Rn → R are uniformly Lipschitz continuous,
with a common Lipschitz constant K ¿ 0.

(A2) The function f:� × [0; T ] × Rn × R × Rk �→ R is a continuous random Aeld
such that for Axed (x; y; p); f(· ; ·; x; y; �∗(x)p) is FB-progressively measurable;
and there exists some constant K ¿ 0 such that for P-a.e. ! ∈ �,

|f(!; t; x; 0; 0)|6K ∀(t; x) ∈ [0; T ]× R;
|f(!; t; x; y; z)−f(!; t′; x′; y′; z′)|6K(|t− t′|+ |x−x′|+ |y−y′|+ |z−z′|);

∀(t; x; y; z); (t′; x′; y′; z′) ∈ [0; T ]× Rn × R× Rk : (2.1)
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(A3) The function u0:Rn �→ R is continuous and, such that for some constants
K;p¿ 0,

|u0(x)|6K(1 + |x|p); x ∈ Rn: (2.2)

(A4) The function g ∈ C0;2;3
b ([0; T ]× Rn × R; Rd).

Recall that in order to obtain the so-called uniform stochastic boundedness of the
stochastic viscosity solution (see DeAnition 2.4 below), we need to strengthen
Assumption (A4) to the following:

(A4′) The function g satisAes (A4); and for any '¿ 0, there exists a function G' ∈
C1;2;2;2([0; T ]× Rd × Rn × R), such that

@G'

@t
(t; w; x; y) = ';

@G'

@wi = gi(t; x; G'(t; w; x; y)); i = 1; : : : ; d;

G'(0; 0; x; y) = y: (2.3)

We remark that when g is independent of t and d=1, then (A4′) is trivially satisAed,
since one can always Arst solve the ODE (with parameter x):

dG
dw

= g(x; G); G(0) = y;

and then set G'(t; w; x; y) = G(w; x; y) + 't.
To deAne a stochastic viscosity solution, we Arst consider the following SDE in the

Stratonovich sense: for each (x; y) ∈ Rn × R,

*(t; x; y) = y +
d∑

i=1

∫ t

0
gi(s; x; *(s; x; y)) ◦ dBi

s

, y +
∫ t

0
〈g(s; x; *(s; x; y)); ◦dBs〉; t¿0; (2.4)

or equivalently, an Itô SDE (with parameter)

*(t; x; y) = y +
1
2

∫ t

0
〈g; Dyg〉(s; x; *(s; x; y))ds+

∫ t

0
〈g(s; x; *(s; x; y)); dBs〉: (2.5)

Denote the (unique) solution of (2.4) or (2.5) by *(t; x; y); (t; x; y) ∈ [0; T ]×Rn ×R.
From the theory of SDEs we know that, as a stochastic Oow, * ∈ C(FB; [0; T ]×Rn×R).
Since under (A4) the mapping y �→ *(t; x; y; !) deAnes a di#eomorphism for all (t; x),
P-a.s. (see, e.g., Protter, 1990, Chapter V), we can denote the y-inverse of *(t; x; y) by
E(t; x; y), and show that E(t; x; y) is the solution to the following SPDE (see Buckdahn
and Ma, 2001):

E(t; x; y) = y −
∫ t

0
〈DyE(s; x; y)g(s; x; y); ◦dBs〉 ∀(t; x; y); P-a:s: (2.6)

The following lemma of Buckdahn and Ma (2001) gives important estimates for the
random Aelds * and E:

Lemma 2.1. Assume (A4′): Let ,=(,0; : : : ; ,n) be a multiindex; with |,|,∑n
k=0 |,i|;

and let D, , D,0
y D,1

x1 : : : ; D
,n
xn
. Then there exists a constant C ¿ 0; depending only on
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the bounds of g and its partial derivatives; such that for - = *;E; it holds P-almost
surely that

|-(t; x; y)|6 |y|+ C|Bt |; |D,-|6C exp{C|Bt |};

(t; x; y) ∈ [0; T ]× Rn × R; |,|63:

The stochastic viscosity solution for SPDE(f; g) (1.1) is then deAned as follows.
Let MB

0;T denote all the FB-stopping times . such that 06.6T , P-a.s.; and MB
0;∞ be

all the FB-stopping times that are almost surely Anite.

De�nition 2.2. A random Aeld u ∈ C(FB; [0; T ] × Rn) is called a stochastic viscosity
subsolution (resp. supersolution) of SPDE(f; g), if u(0; x)6 (resp. ¿) u0(x) ∀x ∈ Rn;
and if for any . ∈ MB

0;T ; � ∈ L0(FB
. ; Rn), and any random Aeld ’ ∈ C1;2(FB

. ; [0; T ]×
Rn) satisfying

u(t; x)− *(t; x; ’(t; x))6 (resp:¿) 0 = u(.; �)− *(.; �; ’(.; �));

for all (t; x) in a neighborhood of (.; �), P-a.e. on the set {0¡.¡T}, it holds that

A (.; �)+f(.; �;  (.; �); �∗(�)D (.; �))¿(resp:6)Dy*(.; �; ’(.; �))Dt’(.; �);

(2.7)

P-a.e. on {0¡.¡T}, where  (t; x), *(t; x; ’(t; x)).
A random Aeld u ∈ C(FB; [0; T ] × Rn) is called a stochastic viscosity solution of

SPDE(f; g), if it is both a stochastic viscosity subsolution and a supersolution.

In the special case when g ≡ 0, one can view SPDE(f; 0) as a PDE with ran-
dom coeLcients. Therefore, for each ! ∈ � one can deAne the viscosity solution to
SPDE(f; 0) in the deterministic sense. Taking the !-measurability into account we have
the following deAnition which is important for the study of uniqueness.

De�nition 2.3. A random Aeld u ∈ C(FB; [0; T ] × Rn) is called an !-wise viscosity
(sub-, super-) solution if for P-a.e. ! ∈ �, u(!; · ; ·) is a (deterministic) viscosity
(sub-, super-) solution of the SPDE(f; 0).

The following notion of “boundedness” for a random Aeld deAned in Buckdahn and
Ma (2001) gives the main characterization of the class of stochastic viscosity solutions
on which the uniqueness holds.

De�nition 2.4. A random Aeld u ∈ C(FB; [0; T ]×Rn) is called stochastically uniformly
bounded if there exists a positive, increasing process 0 ∈ L0(FB; [0; T ]), such that
P-almost surely, it holds that |u(t; x)|60t ∀(t; x) ∈ [0; T ]× Rn.

One of the main devices used in Buckdahn and Ma (2001) is a transformation of
random Aelds in the spirit of the so-called Doss–Sussmann transformation seen in the
standard SDE theory, which we now describe.
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Note that the random Aelds *;E ∈ C0;2;2(FB; [0; T ]×Rn×R); for any random Aeld
 : [0; T ]×Rn×� �→ R, we consider the transformation introduced in the DeAnition 2.2:

’(t; x) = E(t; x;  (t; x)); (t; x) ∈ [0; T ]× Rn; (2.8)

or equivalently,  (t; x) = *(t; x; ’(t; x)) ∀(t; x), P-a.s. One can easily check that ’ ∈
C0;p(FB; [0; T ]×Rn), for p=0; 1; 2. Moreover, if ’ ∈ C0;2(FB; [0; T ]×Rn), then one
shows that

DyE(t; x;  (t; x)){A (t; x) + f(t; x;  (t; x); D (t; x)�(x))}

=A’(t; x) + f̃(t; x; ’(t; x); D’(t; x)�(x)); (2.9)

for all (t; x) ∈ (0; T )× Rn, P-a.e., where

f̃(t; x; y; z),
1

Dy*(t; x; y)

{
f(t; x; *(t; x; y); �∗(x)Dx*(t; x; y) + Dy*(t; x; y)z)

+Ax*(t; x; y)+〈�∗(x)Dxy*(t; x; y); z〉+1
2
Dyy*(t; x; y)|z|2

}
; (2.10)

for all (t; x; y; z) ∈ [0; T ] × Rn × R × Rk , P-a.s. Here Ax is the same as the operator
A in (1.2), with the emphasis that all the partial derivatives are with respect to x. We
often omit the subscript x in the sequel when there is no danger of confusion. Further,
we should note that in the above all the partial derivatives of the random Aeld E(· ; · ; ·)
are evaluated at (t; x; *(t; x; y)); and all those of *(· ; · ; ·) are evaluated at (t; x; y).
In what follows we refer to (2.8) as the Doss–Sussmann-type transformation. The

following results of Buckdahn and Ma (2001) are the basis of our discussion in this
paper.

