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Abstract

This paper, together with the accompanying work (Part II, Stochastic Process. Appl. 93 (2001)
205–228) is an attempt to extend the notion of viscosity solution to nonlinear stochastic partial
di#erential equations. We introduce a de7nition of stochastic viscosity solution in the spirit
of its deterministic counterpart, with special consideration given to the stochastic integrals.
We show that a stochastic PDE can be converted to a PDE with random coe9cients via a
Doss–Sussmann-type transformation, so that a stochastic viscosity solution can be de7ned in
a “point-wise” manner. Using the recently developed theory on backward=backward doubly
stochastic di#erential equations, we prove the existence of the stochastic viscosity solution, and
further extend the nonlinear Feynman–Kac formula. Some properties of the stochastic viscosity
solution will also be studied in this paper. The uniqueness of the stochastic viscosity solution
will be addressed separately in Part II where the relation between the stochastic viscosity solution
and the !-wise, “deterministic” viscosity solution to the PDE with random coe9cients will be
established. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The notion of the viscosity solution for a partial di#erential equation, 7rst introduced
in 1983 by Crandall and Lions (1983), has had tremendous impact on the modern
theoretical and applied mathematics. Today the theory has become an indispensable
tool in many applied 7elds, especially in optimal control theory and numerous subjects
related to it. We refer to the well-known “User’s Guide” by Crandall et al. (1992) and
the books by Bardi et al. (1997) and Fleming and Soner (1992) for a detailed account
for the theory of (deterministic) viscosity solutions.
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Given the importance of the theory, as well as the fact that almost all the deter-
ministic problems in these applied 7elds have their stochastic counterparts, it has long
been desired that the notion of viscosity solution be extended to stochastic partial dif-
ferential equations; and consistent e#orts have been made to prove or disprove such a
possibility. The recent articles by Lions and Souganidis (1998a,b) have 7nally shown
an encouraging sign on this subject: in Lions and Souganidis (1998a) the stochas-
tic viscosity solution was introduced for the 7rst time; and in Lions and Souganidis
(1998b) the applications of such solutions to, among other things, pathwise stochastic
control and front propagation and phase transitions in random media were presented.
Inspired by the results of Lions and Souganidis (1998a,b) in this paper we consider
the following nonlinear stochastic PDE (SPDE), which is slightly di#erent from the
one appeared in Lions and Souganidis (1998a,b)

du(t; x) = {Au(t; x) + f(t; x; u(t; x); �∗(x)Du(t; x))}dt

+
d∑

i=1

gi(t; x; u(t; x)) ◦ dBi
t ; (t; x)∈ (0; T )× Rn;

u(0; x) = u0(x); x∈Rn; (1.1)

where B is a standard d-dimensional Brownian motion; f, g, u0 are some measurable
functions with appropriate dimensions; A is the second-order di#erential operator:

A=
1
2

n∑
i; j=1

k∑
‘=1

�i‘(x)�j‘(x)@2xixj +
n∑

i=1

�i(x)@xi ; (1.2)

in which �(·)=[�ij(·)]n;ki; j=1, �=(�1; : : : ; �n), and u0(·) are certain measurable functions;
and �∗(·) is the transpose of �(·). Finally, we note that the stochastic di#erential is
in the sense of Stratonovich. Since the functions f and g play the decisive role in
our discussion, in the sequel we often refer to (1.1) as SPDE(f; g). It is worth noting
that the SPDE (1.1) and the ones considered by Lions and Souganidis (1998a,b) are
nonoverlapping, that is, they do not contain each other as special cases.
The main di9culty of extending the viscosity solution theory to the stochastic PDEs,

in our opinion, can be described as local vs. global. This can be seen from two di#er-
ent angles: 7rst, if one wants to use an !-wise local argument, hoping to translate the
pivotal results from the deterministic theory to the stochastic case !-wisely, then an
immediate di9culty would be that almost no stochastic analysis can be used because
there is no clear indication as to why all the devices (e.g., sub(super)-di#erentials)
involved will have to have any global properties, such as measurabilities, on the vari-
able !. Second, the characterization of the solution near a certain temporal-spatial
point (local in another sense) will no longer be appropriate because of the presence
of the martingale term, for which some global information of the solution path will be
needed, by the nature of a stochatic integral. These obstacles can be felt immediately
when one tries to even give a sensible de7nition of a stochastic viscosity solution for
which the uniqueness is amendable. For instance, if, in light of the deterministic theory,
one would like to de7ne the stochastic viscosity solution by characterizing the behavior
of the solution near its local maximum or minimum point, by using a certain random
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version of sub-(super-) jet (see Crandall and Lions, 1983) – an important device in the
proof of uniqueness – then it would be necessary to assume that such a point, as well
as all the jets, are !-dependent. But on the other hand it seems far from clear why
these objects will have to possess any measurability in !, even if one is lucky enough
to 7nd that they are well-de7ned.
One of the key ideas of Lions and Souganidis (1998a,b) is to use the so-called

stochastic characteristics to remove the stochastic integral from the SPDE, so that the
stochastic viscosity solution can be studied !-wisely. Although technically di#erent,
our method has the same spirit. To be more precise, our main device in this paper
is a nonlinear version of the Doss–Sussmann transformation in the theory of stochas-
tic di#erential equations (see, for example, Doss (1977); Sussmann (1978) or Karatzas
and Shreve, 1988, Chapter 5). In nonlinear 7ltering theory, such a transformation gives
the so-called Robust form of a linear (Zakai) SPDE for the unnormalized conditional
density (see, e.g., Bensoussan, 1992). More precisely, we show that under such a ran-
dom transformation, which we call the Doss–Sussmann-type transformation (as well
as the robust form) for the obvious reason, the SPDE (1.1) can be converted to an
ordinary PDE with random coe9cients. Although this does not resolve the aforemen-
tioned subtle issue on the measurability, we can nevertheless give a sensible de7nition
of the stochastic viscosity solution, which will coincide with the deterministic viscosity
solution when f is deterministic and g ≡ 0 in (1.1).

Having determined the de7nition, our next goal is naturally to establish the existence
and uniqueness of the stochastic viscosity solution to SPDE (1.1). Due to the tedious
technical details on both topics, we shall address the existence and uniqueness issues
in two separate papers so as to keep each one in a proper length without sacri7cing
the readability. Thus in this paper we pursue only the existence part, and we leave the
uniqueness part independently to Buckdahn and Ma (2001).
The other main observation of this paper is that our stochastic viscosity solution can

be constructed from the solution of the so-called backward doubly SDEs (BDSDEs,
for short) initiated by Pardoux and Peng (1994). Such a relation in a sense could be
viewed as an extension of the nonlinear Feynman–Kac formula to stochastic PDEs,
which, to our best knowledge, is new. We should note here that while the Doss–
Sussmann-type transformation does remove the martingale term from SPDE(f; g), the
resulting SPDE(f̃; 0) has some di9culties of its own. The main problem seems to be
that the random function f̃ is of quadratic growth with respect to the gradient of the
solution (no matter how nice the original function f is!), which causes some essential
di9culties with a di#erent nature. Finally, we point out that at this point we have not
established any relation between our stochastic viscosity solutions and that of Lions and
Souganidis (1998a), we hope to be able to address this issue in our future publications.
The rest of this paper is organized as follows. In Section 2 we clarify all the neces-

sary notations, and give the de7nition of stochastic viscosity solutions. In Section 3 we
introduce the Doss–Sussmann-type transformation, and prove that the stochastic vis-
cosity solutions are transform invariant. In Section 4 we review the backward doubly
stochastic di#erential equations, and prove a generalized Itô–Ventzell formula which is
interesting in its own right. Finally in Section 5 we establish the relation between the
BDSDE and the SPDE, from which the existence of the stochastic viscosity solution,
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the nonlinear Feynman–Kac formula, as well as some basic properties of the stochastic
viscosity solutions will follow.

2. Preliminaries and de�nitions

Let (�;F; P) be a complete probability space on which is de7ned a d-dimensional
Brownian motion B=(Bt)t¿0. Let FB , {FB

t }t¿0 denote the natural 7ltration gener-
ated by B, augmented by the P-null sets of F; and let FB =FB

∞. By MB
0;T we will

denote all the FB-stopping times � such that 06�6T , P-a.s., where T ¿ 0 is some
7xed time horizon, and MB

0;∞ will be all FB-stopping times that are almost surely
7nite. Throughout this paper we let E denote a generic Euclidean space; and regardless
of its dimension we denote 〈· ; ·〉 to be the inner product and | · | the norm in E. In
case other Euclidean spaces are needed, we shall label them as E1; E2; : : : ; etc. Further,
we denote

• for any sub-�-7eld G⊆FB
T and real number p¿0, Lp(G; E) to be all E-valued,

G-measurable random variables such that E|�|p ¡∞. When there is no danger of
confusion, we often write �∈G whenever �∈L0(G; E) for simplicity;

• for any q¿0; Lq(FB; [0; T ]; E) to be all E-valued, FB-progressively measurable
processes  such that E

∫ T
0 | t |q dt ¡∞. In particular, L0(FB; [0; T ]; E) denotes all

E-valued, FB-progressively measurable processes; and L∞(FB; [0; T ]; E) denotes those
processes in L0(FB; [0; T ]; E) that are uniformly bounded;

