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An anticipating stochastic integral is proposed for 'normal martingales'. It agrees with the Skorohod 
integral in the Brownian case. A variational derivative of Malliavin type is also defined. An integration 
by parts formula is given which has some subtle and important differences from the formula in the 
Brownian case. The existence and uniqueness of solutions of linear stochastic differential equations 
with anticipating exogenous driving terms are also established. 
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1. Introduction 

In this paper we propose an anticipating integral for general martingales possessing two 
key properties: that (M, M)t = t; and that M possesses the chaos representation property 
(CRP). Martingales having the first property have been called 'normal' by Dellacherie et al. 
(1992, p. 199) and are discussed in Section 2. Our integral is based on chaos expansion 
and as such it is analogous to the Skorohod integral as developed by Nualart and Pardoux 
(1988). When the integrand is predictable it reduces to the usual martingale integral as 
presented, for example, in Protter (1990); when M is a Brownian motion it is exactly the 
Skorohod integral. 

There are many similarities between our martingale anticipating integral and the 
Skorohod integral, but there are also some important (and non-trivial) differences. Many of 
these differences stem from one key fact: in the Brownian case [B, B]t = (B, B)t= t, 
while in our case only (M, M)t = t, and [M, M]t is random; see Protter (1990) for all 
unexplained notation. For example, there are two ways to describe a variational derivative 
(also known as the 'Malliavin derivative' in the Brownian case), and they are equivalent in 
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the Brownian case but not in ours. This leads to some subtle differences, and null sets exist 
for measures arising from kernels on the product space Q x R+. 

Our paper is organized as follows. In Sections 3 and 4 we recall what chaos is, and in 
Section 4 we give the basic definitions of a variational derivative and an anticipating 
integral, and we establish some elementary properties which are analogues of the Brownian 
(Skorohod) case. Here there already arises a difference: in the Brownian case one can use 
the equivalence of the two definitions of the variational derivative to give elegant proofs 
(using the 'integration by parts' formula) right from the beginning - see the elegant 
presentation of Nualart (1995), for example - whereas such tools are not available for our 
integral. 

In Section 5 we continue our study of properties of the Skorohod integral and we include 
a formula inspired by preliminary work of Russo and Vallois (1994, Theorem 5.3). Here the 
subtlety of the differences with the Brownian case begins to become readily apparent, and 
correct definitions with respect to reference measures need to be made. 

In Section 6 we give some preliminary results on stochastic differential equations (SDEs). 
Our results are a far cry from the beautiful results already established for the Skorohod 
integral - see, for example, Buckdahn (1994) - but on the other hand they are very general 
in that they hold for any normal martingale M. Our method relies exclusively on the CRP 
of a normal martingale, therefore neither path regularity nor LP estimations of the 
anticipating integrals are required. 

The reader will note that we do not include results establishing path regularity of the 
integral, and hence we are as yet unable to establish a change of variables formula. We 
hope to address these issues in future work. 

2. Normal martingales 

The following definition is from Dellacherie et al. (1992, pp. 199ff). 

Definition 2.1. A martingale M is called normal if (M, M)t = t. 

In this paper we will be interested in normal martingales that have an extra property: the 
chaos representation property (see Section 3). Note that [M, M], - (M, M)t = [M, M]t - t 
is a martingale, and because the CRP implies the predictable representation property, we have 
that 

[M, M]t = t+ Jps dMs (2.1) 

for some predictable (p. In other words, equation (2.1) is necessary if a martingale M is 
normal and has the CRP. Emery (1989) first presented and studied equation (2.1) and has 
called it the structure equation. If one begins with the structure equation (2.1), then one can 
show that it has unique solutions under quite general conditions on p (see Meyer 1989; or 
Kurtz and Protter 1991, pp. 1044-1045). The simplest structure equations are those of 
Brownian motion and the compensated Poisson process, which are respectively: 
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[M, M]t = t, and [M, M]t = t + cMt, c > O. 

An important special class was studied by Emery, which we write in differential form: 

d[M, M]t=dt+(a +3Mt-)dMt; Mo = x. (2.2) 

Particularly if a = 0 and -2 - ,/< 0, Emery proved the important result that a solution M 
of (2.2) is normal and has the CRP. This gives a whole family of normal martingales with the 
CRP for which our results apply. Note that / = 0 is Brownian motion and / = -1 is Azema's 
martingale; see, for example, Protter (1990, pp. 180-185) for a treatment of Azema's 
martingale. When /3 = -2, M is known as the 'parabolic martingale' with IMtI = /t a.s., 
first studied by Protter and Sharpe (1979) and Barlow (1981). Vallois (1995) has recently 
demonstrated an interesting connection between the Brownian range process and parabolic 
martingales, thus showing that if Mt = V/2BO(t), where B is standard Brownian motion and 
0 is the inverse of its range process, then M is also a normal martingale with the CRP. It is 
worth pointing out that any solution M of (2.2) has no continuous martingale part: that is, 
[M, M]t = 0, for all t (see Emery 1989). Finally, Russo and Vallois (1994) have extended 
Emery's results a little by considering the equation: 

d[M, M]t = dt + P(t)Mt_ dMt. (2.3) 

They show that if -2 , /3(t) < 0, for all t, then M is again normal and has the CRP. 
The preceding discussion hopefully indicates that there is a significant family of normal 

martingales having the CRP already known to exist, with the prospect of more. 

3. Multiple integrals and preliminaries 

Since the recent book of Dellacherie et al. (1992) gives a lovely treatment of multiple 
integrals for normal martingales, we do not give one here, but content ourselves with a 
definition. We let En be an 'increasing simplex' of R+: 

zn - {(tl, ..., tn) E R+: 0 < tl < ... < tn}, (3.1) 

and we extend a function f defined on n, by making f symmetric on R+. We can then define 

In(f) = n! f(tl, ..., tn)dMt, ... dMtn. (3.2) 

This has the advantage of working with traditional adapted integrands for our martingale 
integrals. Note that the domain n, and its symmetrizations do not cover IR+: we are ignoring 
the diagonals. As Meyer (1976) pointed out, this ignores terms such as 

f(tl, t2) dMt, dMt2 = f(t, t) d[M, M]t, 
{tl=t2} 0 

which need not be trivial in our case. We avoid this problem by adopting the following 
convention: 
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Convention 3.1. Functions f defined on the simplex ln are automatically extended to R+ 
such that f is symmetric and zero on the diagonals. 

More precisely, let us define a class of functions for n E N and T = [0, 1] by 

L2(T") = {f L2(T")If is symmetric in all variables}. 

Note that elements in L2(Tn) are in fact equivalence classes, and we shall always choose a 
representative that vanishes on the 'diagonal' set: An = {(tl, ., tn)3ti = tj, i 5$ j}. Such a 
choice of representative will not affect our discussion when we are treating the iterated 
integral and its norm in L2(T"), since in the former case the set An is never involved, and in 
the latter An is a null set under the Lebesgue measure. However, it will become crucial when 
some measure involving d[M, M]t is considered, as in general d[M, M]t will charge the 
Lebesgue null set. 

The multiple integral with respect to M defined in (3.2) will be considered defined for 
every f E L2(Tn) (or L2(X1)); and it is known (see, for example, Meyer 1993) that for each 

fEL2s(Tn) 

IIn(f)jI12(Q) 
= (n!)2lfL2( ) = n!lf 112(. (3.3) 

Definition 3.2. Let a = o{Mt; t > 0}, the o-field generated by a (normal) martingale M. 
Let J%n be the nth homogeneous chaos, 5 n = In(f), where f ranges over all f E L2(1n). If 
L2(,, dP) = %?_O-n (the direct sum), then we say M possesses the chaos representation 
property. 

Remark 3.3. The hypothesis (M, M) t = t has been used to define multiple integrals in a nice 
way, which in turn are needed to define the CRP. One could require only d(M, M)t < dt to 
define the multiple integral, but if (M, M)t were random one would lose the property that 
different chaoses are orthogonal. Meyer (1976, p. 325) also points out that one could assume 
that (M, M)t = c(t), where c(-) is non-random, but we do not pursue such generality here, 
partially because to date there are no known interesting examples of martingales M such that 

(M, M)t = c(t) $~ t and which have the CRP. 