Theorem 2.5. Assume (A1)–(A4). A random ?eld u is a stochastic viscosity sub-
(resp. super-)solution to SPDE(f; g) (1:1) if and only if v(· ; ·) = E(· ; · ; u(· ; ·)) is a
stochastic viscosity sub- (resp. super-)solution to SPDE(f̃; 0).
Consequently; u is a stochastic viscosity solution of SPDE(f; g) (1:1) if and only

if v(· ; ·) = E(· ; · ; u(· ; ·)) is a stochastic viscosity solution to SPDE(f̃; 0).

Theorem 2.6. Assume (A1)–(A4). Then the SPDE(f; g) admits a stochastic viscosity
solution u ∈ C(FB; [0; T ]×Rn); and SPDE(f̃; 0) admits a stochastic viscosity solution
v ∈ C(FB; [0; T ]× Rn). Furthermore; a pair of these solutions u; v can be related as

u(t; x) = *(t; x; v(t; x)); v(t; x) = E(t; x; u(t; x));

where * and E are the solutions to (2:5) and (2:6); respectively.
Finally; if in addition (A4′) holds and u0 is uniformly bounded; then the random

?elds u and v are both stochastically uniformly bounded.

3. Statement of main results

In this section we state our main results and give some preparation of the proof.
While most of the technical details of the proofs will be carried out in the rest of the
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paper, some important auxiliary functions will be introduced and studied in this and
next sections to facilitate our future discussion.
To begin with, we note that, in light of Theorem 2.5, we need only prove the

uniqueness of the stochastic viscosity solution to SPDE(f̃; 0):

Dtv(t; x) =Av(t; x) + f̃(t; x; v(t; x); Dv(t; x)�(x)); (t; x) ∈ [0; T ]× Rn: (3.1)

We should point out that although SPDE (3.1) does not have a martingale term, the
deAnitions of a stochastic viscosity solution and an !-wise stochastic viscosity solution
to (3.1) are still di#erent! However, since the uniqueness for the !-wise stochastic
viscosity solution is essentially parallel to the deterministic case, we shall establish the
uniqueness by identifying the two deAnitions in the case of (3.1).
To do this, we shall make use of a technical assumption on the random Aeld f̃:

(A5) There exists an increasing, F-adapted process 0= {0t ; t¿0}, such that

|f̃(t; x; y + h; z)− f̃(t; x; y; z)|60th ∀h¿ 0; ∀(t; x; y; z); P-a:e:

We remark here that Assumption (A5) is merely technical. A trivial special case
is that the function g is such that the corresponding solution to (2.4) satisAes that
Dxy* ≡ 0 and Dyy* ≡ 0 (e.g., g(t; x; y) = 31(t)y+ 32(t; x)). Removal of this condition
seems to be possible by restricting slightly the class of random Aelds on which the
uniqueness is considered, which requires some extra properties of the stochastic vis-
cosity solutions. We would prefer to address this in a separate publication, in order
not to over-complicate this already technical paper. We should point out, however, that
the main diLculties in this paper, such as the measurable selection issue, are by no
means eased by such an assumption.
The main result of this paper is the following comparison theorem:

Theorem 3.1. Assume (A1)–(A5). Suppose that v1 ∈ C(FB; [0; T ]×Rn) is a stochas-
tic viscosity sub- (resp. super-)solution of (3:1); and v2 ∈ C(FB; [0; T ] × Rn) is an
!-wise viscosity super- (sub-)solution of (3:1); such that they are both stochastically
uniformly bounded. Then it holds that

v1(t; x)6(resp: ¿)v2(t; x) ∀(t; x) ∈ [0; T ]× Rn; P-a:e (3.2)

The uniqueness results are contained in the following corollary. Recall that in the
case of g= 0, an !-wise viscosity solution is necessary stochastic viscosity solution.

Corollary 3.2. Assume (A1)–(A5). Then
(i) If v1 ∈ C(FB; [0; T ]×Rn) is a stochastic viscosity solution and v2 ∈ C(FB; [0; T ]×

Rn) is an !-wise viscosity solution of (3:1); and both are uniformly stochastically
bounded; then v1(t; x) ≡ v2(t; x) for all (t; x) ∈ [0; T ]× Rn; P-a.s.

(ii) The uniformly stochastically bounded !-wise viscosity solution to (3:1) is unique.
In particular; if f̃ is deterministic; then the uniformly bounded; deterministic
viscosity solution of (3:1) is unique.

(iii) If in addition (A4′) also holds; then the stochastic viscosity solution to
SPDE(f; g) is unique among uniformly stochastically bounded random ?elds in
C(FB; [0; T ]× Rn).
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Proof. (i) Obvious.
(ii) Since an !-wise viscosity supersolution is also a stochastic viscosity super solution

by deAnition, Theorem 3.1 gives the comparison between the !-wise super and
subsolutions, and the uniqueness follows. We note that if f̃ is deterministic, then
the result is well-known (cf. Pardoux and Peng, 1992).

(iii) Let u1; u2 ∈ C(FB; [0; T ]×Rn) be two stochastic viscosity solutions of SPDE(f; g),
such that they both are uniformly stochastically bounded. DeAne vi(· ; ·) =
E(· ; · ; ui(· ; ·)), i = 1; 2. Then by Theorem 2.5, v1 and v2 are both stochastic
viscosity solution to the SPDE(f̃; 0), where f̃ is deAned by (2.10); and are
both uniformly stochastically bounded, thanks to Lemma 2.1. The uniqueness then
follows from part (i) and Theorem 4:3 of Pardoux and Peng (1992).

The proof of Theorem 3.1 is quite lengthy, we break it into a sequence of lemmas,
which will be proved throughout the rest of the paper. To begin with, let us assume
without loss of generality that v1 is a stochastic viscosity subsolution and v2 is a !-wise
viscosity supersolution of (3.1), and deAne

-, sup
(t; x)∈[0;T ]×Rn

(v1(t; x)− v2(t; x)):

Clearly, P{-¿ 0} = 0 means that the conclusion of Theorem 3.1 holds, so we shall
assume P{-¿ 0}¿ 0, and then try to And a set 4∗ ∈ FB

T with P(4∗)¿ 0, on which
a contradiction can be drawn.
Let us Arst make some reductions. Recall that v1 and v2 are both stochastically uni-

formly bounded, that is, there exists a positive, increasing process 0 ∈ L0(FB; [0; T ])
such that |-|620T ¡∞, P-a.e., so P{-¿ 0}¿ 0 implies that for some ‘¿ 0,
P{-¿ 0; 0T6‘}¿ 0. Consequently,

-‘ , esssup
!∈{0T6‘}

[-(!)]¿ 0: (3.3)

Next, for each N ∈ N, deAne KN , [0; T − 1=N ]× {x ∈ Rn: |x|6N} and

-N (!) = sup
(t; x)∈KN

{v1(!; t; x)− v2(!; t; x)}: (3.4)

Since limN→∞ -N =-, P-a.s., for each '¿ 0 we can deAne the following integer-valued
random variable:

N ('; !), inf{N ∈ N: -N (!)¿-(!)− '=3}: (3.5)

Further, since v2(!; · ; ·) is uniform continuous on each KN , for a.e. ! ∈ � and
N ¿N ('; !) we can then And some 7(N;!)¿ 0 such that

,(!; 7; N ), sup
(t; x)∈KN ; 7′∈(0; 7)

|v2(!; t; x)− v2(!; t − 7′; x)|6 '
3

∀7 ∈ (0; 7(N;!)):

(3.6)

Keeping the random variables -N , N ('; ·), ,(· ; 7; N ) in mind, for any ' ∈ (0; -‘),
N ∈ N, and 7¿ 0, we now deAne

4';N;7 , {!: -(!)¿-‘ − ';0T (!)6‘; N¿N ('; !); ,(!; 7; N )6'=3}: (3.7)
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We shall prove that the desired set 4∗ can be chosen from the family {4';N;7: '¿0; N ∈
N; 7¿ 0}.
To end this section, let us deAne some “auxiliary functions” similar to those that are

often used in the uniqueness proof for the deterministic case. We point out that the
main diLculty in the stochastic case is that the time variable and the spatial variable
cannot be treated the same way. In fact, even two time variables will have to be treated
di#erently in order to obtain the appropriate measurability (such as “adaptedness”), as
we will see in a moment.
Let us Arst introduce, for 7¿ 0, a (generalized) convex function

 7(r) =




−ln

[
1−
(
7− r
7

)2]
; r ∈ (0; 27);

+∞; r �∈ (0; 27):

(3.8)