• Ck;‘([0; T ]× E; E1) to be the space of all E1-valued functions de7ned on [0; T ]× E
which are k-times continuously di#erentiable in t ∈ [0; T ] and ‘-times continuously
di#erentiable in x∈ E; Ck;‘

b ([0; T ]× E; E1) to be the subspace of Ck;‘([0; T ]× E; E1)
in which all functions have uniformly bounded partial derivatives; and
Ck;‘

p ([0; T ]×E; E1) to be the subspace of Ck;‘([0; T ]×E; E1) in which all the partial
derivatives are of at most polynomial growth;

• for any sub-�-7eld G⊆FB
T , Ck;‘(G; [0; T ] × E; E1) (resp. Ck;‘

b (G; [0; T ] × E; E1),
Ck;‘

p (G; [0; T ]× E; E1)) to be the space of all Ck;‘([0; T ]× E; E1) (resp. Ck;‘
b ([0; T ]×

E; E1), Ck;‘
p ([0; T ] × E; E1))-valued random variables that are G ⊗ B([0; T ] × E)-

measurable;
• Ck;‘(FB; [0; T ]×E; E1) (resp. Ck;‘

b (FB; [0; T ]×E; E1), Ck;‘
p (FB; [0; T ]×E; E1)) to be the

space of all random 7elds ’∈Ck;‘(FB
T ; [0; T ]×E; E1) (resp. Ck;‘

b (FB
T ; [0; T ]×E; E1),

Ck;‘
p (FB

T ; [0; T ] × E; E1)), such that for 7xed x∈ E, the mapping (t; !) �→ ’(t; x; !)
is FB-progressively measurable.

The following simpli7cation of notations will be frequently used throughout:

• Ck;‘([0; T ]× E) = Ck;‘([0; T ]× E;R),
• C([0; T ]× E; E1) = C0;0([0; T ]× E; E1),
• C(FB; [0; T ]× E) = C0;0(FB; [0; T ]× E).
Furthermore, for (t; x; y)∈ [0; T ]×Rn×R, we denote @=@y=Dy, @=@t=Dt , D=Dx=

(@=@x1; : : : ; @=@xn), and D2 = Dxx = (@2xixj)
n
i; j=1. The meaning of Dxy; Dyy, etc. should

be clear.
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Throughout this paper we shall make use of the following Standing Assumptions:

(A1) The functions � :Rn → Rn×k and � :Rn → R are uniformly Lipschitz continuous,
with a common Lipschitz constant K ¿ 0.

(A2) The function f :�× [0; T ]×Rn×R×Rk �→ R is a continuous random 7eld such
that for 7xed (x; y; p), f(· ; · ; x; y; �∗(x)p) is {FB

t }-progressively measurable;
and there exists K ¿ 0, such that for P-a.e. !∈�,

|f(!; 0; 0; 0; 0)|6K;

|f(!; t; x; y; z)− f(!; t′; x′; y′; z′)|6K(|t − t′|+ |x − x′|+ |y − y′|+ |z − z′|);
∀(t; x; y; z); (t′; x′; y′; z′)∈ [0; T ]× Rn × R× Rk : (2.1)

(A3) The function u0 :Rn �→ R is continuous, such that for some constants K;p¿ 0,

|u0(x)|6K(1 + |x|p); x∈Rn: (2.2)

(A4) The function g∈C0;2;3
b ([0; T ]× Rn × R;Rd).

Our de7nition of stochastic viscosity solution will depend heavily on the following
stochastic Sow '∈C(FB; [0; T ]×Rn×R), de7ned as the unique solution of the stochas-
tic di#erential equation (SDE) in the Stratonovich sense:

'(t; x; y) = y +
d∑

i=1

∫ t

0
gi(s; x; '(s; x; y)) ◦ dBi

s

, y +
∫ t

0
〈g(s; x; '(s; x; y)); ◦dBs〉; t¿0: (2.3)

Since g∈C0;2;3
b ([0; T ]×Rn×R;Rd) by (A4), applying Itô’s formula to g(t; x; '(t; x; y))

and using the de7nition of the Stratonovich integral, one shows easily that the
Stratonovich SDE (2.3) is equivalent to the following Itô SDE (with parameter):

'(t; x; y) = y +
1
2

∫ t

0
〈g; Dyg〉(s; x; '(s; x; y))ds+

∫ t

0
〈g(s; x; '(s; x; y)); dBs〉: (2.4)

We note that under Assumption (A4), as the >ow of the SDE (2.3), for 7xed x the
random 7eld '(· ; x; ·) is continuously di#erentiable in the variable y; and the mapping
y �→ '(t; x; y; !) de7nes a di#eomorphism for all (t; x), P-a.s. (see, e.g., Protter, 1990,
Chapter V). Let us denote the y-inverse of '(t; x; y) by E(t; x; y) in the sequel. We
claim that E(t; x; y) is the solution to the following 7rst-order SPDE:

E(t; x; y) = y −
∫ t

0
〈DyE(s; x; y)g(s; x; y); ◦dBs〉; ∀(t; x; y); P-a:s: (2.5)

Indeed, under Assumption (A4) the linear SPDE (2.5) has a unique global solution
(cf., e.g., Kunita, 1990, Chapter 6), denote it by Ê. Since the stochastic characteristics
of (2.5) are exactly given by the Stratonovich SDE (2.3), we must have

Ê(t; x; '(t; x; y)) ≡ Ê(0; x; '(0; x; y)) = y ∀(t; x; y); P-a:s:

In other words, Ê is a y-inverse function of ', thus it must coincide with E.
We now de7ne the notion of stochastic viscosity solution for SPDE(f; g) (1.1).



186 R. Buckdahn, J. Ma / Stochastic Processes and their Applications 93 (2001) 181–204

De�nition 2.1. A random 7eld u∈C(FB; [0; T ] × Rn) is called a stochastic viscosity
subsolution (resp. supersolution) of SPDE(f; g), if u(0; x)6 (resp. ¿) u0(x), ∀x∈Rn;
and if for any �∈MB

0;T , �∈L0(FB
� ;Rn), and any random 7eld ’∈C1;2(FB

� ; [0; T ]×Rn)
satisfying

u(t; x)− '(t; x; ’(t; x))6 (resp: ¿) 0 = u(�; �)− '(�; �; ’(�; �));

for all (t; x) in a neighborhood of (�; �), P-a.e. on the set {0¡�¡T}, it holds that

A (�; �) + f(�; �;  (�; �); �∗(�)D (�; �))

¿(resp: 6) Dy'(�; �; ’(�; �))Dt’(�; �); (2.6)

P-a.e. on {0¡�¡T}, where  (t; x), '(t; x; ’(t; x)).
A random 7eld u∈C(FB; [0; T ] × Rn) is called a stochastic viscosity solution of

SPDE(f; g), if it is both a stochastic viscosity subsolution and a supersolution.

We remark that if in SPDE(f; g) the function g ≡ 0, the Sow ' becomes '(t; x; y)=y,
∀(t; x; y) and  (t; x) = ’(t; x). Thus the de7nition of a stochastic viscosity solution
becomes the same as that of a deterministic viscosity solution (see, e.g., Crandall
et al., 1992; Fleming and Soner, 1992), for each 7xed !∈{0¡�¡T}, modulo the
FB

� -measurability requirement of the test function ’. The following notion of a random
viscosity solution will be a bridge linking the stochastic viscosity solution and its
deterministic counterpart.

De�nition 2.2. A random 7eld u∈C(FB; [0; T ] × Rn) is called an !-wise viscosity
(sub-, super-) solution if for P-a.e. !∈�, u(!; · ; ·) is a (deterministic) viscosity (sub-,
super-) solution of the SPDE(f; 0).

Remark 2.3. We should note that in the previous de7nition the random 7eld ’ is
required to belong to C1;2(FB

� ; [0; T ] × Rn) instead of C1;2(FB; [0; T ] × Rn). In other
words, ’ is not necessarily progressively measurable! However, if we assume that
’∈C1;2(FB; [0; T ] × Rn), and that g∈C0;0;2([0; T ] × Rn × R;Rd), then a straight-
forward computation using the Itô–Ventzell formula shows that the random 7eld
 (t; x) = '(t; x; ’(t; x)) satis7es

d (t; x) = Dy'(t; x; ’(t; x))Dt’(t; x)dt + 〈g(t; x;  (t; x)); ◦dBt〉; t ∈ [0; T ]: (2.7)

Since g(�; �;  (�; �))= g(�; �; u(�; �)) by de7nition, it seems natural to compare
A (�; �) + f(�; �;  (�; �); D (�; �)�(�)) with Dy'(t; x; ’(t; x))Dt’(t; x) to characterize
a viscosity solution of SPDE(f; g), as we did in (2.6).