In what follows we shall always assume that a normal martingale M with the CRP is 
given on the probability space (Q, X", P), and that Y is generated by M. Thus, for any 
random variable F c L2(Y, dP) (= L2(Q)) we have by the CRP that there exists a 
sequence of functions fn E L2(T"), n = 1, 2, ..., such that F = on(fn). Hence 

00 00 

oc > IIFIIL2(Q) = Z IIIn(fn)ll2(Q) = S n.!IfnfI12(T). (3.4) 
n=0 n=0 

We shall also use the following notation throughout this paper. If f E L2(Tn) and 
g E L2(Tm), we denote f ( g E L2(Tn+m) by 

f ? g(tl, ..., tn; SI, ..., Sm) =-f(tl, ..., tn)g(s, ..., Sm); 
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and if I C T = [0, 1], and k E N, we denote by 1Ik a function in L2(Tk) such that 

k 

1k(tl, ..., tk)= H l(ti)- 
i=1 

4. A derivative operator and an anticipating integral 

Consider the following subset f/ c L2(Q): 
{ 00 00 A 

97:= F = In(fn) nn! lln112n < 00 , 
n=0 n=0O 

where 1Illn := 1-II.2(Tn). To be consistent with the usual notation in the literature (see, for 
example, Nualart and Pardoux 1988), we shall write X = D1,2. It is easily seen that D11,2 is 
dense in L2(Q), since every element in the finite Hilbert sum of chaoses belongs to D1,2. The 
derivative operator is analogous to what is often called the Malliavin derivative in the 
Brownian case, and it is defined as a linear operator D: ED11,2 C L2(Q) -> L2(T X Q), by 

00 

DtF := E nIn-(fn(', t)), t E [0, 1], (4.1) 
n=l 

whenever F has the chaos expansion F = Yn= In(fn). It is easy to see that 

I oc 2 

lit L2(TXQ)=- E nIn-l(f n(, t)) dt 
n-1 L2(Q) 

1 oo 

= n2(n - 1)!1\f(., t)12( dt (4.2) 
0 n=l 

00 1 00x 

jt= E nn!f 1f 12 n < oc0 
n=l n=l 

for all F E D1,2. Note that since our definition is analogous to the one normally used for the 
Brownian chaos expansion, we can derive several properties using exactly the same methods 
as those used in the Brownian case. Surprisingly, however, the definition is not compatible 
with a Sobolev space structure, as is of course the case for Brownian motion. We shall 
explain this via an example at the end of this section. Here we give two properties of the 
operator D for ready reference. 

Lemma 4.1. (1) Suppose that F C L2(Q). Then DtF = 0, for all t e [0, 1] if and only if F is 
a constant (non-random). 

(2) Suppose that F E L2(Q) and is Yet-measurable. Then DsF = 0 for all s > t. 
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Proof. This is identical to the Brownian case, so we omit it. O 

We now turn to the definition of an anticipating integral, which is analogous to that of 
the Skorohod integral in the Brownian case. Note that since D is a densely defined operator, 
we can define its adjoint operator, denoted by 6, in the usual way. That is to say, let 

* := (6) := {G E L2(T X Q): 3C> 0, E G(t, .)DtFdt ~ CIlFll, VF E DI,2}, 

and the adjoint operator 6: L2(T X Q) F-> L2(Q) is defined by the equation: 

E(6(G)F) = E G(t, .)DtFdt, VF E D1,2, G E T*. (4.3) 
o 

Since every element in L2(T X Q) also has a chaos expansion, we can write G(t, ) = 

n=oIn(gn(', t)), where the gn are deterministic functions, jointly measurable in all 
variables, and symmetric in the first n variables. Following the same arguments as those in 
Nualart (1995), one can show that the set T* is dense in L2(T X Q) and that 

f 00 00 A 
=* = G(t, ) = In(gn(', t)): ,(n + )!gsIL2(T+ < x i, (4.4) 

n=O0 n=0 ) 

where gs denotes the symmetrization of g in all variables. In other words, the set T* is of 
the same form as the usual notion Dom(6) in the literature on the Skorohod integral (cf., for 
example, Nualart 1995, Proposition III.3), and we will therefore not distinguish the two from 
here on. Consequently, as the adjoint operator of D, 6 is a densely defined, closed operator, 
which in turn shows that the operator D is closable (in fact, it is not too hard to show that D 
is closed by definition). We have the following definition. 

Definition 4.2. The adjoint operator of D, denoted by 6: L2(T X Q) - L2(Q), is called the 
anticipating integral of the element in T* = Dom(6). Furthermore, for any u E Dom(6), we 
denote 

6(u) = Us6Ms. 

Also, we can define the set L 1,2 as usual by 

1f oo 00 A 

1'2:= Ut = In(fn(., t)) nn!Ilfnl1L2(T+) < o} (4.5) =^ ^ ^ ^ 
^ ^^ ^ nn\\\fn\^^L2 < oo .T (4.5) 
n=O0 n=O 

Noting that Enn!llfn ll2+ <o is equivalent to E(n + l)!1nf2n+1 <oo, and the obvious 
inequality 
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we have L1,2 c Dom(6), as in the Brownian case. The following results for our anticipating 
integral can also be proved using exactly the same arguments as those used, for example, in 
Nualart (1995). We give only the statements. 

Proposition 4.3. (1) Suppose that u E Dom(6), and that u has chaos expansion ut = 

2=oIn(gn(', t)), where g(, t) E L2(Tn), for almost all t E T. Then 

00 

6(u) = E In+l (gn). 

n=O 

(2) Suppose that u, v E L1'2. Then 

E(6(u)6(v)) = E usVs ds + E JDsutDts ds dt. 
o oJo 

In particular, if u = v E L12, then 

E(6(u)2) = EJ u2 ds + E DsutDtus ds dt. 

(3) Suppose that u is a process in the space L1'2 such that for almost all t c [0, 1], 
Dtu. E Dom(6), and there is a version of the process {fT(DtUs)6Ms; t > 0} which is in 
L2(T X Q). Then 6(u) c D1,2, and 

Dt(6(u)) = (Dtus)bMs + Ut. 
o 

A natural question now is whether the definition of our anticipating integral is a 
generalization of the usual Ito-type stochastic integral. Note that the proof in the Brownian 
case of this result (see, for example, Nualart 1995) uses the fact that any adapted L2 
process can be approximated by elementary adapted processes; and that the Skorohod and 
Ito integrals coincide on elementary adapted processes. The latter result relies on an 
integration by parts formula which in our case is more complicated and not easily 
applicable, as we shall see in the next section. Therefore the usual Brownian technique does 
not seem to apply. Our technique uses only the CRP (and not integration by parts), so it 
also gives an alternative (new) proof in the Brownian case. 

Proposition 4.4. Suppose that u c L2(T X Q) is predictable. Then u E Dom(6) and 

6(u) = utdMt, 

where the right-hand side above is in the semimartingale (or 'Ito'6) sense. 
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Proof. Let us first assume that t = In(fn(, t)), where fn is some L2-function, symmetric in 
the first n variables. Since u is predictable, we have 

ut = n! { fn(tl, . . , tn, t)dMt, ... dMt_, dMt, = In(fn(', t)l Ont)). 

Now by definition, 

6(u) = In+l(fn(, *)1On )(.)S) 

= (n + 1)! fn(tl ..., tn, t)l0o)(tl, ., tn)s dMt, ... dMtn dMt, 
O tl < ...<tn <t 

where '-' stands for the first n variables, and '*' stands for the last variable; fn(, *)lI O(.)s is 
the symmetrization of fn(-, *)l[o,)(.) in all variables. Note that since fn is symmetric in the 
first n variables, a little computation shows that on the set Xn+l = { t < t2 < ... < tn < t}, 
we have 

fn(tl, . . . tn, t)lO,n * * ) = ( ) Efn(n( ) , On(n), t) 
(n + or1'' n) 

Zfn(tl tn, t), 
(n l 1) 

where O n runs over all the permutations of { 1, ..., n}. Thus 

6(u) = n! fn(tl, ..., tn, t)dMt, ... dMt} dMt = utdMt. 
O tl < ... <tn<t } Q 

Now let us suppose that ut = Y 0_oIn(fn(., t)) E L2(T X Q), that is, 

1l00 o 1 00 

E lu2 dt = 3 n! JIfn( t) dt = > nfllnll2+1 < oo. 
0 n=0 J n=O 

(4.7) 

Since ut is predictable, it can be easily checked that every In(fn(', t)) must have the form 