Now deAning v2(t; x) ≡ v2(0; x) ∀t60, for any 71; 72 ¿ 0, we deAne a random Aeld
971 ; 72 : � × [0; T )× Rn × (−∞; T )× Rn �→ R:

971 ; 72 (!; t; x; t′; x′) = v1(!; t; x)− v2(!; t′; x′)

−
{

1
271

|x − x′|2 + 1
2
 71 (t − t′) +

72
2
(|x|2 + |x′|2) + 72

2
1

T − t

}
; (3.9)

and a process

:71 ; 72 (t), sup
x; x′∈Rn;

t′∈(−∞;T )

971 ; 72 (t; x; t
′; x′); t ∈ [0; T ]: (3.10)

Clearly, by the deAnition of  7, the “sup” in (3.10) is actually taken over t′ ∈ (t −
271; t), for any t ∈ [0; T ].
The following lemma relates the set 4';N;7 and the auxiliary function 971 ; 72 :

Lemma 3.3. (i) For each ' ∈ (0; -‘); N ∈ N and 7¿ 0;

4';N;7 ⊆
⋂

71∈(0;7)
72∈(0; '=6N 2)


 sup

(t; x)∈[0;T )×Rn

(t′ ; x′)∈(−∞;T )×Rn

971 ; 72 (t; x; t
′; x′)¿-‘ − 2'


 :

(3.11)

(ii) For any ' ∈ (0; -‘); there exist N ∗(')¿1 and 7∗(') = 7(N ∗('))¿ 0 such that
P(4';N∗('); 7∗('))¿ 0.

Proof. (i) Assume ! ∈ 4';N;7. For any 71 ∈ (0; 7) and 726'=6N 2, we derive from
(3.5), (3.6), and (3.7) that

sup
(t; x)∈(0;T )×Rn

(t′ ; x′)∈(−∞;T )×Rn

971 ; 72 (!; t; x; t′; x′)

¿ sup
(t; x)∈KN

{
v1(!; t; x)− v2(!; t − 71; x)− 72|x|2 − 72

1
T − t

}
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¿ sup
(t; x)∈KN

{v1(!; t; x)−v2(!; t; x)}− sup
(t; x)∈KN

{v2(!; t; x)−v2(!; t−71; x)}−272N 2

¿-N (!)− ,(!; 7; N )− 272N 2¿
(
-(!)− '

3

)
− '

3
− '

3
¿-(!)− '¿-‘ − 2';

proving (i).
(ii) Since

⋃
N¿1

⋃
7¿0 4';N;7={-¿-‘−';0T6‘}; and since the deAnition of -‘ implies

that P{-¿-‘ − ';0T6‘}¿ 0 for any ' ∈ (0; -‘). The conclusion follows easily.

Note that if we denote for each ' ∈ (0; -‘), 4∗
' , 4';N∗('); 7∗('), then Lemma 3.3(ii)

shows that we need only And '0 ∈ (0; -‘) so that the contradiction occurs on 4∗=4∗
'0 .

4. Properties of functions ��1; �2 and ��1; �2

In this section we study the auxiliary functions :71 ; 72 and 971 ; 72 in detail. Recall the
quantities N ∗('), 7∗('), ' ∈ (0; -‘) deAned in Lemma 3.3(ii). We have the following
two lemmas.

Lemma 4.1. Let '¿ 0 be ?xed; and let N ∗ = N ∗('); 7∗ = 7∗('). Then for all 71 ∈
(0; 7∗) and 72 ∈ (0; '=6(N ∗)2), the process :71 ; 72 is FB-adapted and continuous on
[0; T ). Furthermore; if we de?ne

t̂, inf{t ∈ [0; T )::71 ; 72 attains a local maximum at t;:71 ; 72 (t)¿-‘−2'}; (4.1)

then t̂ is an FB-stopping time; and for any 72 ¿ 0 there exists 7∗∗ ¿ 0 such that
4∗

' ⊆{0¡t̂¡T}; whenever 7167∗∗.

Proof. The adaptedness of :71 ; 72 is a consequence of the choice of the auxiliary func-
tion  71 (r). To see the continuity, note that as the supremum of a family of continuous
processes, :71 ; 72 is lower semicontinuous. Thus it suLces to show that it is upper semi-
continuous at any t ∈ [0; T ).
For any ‘¿ 0, consider the sets �‘ , {!: |0T (!)|6‘}. Since �‘ ↑�, P-a.e., it

suLces to show that :71 ; 72 (· ; !) is upper semicontinuous for ! ∈ �‘. To this end let
‘¿ 0, ! ∈ �‘, and *¿ 0 be Axed, and deAne

*1 =
√
1− 1

2 exp(−8‘ − 2*); *2 =
√
1− exp(−8‘ − 2*): (4.2)

Let t ∈ [0; T ). For any St ∈ [0; T ) such that |St − t|67∗1 , 71(*1 − *2), we let ( Sx; St ′; Sx ′)
be an Rn × [0; T )× Rn-valued random vector such that

:71 ; 72 (St )6971 ; 72 (St; Sx; St
′; Sx ′) + *: (4.3)

Therefore, the deAnition of :71 ; 72 and 971 ; 72 (see (3.9) and (3.10)) yields that, for
P-a.e. ! ∈ �‘,

:71 ; 72 (St )− :71 ; 72 (t)6971 ; 72 (St; Sx; St
′; Sx ′)−971 ; 72 (t; Sx; St

′; Sx ′) + *

6[v1(St; Sx )− v1(t; Sx )]− 1
2 ( 71 (St − St ′)−  71 (t − St ′))− 72

2

(
1

T − St
− 1

T − t

)
:

(4.4)
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Since v1 and v2 both have continuous paths, it is readily seen from (4.4) that

lim
St→t

:71 ; 72 (St; !)6:71 ; 72 (t; !)− lim
St→t

1
2 ( 71 (St − St ′)−  71 (t − St ′)):

Thus it suLces to show that

lim
St→t

1
2 ( 71 (St − St ′)−  71 (t − St ′))¿0: (4.5)

To see this we observe that

:71 ; 72 (St )¿v1(St; 0)− v2(St − 71; 0)− 72
2

1
T − St

¿− 2‘ − 72
2

1
T − St

:

Therefore
72
2
(| Sx|2 + | Sx ′|2) + 1

2
 71 (St − St ′)

=
{
v1(St; Sx )− v2(St ′; Sx ′)− 1

271
| Sx − Sx ′|2 − 72

2
1

T − St

}
−971 ; 72 (St; Sx; St

′; Sx ′)

6
(
2‘ − 72

2
1

T − St

)
− :71 ; 72 (St ) + *64‘ + *: (4.6)

Consequently we have  71 (St − St ′)68‘ + 2*. Now recall the deAnitions of  71 (3.8),
and *1; *2 (4.2), as well as 7∗1 , we see that

|71 − (St − St ′)|671*2 whenever St ∈ [0; T ); |St − t|67∗1 ;

and hence

|71 − (t − St ′)|6|71 − (St − St ′)|+ |t − St |671*2 + 7∗1 = 71*1:

Since *2 ¡*1 ¡ 1, one has (St − St ′); (t − St ′) ∈ [71(1− *1); 71(1 + *1)]⊂(0; 271). Con-
sequently, by deAnition of  71 one checks easily that there exists a constant C1 ¿ 0,
depending on 71, ‘ and *, such that

| 71 (St − St ′)−  71 (t − St ′)|6C1|St − t|; ∀St ∈ [0; T ); |St − t|67∗1 :

Thus (4.5) holds, proving the upper semicontinuity of :71 ; 72 (· ; !) at t.
To see that the random time t̂ deAned by (4.1) is an FB-stopping time, we need

only observe that the adaptedness and continuity of 971 ; 72 imply the following fact:
for any t ∈ [0; T ],

{t̂ ¡ t}=
⋃

06r¡s6t
r; s∈Q

{-‘ − 2'¡:71 ; 72 (r);:71 ; 72 (r)¿:71 ; 72 (s)} ∈ FB
t ;

where Q is all the rationals in R.
It remains to prove the last assertion of Lemma 4.1, that is, 4∗

' ⊆{0¡t̂¡T}. In
light of (3.11) we need only show that

 sup
(t; x; x′)∈(0;T )×(Rn)2

t′∈(−∞; T )

971 ; 72 (t; x; t
′; x′)¿-‘ − 2'


⊆{0¡t̂¡T}; (4.7)

whenever 7167∗∗. However, since :71 ; 72 is continuous on [0; T ) and :71 ; 72 (t) → −∞;
as t → T , it suLces to show that :71 ; 72 (0)60.
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To see this, deAne the “modulus of continuity” of the (deterministic) function v2(0; ·) :
Rn → R:

!(r; s), sup{|v2(0; x)− v2(0; x′)| : |x|2 + |x′|26s; |x − x′|26r}; r; s¿ 0: (4.8)

Since !(0; s) = 0 ∀s¿ 0, for any 72 ¿ 0 there exists 7∗∗ ¿ 0 such that

!(4‘71; 4‘=72)¡72=2T whenever 7167∗∗: (4.9)

Now recall that v2(t′; x) = v2(0; x)¿v1(0; x), and v2(0; x) − v2(0; x′)62‘. For t′60,
x; x′ ∈ Rn, and 71 ∈ (0; 7∗∗) we have

971 ; 72 (0; x; t
′; x′) = (v1(0; x)− v2(0; x′))−

(
1
271

|x − x′|2 + 1
2 71 (−t′)

)

− 72
2
(|x|2 + |x′|2)− 72

2T

6 (v2(0; x)− v2(0; x′))− 1
271

|x − x′|2 − 72
2
(|x|2 + |x′|2)− 72

2T

6



− 72
2T

¡0; |x|2+ |x′|2¿4‘
72

or |x−x′|2¿4‘71;

!
(
4‘71;

4‘
72

)
− 72
2T

¡0; |x|2+ |x′|2¡4‘
72

; |x−x′|2¡4‘71;

thanks to (4.8) and (4.9). Now, taking supremum over t′ ∈ (−∞; T ) and x; x′ ∈ Rn

we have :71 ; 72 (0)60, proving the lemma.

Lemma 4.2. For ?xed 71 ∈ (0; 7∗ ∧ 7∗∗)) and 72 ∈ (0; '=6(N ∗)2); where ' ∈ (0; -‘=3);
there exist FB

t̂ -measurable random variables t̂ ′ ∈ (−∞; T ); and x̂; x̂ ′ ∈ Rn; such
that t̂(!) − 271 ¡t̂ ′(!)¡t̂(!); for P-a:e: ! ∈ �; and :71 ; 72 (t̂ ) = 971 ; 72 (t̂; x̂; t̂

′; x̂ ′).
Furthermore; P-a:e. on {0¡t̂¡T}; it holds that
(i) 971 ; 72 attains at a local maximum at (t̂; x̂; t̂ ′; x̂ ′).
(ii) 971 ; 72 (t; x; t

′; x′)6971 ; 72 (t̂; x̂; t̂
′; x̂ ′); ∀(t; x; t′; x′) ∈ [0; t̂ ]× Rn × [0; T )× Rn

Proof. Since :71 ; 72 (t̂ )¿-‘ − 2', except for a P-null set, for any ! ∈ � we should
have

:71 ; 72 (t̂(!)) = sup
(t′ ; x; x′)∈O(!)

971 ; 72 (!; t̂(!); x; t′; x′);

where O(!) , {(t′; x; x′) ∈ (−∞; T ) × Rn × Rn|971 ; 72 (!; t̂(!); x; t′; x′)¿-‘ − 3'}.
Further, note that for ! ∈ 4∗

' and (t′; x; x′) ∈ O(!) one has

-‘ − 3'¡971 ; 72 (!; t̂(!); x; t′; x′) = v1(!; t̂(!); x)− v2(!; t′; x′)

−
{

1
271

|x − x′|2 + 1
2
 71 (t̂(!)− t′) +

72
2
(|x|2 + |x′|2) + 72

2
1

T − t̂(!)

}

62‘ − 1
2
 71 (t̂(!)− t′)− 72

2
1

T − t̂(!)
− 72

2
(|x|2 + |x′|2): (4.10)
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Therefore 2‘− (-‘ −3')¿ 0; and on O(!) one has |x|2 + |x′|26(2=72)[2‘− (-‘ −3')].
Now by the deAnition of  7 (3.8), one can check that

|t′ − (t̂(!)− 71)|671
√
1− exp{−2[2‘ − (-‘ − 3)]}¡71: (4.11)

Consequently, O(!) is a bounded set. Thus for each Axed ! we can And (t̂ ′; x̂; x̂ ′) in
the closure of O(!) such that (i) and (ii) hold. Moreover, (4.11) implies that t̂(!)−
271 ¡t̂ ′(!)¡t̂(!) must hold. The lemma then follows from the standard measurable
selection theorem.

Remark 4.3. In what follows we call the quadruple (t̂; x̂; t̂ ′; x̂ ′) in Lemma 4.2 an
FB-maximizer of 971 ; 72 .

5. Measurable selections

In this section we try to generalize the Theorem 3:2 of Crandall et al. (1992) to a
stochastic setting. Since the result depends heavily on the measurable selection theorem
as well as the optional section theorem (of Dellacherie–Meyer), we thus simply name
this section measurable selections.
Let us Arst recall some notions of Crandall et al. (1992). For given u ∈ C([0; T ]×Rn)

and (St; Sx ) ∈ [0; T ]×Rn, a triplet (a; p; X ) ∈ R×Rn×Sn is called a parabolic superjet
of u at (St; Sx ) if for any (t; x) in a neighborhood of (St; Sx ), it holds that

u(t; x)6 u(St; Sx ) + a(t − St ) + 〈p; x − Sx 〉+ 1
2 〈X (x − Sx ); x − Sx 〉

+o(|t − St |) + o(|x − Sx |2): (5.1)

We denote the set of all parabolic superjets of u at (St; Sx ) by P1;2;+u(St; Sx ). The set of
parabolic subjets, deAned in a similar way by reversing the direction of the inequality
in (5.1), is denoted by P1;2;−u(St; Sx ). Further, if u is independent of t, then the set of
the second-order superjets of u at Sx, denoted by P2;+u( Sx ), are those pairs (p; X ) such
that (5.1) holds with the obvious modiAcations. The set P2;−u( Sx ) is deAned likewise.
Finally, we denote the closure of P1;2;+u(St; Sx ) by SP

1;2;+
u(St; Sx ). The closure of the set

of other “jets” are deAned similarly.
We now introduce another auxiliary function for notational convenience:

’(t; x; t′; x′),
1
271

|x − x′|2 + 1
2
 71 (t − t′) +

72
2

(
|x|2 + |x′|2 + 1

T − t

)
; (5.2)

for t; t′ ∈ (0; T ) with 0¡t − t′ ¡ 27, and x; x′ ∈ Rn. We have

Theorem 5.1. Assume (A1)–(A4). Let (t̂; x̂; t̂ ′; x̂ ′) be an FB-maximizer of 971 ; 72 de-
?ned in Lemma 4:2. Then; for any '; =¿ 0; there exist two FB

t̂ -measurable Sn-valued
random variables X;Y such that for P-a:e. ! ∈ 4∗

' ; it holds that

(i) ((Dt; Dx)’(t̂; x̂; t̂ ′; x̂ ′)(!);X(!)) ∈ SP
1;2;+

v1(!; t̂(!); x̂(!));
(ii) (−(Ds; Dy)’(t̂; x̂; t̂ ′; x̂ ′)(!);Y(!)) ∈ SP

1;2;−
v2(!; t̂ ′(!); x̂ ′(!));
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(iii) with

B=
(

Dxx’ Dxy’
Dxy’ Dyy’

)
(t̂; x̂; t̂ ′; x̂ ′) (!) =

1
71

(
I −I
−I I

)
+ 72

(
I 0
0 I

)
;

it holds that(
X(!) 0
0 −Y(!)