3. Doss–Sussmann transformation (the robust form)

In this section we study the Doss–Sussmann transformation, and show that under
such a transformation the SPDE(f; g) will be converted to an SPDE(f̃; 0), where f̃ is
some (progressively measurable) random 7eld.
To begin with, let us recall the stochastic Sow E(t; x; y) , ['(t; x; :)]−1(y) de7ned

in the previous section (that is, ' is the solution to the Stratonovich SDE (2.3)). Note
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that, under Assumption (A4), the random 7eld '∈C0;2;2(FB; [0; T ]×Rn ×R), thus so
is E. Now for any random 7eld  : [0; T ] × Rn × � �→ R, consider the transformation
introduced in De7nition 2.1:

’(t; x) = E(t; x;  (t; x)); (t; x)∈ [0; T ]× Rn; (3.1)

or equivalently,  (t; x) = '(t; x; ’(t; x)), ∀(t; x), P-a.s. One can easily check that  ∈
C0;p(FB; [0; T ]×Rn) if and only if ’∈C0;p(FB; [0; T ]×Rn), for p=0; 1; 2. Moreover,
if ’∈C0;2(FB; [0; T ]× Rn), then Dx = Dx'+ Dy'Dx’; and

Dxx = Dxx'+ 2(Dxy') (Dx’)∗ + (Dyy') (Dx’) (Dx’)∗ + (Dy') (Dxx’): (3.2)

Furthermore, since E(t; x; '(t; x; y)) ≡ y, ∀(t; x; y), P-a.s., di#erentiating the equation
up to the second order we have (suppressing variables), for all (t; x; y) and P-almost
surely,

DxE+ DyEDx'= 0; DyEDy'= 1;

DxxE+ 2(DxyE) (Dx')∗ + (DyyE) (Dx') (Dx')∗ + (DyE) (Dxx') = 0;

(DxyE) (Dy') + (DyyE) (Dx') (Dy') + (DyE) (Dxy') = 0;

(DyyE) (Dy')2 + (DyE) (Dyy') = 0: (3.3)

We remark that in (3.3) all the partial derivatives of the random 7eld E(· · ·) should
be evaluated at (t; x; '(t; x; y)); and all those of '(· · ·) are evaluated at (t; x; y)!
Now let us de7ne a new random 7eld

f̃(t; x; y; z),
1

Dy'(t; x; y)

{
f(t; x; '(t; x; y); �∗(x)Dx'(t; x; y) + Dy'(t; x; y)z)

+ Ax'(t; x; y) + 〈�∗(x)Dxy'(t; x; y); z〉+ 1
2
Dyy'(t; x; y)|z|2

}
; (3.4)

for all (t; x; y; z)∈ [0; T ] × Rn × R × Rk , P-a.s. Here Ax is the same as the operator
A in (1.2), with the emphasis that all the partial derivatives are with respect to x.
We shall, however, often omit the subscript x in the sequel when there is no danger
of confusion. It is clear that f̃∈C(FB; [0; T ] × Rn × R × Rk); and a straightforward
computation using (3.2) and (3.3) shows that

DyE(t; x;  (t; x)){A (t; x) + f(t; x;  (t; x); �∗(x)D (t; x))}
=A’(t; x) + f̃(t; x; ’(t; x); �∗(x)D’(t; x)); (3.5)

for all (t; x)∈ (0; T )× Rn, P-a.e.
We will call SPDE(f̃; 0) the robust form of the SPDE(f; g); and the following result

tells us why.

Proposition 3.1. Assume (A1)–(A4). A random ?eld u is a stochastic viscosity sub-
(resp. super-)solution to SPDE(f; g) (1:1) if and only if v(· ; ·) = E(· ; · ; u(· ; ·)) is a
stochastic viscosity sub-(resp. super-)solution to SPDE(f̃; 0).
Consequently; u is a stochastic viscosity solution of SPDE(f; g) (1:1) if and only

if v(· ; ·) = E(· ; · ; u(· ; ·)) is a stochastic viscosity solution to SPDE(f̃; 0).
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Proof. We need only prove that if u∈C(FB; [0; T ] × Rn) is a stochastic viscosity
sub-(resp. super-)solution to SPDE(f; g), then v(· ; ·) = E(· ; · ; u(· ; ·))∈C(FB; [0; T ] ×
Rn), and it is a stochastic viscosity sub-(resp. super-)solution to SPDE(f̃; 0). The
remaining part of the proposition can be proved in a very similar way.
To this end we let u∈C(FB; [0; T ] × Rn) be a stochastic viscosity subsolution of

SPDE(f; g) and let v be de7ned by (3.1), then v∈C(FB; [0; T ]×Rn). In order to show
that v is a stochastic viscosity solution of SPDE(f̃; 0), we let �∈MB

0;T , �∈L2(FB
� ;Rn)

be arbitrarily given, and let ’∈C1;2(FB
� ; [0; T ]× Rn) be such that

v(!; t; x)− ’(!; t; x)60 = v(!; �(!); �(!))− ’(!; �(!); �(!));

for all (t; x) of some neighborhood O(!; �(!); �(!)) of (�(!); �(!)), and for P-a.e
!∈{0¡�¡T}.
Now let  (t; x)= '(t; x; ’(t; x)), ∀(t; x), P-a.e. Since y �→ '(t; x; y) is strictly increas-

ing, we have

u(t; x)−  (t; x) = '(t; x; v(t; x))− '(t; x; ’(t; x))

6 0 = '(�; �; v(�; �))− '(�; �; ’(�; �)) = u(�; �)−  (�; �); (3.6)

for all (t; x)∈O(�; �), P-a.e on {0¡�¡T}. Further, since u is a viscosity subsolution
of SPDE(f; g), we have, P-a.e. on {0¡�¡T},

A (�; �) + f(�; �;  (�; �); D (�; �)�(�))¿Dy'(�; �; ’(�; �))Dt’(�; �): (3.7)

We thus deduce from (3.3) and (3.5) that

A’(�; �) + f̃(�; �; ’(�; �); �∗(x)D’(�; �))¿Dt’(�; �); P-a:e: on {0¡�¡T}:
That is, v is a stochastic viscosity subsolution of SPDE(f̃; 0).

In the rest of the section we prove a special type of boundedness of the random
7elds ' and E, and their derivatives. Such a boundedness will prove to be one of the
main characters of our stochastic viscosity solution. We 7rst give the de7nition.

De�nition 3.2. A random 7eld u∈C(FB; [0; T ]× Rn) is said to be stochastically uni-
formly bounded if there exists a positive, increasing process +∈L0(FB; [0; T ]), such
that P-almost surely, it holds that

|u(t; x)|6+t ∀(t; x)∈ [0; T ]× Rn: (3.8)

To study the stochastic boundedness of random 7elds ' and E, we shall impose
an extra condition on the functions g = (g1; : : : ; gd) which we shall call compatible
condition in the sequel:

(A4′) g satis7es (A4); and for any ,¿ 0, there exists a function G, ∈ C1;2;2;2([0; T ]×
Rd × Rn × R), such that

@G,

@t
(t; w; x; y) = ,;

@G,

@wi = gi(t; x; G,(t; w; x; y)); i = 1; : : : ; d; G,(0; 0; x; y) = y:

(3.9)
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Remark 3.3. We note that the existence of the function G, cannot be proved by simply
solving a Cauchy problem of a system of 7rst-order PDEs. For example, a necessary
condition of (3.9) is the following compatibility among the gi’s (suppressing variables):(

@gj

@y

)
gi =

@2G,

@wi@wj =
@2G,

@wj@wi =
(
@gi

@y

)
gj ∀i; j;

which is of course not necessarily true in general. However, (A4′) is trivial in the case
when d = 1; and g is independent of t and satis7es (A4). Indeed, in such a case we
can choose G to be the solution of the ODE (with parameter x):

@G
@w

(w; x; y) = g(x; G(w; x; y)); G(0; x; y) = y; (3.10)

and then let G,(t; w; x; y) = ,t + G(w; x; y) ∀,¿ 0.

We have the following result.

Proposition 3.4. Assume (A4′). Let ' be the unique solution to SDE (2:3) and E

be the y-inverse of ' (the solution to (2:5)). Then there exists a constant C ¿ 0;
depending only on the bound of g and its partial derivatives; such that for / = ';E;
it holds for all (t; x; y) and P-a.s. that

|/(t; x; y)|6|y|+ C|Bt |;
|Dx/|; |Dy/|; |Dxx/|; |Dxy/|; |Dyy/|6C exp{C|Bt |}; (3.11)

where all the derivatives are evaluated at (t; x; y).
Consequently; the partial derivatives of the random ?elds ' and E with respect to

x and y; up to the second order; are all stochastically uniformly bounded; with the
required increasing process in De?nition 3:2 being +t =C exp{C|B|∗t }, t¿0; where C
is some generic constant and |B|∗t , =sup06s6t |Bs|.