In(fn(', t)) = In(fn(', t)lon)). Therefore, using the same argument as before, we have 

In+l(fnS) = 6(In(fn(, ))) = J In(fn(, t)) dMt, 
o 

and 

(n + n)IIf l[n+l = EIIn+l(fns)12 = EJ IIn(fn(, 0t))2 dt = n! Ilf(-, t)||2n dt 
-o no 

= n! ln 112n+ 
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Thus (4.7) gives that 
00 00 

3(n + l)!IllfIiJn+s = -E n!llf fllI+l < o0, 
n=O n=0 

hence u E Dom(6), and by Proposition 4.3(1), 

86(u n+n) 
= ( ) E d = 6 = >3 In+l(fns)::J{Z In(fn(' .t)) dMt{ utdMt, 

n=O = 0 n= 0 

proving the proposition. ED 

4.1. An Ocone-Haussmann-Clark type formula 

Let M be a normal martingale with the CRP. For any F E L2(Q), we can write 
00 00 t 

F = > In(fn) = E(F) + > In(fn) = E(F) + ut dMt, (4.8) 
n=o n=l 0 

where u is a predictable process given by 

ut - En! fn(tl .. tn-1, t)dMt, ... dMt,n . (4.9) 
n=l tl <t2 < ...<tn-l <t 

In the Brownian case, the predictable process u can be further described using the 'Malliavin 
derivative' operator, known as the Ocone-Haussmann-Clark formula (see, for example, 
Ocone 1984). Our definition of the 'Malliavin derivative' operator {Dt}t>o also allows us to 
derive an analogue of that formula, as we shall see in the following theorem. 

Theorem 4.5. Let M be a normal martingale with the CREP, and let F E L2(Q). If F E D1,2 
then 

F = E(F) + P(DtF) dMt, (4.10) 

where PHt denotes the predictable projection of a process H. 

Proof. Comparing (4.10) with (4.8), we see that we need only show ut = P(DtF). Note that u 
is already predictable, so if u. = ?(D.F), the optional projection of D.F, then we would have 
P(DtF) = P(O(DtF)) = P(ut) = ut, Vt E [0, 1], and we are done. Therefore it suffices to show 
that u is the optional projection of D.F, or equivalently (see Dellacherie 1972), 

ur = E{DrFF|,}, for any stopping time r E [0, 1], (4.11) 

where DTF is defined to be DtFI t=. To this end, we first note that by definition we have 
00 o0 1 

DtF = : nIn- (fn(', t)) =0 n! hn(tn-1, t)dM tn,I (4.12) 
n=l n =l 0 
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where hn(s, t) = f t <...<tn2<sf(t, .. *, tn-l, s, t)dMtl ... dMtn 2. Clearly, for each fixed 
t C [0, 1], hn(., t) is predictable, so if we define Mn(r, t) := f hn(s, t)dMs, r E [0, 1], then 
Mn(., t) is a martingale with parameter t E [0, 1]. Thus for any fixed t E [0, 1] and any 
stopping time r E [0, 1], one has E{Mn(1, t) - M(r, t)\lY} = 0. By a standard monotone 
class argument, one can show that for any stopping time r E [0, 1], 

E{Mn(l, r) - Mn(r, r)i1|?} = 0 a.s. (4.13) 

Further, recalling that fn(., t, t) = 0, we have by (4.9) that y=ln!Mn(t, t) = ut, Vt, a.s. 
Consequently, we see from (4.12) and (4.13) that, for any stopping time r E [0, 1], 

00 00 

E{DTFJYT} = E n!E{Mn(1, r)19J} = E: n!E{Mn(r, -r)|r} = ur a.s., 
n=l n=l 

where the last equality is due to the predictability of u. This proves (4.11), whence the 
theorem. D-1 

We remark that in the Brownian case this result is customarily stated more simply by 
writing ut = E{DtFI^t}, for fixed t. It is implicit that in such an expression one really 
means that ut is the optional projection of DtF. 

4.2. Indefinite integrals 

We now study the possibility of defining indefinite anticipating integrals. Note that even in 
the Brownian case, it is not true that for any u E Dom(b), the process {usl[o,t](s): 
s c [0, 1]} E Dom(6) (see Nualart and Pardoux 1988). We have the following definition. 

Definition 4.6. Suppose that the process u E Dom(b) is such that for any t E [0, 1], we have 
that u. l[O,t](') e Dom(d). Then the indefinite anticipating stochastic integral of u on [0, t] is 
defined by 

JusMs := 6(ul[O,t]) = Jus[o, t](s)dMs. 
o o 

The following lemma gives a description of the class of processes in Dom(6) for which 
the indefinite integral exists. 

Lemma 4.6. Suppose that u c Dom(6), and us = ZInn(fn(', s)). Then for any t E [0, I], the 
process u. l[o,t](') E Dom(6) if and only if 

EI(n + 1)!Ift(t, *)1[o,t](*)sII+2 < o. (4.14) 
n-= 

Consequently, a sufficient condition for the process u. l[o,t](.) to belong to Dom(6) is that 
u e L1,2 
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Proof. The proof for (4.14) is direct, by using the definition. As for the second assertion, it 
suffices to recall the definition of L1,2 and the fact that 

llfn(-, *)l[O,tl(*))ll2n+l < 11fn(', *)1[(u](*)ll +i llfnlln+li 

D 

To end this section we give an example which shows that one cannot define the 
derivative operator in the usual way in our case to obtain a Sobolev space structure for the 
space D1,2. In fact, the example somehow shows that the two definitions (Sobolev space and 
chaos expansion) are compatible if and only if the process [M, M] is deterministic. 

Example. Consider a symmetric function f(s, t) = l(a,b](s)l(a,b](t). The second chaos I2(f) 
can be computed as 

I2(f) 2! f(s, t) dMs dMt = 2 dMs dMt = 2 (Mt - Ma) dMt 
0<s<t<l a a a (4.15) 

= (Mb - Ma)2 - {[M, M]b - [M, M]a}. 

Here, the last equality is due to Ito's formula. Now consider the function F(xl, x2)= 
(x2 - xi)2, and define a smooth functional d = F(Ma, Mb). Let us define the derivative Dte 
in a way analogous to one of the equivalent definitions in the Brownian case: 

Dt = Dt(Mb - Ma)2 = , (Ma, Mb)l[o,a](t) + ,x (Ma, Mb)l[o,b](t) 
li OX2 (4.16) 

= 2(Mb - Ma)1(a,b](t). 

However, by our definition 

DtI2(f) = 2I(f(, t)) = 2 l(a,b](s)dMs * l(a,b](t) = 2(Mb- Ma)l(a,b](t). 

We can substitute this into (4.16) and compare it with (4.15) to see that the two definitions 
coincide if and only if Dt{[M, M]b - [M, M]a} = 0, for all t E T. By Lemma 4.1(1), this 
means that [M, M]b - [M, M]a must be constant. If we look at the structure equation (2.1), 
this amounts to saying that p =- 0, therefore the two definitions are in contradiction and 
cannot hold simultaneously unless M = B, Brownian motion. 

5. Integration by parts formulae 

In this section we study an integration by parts formula given in Theorem 5.4. This formula 
differs from the one in the Brownian case in an important way, since it explicitly involves 
[M, M]t, whose role is hidden in the Brownian case (in which [M, M]t = t). Another 
difference is more subtle, in that one has to be careful what versions of the multiple integrals 
one takes. A key step in this direction was taken by Russo and Vallois (1994), which is 
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presented here in Theorem 5.2; one difference in our treatment of Theorem 5.2 is that we 
take care to make precise which versions of the multiple integrals we are using. It is worth 
pointing out here that because in our case D1,2 does not have a Sobolev space structure, as 
we mentioned in the previous section, all the proofs of these properties will depend solely on 
the chaos expansion. Therefore they are sometimes more complicated than those of the 
Brownian case. 

