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Abstract. In this paper we study the pathwise stochastic Taylor expansion,
in the sense of our previous work [3], for a class of Itô-type random fields in
which the di↵usion part is allowed to contain both the random field itself and
its spatial derivatives. Random fields of such an “self-exciting” type particu-
larly contains the fully nonlinear stochastic PDEs of curvature driven di↵usion,
as well as certain stochastic Hamilton-Jacobi-Bellman equations. We introduce
the new notion of “n-fold” derivatives of a random field, as a fundamental de-
vice to cope with the special self-exciting nature. Unlike our previous work [3],
our new expansion can be defined around any random time-space point (⌧, ⇠),
where the temporal component ⌧ does not even have to be a stopping time.
Moreover, the exceptional null set is independent of the choice of the random
point (⌧, ⇠). As an application, we show how this new form of pathwise Taylor
expansion could lead to a di↵erent treatment of the stochastic characteristics
for a class of fully nonlinear SPDEs whose di↵usion term involves both the
solution and its gradient, and hence lead to a definition of the stochastic vis-

cosity solution for such SPDEs, which is new in the literature, and potentially
of essential importance in stochastic control theory.

1. Introduction. In our previous work [3] we studied the so-called pathwise sto-
chastic Taylor expansion for a class of Itô-type random fields. The main result can
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be briefly described as follows. Suppose that {u(t, x), (t, x) 2 [0, T ] ⇥ Rn} is an
Itô-type random field of the form

u(t, x) = u(0, x) +

Z

t

0
u1(s, x)ds+

Z

t

0
u2(s, x)dBs

, (t, x) 2 [0, T ]⇥ Rn, (1)

where B is a 1-dimensional standard Brownian motion, defined on a complete prob-
ability space (⌦,F , P ). If we denote F = {F

t

}
t�0 to be the natural filtration gener-

ated by B and augmented by all P -null sets in F , then under reasonable regularity
assumptions on the integrands u1 and u2, the following stochastic “Taylor expan-
sion” holds: For any stopping time ⌧ and any F

⌧

-measurable, square-integrable
random variable ⇠, and for any sequence of random variables {(⌧

k

, ⇠
k

)} where ⌧
k

’s
are stopping times such that either ⌧

k

> ⌧ , ⌧
k

# ⌧ ; or ⌧
k

< ⌧ , ⌧
k

" ⌧ , and ⇠
k

’s are
all F

⌧

k

^⌧

-measurable, square integrable random variables, converging to ⇠ in L2, it
holds almost surely that

u(⌧
k

, ⇠
k

) = u(⌧, ⇠) + a(⌧
k

� ⌧) + b(B
⌧

k

�B
⌧

) +
c

2
(B

⌧

k

�B
⌧

)2 (2)

+ h p, ⇠
k

� ⇠ i+ h q, ⇠
k

� ⇠ i(B
⌧

k

�B
⌧

) +
1

2
hX(⇠

k

� ⇠), ⇠
k

� ⇠ i

+o(|⌧
k

� ⌧ |) + o(|⇠
k

� ⇠|2),

where (a, b, c, p, q,X) are all F
⌧

-measurable random variables, and the remainder
o(⇣

k

) are such that o(⇣
k

)/⇣
k

! 0 as k ! 1, in probability. Furthermore, the
six-tuple (a, b, c, p, q,X) can be determined explicitly in terms of u1, u2 and their
derivatives.

By choosing u1 and u2 in di↵erent forms, we then extended the Taylor expansion
to solutions of stochastic di↵erential equations with initial state as parameters, and
to solutions of nonlinear stochastic PDEs. In the latter case we further introduced
the notion of stochastic super-(sub-) jets using the Taylor expansion, from which
the definition of stochastic viscosity solution was produced. We should note that in
[3] all the SDEs and SPDEs have the di↵usion coe�cient in the form g(t, x, u(t, x)),
that is, they only involve the solutions themselves. Such a structure turns out to
be essential for the so-called Doss-Sussmann transformation, and in that case the
stochastic viscosity solution became natural.