Proof. We 7rst prove the boundedness for ' and E. For any ,¿ 0, let G, be the
function given in (A4′), and de7ne

0,(1; t; w; x; y), G,(t; 1w; x; y); (1; t; w; x; y) ∈ [0; 1]× [0; T ]× Rd × Rn × R:
By a slight abuse of notations we denote 0,(1)=0,(1; t; w; x; y), 0,y(1)=Dy0,(1; t; w; x; y),
and 0,x(1) = Dx0,(1; t; w; x; y), etc. Further, we denote any constant depending only on
g and its derivatives by a generic one C ¿ 0 which may vary from line to line. Then,
using (3.9) it is readily seen that

0,(1) = y +
∫ 1

0
〈g(t; x; 0,(2)); w〉 d2; 1 ∈ [0; 1]: (3.12)

Thus one must have

|G,(t; w; x; y)− y|= |0,(1)− 0,(0)|6C|w| ∀(t; w; x; y): (3.13)

Now de7ne a random 7eld ',(t; x; y), G,(t; Bt ; x; y). A simple application of Itô’s for-
mula (Stratonovich form), together with (3.9), shows that ', satis7es the Stratonovich
SDE:

',(t; x; y) = y + ,t +
∫ t

0
〈g(s; x; ',(s; x; y)); ◦dBs〉: (3.14)
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Using the stability of SDEs and the uniqueness of the solutions to SDE (2.3) one shows
that lim,→0 ',(· ; x; y) = '(· ; x; y), the solution to SDE (2.3), and the convergence is
in the sense of uniform on compacts in probability (ucp for short, cf. Protter, 1990).
Thus replacing w by Bt in (3.13) we have

|'(t; x; y)− y|= lim
,→0

|G,(t; Bt ; x; y)− y|6C|Bt |; ∀(t; x; y); P-a:s: (3.15)

Consequently, using (3.15) we have

|E(t; x; y)− y|= |E(t; x; y)− '(t; x;E(t; x; y))|6C|Bt |; ∀(t; x; y); P-a:s: (3.16)

This proves that the random 7elds ' and E are stochastically uniformly bounded.
We now estimate the derivatives of ' and E.
(i) Dy' and DyE. We di#erentiate (3.12) with respect to y. Then it is easily seen

that 0,y satis7es the ODE

d0,y(1)

d1
= 〈Dyg(t; x; 0,(1)); w〉0,y(1); 0,y(0) = 1:

By the variation of parameter formula we have 0,y(1)=exp{∫ 1
0 〈Dyg(t; x; 0,(1)); w〉 d1}.

Thus for some C ¿ 0,

e−C|w|6DyG,(t; w; x; y) = 0,y(1)6eC|w|; ∀(t; w; x; y):

Note now that Dy'(t; x; y) = lim,→0 DyG,(t; Bt ; x; y), in ucp, and DyE = (Dy')−1, we
derive immediately that, for /= ';E,

e−C|Bt |6Dy/(t; x; y)6eC|Bt |; ∀(t; x; y); P-a:s: (3.17)

(ii) Dx' and DxE: Similar to (i), we now di#erentiate (3.12) with respect to x to
obtain the following (system) of ODEs:

d0,x(1)
d1

= Dxg(t; x; 0,(1))w + 〈Dyg(t; x; 0,(1)); w〉0,x(1);

0,x(0) = 0:

By the variation of parameter formula again one has

0,x(1) =
∫ 1

0
exp

{∫ 1

2
〈Dyg(t; x; 0,(3)); w〉 d3

}
Dxg(t; x; 0,(2))w d2: (3.18)

Therefore

|DxG,(t; w; x; y)|= |0,x(1)|6C|w| exp{C|w|}6C exp{C|w|}:
(Note: the constant C in the last two terms above can be di#erent!). Replacing w by
Bt again we have

|Dx'(t; x; y)|6C exp{C|Bt |}; (t; x; y) ∈ [0; T ]× Rn × R; P-a:s: (3.19)

Further, from (3.3) we see that DxE=−(DyE) (Dx'), thus combining (3.17) and (3.18)
we have

|DxE(t; x; y)|6|DyE(t; x; y)|C exp{C|Bt |}6C exp{C|Bt |}; ∀(t; x; y); P-a:s:

(3.20)
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(iii) D2
x', D

2
xy', and D2

y': The derivation of these estimates are essentially the same.
For example, for any i; j = 1; : : : ; n we di#erentiate (3.12) twice to get

d0,xixj (1)

d1
= 〈D2

xixj g(t; x; 0
,(1)); w〉+ 〈D2

xiyg(t; x; 0
,(1)); w〉0,xj (1)

+ 〈D2
xjyg(t; x; 0

,(1)); w〉0,xi(1) + 〈Dyg(t; x; 0,(1)); w〉0,xixj (1)
+ 〈D2

yg(t; x; 0
,(1)); w〉0,xi(1)0,xj (1);

0xixj (0) = 0: (3.21)

Note that from (3.18) it is not hard to show that

sup
06161

|0,x(1)|6C0,x(1)6C|w| exp{C|w|}:

Thus from (3.21) we again have, thanks to the variation of parameter formula, that

|(D2G,) (t; x; y; w)|= |D2
x0

,(1)|6Ĉ|w|2 exp{Ĉ|w|}6C exp{C|w|};
which implies that |D2

x'(t; x; y)|6C exp{C|Bt |}, as desired since lim,→0 |D2
x'

,(· ; x; y)|=
|D2

x'(· ; x; y)| in ucp. The estimates |D2'(t; x; y)|6C exp{C|Bt |} for D2 = D2
xy and D2

y

can be proved in a similar way.
It remains to prove the estimates for D2

xE, D
2
xyE, and D2

yE. But this can be done by
combining the identities (3.3) and the estimates derived in part (i)–(iii), we leave it
to the readers. The proof is now complete.

Remark 3.5. (i) Proposition 3.4 only shows that the derivatives of ' and E are stochas-
tically uniformly bounded but not the random 7elds themselves (see (3.11)!).
(ii) From the proof of Proposition 3.4 we see that if the function g ∈ C0; k; k+1

b (F ; [0; T ]
×Rn ×R) for some k ¿ 1, and there exists a constant K ¿ 0 such that all the deriva-
tives of g up to order k are uniformly bounded by K , then the derivatives of ' and E

will satisfy

|D4/(t; x; y)|6C|Bt ||4| exp{C|Bt |}6C exp{C|Bt |}; ∀16|4|6k;

where /= ';E; 4= (40; 41; : : : ; 4n) is a multiindex with D4 = D40
y D41

x1 · · ·D4n
xn

and |4|=∑n
i=0 4i; C ¿ 0 is some constant depending only on K and k, and is allowed to vary

from place to place.

4. A backward doubly SDE (BDSDE)

In this section we introduce the so-called backward doubly SDE (BDSDE for short)
initiated by Pardoux and Peng (1994). We point out that our version of BDSDE is in
fact a time reversal of that considered by Pardoux and Peng (1994), due to the set-up
of our problem. We nonetheless use the same name because they have similar nature.
To begin with, let us introduce another complete probability space (�′;F′; P′) on

which is de7ned a k-dimensional Brownian motion W . We de7ne the following family
of �-7elds:

FW
t;T , �{Ws −WT ; t6s6T} ∨N′; (4.1)
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where N′ denotes all the P′-null sets in F′. Denote FW
T , {FW

t;T}06t6T . Next, we
consider the product space ( U�; UF; UP) where

U� = � × �′; UF=F⊗F′; UP = P × P′; (4.2)

and de7ne UFt = FB
t ⊗ FW

t;T , for 06t6T . We should note that UF , { UFt}06t6T is
neither increasing nor decreasing. Therefore it is not a 7ltration! Further, for random
variables �(!), ! ∈ �, and '(!′), !′ ∈ �′, we view them as random variables in U�
by the following identi7cation:

�( U!) = �(!); '( U!) = '(!′); U!, (!;!′):

For n¿1, we let M2( UF ; [0; T ];Rn) be the set of n-dimensional jointly measurable
random processes h= {ht ; t ∈ [0; T ]} which satisfy
(i) UE{∫ T

0 |ht |2 dt}¡∞;
(ii) ht is UFt-measurable, for a.e. t ∈ [0; T ].
Further, we de7ne

S2( UF ; [0; T ];Rn) =
{
h ∈ C( UF ; [0; T ];Rn); and UE

[
sup

06t6T
|ht |2

]
¡+∞

}
: (4.3)

For H ∈ M2( UF ; [0; T ];Rn), we denote the backward stochastic integral of H against
Wj on an interval [s; t] by

∫ t
s Hr ↓ dWj

r ; j = 1; : : : ; k, and we denote
∫ t
s 〈Hr; ↓ dWr〉 =∑k

j=1

∫ t
s H j

r ↓ dWj
r . Clearly, such an integral can be understood as a Skorohod integral

(see, e.g., Nualart and Pardoux, 1988). However, if H is FW -adapted, then we can
reverse the time and view such an integral as a standard Itô integral from t to s that is
adapted to the 7ltration FW . With such an observation we now consider the following
SDE: for (t; x) ∈ [0; T ]× Rn,

X t
s (x) = x +

∫ t

s
b(X t

r (x)) dr +
∫ t

s
�(X t

r (x)) ↓ dWr; 06s6t: (4.4)

We note here that due to the direction of the Itô integral, (4.4) should be viewed
as going from t to 0 (i.e., X t

0(x) should be understood as the terminal value of the
solution X ). It is then clear that under standard conditions on the coe9cients b and �,
(4.4) will have a strong solution that is FW -adapted for 06s6t.
The main subject in this section will be the following SDE: for (t; x) ∈ [0; T ]×Rn,

Y t
s (x) = u0(X t

0(x)) +
∫ s

0
f(r; X t

r (x); Y
t
r (x); Z

t
r(x)) dr

+
∫ s

0
〈g(r; X t

r (x); Y
t
r (x)); ◦ dBr〉 −

∫ s

0
〈Zt

r(x); ↓ dWr〉; 06s6t; (4.5)

where u0 satis7es (A:3).
We remark that although the SDE (4.5) looks like a forward SDE, it is indeed a

backward one because a terminal condition is given at time t=0 (Y t
0 =u0(X t

0(x))). We
remark also that the stochastic integral with respect to dB is in the Stratonovich form,
while that with respect to ↓ dW is in an Itô form. The former is used to make the SDE
(4.5) compatible to the SPDE(f; g) (1.1), but for the latter, since from the theory of
BSDE we know that in general the process Zt(x) does not have any regularity, much
less a semimartingale; hence the Stratonovich integral

∫ 〈Z; ↓ dW 〉 may not even be
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well-de7ned. We should note, however, if we rewrite SDE (4.5) in its equivalent Itô
form:

Ys = u0(X0) +
∫ s

0

[
f(r; Xr; Yr; Zr) +

1
2
〈g; Dyg〉(r; Xr; Yr)

]
dr

−
∫ s

0
〈g(r; Xr; Yr); dBr〉 −

∫ s

0
〈Zr; ↓ dWr〉; 06s6t; (4.6)

where (X; Y; Z) = (X t(x); Y t(x); Zt(x)), then a change of time s �→ t − s shows that
(4.6) is essentially the same as the so-called backward doubly SDE in the sense of
Pardoux and Peng (1994). Therefore we will refer to (4.5) (or (4.6)) as a BDSDE in
the sequel. We have the following result:

Lemma 4.1. Assume (A1)–(A4). For each (t; x) ∈ [0; T ]×Rn; the BDSDE (4:5) has
a unique solution (Y t

· (x); Z
t
· (x)) ∈ S2( UF ; [0; t];R)×M2( UF ; [0; t];Rk).