Let us first introduce some notation. Define, for each n e N, a vector space 

Sn := span{?nli(.)SjIi = (ai, bi]; a < b a2 < b2 . .< an < bn}. (5.1) 

It is clear that Sn is dense in both L2(En) and L2(Tn). Define, for f, g e L2(Tn), 

(f, g)n = 
j f (tl,... , tn)g(tl, . . . , tn)dt, . . . dtn. (5.2) 

Tn 

We define a measure ,u on the space T X Q in terms of the underlying martingale M (known 
as the Doleans-Dade measure): for t E [0, 1] and B E X., 

u([0, t) X B) := E{1B[M, M]}. (5.3) 

Then it is clear that L2(dy) = L2(dt X dP) if and only if [M, M]t = t. In other words, in the 
Brownian case L2(dju) is superfluous. Let us denote, for any F, G E L2(du), 

(F, G)L2(d=) = EJ FtGtd[M, M]t, 
o 

and, for n, m E N and f E Sn, g E Sm, 

(f, g)n,m = (In-if(A', )), Im-l(g(', )))2(du). (5.4) 

When n = m, we write (f, g)n,n = (f, g)n. We first give a lemma whose proof can be found 
in Russo and Vallois (1994). 

Lemma 5.1. Suppose that f E Sn and g E SI. Then 

In(f)I(g) = In+l(f ( g) + n In -(f(-, t)g(t)d[M, M]t. 

Next, we prove the following isometry property: 

Lemma 5.2. Iff E Sn and g E Sm, n, m E N, then 

Po We si te -pr)!(oo, g)i, n m.; 

Proof. We split the proof into two separate cases. 
Case 1 (n = m). It suffices to consider the case when f = g, as the general case can be 

derived by polarization. In other words, we shall prove that 

(f, )n = (n - 1)!lf, n = 1, 2, .... 
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Furthermore, it is clear that we need only consider those functions 

f(tl, *..,tk, t)= ( i(ti))Ik+,(t)s, P Ii= (ai, bi], i= 1, ..., k+1, 

where a\ < b1 I a\ < b2 < ... < ak < bk < ak+1 < bk+1. We proceed by induction. For 
n = 1, Io(f(t)) = f(t), so there is nothing to prove. Suppose that (5.5) is true for n = k, and 
consider the case n = k + 1. Note that n - 1 = k and 

Ik(f(', t)) = k! f(t, ..., tk-1, s, t)dMt, ... dMtkI dM 
Jo<t <...< tk-i <s< 

= k{ Ik- (f(', t) ) )dMs + IIk C((, s, t) l-1) 1dMs 

= V(t) + V2(t). 

Here we have used the fact that f(., t, t) = 0, Vt E T, and f(., s, t) = 0, for s > 1. Since, for 
(tl, ..., tk_, s) Ck and s < t, we have 

k-l 

(tl, .. ., tk-1, 5, t) = J l(ai,bi)(ti)l(ak,bk)(s)l(ak- bk+l](t), 

i=1 

the equality 

Ik-l(iC, s, t)lfo k1) = Ik-i(-, s)l[,) l(.))l k+l(t) = gk(s)lIk+l(t), (5.7) 

holds, where f(tl, ... , t-1, s) := Ii1 l(a,bd](ti)l(ak,bk](S), gk(S) := Ik-i((-', s)lO,k-) ()) 
and k+l = (ak+I, bk+1]- It is easily seen that gk(-) is predictable, and so is 

Jk+1(.)f gk(s)ds. Noting that E[M, M] = t, we have 

Vl L2(dy) -= E V1 (t)2 dt k2 E{ 1Ik+ (t) gk(s) dMs dt 

(5.8) 

= k2E { k+1 (t)g2(s)ds} d[M, M]t. 

In order similarly to determine V2112(d), let us define a stopping time rt := 
inf {s > 0: [M, M]s > t} A 1. Then we have 
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f00 
2 
__ 

IIl2()l2(d) = k2E l+Ik(t)gk(s)dMs d[M, M], 

00 f f00 2 

= k2EJ lIk+I(Tt){J gk(s)dMsv} dt (5.9) 

= k2 EJ lk+,(rt)gk(s)dMs dt 
0CX) r roo+ 

Define, for fixed t, a process G(t, s, co) = lljk+i(t())gk(s, W); then G(t, , .) is predictable 
for s > Tt. Thus 

00 2 00 

E 1ik+ (rt)gk(s)dMs = E 1 Jk+ (rt)g2(s) ds. 
Tt+ TI+ 

Therefore the right-hand side of (5.9) becomes 

k21 EJ l1k+ (rt)gk(s)dsdt = k2E lIk+(t)g2k() ds d[M, M]t. 
O 0 T+ O t+ 

Combining this with (5.8) and (5.9), and applying Fubini's theorem to ds d[M, M]t (path by 
path), we have (recall (5.7) for the definition of gk) that 

llI2(d) + lV2 2(d) = k2 E { 1Ik+( t)gk(s)ds d[M, M]t 

(5.10) 

= k2E I2_1(f(., s, t)lokI (-))d[M, M]t ds. 

Moreover, by (5.8) and (5.9), we also see that 

11 V1 11L(d) = k2E 1 Ik+ (t){ g(s) ds dt iiiiig(s) gk dt 

< k2(k - 1)!J [f(||.( s, t)l?k- 1( )112_ dsdt 
Jo Jo 

kk!|Ifll+l < oo; 

and, again by Fubini's theorem, that 
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IVILj2(dy) = 2J{ I+(t)gk(s)ds} d[M, M]t 

k2Ef{J jk+1(t)g2 (s) d[M, M]t} ds (5.11) 

= k-2JE{J4 1(,s, t)1I0 ) '())1Iro,s)(t)d[M, M]t} ds, 

by the definition Of gk. Therefore, if we define for each fixed s a function hs(., t) 
f(., s, t)l0k-I (*)1[o,S) (t), then hs(., t) is symmetric in the first k - 1 variables. Using the 
induction hypothesis, we have 

(h, hs)k EJi2-1(fQ,' 5, t)1ok'l '())1I[o,s)(t) d[M4, AMlt = (k - 1)!lI11hs 112 (5.12) 

Combining (5.12) with (5.1 1), we obtain that 

V211j2(d --k2(k - 1)!J1 Ihs ds k k(k - <)lf? <oc. (5.13) 

In other words, we have shown that VI, V2 E L 2(dM), whence VI V2 E L 1 (du). We now show 
that 

EJVI (t) V2(t) d[M, M]~ t= 0. (5.14) 

In fact, using Lebesgue's change of time lemma (cf., for example, Dellacherie 1972, p. 9 1), 

CX)> EJI V1(t) V2(t)l d[M, M] = EJ Vi)2( Idt=- JEl VI (rt) V2(,rt)t dt, 

we see that for almost every t E [0, 1], El VI (Tt) V2(rt)l < oc. Hence 

E{ VI (rt) V2(,rt)} E{ VI (zt)E{ V2(Trt) 1.2 7-t}} 

-E{ ViC,rt)E{ I1Jk+1 (rt)gk(s) dMs 7t}} 

Since jk+I (.rt)gk(S) is predictable on s > ir, for almost all t, we have E{ VI (iit) V2(rt)} = 0 for 
almost all t, whence 

EJVd(t)V2(t)d[M, M]t - EJ {VI (rt) V2(,rt)} dt - 0, 

proving (5.14). Now by (5.6), (5.10) and (5.14) we obtain 
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\IIk(f(, *))||L2(d#) = I V1 () + V2(*)llL2(d,) = I V1 IIL2(du) + V2 12L2(du) 

00 00 (5.15) 
-= k 2 E{ I_l(f(., s, t)lk- ()) d[M, M]t }ds:= k2J 

Using the induction hypothesis again, we see that 

E Il_,(f(, s, t)lok- (.))d[M, M],} = (k - 1)!Ill(., s, )lko,) (')2lk. 
0 

k [O,s) (')) 
kM 

Thus 

J = (k - 1)!|If(., , .)1k-l)||1 ds 

= (k - 1)!J ...J f(tl, ..., tkl, s, t)12 dtl, ... dtk-l dt ds 

= (k - 1)!(k - 1)!J f (tl, ..., tkl , 0t2 dtl . . . dtk ds dt 
O tO<tl < ... <tk-I <s< 00 

= ((k - 1)!)2 { f|/(ti, . . .., tk-l, s, t)l2 dt ... dtk-l ds} dt 

((k- 1)!)2 2 

k! IIflk+l. I 

Therefore 

IIk(f(, .))112(d = k2 = ((k - 1)!)2 1If 1121 = k! Ilf 112 

and (5.5) is proved. 
Case 2 (n $7 m). The proof is very similar, and we give only a sketch. We shall again use 

induction, but this time on k = n A m. Assume that k = 1. Let n = 1 and m > 2. Then 
notice that Io(f(., t)) = f(t); we have 

(f, g)i,m = E Io(f(', t))Im-l(g(, t))d[M, M]t = E Im-i(g(-, t))f(t)d[M, M]t. 