)
6B+ =

{
B2 +

(
I 0
0 I

)}
: (5.3)

Furthermore; there exists a sequence of FB-stopping times {t̂m}; a sequence of
sets 4m

' with P{4m
' }¿ 0 and limm→∞4m

' = 4∗
' ; and a sequence of FB

t̂m
-measurable;

[0; T ]× (Rn)2 × (R×Rn ×Sn+1)2-valued random variables {(t̂ ′m; x̂m; x̂ ′
m; (â

m
1 ; p̂

m
1 ; Ŝ1

m);
(âm

2 ; p̂
m
2 ; Ŝ2

m))}; which enjoys; P-a.e on 4m
' ;

(i′) (âm
1 ; p̂

m
1 ; Ŝ1

m) ∈ P2;+v1(t̂m; x̂m) and (âm
2 ; p̂

m
2 ; Ŝ2

m) ∈ P2;−v2(t̂ ′m; x̂
′
m);

(ii′) P-a.e. on 4∗
' ; it holds that

lim
m→∞(t̂m; t̂ ′m; x̂m; x̂

′
m) = (t̂; t̂ ′; x̂; x̂ ′);

lim
m→∞((âm

1 ; p̂
m
1 ); (â

m
2 ; p̂

m
2 )) = ((Dt; Dx)’(t̂; x̂; t̂ ′; x̂ ′);−(Ds; Dy)’(t̂; x̂; t̂ ′; x̂ ′));

(iii′) There exists a pair of Sn+1-valued; F̂t-measurable random variables (X̂; Ŷ)
such that; for P-a.e. ! ∈ 4∗

' , (X̂(!); Ŷ(!)) is a limit point of {(Ŝm
1 (!);

Ŝ
m
2 (!))}m¿0; and that

X̂ =
(

x11 ∗
∗ X

)
; Ŷ =

(
y11 ∗
∗ Y

)
:

To prove Theorem 5.1, we Arst need to generalize the optional section theorem
of Dellacherie and Meyer (1978) to the space–time random vectors. Let us Arst re-
call some notions from Dellacherie and Meyer (1978). First, for any paved set (G;G)
let us denote all the G-analytic sets by A(G). Next, denote O to be the optional
�-Aeld on � × [0; T ], that is, the �-Aeld generated by all the stochastic intervals
<S1; S2<, {(!; t): S1(!)6t ¡S2(!)}, where S1 and S2 are FB-stopping times. Now let
(X ;B(X)) be any Borel space. The following generalization of the Dellacherie–Meyer
optional selection theorem seems to be new.

Lemma 5.2. Let A⊆� × [0; T )× X be an O⊗B(X)-measurable set. Then for any
'¿ 0; there exists a mapping (t̂; x̂): � �→ [0; T ]× X ; such that

(i) t̂ is an FB-stopping time and x̂ is an FB
t̂ -measurable random variable;

(ii) for P-a.e. ! ∈ � such that t̂(!)¡T; (!; t̂(!); x̂(!)) ∈ A;
(iii) P{t̂ ¡T}¿P(B(A))− '; where B(A), Proj�(A).

Proof. Let I0 be the paving of all the stochastic intervals <S1; S2<, {(!; t): S1(!)6t
¡S2(!)}, where S1 and S2 are FB-stopping times such that 06S16S26T , a.s. (i.e.,
S1; S2 ∈ MB

0;T ); and I be the Boolean algebra generated by I0. Since I generates
the �-Aeld O, A ∈ A(I × K(X)), where K(X) is any compact paving of X that
generates the Borel Aeld B(X). Now by the Jankov–von Neumann Theorem (cf., e.g.,
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Bertsekas and Shreve, 1978) or Theorem III:9 of Dellacherie and Meyer (1978), the set
C(A) , Proj�×[0;T ](A) is I-analytic; and there exists an I-analytically measurable
mapping 0 : C(A) �→ X , such that (!; t;0(!; t)) ∈ A, for all (!; t) ∈ C(A).
Next, recall that for any subset A⊆� × [0; T ], the debut of A is deAned by

DA(!) = inf{t ∈ [0; T ): (!; t) ∈ A} ∀! ∈ �; (5.4)

with the convention that DA(!)=T; if {· · ·}= ∅: Since A(I)⊆A(FB
T ⊗B([0; T )),

C(A) is FB
T ×B([0; T ))-analytic. Thus by Theorem III:44 of Dellacherie and Meyer

(1978) (replacing R+ there by [0; T )), we know that the debut of C(A), DC(A), is
FB

T -measurable; and that there exists an FB
T -measurable random variable D: � �→ [0; T ]

such that (!; D(!)) ∈ C(A), whenever D(!)¡T ; and P(D¡T )=P(DC(A) ¡T ). Since
C(A)⊆� × [0; T ) implies that {DC(A) ¡T}= B(A), we further have

P(D¡T ) = P(B(A)): (5.5)

We now follow the arguments of Dellacherie and Meyer (1978, Theorem IV:76 or
Theorem IV:84) to And the desired stopping time t̂. First, we deAne a measure E on
� × [0; T ] by

E(A) =
∫
1A(!; D(!))1{D¡T}(!)P(d!); A ∈ FB

T ⊗B([0; T ]): (5.6)

Clearly, if <D=, {(!; t): t ∈ [0; T ]; t=D(!)} denotes the graph of D, then the previous
argument shows that (noting (5.5))

E(<D=) = E(C(A)) = P(D¡T ) = P(B(A)): (5.7)

Recall that C(A) is in fact I-analytic, so by viewing E as a capacity on � × [0; T ]
and applying Choquet’s theorem (cf. Dellacherie and Meyer, 1978, Theorem III:28),
we know that C(A) is E-capacitable and, for any '¿ 0, there exists a set B' ∈ I7,
such that B' ⊆C(A) and that E(B')¿E(C(A))− '= P(B(A))− ', thanks to (5.7).
Next, let t̂=DB' , the debut of the set B' (see (5.4)). Since B' ∈ I7 ⊆ �(I)=O, and

B' ⊆C(A)⊆�× [0; T ), Theorem IV:50 of Dellacherie and Meyer (1978) then tells us
that t̂ is an FB-stopping time such that

P(t̂ ¡T ) = P(B(B')); (5.8)

where B(B') = Proj�(B'). Furthermore, since FB is a Brownian Altration, any stopping
time is predictable. Thus following the arguments of Dellacherie and Meyer (1978,
Theorem IV:84) we see that, for B' ∈ I7, one must have (!; t̂(!)) ∈ B', whenever
t̂(!)¡T . We claim that t̂ satisAes part (iii) of the lemma, i.e., P(t̂ ¡T )¿P(B(A))−'.

Indeed, since B' ⊆ B(B') × [0; T ] and 1B(B')×[0;T ](!; D(!)) = 1B(B')(!) ∀! ∈ �, we
deduce from (5.6) that

E(B')6E(B(B')× [0; T ]) = P(B(B') ∩ {D¡T})6P(B(B')): (5.9)

Combining (5.7)–(5.9) and recalling the deAnition of B' we obtain that

P(t̂ ¡T )¿E(B')¿E(C(A))− '= P(D¡T )− '= P(B(A))− ';

proving (iii).
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It remains to construct the random vector x̂ that veriAes (i) and (ii) of the lemma.
The diLculty here is that the intermediate mapping 0 :C(A) �→ X is only analyti-
cally measurable; thus the composition ! �→ 0(!; t̂(!)) is analytically measurable at
best, much less an FB

t̂ -measurable random variable as desired. Therefore more careful
consideration is needed here, and we argue as follows.
First let us deAne another measure on � × [0; T ], similar to E deAned by (5.6):

E1(A) =
∫
1A(!; t̂(!))1{t̂¡T}(!)P(d!); A ∈ FB

T ⊗B([0; T ]):

Then E1 is carried by the set B'. Since 0 is I-analytically measurable, it is O-
analytically measurable, whence O-universally measurable. Thus for the measure E1

there exists an O-measurable function, denoted by 01, such that E1({01 �= 0}) = 0.
Now by deAnition of E1 we see that this means for P-a.e. ! such that t̂(!)¡T , one
must have 01(!; t̂(!))=0(!; t̂(!)). Consequently, if we deAne x̂(!)=01(!; t̂(!)) ∀!
∈ � then x̂ is FB

t̂ -measurable; and P-a.e. on {t̂ ¡T},
(!; t̂(!); x̂(!)) = (!; t̂(!); 01(!; t̂(!))) = (!; t̂(!); 0(!; t̂(!))) ∈ A;

proving (i) and (ii), whence the lemma.

Proof of Theorem 5.1. Let (t̂; x̂; t̂ ′; x̂ ′) be an FB-maximizer of the random Aeld 971 ; 72 ,
that is, t̂ is an FB-stopping time, and (x̂; t̂ ′; x̂ ′) is FB

t̂ -measurable. For each Axed
! ∈ 4∗

' (⊆{0¡t̂¡T}) we can apply Theorem 3:2 of Crandall et al. (1992) to And
matrices SX

!
= (xij); SY

!
= (yij) ∈ Sn+1 such that,

(â1(!); p̂1(!); SX
!
) ∈ SP

2;+
v1(!; t̂(!); x̂(!));

(â2(!); p̂2(!); SY
!
) ∈ SP

2;−
v2(!; t̂ ′(!); x̂ ′(!)); (5.10)

and that

−
(
1
=
+ | SB|

)
I2(n+1)6

(
SX
!

0
0 − SY

!