Moreover; let X t
· (x) be the solution of (4:1). Then

(i) For each t ¿ 0; there exists a version of X t(x) = {X t
s (x); 06s6t} such that

(s; x) �→ X t
s (x) is locally HBolder-C4;24; for some 4 ∈ (0; 1=2);

(ii) for such a version; it holds that X t
s (x) = X r

s (X
t
r (x)); 06s6r6t6T; x ∈ Rn; and

(iii) for any q¿2; there exists Mq ¿ 0; such that for t ∈ [0; T ] and x; x′ ∈ Rn;

UE
{

sup
s6r6t

|X t
r (x)− x|q

}
6Mq(t − s)q=2(1 + |x|q);

UE
{

sup
s6r6t

|(X t
r (x)− X t

r (x
′))− (x − x′)|q

}
6Mq(t − s)q=2(|x − x′|q); (4.7)

(iv) for any 06r6t6T and x ∈ Rn; one has

Y t
s (x) = Y r

s (X
t
r (x)); Zt

s(x) = Zr
s (X

t
r (x)); s ∈ [0; r]; UP-a:s:;

(v) for any q¿2; there exists Cp;q(T )¿ 0; such that for (t; x) ∈ [0; T ]×Rn; it holds
that

UE

{[
sup

06s6t
|Y t

s (x)|2 +
∫ t

0
|Zt

s(x)|2 ds
]q=2

}
6Cp;q(T ) (1 + |x|pq); (4.8)

Proof. The existence and uniqueness of the UF-adapted solution (Y t(x); Zt(x)) is the
direct consequence of Pardoux and Peng (1994) by the time reversal. Conclusions (i)
–(iii) are the consequences of the results of Fujiwara and Kunita (1989); and 7nally
the conclusion (iv) and (v) are the analogy of the results in Pardoux and Peng (1994),
we omit the proofs.

Next, we give a generalized version of the Itô–Ventzell formula that combines the
generalized Itô formula of Pardoux and Peng (1994) and the Itô–Ventzell formula
of Ocone and Pardoux (1989) (regarding all of our stochastic integrals as Skorohod
integrals), and will be a main device for our future analysis.
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Theorem 4.2 (Generalized Itô–Ventzell Formula). Suppose that F ∈ C0;2( UF ; [0; T ] ×
R‘) is a semimartingale with spatial parameter x ∈ R‘:

F(t; x) = F(0; x) +
∫ t

0
G(s; x) ds+

∫ t

0
〈H (s; x); dBs〉

+
∫ t

0
〈K(s; x); ↓ dWs〉; t ∈ [0; T ];

where G ∈ C0;2(FB; [0; T ]×R‘); H ∈ C0;2(FB; [0; T ]×R‘;Rd); and K ∈C0;2(FW ; [0; T ]
× R‘;Rk). Let 4∈C( UF ; [0; T ];R‘) be a process of the form

4t = 40 + At +
∫ t

0
0s dBs +

∫ t

0
@s ↓ dWs; t ∈ [0; T ];

where 0∈M2( UF ; [0; T ];R‘×d); @∈M2( UF ; [0; T ];R‘×k); and A is a continuous; UF-
adapted process with paths of locally bounded variation.
Then; P-almost surely; it holds for all 06t6T that

F(t; 4t) = F(0; 40) +
∫ t

0
G(s; 4s) ds+

∫ t

0
〈H (s; 4s); dBs〉+

∫ t

0
〈K(s; 4s); ↓ dWs〉

+
∫ t

0
〈DxF(s; 4s); dAs〉+

∫ t

0
〈DxF(s; 4s); 0s dBs〉+

∫ t

0
〈DxF(s; 4s); @s↓dWs〉

+
1
2

∫ t

0
tr(DxxF(s; 4s)0s0∗s ) ds−

1
2

∫ t

0
tr(DxxF(s; 4s)@s@∗s ) ds

+
∫ t

0
tr(DxH (s; 4s)0∗s ) ds−

∫ t

0
tr(DxK(s; 4s)@∗s ) ds: (4.9)

Proof. For simplicity let us assume that F(0; ·)=0; G=0 and A=0. Let A∈C∞(R‘;R+)
with supp(A)⊆B‘

1 , {x∈R‘: |x|61}, such that
∫
R‘ A(x)dx = 1. For ,¿ 0, de7ne

A,(x), ,−‘A(,−1x) and

F,(t; x), F(t; ·) ∗ A,(x),
∫
R‘

F(t; 1)A,(x − 1) d1;

H,(t; x), H (t; ·) ∗ A,(x); K,(t; x), K(t; ·) ∗ A,(x):

Applying Lemma 1:3 of Pardoux and Peng (1994) we have for each 1∈R‘ and
t ∈ [0; T ] that

A,(4t − 1) =A,(40 − 1) +
∫ t

0
〈DxA,(4s − 1); 0s dBs〉

+
∫ t

0
〈DxA,(4s − 1); @s ↓ dWs〉

+
1
2

∫ t

0
tr(DxxA,(4s − 1)0s0∗s ) ds−

1
2

∫ t

0
tr(DxxA,(4s − 1)@s@∗s ) ds:
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Next, 7xing 1∈R‘ and applying Lemma 1:3 of Pardoux and Peng (1994) again to
F(t; 1)A,(4t − 1) for 06t6T and then integrating with respect to 1 we have

F,(t; 4t) =
∫
R‘

F(t; 1)A,(4t − 1) d1

=
∫
R‘

{∫ t

0
A,(4s − 1)〈H (s; 1); dBs〉+

∫ t

0
A,(4s − 1)〈K(s; 1); ↓ dWs〉

}
d1

+
∫
R‘

∫ t

0
F(s; 1)

{
〈DxA,(4s − 1); 0s dBs〉+ 1

2
tr(DxxA,(4s − 1)0s0∗s ) ds

+〈DxA,(4s − 1); @s ↓ dWs〉 − 1
2
tr(DxxA,(4s − 1)@s@∗s ) ds

}
d1

+
∫
R‘

{∫ t

0
〈H (s; 1); 0∗s DxA,(4s − 1)〉 ds

−
∫ t

0
〈K(s; 1); @∗s DxA,(4s − 1)〉 ds

}
d1: (4.10)

Clearly, the left side of (4.10) converges to F(t; 4t) P-almost surely, as , → 0. We
analyze the convergence of the right side. First, applying the Fubini theorem, integration
by parts, and the dominated convergence theorem one shows that, P-almost surely,

lim
,→0

∫
R‘

{∫ t

0
〈H (s; 1); 0∗s DxA,(4s − 1)〉 ds

}
d1

= lim
,→0

∫ t

0

∫
R‘
tr(DxH (s; 1)0∗s )A,(4s−1) d1 ds=

∫ t

0
tr(DxH (s; 4s)0∗s ) ds; (4.11)

and

lim
,→0

∫
R‘

{∫ t

0
〈K(s; 1); @∗s A,(4s − 1)〉 ds

}
d1=

∫ t

0
tr(DxK(s; 4s)@∗s ) ds: (4.12)

Next, a simple application of the dominated convergence theorem gives that∫ T

0

∣∣∣∣
∫
R‘

A,(4s − 1)H (s; 1) d1− H (s; 4s)
∣∣∣∣
2

ds → 0; as , → 0; P-a:s:;

therefore it is standard to show that

lim
,→0

∫
R‘

∫ t

0
A,(4s − 1)〈H (s; 1); dBs〉 d1

= lim
,→0

∫ t

0

〈∫
R‘

A,(4s − 1)H (s; 1)d1; dBs

〉

=
∫ t

0
〈H (s; 4s); dBs〉; t ∈ [0; T ]; (4.13)

and the convergence is in the sense of ucp. Similarly, one can also show that

lim
,→0

∫
R‘

∫ t

0
A,(4s − 1)〈K(s; 1); ↓ dWs〉 d1=

∫ t

0
〈K(s; 4s); ↓ dWs〉; in ucp: (4.14)
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Now, since
∫
R‘