In this paper we are interested in the stochastic Taylor expansion for random
fields of the following form: for (t, x) 2 [0, T ]⇥ Rn,

u(t, x) = u(0, x) +

Z

t

0
u1(s, x)ds+

Z

t

0
h g(s, x,Du(s, x)), dB

s

i, (3)

where u1 is a random field, and g is a deterministic function. We shall assume that
they are “smooth” in the sense that all the desired derivatives exist, and the degree
of smoothness will be specified later.

Given such a random field, we again consider the possibility to expand u in
the sense of (2), but this time in a more natural way: We shall allow the pair
(⌧, ⇠) : ⌦ ! [0, T ]⇥Rd to be arbitrary random points. Furthermore, we should note
that although the Taylor expansion (2) holds almost surely, in general the null set
may depend on the choice of random point (⌧, ⇠). In this paper we shall look for a
universal expansion, in the sense that there is a subset e⌦ ⇢ ⌦ with full probability
measure, on which the stochastic Taylor expansion holds for all choices of random
points (⌧, ⇠). These technical improvements make the stochastic Taylor expansions
much more “user-friendly”, and more importantly, it will be more e↵ectively used



PATHWISE TAYLOR EXPANSIONS FOR ITÔ RANDOM FIELDS 439

in our study of stochastic viscosity solution, especially in the proof of uniqueness,
as we shall see in our forthcoming publications on that subject.

As one can easily observe from (3) the random field u is actually already a
solution to a first order stochastic PDE. An immediate di�culty in deriving the
Taylor expansion is the characterization of the derivatives of the random field, as
it will increase in a “bootstrap” way, very similar to those that one has often seen
in the anticipating calculus. As a consequence, the original Doss-Sussmann type
transformation used in our previous works [3, 4, 5] no longer works in this case. To
overcome this di�culty we introduce the notion of “n-fold derivative” of a random
field, which essentially takes (u,Du, · · · , Dn�1u) as a vector-valued random field,
and define its derivative in a recursive way. Such a definition turns out to be very
close to the idea of converting a higher order ordinary di↵erential equation to a
first order system, and is mainly motivated by the “stochastic characteristics” of
a stochastic PDE (cf. e.g., Kunita [10]). In fact, by combining the definition of
stochastic characteristics in [10] and the stochastic Taylor expansion developed in
this paper, we are able to rigorously define a stochastic di↵eomorphism that relates
the Stochastic PDE of the form
⇢

du(t, x) = f(x, u,D
x

u,D2
x

u)dt+ g(x,D
x

u)) � dBi

t

, (t, x) 2 (0, T )⇥ Rd;
u(0, x) = u0(x), x 2 Rd,

(4)

to a PDE without Brownian components in their Taylor expansions around any
temporal-spatial point, generalizing the Doss-Sussmann transformation in our pre-
vious works to the present case.

We should note that one of the main di�culties in the study of the stochastic
viscosity solution can be described as “local” vs. “global”. That is, the local
nature of the viscosity solution vs. the global nature of the stochastic analysis (e.g.,
stochastic integrals). Our idea is to “localize” the stochastic integral, or solution to
the SPDE via the stochastic Taylor expansion that we established in the previous
section. It should be noted that the universal set “⌦0” that we found in these
expansions is the essential point here.

Finally, we would like to point out that the topic of stochastic Taylor expansion
has been explored by many authors in various forms, and used to provide numerical
and other approximation schemes for SDEs and SPDEs or randomized ODEs and
PDEs (see, for example, [1, 2, 8, 9], to mention a few). These expansions often use
either the Lie-algebraic structure of the path space or the chaotic type expansion
of multiple stochastic integrals. As a consequence it is hard to deduce the simul-
taneous spatial-temporal expansions that we are pursuing in this work, especially
when the remainders are estimated in a pathwise manner. We should also note that
the pathwise version of stochastic viscosity solutions, suggested by Lions-Souganidis
[11, 12, 13], has found an e↵ective framework recently, using the theory of rough
path (cf. e.g., [6, 16]). However, due to the special nature of the rough path inte-
grals, the arguments seem to depend heavily on the fact that there exist stochastic
characteristics in the form of C3-di↵eomorphisms which transform the SPDE to a
pathwise PDE. Consequently, the SPDE studied in [6], while fully nonlinear in the
drift, seems to be restricted to the cases when the di↵usion coe�cient depends only
(linearly) on Du, the gradient of the solution, so that a chain-rule type of argument
could be applied. The generality of the di↵usion part in the fully non-linear PDE
suggested in this paper, and the stochastic characteristics related to it, does not
seem to be an easy consequence of such a method. Furthermore, our Taylor expan-
sions are constructed within a more “elementary” stochastic analysis framework, by
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exploiting the properties of Brownian motion without using the advanced algebraic
geometric structure of the path spaces, therefore we believe that it provides a more
accessible alternative.