Since g E Sm and f E S1, we have by Lemma 5.1 that 
f00 

m Im- (g(', t))f(t)d[M, M]t = Im(g)Ii(f)- Im+l(g 0 h). 
o 

Therefore (f, g)l,m = m-'{E{Im(g)I (f)} - EIm+I(g 0 f)} = 0. 
Next assume that the conclusion is true for n A m - k, and consider the case when n - k 

and m > k+ 1. Write 
V1t n t- 1) 11+(){sd~t n-1fl fnd00M 

Vl(t) = (n - 1) lin+l(t)n(s)dMs, V2(t) = (n - 1) In+l(t)/n(s)dMs, 
o t+ 
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ft- 
Ul(t) = (m - 1) lim(t)gm(s)dMs, 

where 

ooU(t) 

U2(t) = (m - 1) 1 im+ (t)gm(s) dMs, 
t+ 

(n-I m-1 

fn(s) = n-2 ll(ti)l ((s)lgO)2 gn S)- = Im-2 H l(tj)l(S)l [Os)-2 
\i=l j=1l 

Then it is easily seen as before that 

Ef In-(f(, t))Im-l(g(', t))d[M, M], 

= E (V1(t) + V2(t))(U1(t) + U2(t))d[M, M]t 

= E [Vl(t)Ui(t) + VI(t)U2(t) + V2(t)Ul(t) + V2(t)U2(t)]d[M, M]t. 
o 

Using the same argument as for (5.14), we have 

Ef Vi(t)U2(t)d[M, Mt = Ef V2(t)U1(t)d[M, M]t = O. 
Jo o 

By the predictability of V1 and U1, we have 

E VI(t)U2(t)d[M, M] = Ef V1(t)Ul(t)dt = E{Vi(t)Ul(t)}dt 

= (n - l)(m - l) ln+,(t)lm.+(t)E{ f (s)^(s)ds dt = 0. 

Finally, note that 

E V2(t)U2(t)d[M, M]t= E{ Fi(rt)U2(rt)} dt, 
o o 

(5.16) 

and 

V2(t) = l,+(n(Tt)f(s)l{s>rt} dMs, U2(rt) = l (rt)g(s)ls>} dM. 

Since both integrands are predictable, we have 

O 1_00 
O 
r 
( 

E{ V2(r,)U2(rt)} dt = E 1 .+(Tt)f(s)l Im+l (t)g(s)1{S>r,} ds dt 

(5.17) 

=E If 1In+ (t)f(s) l Im(t)g(s)l{s>t} dsd[M, M] t. 
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Combining the equalities f(., t, t) = g(., t, t) = 0 and 

EJ jin+l (t)(s) l Im+ (t)g(s)l{s<t} dsd[M, M] t = E{V (t)U (t)} = 0 
o o 

with the induction hypothesis, we conclude that 

00 
E J \n+ (t)f(s) im+i (t)g(s)d[M, M]t = 0, a.e. s. (5.18) 

o 

Finally, we see from (5.16), (5.17) and (5.18) that 

E V2(t)U2(t)d[M, M]t = E l +1 (rt)f(s)lIm+(rTt)g(S)dsd[M, M]t 

= f E J lIn+ (t)f(s)lIm+i(t)g(s)d[M, M]t ds = 0. 

The proof is thus complete. D 

Lemma 5.2 indicates an interesting fact: that if fn E Sn+i, then In(fn(', t)) c 

L2(d/u) n L2(dA), where dA = dt X dP, and the sequence {In(fn(', t))} is orthogonal in 
both L2(d/y) and L2(dA), such that 

IIIn(f(, ))llL2(d,) = lIn(f(-, '))I2(d) = n!lfn+1. 

Therefore, since Sn+1 is dense in L2(T+l), for any f e LS(Tnl), we can take a sequence 
{f k} converging to f in L2(Tn+l), such that fk E Sn+l, k = 1, 2, .... Hence we can define 
two limit processes, 

F(t) = lim In(f k(, t)) in L2(du), 
k-ooc 

G(t) = lim In(f k(, t)) in L2(d2), 
k-oc 

such that IIFIl12(d,2) = -G 2ll2(d) = n!lIfIn+Il We now define a new measure on [0, 1] X Q by 

2([0, t) x B) + M([O0 t) x B) 
v([O, t) X B) t) x B)+,([0 t x 2) t E [0, 1], B C , (5.19) 

and 

I*(f(', t) := lim In(f (k)(, t)) in L2(dv). (5.20) 

Then I* (f(-, t)) is well defined and satisfies 

ln(t( {))~ G(t) a.e. d;. 
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We now turn our attention to the integration by parts formula. Recall that in the 
Brownian case we have, for any F, G E D1,2 and h e H:= L2(T), 

E{G(DF, h)r + F(DG, h)Tr}= EFGJ h(t)dWt (5.21) 

where W is the standard Wiener process. We will show an analogue of (5.21) in our case. 
First we give a theorem inspired by a result in Russo and Vallois (1994). (Note that the result 
of Russo and Vallois is slightly incorrect, since In-, replaces I*-,.) 

Theorem 5.3. Suppose that n > 1, f E L2(Tn) and h E L2(T); then 

In(f)I1(h) = In+l(f 0 h) + n I*_l(f(., t))h(t)d[M, M]t (5.22) 
o 

Proof. We follow the idea of Russo and Vallois. First assume that f C Sn and h E L2(T). By 
Lemma 5.1 we have 

In(f)II(h) = In+l(f 0 h) + n In-i(f, t))h(t)d[M, M]t. (5.23) 
o 

Now letting f E L2(Tn) and h E L2(T), we can find a sequence {fk} C Sn such that 
limk_o fk = f in L2(Tn). By Lemma 5.2 and the discussion following it, we see that 

lim In(fk) - In(f) in L2(Q), 
k-ooc 

lim In+l(f k h) = In+l(f 0 h) in L2(Q), 
k->oc 

lim In_l(fk(, )) - I*l(f(, )) in L2(d). 
k--oc 

Furthermore, noting that E J I h(t)\2 d[M, M]t - Jf Ih(t)l2 dt - \1h12, we have by the 
Cauchy-Schwarz inequality that 

E In_l (fk(', t))h(t)d[MA, M] t- In_l (f(, t))h(t)d[M, M]t 
Jo o 

E IIn_l-(fk(' , t))- In_l(f(, t))l h(t)l d[M, M]t 
o 

S IlIn|| Ifi (-, )) - In l(f(, '))llL2(d)IIhII -> 0. 

Therefore, taking limits on both sides of (5.23) (replacing f by fk) in L1(Q), we obtain 
(5.22), proving the theorem. D 
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Let us now define an operator D*: L2(Q) - L2(dv) by 

D*In(f) = nI*_(f(., t)), Vf E L2(Tn); 

and for F = Ez oIn(fn), such that En=onn!llfnI12 <??, we define 

00 

D*F = nI*-l(fn(., t)), t E [0, 1]. (5.24) 
n=O 

We have the following analogue of (5.21). 