∫ t
0 |DxA,(4s − 1)0s|2|F(s; 1)|2ds d1¡+∞, P-a.e., and supp(A,)⊂R‘ is

compact, we can apply the stochastic Fubini theorem (cf., e.g., Protter, 1990) and then
use integration by parts to obtain that∫

R‘

∫ t

0
〈DxA,(4s − 1); 0s dBs〉F(s; 1) d1

=
∫ t

0

∫
R‘
〈F(s; 1)DxA,(4s − 1) d1; 0s dBs〉

=
∫ t

0

〈∫
R‘

A,(1)DxF(s; 4s − 1) d1; 0s dBs

〉
: (4.15)

Further, since (s; 1) → DxF(s; 4s − 1) is continuous on [0; T ] × R‘, and 0(!)∈
L2([0; T ];Rd) for P-a.e. !∈�, one shows easily that∫ T

0

∣∣∣∣
∫
R‘

A,(1)DxF(s; 4s − 1) d1− DxF(s; 4s)
∣∣∣∣
2

|0s|2ds → 0; P-a:e:; as , → 0:

This, combined with (4.15), leads to that, as , → 0, in the sense of ucp,∫
R‘

∫ t

0
〈DxA,(4s − 1); 0s dBs〉F(s; 1) d1 →

∫ t

0
〈DxF(s; 4s); 0s dBs〉 ds:

Using the same arguments, one can show that each term on the right side of (4.10)
converges in ucp to the counterpart of that on the right side of (4.9) as , → 0, proving
the theorem.

To conclude this section we give a comparison theorem for the BDSDEs, with the
help of the Itô–Ventzell formula above.

Theorem 4.3 (Comparison theorem for BDSDEs). Assume (A:1)–(A:4). For (t; x)∈
[0; T ]× Rn, let (Y t; i(x); Zt; i(x)); i = 1; 2; be solutions to the BDSDEs:

Y t; i
s (x) =’i(X t

0(x)) +
∫ s

0
fi(r; X t

r (x); Y
t; i
r (x); Zt; i

r (x)) dr

+
∫ s

0
〈g(r; X t

r (x); Y
t; i
r (x)); dBr〉 −

∫ s

0
〈Zt; i

r (x); ↓ dWr〉; s∈ [0; t]; (4.16)

where f1; f2 satisfy (A:2); ’1; ’2 satisfy (A:3) and g satis?es (A:4). Suppose that

(1) ’1(x)6’2(x) ∀x∈Rn;
(2) For either i = 1 or i = 2; it holds that; for all (t; x) ∈ [0; T ]× Rd,

f1(s; X t
s (x); Y

t; i
s (x); Zt; i

s (x))6f2(s; X t
s (x); Y

t; i
s (x); Zt; i

s (x));

ds× dP-a:e: on [0; t]× �: (4.17)

Then; one has Y t;1
s (x)6Y t;2

s (x); ∀06s6t6T; x ∈ Rn, P-a.s.

Proof. Denote U’=’1−’2; Uf=f1−f2; UY
t
(x)=Y t;1(x)−Y t;2(x), and UZ

t
(x)=Zt;1(x)−

Zt;2(x). For each ,¿ 0, de7ne A,(B) , (1=3,)B31[0; ,](B) + [B2 − ,B + 1
3 ,

2]1(,;∞)(B).
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Clearly, A, ∈ C2(R); and as , → 0, one has

A,(B) → [(B)+]2; A′
,(B) → 2(B)+; A′′

, (B) → 2 · 1(0;∞)(B) ∀B ∈ R:
Now assume without loss of generality that (4.17) holds for i = 1. Then, by 7rst
applying the Itô formula (Theorem 4.2 above or Lemma 3:1 of Pardoux and Peng,
1994) to A,( UY

t
s (x)), and then taking the expectation, and 7nally sending , → 0 we

obtain that, for some C ¿ 0 depending only on those constants in (A:1)–(A:4),

E{[( UY t
s (x))

+]2}+ E
{∫ s

0
| UZt

r(x)|21(0;∞)( UY
t
r (x)) dr

}

=E
{
[( U’(X t

0(x))
+]2 + 2E

{∫ s

0
( UY

t
r (x))

+ Uf(r; X t
r (x); Y

t;1
r (x); Zt;1

r (x)) dr
}}

+2E
{∫ s

0
( UY

t
r (x))

+[f2(r; X t
r (x); Y

t;1
r (x); Zt;1

r (x))

−f2(r; X t
r (x); Y

t;2
r (x)Zt;2

r (x))] dr
}

+E
{∫ s

0
1(0;∞)( UY

t
r(x))|g(r; X t

r (x); Y
t;1
r (x))− g(r; X t

r (x); Y
t;2
r (x))|2dr

}

6C
{
E
{∫ s

0
( UY

t
r (x))

+[| UY t
r (x)|+ | UZt

r(x)|] dr
}

+E
{∫ s

0
[(Y t

r (x))
+]2dr

}}
; 06s6t:

Using a standard estimate and applying Gronwall’s inequality one then easily shows
that E[| UY t

s (x)
+|2] = 0 ∀06s6t6T . Since UY

t
(x) has continuous paths, the theorem

follows.

5. Existence of stochastic viscosity solution

In this section we prove the existence of the stochastic viscosity solution to the
SPDE(f; g). Our main idea is to try to apply the Doss transformation to the BDSDE
(4.5), with the hope that in the resulting BDSDE the stochastic integral against dB
would disappear, just as we saw in the SDE case. It is then natural to conjecture that
the BDSDE will become a BSDE with a new generator being exactly f̃(!). Thus, in
light of the known results regarding the BSDEs and PDEs, we could then derive an
!-wise viscosity solution to the SPDE (whence a stochastic viscosity solution), thanks
to Proposition 3.1.
We shall now substantiate the above idea. To perform Doss transformation to the

BDSDE (4.5), let us de7ne the following two processes:

Ut
s (x) =E(s; X t

s (x); Y
t
s (x)); 06s6t6T; x ∈ Rn;

V t
s (x) =DyE(s; X t

s (x); Y
t
s (x))Z

t
s(x) + �∗(X t

s (x))DxE(s; X t
s (x); Y

t
s (x)): (5.1)



198 R. Buckdahn, J. Ma / Stochastic Processes and their Applications 93 (2001) 181–204

From Proposition 3.4 we see that (Ut
· (x); V

t
· (x)) ∈ S2( UF ; [0; T ]×Rn)×M2( UF ; [0; T ]×

Rn). Our main result of the section is the following.

Theorem 5.1. For each (t; x) ∈ [0; T ] × Rn; the pair (Ut
· (x); V

t
· (x)) is the unique

solution of the following BSDE: for 06s6t;

U t
s (x) = u0(X t

0(x)) +
∫ s

0
f̃(r; X t

r (x); U
t
r (x); V

t
r (x)) dr −

∫ s

0
〈V t

r (x); ↓ dWr〉; (5.2)

where f̃:� × [0; T ]× Rn × R× Rk �→ R is given by (3:4).

Remark 5.2. The existence and uniqueness of BDSDE (5.2) does not follow directly
from the standard theory, because of the quadratic growth in the variable z and the spe-
cial UF-adaptedness of f̃ (see (3.4)). It should be noted that the BSDEs with quadratic
growth in z were studied recently by Kobylansky (1997). However, we will give a
direct proof below, without using the results of Kobylansky (1997).

Proof of Theorem 5.1. For notational simplicity, from now on we shall write
X; Y; Z; U; V instead of X t(x); Y t(x); Zt(x); U t(x); V t(x). It is easily checked that the
mapping (X; Y; Z) �→ (X;U; V ) is 1–1, with the inverse transformation:

Ys = '(s; Xs; Us); Zs = Dy'(s; Xs; Us)Vs + �∗(Xs)Dx'(s; Xs; Us): (5.3)

Consequently, the uniqueness of (5.2) follows from that of BDSDE (4.5), thanks to
(5.1) and (5.3). Thus we need only show that (U; V ) is a solution of the BSDE (5.2).