)
6 SB+ = SB

2
; (5.11)

where (and in the sequel) Ik denotes the k × k identity matrix and

(â1; p̂1) = (Dt; Dx)’(t̂; x̂; t̂ ′; x̂ ′); (â2; p̂2) =−(Ds; Dy)’(t̂; x̂; t̂ ′; x̂ ′);

SB= (Dt; Dx; Ds; Dy)⊗ (Dt; Dx; Ds; Dy)’(t̂; x̂; t̂ ′; x̂ ′)(!): (5.12)

Using deAnition (5.2) one shows easily that, on the set 4∗
' , | SB| is bounded by some

constant C71 ; 72 ¿ 0. In order to translate our argument to the matrix B (=(Dx; Dy) ⊗
(Dx; Dy)), let us introduce the following matrices:

F,




1 0 0 0

0 0 In 0

0 1 0 0

0 0 0 In


 ; B̃71 ; 72 ,

(
C71 ; 72 I2 0

0 B

)
: (5.13)

Since F(Dt; Dx; Ds; Dy)T = (Dt; Ds; Dx; Dy)T, and FFT = I2(n+1), it can be checked that

SB+ = SB
2
6F(B̃71 ; 72 + =B̃

2
71 ; 72 )F

T:
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Consequently, (5.11) yields

−
(
1
=
+ | SB|

)
I2(n+1)6

(
SX
!

0
0 − SY

!

)
6F(B̃71 ; 72 + =B̃

2
71 ; 72 )F

T: (5.14)

Further, by deAnitions of SP
2;+

and SP
2;−

we see that, for each !, there exists a
sequence {(tG; xG; aG

1 ; p
G
1 ; S

G
1 ); (t

′G; x′G; aG
2 ; p

G
2 ; S

G
2 )}G¿1 such that

(aG
1 ; p

G
1 ; S

G
1 ) ∈ P2;+v1(!; tG; xG); (aG

2 ; p
G
2 ; S

G
2 ) ∈ P2;−v1(!; t′G; x′G);

(tG; xG; aG
1 ; p

G
1 ; S

G
1 ) → (t̂(!); x̂(!); â1(!); p̂1(!); SX

!
);

(t′G; x′G; aG
2 ; p

G
2 ; S

G
2 ) → (t̂ ′(!); x̂ ′(!); â2(!); p̂2(!); SY

!
); as G → ∞: (5.15)

In light of (4.11) and (5.14) we may assume without loss of generality that t′G ¡ tG,
∀G¿1; and there is some integer K(!; =)¿1 such that whenever G¿K(!; =), one has

−
(
2
=
+ C71 ; 72

)
I2(n+1)6

(
SG
1 0
0 −SG

2

)
6F

(
B̃71 ; 72 + =(B̃

2
71 ; 72 +

1
2
I2(n+1))

)
FT:

(5.16)

To facilitate our measurable selection procedure we now show that the matrices SG
1

and SG
2 can actually be chosen as countable valued. Indeed, for each M ∈ N and

= ∈ (0;∞) let us introduce two subsets of Sn+1:

Sn+1(Z =2M ), {S = (sij) ∈ Sn+1: all sij’s are of the form k=2M ; k ∈ Z};

Hn+1
= ,


H = (hij) ∈ Sn+1: 06hii −

∑
j 
=i

|hij|6
d∑

j=1

|hij|61
2
= ∀i


 :

Then, it is not hard to prove by elementary algebra that for any given =¿ 0, any
S ∈ Sn+1 can be decomposed into the form: S = Ŝ −H , where Ŝ ∈ Sn+1(Z =2M ) and
H ∈ Hn+1

= , for M large enough. We will denote such a decomposition by S ∼ (Ŝ ; H)
in the sequel.
Now for any =¿ 0, let M ∈ N, ŜG

1 ; Ŝ
G
2 ∈ Sn+1(Z =2M ), and HG

1 ; H
G
1 ∈ Hn+1

= be such

that SG
i ∼ (ŜG

i ; H
G
i ), i = 1; 2. It is readily seen that (aG

1 ; p
G
1 ; Ŝ

k
1) ∈ P2;+v1(!; tG; xG) and

(aG
2 ; p

G
2 ; Ŝ2

k) ∈ P2;−v2(!; t′G; x′G) still hold, whereas (5.16) becomes, with I = I2(n+1),

−
(
1
2
=+

2
=
+ C71 ; 72

)
I6
(

Ŝ1
G 0
0 −Ŝ2

G

)
6F(B̃71 ; 72 + =(B̃

2
71 ; 72 + I))FT; G¿G!

= :

(5.17)

In particular, for some constant C71 ; 72 (=),

|Ŝ1
G|; |Ŝ2

G|6C71 ; 72 (=); G¿G!
= : (5.18)

Our task is clear now: from the sequence (tG; t′G; xG; x′G; (aG
1 ; p

G
1 ; Ŝ

G
1); (a

G
2 ; p

G
2 ; Ŝ

G
2)),

G¿0, which depend on !, we would like to “select” a sequence of random variables
that satisAes (5.15)–(5.17), and tG’s are replaced by FB-stopping times.
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To this end we Arst note that since the Altration FB is Brownian, all FB-stopping
times are predictable. To wit, there exists an increasing sequence of FB-stopping times
{.G} that announces t̂ (i.e., .G ↑ t̂ as G → ∞ and .G ¡ t̂ on {t̂ ¿ 0}, G¿1). Since

E

{
sup

.G¡t¡t̂+1=G
|E{(t̂ ′; x̂; x̂ ′; (â1; p̂1); (â2; p̂2))|FB

t } − (t̂ ′; x̂; x̂ ′; (â1; p̂1); (â2; p̂2))|2
}

→ 0;

as k → ∞, one can select a sequence {Jm} with 0¡Jm61=m, ∀m¿1, such that the
sets

4m
' , 4∗

' ∩
{

sup
.m¡t6t̂+Jm

|E{(t̂ ′; x̂; x̂ ′; (â1; p̂1); (â2; p̂2))|FB
t }

− (t̂ ′; x̂; x̂ ′; (â1; p̂1); (â2; p̂2))|6
1
2m

}
(5.19)

satisfy that P(4∗
' \ 4m

' )64−mP(4∗
' ), m¿1.

Next, for each m¿1, let Am be the set of all (!; t; t′; x; x′; (a1; p1; S1); (a2; p2; S2)) ∈
� × [0; T ]2 × (Rn)2 × (R× Rn ×Sn+1(Z =2M ))2 such that the following holds:

.m(!)¡t6(t̂(!) + Jm) ∧ T ; 06t′ ¡t;

|(t′; x; x′; (a1; p1); (a2; p2))− E{(t̂ ′; x̂; x̂ ′; (â1; p̂1); (â2; p̂2))|FB
t }|6 1

m
;

(a1; p1; S1) ∈ P2;+v1(!; t; x); (a2; p2; S2) ∈ P2;−v2(!; t′; x′);

|S1|; |S2|6C71 ; 72 (=);
(

S1 0
0 −S2

)
6F(B̃71 ; 72 + =(B̃

2
71 ; 72 + I2(n+1)))FT: (5.20)

Now let O be the optional �-Aeld on �×[0; T ]. Denote X , [0; T ]×(Rn)2×(R×Rn×
Sn+1(Z =2M ))2 with generic element of X being x= (t′; x; x′; (a1; p1; S1); (a2; p2; S2)).

Since (a1; p1; S1) ∈ P2;+v1(!; t; x), (a2; p2; S2) ∈ P2;−v2(!; t′; x′) if and only if

lim
s→0
y→0

1
|s|+ |y|2

{
v1(!; t + s; x + y)− v1(!; t; x)− 〈(a1; p1); (s; y)〉

− 1
2
〈S1(s; y); (s; y)〉

}
60;

lim
S→0
y→0

1
|s|+ |y|2

{
v2(!; t′ + s; x′ + y)− v2(!; t′; x′)− 〈(a2; p2); (s; y)〉

− 1
2
〈S2(s; y); (s; y)〉

}
¿0;

from (5.20) we see that Am is O⊗B(X)-measurable.
Now for each m¿1 we apply Lemma 5.2 to get that, for each m¿1 there exists a

mapping (t̂m; x̂m) : � �→ [0; T ]× X , such that
(i) t̂m is a FB-stopping time and x̂m is an FB

t̂m
-measurable random variable;

(ii) for P-a.e. ! ∈ {t̂m ¡T}, (!; t̂m(!); x̂m(!)) ∈ Am;
(iii) P{t̂m ¡T}¿P(4m

' )− 1=m.
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Recall now (t̂ ′m; x̂m), (t̂ ′m; x̂m; x̂
′
m; (â

m
1 ; p̂

m
1 ; Ŝ1

m); (âm
2 ; p̂

m
2 ; Ŝ2

m)), and

4∗
' = lim

m→+∞
4m

' :