Theorem 5.4. Suppose that G E L2(Q) has the chaos expansion G = w=Q0n(gn), where 
gn E L2(Tn) and En0OVI\gn\Iln < 00. Then for any F E D1,2 and h E L2(T), 

E{G(DF, h)r} =E F (G h(t)dMt- D*Gh(t)d[M, M]t} . (5.25) 

Proof. Let n > 1 be fixed. Since gn E L2(T"), we have by Theorem 5.2 that 

In(gn)Ii(h) = In+l(gn 0 h) + nJ I*(gn(', t))h(t)d[M, M]t. 
o 

For any k, m E N, we have by the Cauchy-Schwarz inequality that 

E nI *-(gn(, t)) - nI*-l(gn(., t)) Ih(t)l d[M, M]t 
?n= n=l 

m 

< y E nI*- l(gn(., t))| |h(t)| d[M, M] t 
n=k+l ? 

m 

> n /(n - l)!||gnnllhlli -? 0, as k, m - o00, 
n=k+l 

by assumption (note that nv/(n - 1)! = v/nn). Therefore, Ek=OnI*-(g(, *))h() 
D* Gh(.), as k -- oo, in Ll (d/). Consequently, 

1 00 

oo 1 oo 

G h(t)dMt-= >3In(gn)Ii(h) 

-= >In+l(gn O h) + J > nI*_l(gn(., t))h(t)d[M, M]t 
n=O ?n=l 

-- In+i(gn Oh) + M]- in L1(), = In1O n h)+ jOD*Gh(t)d[M,M]t (Q), 
n=o 0 
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or equivalently, 

In+l(g0 h) = GJ h(t)dMt- D*Gh(t)d[M, M]t. (5.26) 
n=o 0 o0 

Note that since the left-hand side of (5.26) is in L2(Q), so also is the right-hand side. Thus 
for any F E DGi1,2 C L2(Q), we have 

F{ In+l(g? h)} = F{GJ h(t)dMt - D* Gh(t)d[M, M]} , (5.27) 
n=Oo 0 

and the equality holds in L1(Q). If we write F= Ek=oIk(fk) for its chaos expansion, then 

E=0okk!lflk 12 <00 since F c D1,2, and therefore 

E{F In+l(gn h) =E EjIk(fk)' In+l(gn h) 
n=O k n 

= E E{Ik(fk)Ik(gk- 1 h)} 
k 

= 
E k!(fk, gk- ^h)rTk 

k 

= E(k- 1)!J (kfk(., t), gk_l)Tk-,h(t)dt (5.28) 
k 

= Jf E(kIk-l(fk(, t)), Ik-l(gk-1))h(t)dt 
k 

= f E{ kIk-l(fk(', t))' In(gn) }h(t)dt 
k n 

= EJ DtFGh(t)dt = E{G(DtF, h)T}. 
o 

Taking expectations on both sides of (5.27), and replacing its left-hand side by (5.28), we 
obtain (5.25). The theorem is proved. O 

Corollary 5.5. Suppose that F, G E L2(Q) with F = ,nIn(fn), G = EkIk(gk), such that 

E Vnn!jfn n < 00, E v/kk!gkllk < 00. (5.29) 
n k 

Assume that h E L2(T) and EIFG Jf h(t) dMt < oc; then 
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E{FGJ h(t)dMt} = {FD* G + GD*F}h(t) dv. (5.30) 
JO J [0,1]xQ 

In particular, if M is a Brownian motion, then (5.30) becomes (5.21). 

Proof. First, note that if F = ZnIn(fn) and (5.29) holds, then F E D1,2. Indeed, for n large 
enough, one has nn!|l|ifn Vlnn!llfnlln < 1. Thus Ennn! fn || < oc and F c D1,2 . In other 
words, under condition (5.29), F, G E 0D1,2. 

We can now apply Theorem 5.4 twice with the positions of F and G switched, and add 
the resulting equalities together to get 

E{G(DF, h)T + F(DG, h)T} = E 2FGJ h(t)dMt-J [FD*G + GD*F]h(t)d[M, M]t} . 

(5.31) 

Since FG Jo h(t)dMt e Ll(Q) by assumption, we obtain from (5.31) that 

Ji[FD*G + GD* F]h(t)d[M, M]t E L((Q). 

Furthermore, noticing that D*F = D.F; D*G = D.G, a.e. dt X dP, we deduce from (5.31) 
that 

E{ FGJ h(t)dMt} = - E{ [FD*G + GD*F]h(t)(d[M, M]t + dt)} 

= J [FD* G + GD* F]lh(t) dv, 
[0,1]XQ 

proving the first assertion. In the case when M is a Brownian motion, we have 
[M, M]t= (M, M)t= t. Hence dv = dt X dP, D*F = DtF and D*G = DtG. Conse- 
quently, 

[FD* G + GD* F]h(t)dv = E{ [FDtG + GDtF]h(t) dt 
[0,1]XQ 0 

= E{F(DG, h)r + G(DF, h)Tr}. 

The proof is thus complete. D 

We remark that in Theorem 5.4 and Corollary 5.5 no anticipating integral is involved. To 
conclude this section we shall present another formula that does involve the anticipating 
integrals. In the Brownian case, this formula is nothing but the definition of an adjoint 
relation (see (4.3)). Our formula involves the measure d[M, M]t, therefore the anticipating 
integral for a special class of processes involving I* has to be considered. 
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Let us consider a class of processes of the form ut = Em=o I*(fm(-, t)), where 
fm L2(Tm+l) and the convergence of the series is in the sense of L2(dv). We say that a 
process of this kind is of class J*, if 

00 

(m+ + l)!|tjL2(Tm+l) < oo. 
m=0 

Denote by Dom(O*) the set of all processes of class S*. We consider the anticipating 
integral for processes in Dom(O*). First note that for each n we can find a sequence 
{fk} C Sm+l such that limk,of fkm = fm in L2(Tm+l). Define, for every pair of integers N 
and k, a process 

N N 

UN,k 1= E I(f k (' t)) =EIfm(' 
k 

t)), Vt E [0, 1]- 
m=0 m=0 

Then by definition (5.20), we see that limN_oo limkoo uN'k =- u., in L2(dv). On the other 
hand, for fixed N and k, we have uN,k E Dom(b) and 6(uN,k) = EmN=oIm+(fk) by definition 
(note that the f/m are symmetric); thus if u is of class W*, then 

N oo 

lim lim 6(uN'k) = lim lim yIm+I(f) - k 
Im+i(fm) in L2(Q). 

N-oo k-*oo N-oc k--oo m= : I 
w=0 w=0 

We define the anticipating integral of u E 5* to be 

00 

(*(U) := E Im+l(fm). (5.32) 
m=0 

Clearly, the value of 6*(u) is independent of the choice of the approximating sequence, and it 
coincides with 6(u) if, in the expansion of u, all fm E Sm+l. Using the notation 6* and D*, 
we now give a new integration by parts formula. 

Theorem 5.6. Suppose that u e Dom(6*) and G E Di,2. Then 

E{6*(u)G} = E ut(D*G)d[M, M],t = E ut(D* G)dt}. (5.33) 

Consequently, 

E{6*(u)G} = f ut(o)(D*G)(o)v(dt x do). (5.34) 
[0,1]XQ 
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Proof. First we note that (5.34) follows from (5.33) by definition (5.19); therefore we need 
only show (5.33). To begin with, let us choose for each n and m two sequences 
{fkm}k C Sm+l, and {g} C Sn, such that limkofm- =-fm in L2(Tm+l) and 
lim_O gn = gn in L2(Tn). Now, for given integers N, k and 4 we define 

N N 

UN,k = Im(fk(', t)), G yIn/ ) 
m=0 n=0O 

It is easily seen by definitions (5.32) (for 6*), (5.24) (for D*) and (5.20) (for I*) that 

N 

lim lim uNk = lim I*m(fm(, .)) = u in L2(dv), 
N--oo k--oo N+oo 

m=0 

lim lim 6(uN'k) = 6*(u) in L2([Q), 
N--oo k-+oo 

N 

lim lim D. G = lim nI* (g,(., .)) = D*G in L2(v), 
N--oo /- Fcoo N-*c 

n 
0oo n=O 

lim lim GN/= G in L2(Q). 
N-*oo /--oo 

Since d,/, dA << dv, it follows that 

lim { lim lim E{6(uN'k)GN/}} = E{6*(u)G}, 
N--oo k-xoo t/-oo 

lim lim lim E N 
uN'kDtGN/ )d[M, M]t = E ut(D* G)d[M, M]t , 

N->oo k--+oo /--o J J J t 

lim lim lim E u (DtG dt } = E ut(D* G)dt}. N--oo k --+-oo u-- -} Jo 
t 

J 

Therefore it suffices to prove (5.33) for u = uNk and G =- GN,. Note that in this case 
6*(u) = 6(u), and D* G = D.G, so by the definition of 6(u) (4.3) we have 

E{6*(u)G} = E{6(uN'k)GN/} = E{ uN,k(DtGN/dt = E utD,*Gdt . 
[J J J 

On the other hand, since all fkm and g are symmetric, we have by Lemma 5.2 that 
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E u,(D* G)d[M, M] t E Im(f k(' t))nln-l(g~(', t))d[M, M]t 

N N 
= 'n(f m g)m+l,n= E n(n- 1)!(f _-, gn)n 

m,n=O n=l 

N 

= E E{Im+l(fk)In(gt)} = E{8 *(u)G}. 
m,n=O 

Therefore (5.33) holds, proving the theorem. [- 

6. A class of stochastic differential equations 

In this section we study a class of SDEs based on the anticipating stochastic integrals 
discussed in the previous sections. Notice that since we have not yet derived any path 
regularity for the anticipating integral, the traditional ways of dealing with SDEs will not 
apply here. The method that we will use relies solely on the structure of the CRP of the L2 
processes and the definition of anticipating integrals, hence it will also be valid for the 
Brownian case. However, in the Brownian case much better results are available; see, for 
example, Buckdahn (1994). 