To this end, note that U0 = Y0 = u0(X0). Rewriting (4.5) as its equivalent Itô form
(4.6), and applying the generalized Itô–Ventzell formula (Theorem 4.2) to E(s; Xs; Ys),
one derives, after a little calculation, that for (s; x) ∈ [0; t]× Rn

Us =E(s; Xs; Ys) = u0(X0)−
∫ s

0
〈DxE(r; Xr; Yr); b(Xr)〉 dr

−
∫ s

0
〈DxE(r; Xr; Yr); �(Xr) ↓ dWr〉+

∫ s

0
DyE(r; Xr; Yr)f(r; Xr; Yr; Zr) dr

−
∫ s

0
〈DyE(r; Xr; Yr)Zr; ↓ dWr〉 − 1

2

∫ s

0
tr{�(Xr)�∗(Xr)DxxE(r; Xr; Yr)} dr

−
∫ s

0
〈�∗(Xr)DxyE(r; Xr; Yr); Zr〉 dr − 1

2

∫ s

0
DyyE(r; Xr; Yr)|Zr|2dr

= u0(X0) +
∫ s

0
H(r; Xr; Yr; Zr) dr −

∫ s

0
〈Vr; ↓ dWr〉; (5.4)

where

H(s; x; y; z),− 〈DxE; b(x)〉+ (DyE)f(t; x; y; z)− 1
2 (DyyE)|z|2

− 1
2 tr{�(x)�∗(x)DxxE} − 〈�∗(x)DxyE; z〉; (5.5)

where E= E(s; x; y). Comparing (5.4) with (5.2), it remains to show that

H(s; Xs; Ys; Zs) = f̃(s; Xs; Us; Vs) ∀s ∈ [0; t]; P-a:s: (5.6)
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To this end we analyze H(s; x; y; z) term by term. Using (3.3) and (5.1) we see that

− 〈DxE(s; Xs; Ys); b(Xs)〉= DyE(s; Xs; Ys)〈Dx'(s; Xs; Us); b(Xs)〉: (5.7)

To further simplify notations from now on we shall suppress the variables inside
E(· · ·) and '(· · ·), as well as their partial derivatives, bearing in mind that the E and
its partial derivatives are all evaluated at (s; Xs; Ys), while ' and its partial derivatives
are all evaluated at (s; Xs; Us). Denoting b(Xs)= bs and �(Xs)= �s, and applying (3.3)
and (5.3) we have

(DyE)f(s; Xs; Ys; Zs) = (DyE)f(s; Xs; '; Dy'Vs + �∗
s (Dx'));

−〈�∗
s (DxyE); Zs〉=−(Dy')〈�∗

s (DxyE); Vs〉 − 〈�∗
s (DxyE); �∗

s (Dx')〉;

− 1
2 (DyyE)|Zs|2 = 1

2 (DyE) (Dyy')|Vs|2 + (DyE)2 (Dyy')〈Vs; �∗
s (Dx')〉

+ 1
2(Dyy') (DyE)|�∗

s (Dx') (DyE)|2: (5.8)

Combining (5.7) and (5.8), we have

H(s; Xs; Ys; Zs)

= (DyE)〈Dx'; b〉 − 1
2 tr{��∗DxxE} − (Dy')〈�∗DxyE; Vs〉 − 〈�∗DxyE; �∗Dx'〉

+ 1
2(DyE) (Dyy')|Vs|2 + (DyE)2(Dyy')〈Vs; �∗Dx'〉

+ 1
2(Dyy') (DyE)|�∗Dx'DyE|2 + (DyE)f(s; Xs; '; (Dy')Vs + �∗Dx')

= (DyE)
{〈Dx'; b〉+ 1

2(Dyy')|Vs|2 + f(s; Xs; '; (Dy')Vs + �∗Dx')
}

+
{

1
2 (DyE) (Dyy')|�∗Dx'DyE|2 − 1

2 tr{��∗DxxE} − 〈�∗DxyE; �∗Dx'〉
}

+〈Vs; �∗[Dx'(DyE)2(Dyy')− Dy'DxyE]〉: (5.9)

Now (3.3) tells us that

tr{��∗DxxE}=−2tr{��∗Dx'(DxyE)∗} − DyyE|�∗Dx'|2 − (DyE)tr{��∗Dxx'}
=−2〈�∗DxyE; �∗Dx'〉+ (DyE)Dyy'|�∗Dx'DyE|2

− (DyE)tr{��∗Dxx'}

and DxyEDy'−Dx'(DyE)2(Dyy') =DxyEDy'+Dx'Dy'DyyE=−DyEDxy'. Thus the
second {· · ·} in the right side of (5.9) becomes 1

2 (DyE)tr{��∗Dxx'}; and the last term
there becomes (DyE)〈Vs; �∗Dxy'〉. Now if we compare with the de7nition of f̃ (see
(3.4)) and note that DyE(s; Xs; Ys) = (Dy')−1(s; Xs; Us), (5.9) becomes (5.6), proving
Theorem 5.1.

Our next lemma concerns the stochastically uniform boundedness property of the
solutions to the BDSDE (4.5) and its Doss transformation. Such a property will even-
tually lead to the same type of boundedness of the stochastic viscosity solution, which
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will be vital when we study the uniqueness in the future. One should recall Remark
3.5(i) again that Proposition 3.4 gives only the stochastically uniform boundedness of
the derivatives of the random 7elds ' and E, but not for ' and E themselves. Thus
the stochastic boundedness of the processes U or Y are by no means clear. We should
point out here that the proof of the lemma borrows some idea of Kobylansky (1997).

Lemma 5.3. Assume (A1)–(A3); and (A4′). Assume also that the functions �; � in
(A1) and u0 in (A3) are all bounded; and that the random function f in (A2) satis?es
that |f(!; t; x; 0; 0)|6C; ∀(!; t; x) for some constant C ¿ 0.
Then; there exists an increasing process +∈L0(FB; [0; T ]); such that for any solu-

tion (X t(x); Y t(x); Zt(x)) of the SDEs (4:4) and (4:5); it holds that; UP-a.s.;

|Y t
s (x)|6+s; |E(s; X t

s (x); Y
t
s (x))|6+s; 06s6t6T; x ∈ Rn: (5.10)

Proof. Denote f1(!; t; x; y; z)=f(!; t; x; y; z)− 1
2 〈g; Dyg〉(t; x; y). By Assumption (A2)

and the extra condition we made on f, there exists constant C ¿ 0, such that

f1(!; t; x; y; z)6C(1 + |y|+ |z|)− 1
2 〈g; Dyg〉(t; x; y) V=f2(!; t; x; y; z);

∀(!; t; x; y; z) ∈ � × [0; T ]× Rn × R× Rk :

Now let (Y t;1; Zt;1) = (Y t(x); Zt(x)) and (Y t;2(x); Zt;2(x)) be the unique solution of
BSDE (4.16) with Y t;2

0 = C0, where C0 is the bound for u0; and generator f2. Then,
applying Theorem 4.3 we see that Y t

s (x)6Y t;2
s (x), ∀s ∈ [0; t], UP-a.s.

Next, let (Ut;2(x); V t;2(x)) be the Doss transformation of (Y t;2(x); Zt;2(x)) via (5.1).
Theorem 5.1 tells us that (Ut;2(x); V t;2(x)) is the solution to the BSDE:

Ut;2
s (x) =C0 +

∫ s

0
f̃2(r; X

t
r (x); U

t;2
r (x); V t;2

r (x)) dr −
∫ s

0
〈V t

r (x); ↓ dWr〉; (5.11)

for 06s6t, where

f̃2(t; x; y; z) =Dy'(t; x; y))−1{C(1 + |'(t; x; y)|+ |�∗(x)Dx'(t; x; y)

+Dy'(t; x; y)z|) +Ax'(t; x; y) + 〈�∗(x)Dxy'(t; x; y); z〉

+ 1
2Dyy'(t; x; y)|z|2}:

Note that by Proposition 3.4 we can 7nd a constant L¿ 0 such that

|f̃2(t; !; x; y; z)|6L exp{L|Bt(!)|}(1 + |y|+ |z|2)6a(t; !)(1 + |y|) + A(!)|z|2;
∀(t; x; y; z); P-a:e: ! ∈ �; (5.12)

where a(t; !) V=L exp{L|Bt(!)|}; A(!)=L exp{L|B|∗T (!)|}, |B|∗t (!)=sup06s6t |Bs(!)|.
Clearly a is an FB-adapted process. Therefore if we de7ne 1(t; !) to be the solution
to the following ODE

d1
dt

= a(t; !) (1 + 1); 1(0) = C0 ¿ 0; (5.13)

then it is easy to check that 1 is an FB-adapted, continuous, positive, increasing process.
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Recall that for 7xed ! ∈ � (with possible exception on a P-null set) and t ∈ [0; T ],
the processes (Ut;2

s (x; !; ·); V t;2
s (x; !; ·)) is an {FW

s; t}-adapted solution to the BSDE
(5.11). In what follows we content ourselves only to the space (�′;F′; P′; {FW

s; t}06s6t)
with ! ∈ � being 7xed. Also, for notational simplicity we denote U·(!; ·)=Ut;2

· (x; !; ·),
V·(!; ·) = V t;2

· (x; !; ·), and we often suppress ! in Us(!), Vs(!), a(s; !), A(!), and
1(s; !), etc. We are to show that |Us|61(s) ∀s ∈ [0; t], P′-a.s.