We deduce from (5.20) that, P-a.e. on 4∗
' ,

(t̂ ′m; x̂m; x̂
′
m; (â

m
1 ; p̂

m
1 ); (â

m
2 ; p̂

m
2 )) → (t̂ ′; x̂; x̂ ′; (â1; p̂1); (â2; p̂2)); m → +∞: (5.21)

Furthermore, if we denote for any =¿ 0, M ∈ N,

Ŝ
2(n+1)
M (=), {(S1; S2) ∈ (Sn+1(Z=2M ))2: |S1|; |S2|6C71 ; 72 (=)};

then Ŝ
2(n+1)
M (=) is a Anite set. Thus, without specifying its cardinality we may label

its elements as H,, , = 1; 2; : : : . For any =¿ 0, we Ax M ¿ 0 so that the preceding
arguments go through. Then, with possible exception only on a P-null set,

4∗
' ⊆

⋃
H,∈Ŝ

2(n+1)
M (=)

{(Ŝ1
m(!); Ŝ2

m(!)) = H,: for inAnitely many m ∈ N}:

Now for ,=1; 2; : : : we deAne �, = {!: (Ŝm
1 ; Ŝ

m
2 ) =H,: for inAnitely many m ∈ N},

and S�, =�, \
⋃,−1

l=1 �l; and deAne (X̂; Ŷ)(!),
∑∞

,=1 H,(!) · 1 S�,
(!). Since all S�,’s

are FB
t̂ -measurable, (X̂; Ŷ) is an Sn+1×Sn+1-valued FB

t̂ -measurable random variable,
and P-almost surely, it is a limit point of the sequence {(Ŝ1

m; Ŝ2
m)}m¿0. Further, by its

construction, for P-a.e. ! ∈ 4∗
' ,

((Dt; Dx)’(t̂; x̂; t̂ ′; x̂ ′); X̂)(!) ∈ SP
2;+

v1(!; t̂(!); x̂(!));

(−(Ds; Dy)’(t̂; x̂; t̂ ′; x̂ ′); Ŷ)(!) ∈ SP
2;−

v1(!; t̂ ′(!); x̂ ′(!));

and, with SB deAned by (5.12) we have

−
(
1
2
=+

2
=
+ | SB|

)
I6
(
X̂(!) 0
0 −Ŷ(!)

)
6F(B̃71 ; 72 + =(B̃

2
71 ; 72 + I))FT:

Finally, denote the FB
t̂ -measurable, Sn × Sn-valued random variables (X;Y) be

such that

X̂
!
=
(

x11 ∗
∗ X;

)
; Ŷ =

(
y11 ∗
∗ Y

)
:

Then it is easily checked by deAnitions of super- (sub-)jets that

(â1(!); p̂1(!);X(!)) ∈ SP
1;2;+

v1(!; t̂(!); x̂(!));

(â2(!); p̂2(!);Y(!)) ∈ SP
1;2;−

v2(!; t̂ ′(!); x̂ ′(!)):

Since for any (x; x′) ∈ (Rn)2 we can write Sx = (0; x), Sx ′ = (0; x′), one has〈(
B+ =B2 −

(
X(!) 0
0 −Y(!)

))(
x
x′

)
;
(

x
x′

)〉

=
〈(

SB+ = SB
2 −
(
X̂(!) 0
0 −Ŷ(!))

))(
Sx
Sx ′;

)
;
(

Sx
Sx ′

)〉
¿0;

the inequality (5.11) remains true with SX
!
, SY

!
, and | SB| being replaced by X(!),

Y(!), and C71 ; 72 , respectively. The proof is now complete.
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6. Proof of Theorem 3.1

We are now ready to prove Theorem 3.1. To begin with, we Arst claim that under
Assumption (A5) we can assume without loss of generality that there exists a constant
E¿ 0 such that for all h¿ 0 it holds that

f̃(t; x; y + h; z)− f̃(t; x; y; z)6− Eh ∀(t; x; y; z); P-a:e: (6.1)

Indeed, for any E¿ 0, deAne E(t) , Et +
∫ t
0 0s ds ∀t ∈ [0; T ], where 0 is the

increasing process in (A5); and denote

f̂(t; x; y; z), e−E(t)f̃(t; x; eE(t)y; eE(t)z)− y
dE
dt

(t): (6.2)

Then it can be shown, thanks to (A5), that f̂ satisAes (6.1). Furthermore, assume that
v is a stochastic viscosity solution to SPDE(f̃; 0), which is uniformly stochastically
bounded. DeAne

v̂(t; x), e−E(t)v(t; x) ∀(t; x) ∈ [0; T ]× Rn;

then one can show that v̂ is a stochastic viscosity solution to the SPDE(f̂; 0):

−v̂t(t; x) +Lv̂(t; x) + f̂(t; x; v̂(t; x); �(x)TDv̂(t; x)) = 0;

v̂(0; x) = ’(x); (6.3)

and v̂ is uniformly stochastically bounded.
We would like to point out that if (6.1) holds, then the function F̃ , deAned similar

to (1.2) with f being replaced by f̃, satisAes that for all h¿ 0 and (t; x; y; p; A) ∈
[0; T ]× Rn × R× Rn ×Sn

F̃(t; x; y + h; p; A)− F̃(t; x; y; p; A)6− Eh; P-a:e:: (6.4)

Now recall the set 4∗
' =4';N∗('); 7∗(') deAned at the end of Section 3. We shall prove

that a contradiction can be drawn when '¿ 0 is small enough.
To this end, let us choose

=, min
(

71
2(1 + 7172)

;
72

(1 + 722)

)

and applying Theorem 5.1, we can And for any '¿ 0, a sequence (t̂m; x̂m; t̂ ′m; x̂
′
m; (â

m
1 ; p̂

m
1 ;

Ŝ1
m); (âm

2 ; p̂
m
2 ; Ŝ2

m)) and a sequence of sets 4m
' satisfying (i′)–(iii′) of Theorem 5.1, i.e.,

for ! ∈ 4m
' ,

v1(!; t; x)6 v1(!; t̂m(!); x̂m(!)) + âm
1 (!) (t − t̂m(!)) + 〈p̂m

1 (!); x − x̂m(!)〉

+1
2 〈Ŝ1

m(!) (t − t̂m(!); x − x̂m(!)); (t − t̂m(!); x − x̂m(!))〉

+o(|t − t̂m(!)|2 + |x − x̂m(!)|2); (6.5)

as t → t̂m(!); x → x̂m(!). Clearly, the set 4̂
m
' , {! ∈ �: (6.5) holds} ∈ FB

t̂m
. Hence,

setting t̂m=T on (4̂
m
' )

c, t̂m remains an FB-stopping time, and 4m
' ⊆ 4̂

m
' ⊆{0¡t̂m ¡T}.

Now, for Axed m ∈ N and (!; t; x) ∈ � × [0; T ]× Rn deAne

’m(!; t; x), v1(!; t̂m(!); x̂m(!)) + 〈(âm
1 (!); p̂

m
1 (!)); (t − t̂m(!); x − x̂m(!))〉
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+
1
2

〈(
Ŝ1

m(!) +
1
m

I2(n+1)

)
(t − t̂m(!); x − x̂m(!)) ;

(t − t̂m(!); x − x̂m(!))
〉

:

Then ’m ∈ C2(FB
t̂m
; [0; T ]× Rn); and P-a.e. on {0¡t̂m ¡T} it holds that

v1(!; t; x)− ’m(!; t; x) =
1
m
(|t − t̂m(!)|2 + |x − x̂m(!)|2)

+o(|t − t̂m(!)|2 + |x − x̂m(!)|2);
as t → t̂m(!); x → x̂m(!). Since ’m(!; t̂m(!); x̂m(!)) = v1(!; t̂m(!); x̂m(!)), one has
v1(!; t; x)¿’m(!; t; x) for all (t; x) in a neighbourhood of (t̂m(!); x̂m(!)), for P-a.e.
! ∈ {0¡t̂m ¡T}. Therefore, by deAnition of a stochastic viscosity subsolution (with
g ≡ 0) we have that

A’m(t̂m; x̂m) + f̃(t̂m; x̂m; ’m(t̂m; x̂m); �∗(x̂m)D’m(t̂m; x̂m))¿Dt’m(t̂m; x̂m);

on {0¡t̂m ¡T}. That is, P-a.e. on 4m
' ,

1
2
tr{��∗(x̂m)Ŝ1

m}+ 1
2m

|�(x̂m)|2+〈�(x̂m); p̂m
1 〉+f̃(t̂m; x̂m; v1(t̂m; x̂m); �(x̂m)p̂

m
1 )¿âm

1 :