We consider the following linear SDE for 0 < t < 1: 
t t 

Xt = Ht + a(s)Xs6Ms + J (s)Xs ds, (6.1) 
o o 

where Ht is a square-integrable process, and a and P are deterministic functions. Since we 
have no knowledge of the path regularity of the anticipating integral, equation (6.1) is 
understood to hold in L2(dt X dP). 

We shall make use of the following assumptions on the process H: 

Assumption 6.1. The process H is decomposable as H = G + J, where J is an adapted, 
square-integrable process, and G belongs to a subspace of L2([0, 1] X Q) consisting of a 
finite number of chaoses. In other words, G = Y 1In(gn(', t)). 

Assumption 6.2. The functions a and /f are bounded, measurable and non-random. 

We shall denote ||a||ll := I||a||, and similarly for P. 
Observe that by linearity of the equation, every solution of (6.1) can be written as the 

sum X - X? + XI, where X? and X1 are the solutions of the following SDEs, respectively: 
t t 

X? = Jt + a(s)X?s dMs + 5 /3(s)Xos ds; (6.2) 
o o0 
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and 

Xl = Gt + a(s)X16Ms + P(s)X} ds. (6.3) 
o o 

Note that by the semimartingale theory (cf., for example, Protter 1990), (6.2) always 
possesses a unique adapted solution that is square-integrable, so we need pay attention only to 
equation (6.3). To simplify the representation, let us first assume that f, 0. That is to say, 
we first consider a simpler form of (6.3): 

Xt = Gt + a(s)Xs6Ms. (6.4) 
Jo 

Assume that X is a solution of (6.4), and write Xt = =oIn(fn(., t)), Gt = 

En=oIn(gn(', t)), where fn, gn E L2(Tn+l) and for almost all t E [0, 1], fn(., t), gn(-, t) E 
L(T"), n = 1, 2,.... Then it is necessary that 

oo N oo 

IE (fn(, t)) = E I(gn(', t)) + I n+l(fn(, *))a(*) I[, t](*)s), (6.5) 
n= n=0O n=0O 

by the definition of the anticipating stochastic integral. Comparing both sides of (6.5) term by 
term, we see that 

f gn(, *, t)+f- (, *)a(*)l[o,t](*)s, 1 < n : N, 
fn(., *, t) = 

fn-l(C, *)a(*)l[0ot](*)s, n > N, (6.6) 

f0o(t) = go(t), 

where, the symbol '.' represents n - 2 variables, while '*' represents one variable. Therefore, 
we have reduced the problem to finding a sequence {fn} such that (6.6) is satisfied and every 
term in (6.4) defined by using {fn} makes sense. Note that (6.6) is a recursive procedure, so 
the sequence {fn} is uniquely determined. Since any solution to (6.4) must satisfy (6.6), we 
conclude that the equation (6.4) possesses at most one solution. 

It now remains to show the existence of the solution to (6.4). By the preceding argument, 
we assume that the sequence {fn } is defined via (6.6). Since N > 0 is a fixed, finite integer, 
the values of the terms fo, fi, ..., fN will not affect the convergence of the sums 
appearing in (6.5). We shall only analyse the values of {fn}n>N+1. Let us first define some 
notation. For each p > 1, let pN+p denote all permutations of {1, ..., N + p}, and 

_p := {a E pN+Plo(i) = i, i i {o(N + k), N + k: k = 1, ..., p}}; (6.7) 

that is, Ap consists of those permutations a that keep indices i unchanged unless i > N + 1 
or it is the image of N + k under a, for some p > k > 1. Define, for each p > 1, 

1Jp := {a E jpl\(N + 1) < o(N + 2) < ... < o(N + p)}. (6.8) 

Denote, for any finite set Y, by 15'Y the cardinality of Y. 
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Lemma 6.1. If AP,p, p, p = 1, 2, ... are defined by (6.7) and (6.8), then 

p 

.pI=- I7(N + k), 
k=l 

(N+ p 1^ l-f^ (6.9) 

Consequently, I\pl/\lI6pI - p!. 

Proof. We proceed by induction. For p - 1, note that the typical element in Al is of the 
form: 

(1 2 ... j-1 j j+l ... 
1 2 ... j-1 N+1 j+l ... 

N+I) 
j- 1,...,N+ 1. 

Therefore it is easily seen that [1-\ = N+ 1. Also, in this case, we have 
I.1 = 1- = N + 1, so (6.9) is proved. 

Next, assume that ij, ..., -1k are constructed so that (6.9) holds, and consider the case 
when p = k + 1. Define, for each j = 1, ..., N + k + 1, and a E .k, a permutation oJ by 

j, 
aJ(i)=< N+k+1, 

o (i), 

i=N+k+l, 
o(i) =j, 
otherwise. 

(6.10) 

Then we have .A4k+l = UJ= {'_ where ? := {jla E .k}- Note that for every j, we 
have \\kj = ..4kl and -,4 n - = 0 for j I b ; thus 

N+k+l N+k 

|Ik+l1- 1E I1-4k(N+ k+ 1)1|4kl-(N+ k+ 1) I(N+j) 
.j=l j=l 

N+k+l 

r (N + j), 
j=l 

proving the lemma. 

Our next goal is to take a closer look at the sequence {fn} obtained by solving (6.6), so 
that an estimation can be made to prove the L2-convergence of the series appearing in (6.5). 

Lemma 6.2. Let {fn} be the sequence defined by (6.6). Then, for any p > 1, 

N+p(tl, * * , tN+p, t) = f- 7(1), , 1t(N+\.) 

x{ J [ a(te,(N+i) l [O,t,(N+i+)]( t(Ni)) )) a(to(N+p)) [0,t](ta(N+p)) 

(6.11) 

D 
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Proof. We again proceed by induction. For p = 1, using Lemma 6.1 we have 

fN+l(tl, * *, tN+l t) = fN(tl, * * , tN+l)a(tN+l)l[O,t](tN+l) 

1 N+1 

-= N+ 1 EZ fN(tl, *, ti-1, tN+l, ti+l, ** * , tN, ti)a(ti)l[o,t](ti) 

1 
= >|., | l y 7fN(t(l), *..., ta(N+1))a(ta(N+1))l[O,t](tg(N+1))- 

a EAI 

Thus (6.11) is true. Now suppose that (6.11) is true for N + p. We have by definition of the 
symmetrization and (6.6) that 

fN+p+l(tl . . ., tN+p+l, t) 

N+p+l 

=N + p + 1 x fN+p(tl, *.., tj-1, tN+p+1, tj+l, ., tN+p, tj)a(tj)l[o,t](tj). (6.12) 

Let us define 

t i j, ij,N+p+1, 
t:= tN+p+l, i j, (6.13) 

tj, iN+p+ 1. 

This, together with the induction hypothesis, enables us to write the summands on the right- 
hand side of (6.12) as 

fN+p(tj,..., tiN+p) ='| 1 f N tJa ; (N+ )) 

(6.14) 
p 

x 
H a((N+k)) 1 [0,o(N+k+l)]( ;(N+p))' 
k=l 

We show that, for any a E Ap, 

o(k) 
= ta(k) k = 1, ..., N ? p, (6.15) 

where aJ is defined by (6.10). In fact, by (6.10) and (6.13) we have, for any j, tj = 

taJ(N+p+1); and for those k such that o(k) = j we have tJ(k) = t= tN+p+l toi(k). Finally, 
for those k such that a(k) 4 j we have -tJ(k) = t,(k). Hence (6.15) is proved. 