To this end, let us de7ne, for M ¿ 0, f̃
M
2 (t; !; x; y; z) V= f̃2(t; !; x; y; z)’M (y), where

’M ∈ C∞, such that 06’M (y)61 ∀y ∈ R, ’M (y)=0 for |y|¿M +1, and ’M (y)=1
for |y|6M . Clearly, for each M we have

|f̃M
2 (t; !; x; y; z)|6a(t)[1 + ’M (y)|y|] + A|z|26KM (1 + |z|2):

Thus by Kobylansky (1997), there exists a unique solution, denoted by (UM; VM ), of

the BSDE (5.11) with f̃2 being replaced by f̃
M
2 . Furthermore, by the stability result

in Kobylansky (1997) we know that as M → ∞, possibly along a subsequence, one
has UM → U , in ucp and VM → V in L2, provided that {UM : M ¿ 0} is uniformly
bounded (i.e., the bound is independent of M). Therefore, it su9ces to show that for
all M ¿ 0 and all ! ∈ �, it holds that |UM

s (!)|61(s; !) ∀s ∈ [0; t], P′-a.s., where 1
is the solution to (5.13).
To see this we 7rst apply Tanaka’s formula to get

|UM
s |=C0 +

∫ s

0
sign(UM

s )’M (UM
r )f̃2(r; !; X t

r (x); U
M
r ; VM

r ) dr

−
∫ s

0
〈sign(UM

r )VM
r ; ↓ dWr〉+ Ks − K0; 06s6t: (5.14)

where K is an {FW
s; t}06s6t-adapted, continuous, local-time-like process, i.e., K satis7es

Kt = 0 and Ks =
∫ t
s 1{UM

r =0} dKr , 06s6t, P′-a.s.
Next, for 7xed ! let us consider the following function:

F(B; !) =




∞∑
k=3

(2A(!))kBk

k!
= e2A(!)B − 1− 2A(!)B− 2A(!)2B2; B¿ 0;

0 B60:

(5.15)

Then it is easy to check that F(· ; !) is C2, nonnegative and F(B; !)¿ 0 if and only
if B¿ 0. Again, we shall suppress ! in F if there is no danger of confusion.
Now let us denote GM

s = |UM
s |−1(s), s ∈ [0; t], and applying Itô’s formula to F(GM

· )
on [0; s] we have (although this is not a consequence of Theorem 4.2, but it might be
helpful to check the formula there to understand the signs for each term)

F(GM
s ) =

∫ s

0
F′(GM

r ){sign(UM
r )’M (UM

r )f̃2(r; Xr; UM
r ; VM

r )− a(r)(1 + 1(r))} dr

+
∫ s

0
〈sign(UM

r )VM
r ; ↓ dWr〉+

∫ s

0
F′(GM

r ) dKr − 1
2

∫ s

0
F′′(GM

s )|VM
r |2 dr:
(5.16)
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Since F′(u) ≡ 0 for u¡ 0 and 1¿0, we have∫ s

0
F′(GM

r ) dKr =
∫ s

0
F′(GM

r )1{UM
r =0} dKr =

∫ s

0
F′(−1 !(r)) dKr = 0: (5.17)

Moreover,∫ s

0
F′(GM

r ){sign(UM
r )’M (UM

r )f̃2(r; Xr; UM
r ; VM

r )− a(r)(1 + 1(r))} dr

6
∫ s

0
F′(GM

r ){’M (UM
r )|f̃2(r; Xr; UM

r ; VM
r )| − a(r)(1 + 1(r))} dr

6
∫ s

0
F′(GM

r )[a(r)’M (UM
r )|UM

r | − 1(r)) + A|VM
r |2] dr: (5.18)

Note that F′′(B)−2AF′(B)¿0 ∀B, and a(r)6A ∀r, Combining (5.16)–(5.18) we have

F(GM
s )6A

∫ s

0
F′(GM

r )[’M (UM
r )|UM

r | − 1(r)] dr +
∫ s

0
〈sign(UM

r )VM
r ; ↓ dWr〉:

Hence for every s6�6t (and 7xed !) it holds that

EP′{F(GM
s )|FW

�; t}6AEP′
{∫ s

0
F′(GM

r )[’M (UM
r )|UM

r | − 1(r)] dr
∣∣∣∣FW

�; t

}
: (5.19)

Since by de7nition (5.15) one shows that F′(B) = 2A[F(B) + 2A2B2], and F′(B) = 0
for B¡ 0, we have

F′(GM
r )[’M (UM

r )|UM
r | − 1(r)]62AF(GM

r )[’M (UM
r )|UM

r | − 1(r)] + 4A3(GM
r )3:

(5.20)

But since limB→0 B3=F(B) = 3=4A3, and limB→∞ B3=F(B) = 0, there exists a constant

Ã¿ 0 such that B36ÃF(B) for all B. Thus, if we denote  t;�
s

V=EP′{F(GM
s )|FW

�; t},
06s6�6t, then (5.19) and (5.20) lead to that  t;�

s 6K
∫ s
0  t;�

r dr, where K=2A2(M +
‖1‖∞+2AÃ). Applying Gronwall’s inequality we obtain that  t;�

s =0 ∀s ∈ [0; �], P′-a.s.
Let s= � and note that GM

� is FW
�; t-measurable, we have F(GM

s ) = 0 ∀s ∈ [0; t], P′-a.s.
But from the construction of F we see that one must have GM

r 60, P′-a.s. Namely,
|UM

s |61(s), P′-a.s., proving the claim.
Consequently, note that both ' and E are increasing in y, we have for all (t; x),

Ut
s (x) =E(s; X t

s (x); Y
t
s (x))6E(s; X t

s (x); Y
t;2
s (x))

=Ut;2
s (x)61s ∀s ∈ [0; t]; P-a:s:;

and hence (recall Proposition 3.4), for all 06s6t,

Y t
s (x)='(s; X t

s (x); U
t
s (x))6'(s; X t

s (x); U
t;2
s (x))6'(s; X t

s (x); 1s)6C|B|∗s +1s
V=+s:

Note that 1 is an FB-adapted increasing process, so is +. The proof is now complete.

We are now ready to prove the existence of the stochastic viscosity solutions. Let
us introduce for each (t; x)∈ [0; T ]× Rn two random 7elds

u(t; x) = Y t
t (x); v(t; x) = Ut

t (x); (5.21)
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where Y , U are the solutions to the SDEs (4.5) and (5.2), respectively. Then by (5.1)
and (5.3) we have, for (!; t; x)∈� × [0; T ]× Rn,

u(!; t; x) = '(!; t; x; v(!; t; x)); v(!; t; x) = E(!; t; x; u(!; t; x)): (5.22)

In light of the Proposition 3.1, to prove the existence of the viscosity solution to SPDE
(f; g) we need only show that the random 7eld v de7ned in (5.22) is a stochastic
viscosity solution to the SPDE(f̃; 0). However, since it is easily checked from the def-
inition that an FB-progressively measurable, !-wise viscosity solution is automatically
a stochastic viscosity solution, the following theorem is not surprising.

Theorem 5.4. Assume (A1)–(A4). Then the random ?eld v is a stochastic viscosity
solution of SPDE(f̃; 0); and u is a stochastic viscosity solution to SPDE(f; g); respec-
tively. Furthermore; if in addition we assume that the conditions of Lemma 5:3 hold;
then the random ?elds u and v are locally bounded in the following sense: for some
FB-adapted increasing process +=(+s)s∈ [0;T ]; it holds that |u(t; x)|6+t; |v(t; x)|6+t

∀(t; x)∈ [0; T ]× Rn; P-a.s.

Proof. Since the BDSDE (4.5) is a time-reversed version of the one considered by
Pardoux and Peng (1994), it follows from the proof of Theorem 2:1 in Pardoux and
Peng (1994), together with Theorem 4.2, that there exists a continuous version of the
random 7eld (s; t; x) �→ Y t

s (x), for (s; t; x)∈ [0; T ]2×Rn. Here we de7ne Y t
s (x)=Y t

s∧t(x)
for (s; t)∈ [0; T ]2. Taking this continuous version from now on, then the random 7eld
u(t; x) = Y t

t (x) is also continuous (whence jointly measurable) on U� × [0; T ]× Rn.
Next, by Lemma 4.1 we know that Y t

s (x) is FB
s ⊗ FW

s; t-measurable. In particular
u(t; x) is FB

t ⊗ FW
t; t measurable. But since W is a Brownian motion on (�′;F′; P′),

applying Blumenthal 0–1 law we conclude that u is independent of (or a constant
with respect to) !′ ∈�′. Therefore, we can identify the random 7eld u as one that is
de7ned on � × [0; T ]× Rn, and is FB

t -measurable for each t ∈ [0; T ]. In other words,
u∈C(FB; [0; T ]×Rn). Consequently, from (5.1), v∈C(FB; [0; T ]×Rn) as well, thanks
to the argument preceding Proposition 3.1.
It remains to show that v is a stochastic viscosity solution to SPDE(f̃; 0). To this

end we consider SDE (4.5). For 7xed !∈� we denote

UU
!
s (x)(!

′) = Ut
s (x)(!;!′); UV

!
s (x)(!′) = V t

s (x)(!;!′):

Since for 7xed !∈� we can view (4.5) as a time-reversed version of a standard BSDE
on the probability space (�′;F′; P′), with the generator f̃(!; : : :), and by Theorem 5.1
we see that ( UU

!
; UV

!
) is the (pathwisely) unique strong solution of this BSDE, following

the arguments of Pardoux and Peng (1992) one then shows that Uv(!; t; x) V= UU
!
t (x) is a

viscosity solution to a quasilinear PDE with coe9cient f̃(!; : : :). By Blumenthal 0–1
law again we have UP{ UU

!
t (x) =Ut

t (x)(!;!′)}= 1; hence Uv(t; x) ≡ v(t; x) ∀(t; x), P-a.s.
Since v∈C(FB; [0; T ]×Rn) and is a viscosity solution to SPDE (f̃; 0) for each 7xed

!, it is by de7nition an !-wise viscosity solution. Hence a stochastic viscosity solution
to SPDE(f̃; 0). The 7rst conclusion of the theorem now follows from Proposition 3.1.

The last statement of the theorem follows from Theorem 5.1 and Lemma 5.3. The
proof is now complete.
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Remark 5.5. A direct consequence of Proposition 3.4 and Theorem 5.4 is that the
stochastic viscosity solution constructed above is stochastically uniformly bounded.
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