Now, thanks to Theorem 5.1, for P-a.e. ! ∈ 4∗
' = limm→∞4m

' , we can let m → ∞ to
obtain that

1
2
tr{��∗(x̂)X̂}+ 〈�(x̂); p̂1〉+ f̃(t̂; x̂; v1(t̂; x̂); �(x̂)p̂1)¿â1;

thanks to the continuity of function f̃. Recall the deAnitions (â1; p̂1) and F̃(t; x; y; p; S),
we then have

F̃
(
t̂; x̂; v1(t̂; x̂);

1
71

(x̂ − x̂ ′) + 72x̂;X
)
¿

1
271

Dt 71 (t̂ − t̂ ′) + 71
1

(T − t̂ )2
: (6.6)

Similarly, since v2 is an !-wise viscosity super-solution, we derive easily that for any
! ∈ 4∗

' ,

F̃
(
t̂ ′; x̂ ′; v2(t̂ ′; x̂ ′);

1
71

(x̂ − x̂ ′)− 72x̂ ′;Y
)
6

1
271

Dt 71 (t̂ − t̂ ′): (6.7)

Combining (6.5)–(6.7), and noting that 4∗
' ⊆{0¡t̂¡T} by Theorem 5.1, we have,

P-a.e. on 4∗
' ,

0¡E{-‘ − 2'}6E{v1(t̂; x̂)− v2(t̂ ′; x̂ ′)}

6 F̃
(
t̂; x̂; v2(t̂ ′; x̂ ′);

1
71

(x̂−x̂ ′)+72x̂;X
)
−F̃
(
t̂; x̂; v1(t̂; x̂);

1
71

(x̂ − x̂ ′)+72x̂;X
)

6F̃
(
t̂; x̂; v2(t̂ ′; x̂ ′);

1
71

(x̂−x̂ ′)+72x̂;X
)
−F̃
(
t̂ ′; x̂ ′; v2(t̂ ′; x̂ ′);

1
71

(x̂−x̂ ′)−72x̂ ′;Y
)

=
1
2
tr{�(x̂)�(x̂)TX − �(x̂ ′)�(x̂ ′)TY}
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+
{〈

�(x̂);
1
71

(x̂ − x̂ ′) + 72x̂
〉
−
〈
�(x̂ ′);

1
71

(x̂ − x̂ ′)− 72x̂ ′
〉}

+
{
f̃
(
t̂; x̂; v2(t̂ ′; x̂ ′);

[
1
71

(x̂ − x̂ ′) + 72x̂
]
�(x̂)

)

− f̃
(
t̂ ′; x̂ ′; v2

(
t̂ ′; x̂ ′;

[
1
71

(x̂ − x̂ ′)− 72x̂ ′
]
�(x̂ ′)

)}

= I1 + I2 + I3;

where

I1 = tr(�(x̂)�(x̂)∗X − �(x̂ ′)�(x̂ ′)TY) =
〈(

X 0
0 −Y

)(
�(x̂)
�(x̂ ′)

)
;
(

�(x̂)
�(x̂ ′)

)〉

6
2
71

|�(x̂)− �(x̂ ′)|2 + 272(|�(x̂)|2 + |�(x̂ ′)|2)

6
2L2

71
|x̂ − x̂ ′|2 + 72CL(1 + |x̂|2 + |x̂ ′|2);

I2 =
(〈

�(x̂);
1
71

(x̂ − x̂ ′) + 72x̂
〉
−
〈
�(x̂ ′);

1
71

(x̂ − x̂ ′)− 72x̂ ′
〉)

6
L
71

|x̂ − x̂ ′|2 + 72cL(1 + |x̂|2 + |x̂ ′|2);
and

I3 = f̃
(
t̂; x̂; v2(ŝ; x̂ ′);

(
1
71

(x̂ − x̂ ′) + 72x̂
)

�(x̂)
)

−f̃
(
t̂ ′; x̂ ′; v2(t̂ ′; x̂ ′);

(
1
71

(x̂ − x̂ ′)− 72x̂ ′
)

�(x̂ ′)
)

6 L
(
|t̂ − t̂ ′|+ |x̂ − x̂ ′|+ 1

71
|x̂ − x̂ ′|2

)
+ 72CL(1 + |x̂|2 + |x̂ ′|2):

Since, by deAnition of  71 (recall that 7161),

|t̂ − t̂ ′|6 71 + |(t̂ − t̂ ′)− 71|671 +
1
2

(
721 +

(
71 − (t̂ − t̂ ′)

71

)2)

6 271 − 1
2
ln

(
1−
(
71 − (t̂ − t̂ ′)

71

)2)
= 271 +  71 (t̂ − t̂ ′);

there exists a constant CL ¿ 0 depending only on the Lipschitz constant L and �(0),
such that, P-a.e on 4∗

' ,

0¡E(-‘ − 2')6CL

(
|t̂ − t̂ ′|+ |x̂ − x̂ ′|+ 1

71
|x̂ − x̂ ′|2 + 72(1 + |x̂|2 + |x̂ ′|2)

)

6CL

(
371 +  71 (t̂ − t̂ ′) +

2
71

|x̂ − x̂ ′|2 + 72(1 + |x̂|2 + |ŷ|2)
)

: (6.8)
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On the other hand, recall the deAnition of function 971 ; 72 (3.9) and the point (t̂; x̂; t̂ ′; x̂ ′)
(4.7), we have

1
271

|x̂ − x̂ ′|2 + 1
2
 71 (t̂ − t̂ ′) +

72
2

(
|x̂|2 + |x̂ ′|2 + 1

T − t̂

)

=(v1(t̂; x̂)− v2(t̂ ′; x̂ ′))−971 ; 72 (t̂; x̂; t̂
′; x̂ ′)

6([v1(t̂; x̂)− v2(t̂; x̂)] + [v2(t̂; x̂)− v2(t̂ ′; x̂ ′)])− (-‘ − 2'): (6.9)

Since on 4∗
' , it holds that 0T6‘, by deAnition (3.3) we have

v1(!; t̂(!); x̂(!))− v2(t̂(!); x̂(!))6-‘; ! ∈ 4∗
' ;

and (6.9) leads to that

1
271

|x̂ − x̂ ′|2 + 1
2
 71 (t̂ − t̂ ′) +

72
2

(
|x̂|2 + |x̂ ′|2 + 1

T − t̂

)

6|v2(t̂; x̂)− v2(t̂ ′; x̂ ′)|+ 2'62‘ + 2': (6.10)

Thus, for any Axed 72 ∈ (0; '=6N 2) and any 71 ∈ (0; 7 ∧ 7∗∗), we must have

|x̂|2 + |x̂ ′|26 4
72

(‘ + '); t̂ ∈
(
0; T − 1

472(‘ + ')

]
;

and

|x̂ − x̂ ′|2 + (71 − (t̂ − t̂ ′))2

71
6|x̂ − x̂ ′|2 + 71 71 (t̂ − t̂ ′)6471(‘ + '):

Using the pathwise continuity of v2 we then conclude that (v2(t̂; x̂) − v2(t̂ ′; x̂ ′)) → 0,
as 71 → 0. Consequently, from the estimates made above we obtain P-a.e. on 4∗

' , for
72 ∈ (0; '=6N 2),

0¡E(-‘ − 2')6CL

(
371 +  71 (t̂ − t̂ ′) +

2
71

|x̂ − x̂ ′|2 + 72(1 + |x̂|2 + |ŷ|2)
)

6 4CL

(
71 +72 +

{
1
271

|x̂− x̂ ′|2 + 1
2
 71 (t̂ − t̂ ′)+

72
2

(
|x̂|2 + |x̂ ′|2 + 1

T − t̂

)})

6 4CL(71 + 72 + 2'+ |v2(t̂; x̂)− v2(t̂ ′; x̂ ′)|) → 4CL(72 + 2') as 71 → 0:

Since P(4∗
' )¿ 0, for any '¿ 0 and some 767(N; '); N¿N ('), and for all 72 ¡'=6N 2,

we deduce from the above estimate that 0¡E(-‘ − 2')68CL'; ∀' ∈ (0; 12-
‘). Letting

' → 0 we obtain a contradiction to the assumption P{-¿ 0}¿ 0. Thus we must
have v1(t; x)6v2(t; x), ∀(t; x) ∈ [0; T ] × Rd, P-a.e., the proof of Theorem 3.1 is now
complete.
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