Now noting that LAp+ll (N + p + 1)1p, we have from (6.11), (6.12) (6.14) and 

(6.15) that 

fN+p+l(tl, ..., tN+p+l, t) 

1 N+p+l p 

N + p ? 1 f3 1 
J 

3N(tlr(l), 
* 

- 'a (N+ )) II a(N4k(k+))l[0t(,l) (N+p) 
' =l o GJ9Ep k=l 
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Np 

1 N+p+l P 
= 

1 | + j = ( ~ fN(t l) . .., tai(N+l)) H a(taJ(N *+k) ) l [0s (l[O'j(N+k+l)]( t(N+ P)) 

l^^1!~~~ JEi d j k =l 

X a(toj(N+p+l))l[O,t](to J(N+p+l)) 

1 p 
= 1 E fN(t(), ... , ta(N+l)) IJ a(ta(N+k))l[o,to(N+k+)](to(N+p)) 

X a(to,(N+p+l))l[o,t](ta(N+p+l)), 

since -/gp+l =-U .S>=jP+l J Therefore (6.11) holds for N + p + 1 and the proof is now 
complete. D[ 

In order to prove the L2-convergence of the series Xt = Enln(fn(', t)), we first evaluate 
the L2-norms of the f, on the set Zn. Again, we consider only the terms fn, n >N. 
Suppose that (tl, ..., tN+p)C E N+p. Since tl < t2 < ... < tN+p, we have by definition of 
the set _6p and some simple computations that 

fN+p(tl, . - , tN+p) = 
1 , 1 E fN(to(1) . *. to(N+l)){ Ia(t(N+i)) l[0,t](ta(N+P)). 

Define, for each p > 1 and a E 6p, 

fN,p = fN(ta(l), * * ta(N+l)) II a(ta(N+i)) l[O,t](ta(N+p)). 

Then under Assumption 6.2 we have 

Ifp2 dt, .. dtN+p 

IHlaIL N1f12[ dto(N+i) ... dto(N+p) 
ta(N+l) < ... <to(N+ p) <t 

(6.16) 

a p.'N|N 
tP 

Therefore, by (6.15) we have 
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llfN+p(., t)llN+p =(N + p)!llfN+p(-, t)ll2(N 

( + p)2{ i.p ; [f N, p II L(N+)} 

(6.17) 

< (N + p)! ll ll p) 

(N + p)! 112p||fN112N tP- 
(p!)3 IlaI N 

Now let us define, for each n E NJ, Mn :-Zk=ollk(fk(, ))IL2(TxQ), and C '= IIfN12(TN) 
Noting that 

(N 
!p)=(1 +- 1 + ... (1 + N)N! < (1 + N)PN!, 

we deduce that 

1 oo Il N 
E Xt2 dt= E IIN+P(fN+p(, t))lL2(Q) dt + J E lkd(-,t t 

p1 k=0O 

= (N + p)!IIfN+p(., t)12N+p dt + MN 
p=l 

<CZ ((N + p)!) Ia2P t dt MN 

< C(N!)2 E (1 + N)2p IIaII2P + MN 

< C(N!)2 e(l+N)21lall2 + MN < 00. 

Therefore, X E L2(dt X dP). It remains to check that for each t c [0, 1] the process 

X.a(.)l[o,t]() E Dom(b). By Lemma 4.6, it suffices to show that 

E I\In+l(fn(- *)a(*))||L2() < oc. (6.18) 
n 

Since for each p > 1 we have by (6.17) that 
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IIIN+p+l(JN+p(', *)a(*))IIL32(Q) (N ? p + 1)!JIIfN+PQ" S)IINr+pa2(s) ds 

C(N + p + 1)!IlaII12(p+'1 (N ? p)!rsP ds 

(N + p + 1)!(N ? p)! Ia12p1 C p2p 

Now an estimation similar to before shows that 

00) 00 

S 1I~?iC~O, )a(*)II2(Q) =5 IIIN+p+l(fN+p+l(', L)())I2(Q) + MN+1 
n=O p=1 

C(N + Il)a11(N!) eIII2N1 + MN?1 <010. 

Thus (6.18) holds, and we have proved the following theorem: 

Theorem 6.3. Suppose that Assumptions 6.1 and 6.2 hold. Then the SDE (6.4) has a unique 
solution Xt = 

' 0In(fn(-, t)), where {fnl} 0 satisfies the recursive equations (6.6). 

We now consider the general case when P3 =, 0. Since the argument is virtually the same, 
we give only an outline. Suppose Assumptions 6.1 and 6.2 hold. It is easy to check that in 
this case the recursive equation (6.6) should be replaced by 

gn( * t) ?fn-i(' *)a(*)l[o,t](*)s+ ? fn(.,*, s)/3(s)ds n -, N,9 

f,(., *, t) = 

fn-iQ, *)a(*)l[o,t](*)s + Jfn(., *, s)/3(s)ds n > N, 

fo (t) = go (t) ? Jfo (s)/3(s) ds. (6.19) 

The integral equation x(t) = r7(t) ? t' x(s)/3(s) ds has the unique solution 

x(t) = i,4t) - {e J fi(s)du)(s) ds. 

Therefore, if we denote y(s, t) = e S fl(ud/(s), and 

hn(',*, t) gn (.,*, t) ? fn i(- *)a(*)1I[o, t] (*)s n -, N, 

1fn-i(. *)a(*)1[o,t](*)s n > N, 
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then from (6.19) we have 

t 
fo(t) = go(t) - y(s, t)go(s)ds, 

fn(-, *, t) hn(' * t) = h ,hn(., *, s) ds. 
o 

Again we need only consider the terms when n > N. Denoting m(s, t) := 
a(s)(l - y(u, t)du), we show by induction that the sequence {fn} defined by (6.19) 
satisfies, for any p > 1, 

fN+p(tl, ..., tN+p, t) = f ta(1), ... ta(N+l)) 

x 
m M(t1(N+i), ta(N+i+l))l[O, t,(N+,+1)](ta(N+i)) m(ta(N+p), t) 01[O, t](ta(N+p))- (6.20) 

i=1 

Indeed, for p = 1, using Lemma 6.1 and the similar computation in Lemma 6.2, we have 

N +1 \f [Ati ( t 1 d 

fN+i(tl,..., tN+i, t) N + 1 EfN t ) a(ti)l [ot] (ti) 1 -[ ds 
'= tN+o 

=- ,11 ' fN(ta(1), *-., t(N+l))m(ta(N+l), t)l[o,t](ta(N+l)), 

where 

fN ( 
ti N(tl, * * , ti-1, tN+l, ti+l, 

' * * tN, ti)- 
tN+1 

Therefore (6.20) holds for p = 1. Now suppose that (6.20) is true for N + p. We have 

fN+p+l(tl, ..., tN+p+l, t) 

1 N+p+l 

N= + p 1 fN+p(tl, . . ., tj-1, tN+p+1, tj+l, . . * tN+p, tj)m(tj, t)1[0,l](tj) 

N+p+l { 1 

N + + E +1 jI. 
E fN(to(1)', , t(N+l)) 

p 

X m(-to(N+k)' tI(N+k+l))l[o,tj(N+k+,)](ta(+k))* m(t,(N+p+I)' t)l[ot](-tN+p+l)} 
k=1 
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-= I |i E fN(t(l1), * * *.., t(N+l)) 

p+l 

X H m(t(N+k), ta(N+k+l))l[O,to(,+p+2)](t(g(N+p+l)), 
k=l 

where ta(N+p+2) = t, proving (6.20). 
Note that the boundedness of a and ,/ implies that m is also bounded, so by replacing 

Ilaloo by Ilmll|| in the estimations in the case /, = 0, we obtain the main result of this 
section: 

Theorem 6.4. Suppose that Assumptions 6.1 and 6.2 hold. Then the SDE (6.3) has a 
unique solution Xt = En_ oI(fn(, t)), where {fn}?=o satisfies the recursive equations 
(6.19). 

We can combine Theorem 6.4 with the semimartingale theory to obtain: 

Theorem 6.5. Suppose that Assumptions 6.1 and 6.2 hold. Then equation (6.1) has a solution 
and it is unique in L2(dt X dP). 

Proof. We only show the uniqueness. Let X? be the unique semimartingale solution of (6.2); 
and let Y be another solution of (6.1). Let 

Y(Z) = J a(s)ZsOMs + J p(s)Zs ds, VZ e L2(dt X dP). 
o o 

Thus we have Y = H + S(Y) and 

Y - X? = H + (Y) - (J + Y (X0)) = H-J + S(Y - X) = G + Y(Y - X?), 

and by Theorem 6.4 we have Y - X,? = X the unique solution of (6.3). So Y = X? + X1 in 
L2(dt X dP) and we have uniqueness. D 
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