This paper is organized as follows. In Section 2 we clarify all the necessary
notations, and state the main theorem. In section 3 we give a fundamental estimate
of this paper, regarding multiple stochastic integrals. In sections 4 and 5 we study
the forward and backward Taylor expansions, respectively. We note that in the
stochastic case, the temporal direction of the expansion does a↵ect the outcome.
Finally in section 6 we try to apply the Taylor expansion to the solution of a class
of nonlinear SPDEs, and propose a possible definition of the stochastic viscosity
solution in this case.

2. Preliminaries and statement of the main theorem. Throughout this paper
we denote (⌦,F , P ) to be a complete probability space on which is defined an `-

dimensional Brownian motion B = (B
t

)
t�0. Let FB

4
= {FB

t

}
t�0 be the natural

filtration generated by B, augmented by the P -null sets of F ; and let FB = FB

1.
We denote MB

0,T to be the set of all FB-stopping times ⌧ such that 0  ⌧  T ,

P -a.s., where T > 0 is some fixed time horizon; and denote MB

0,1 to be all FB-
stopping times that are almost surely finite.

In what follows we write E (also E1, · · · ) for a generic Euclidean space, whose
inner products and norms will be denoted as the same ones h·, ·i and |·|, respectively;
and write B for a generic Banach space with norm k · k. Moreover, we shall denote
G ✓ FB to be a sub-�-field of FB , and for any x 2 Rd and constant r > 0 we
denote B

r

(x) to be the closed ball with center x and radius r. Furthermore, the
following spaces of functions will be frequently used in the sequel. We denote

• Lp(G;E) to be all E-valued, G-measurable random variables ⇠, with E(|⇠|p} <

1. Further, we shall denote L1
� (G;E) 4

= \
p>1L

p(G;E).
• Lq(FB , [0, T ];B) to be all B-valued, FB-progressively measurable processes  ,

such that E
R

T

0 k 
t

kqdt < 1. In particular, q = 0 stands for all B-valued,
FB-progressively measurable processes; and q = 1 denotes all processes in
L0(FB , [0, T ];B) that are uniformly bounded.

• Ck,`([0, T ] ⇥ E;E1) to be the space of all E1-valued functions defined on
[0, T ] ⇥ E which are k-times continuously di↵erentiable in t 2 [0, T ] and `-
times continuously di↵erentiable in x 2 E.

• Ck,`

b

([0, T ]⇥E;E1), C
k,`

l

([0, T ]⇥E;E1), and Ck,`

p

([0, T ]⇥E;E1), etc. to be the

subspace of Ck,`([0, T ] ⇥ E;E1), where the subscript “b” means all functions
and their partial derivatives are uniformly bounded; “l” means all functions
are of at most linear growth; and “p” means all functions and their partial
derivatives are of at most polynomial growth. The subspaces with the com-
bined subscripts of b, l, and p are defined in an obvious way.

• for any sub-�-field G ✓ FB

T

, Ck,`(G, [0, T ] ⇥ E;E1) (resp. Ck,`

b

(G, [0, T ] ⇥
E;E1), Ck,`

p

(G, [0, T ]⇥E;E1)) to be the space of all Ck,`([0, T ]⇥E;E1) (resp.

Ck,`

b

([0, T ] ⇥ E;E1), Ck,`

p

([0, T ] ⇥ E;E1))-valued random variables that are
G ⌦ B([0, T ]⇥ E)-measurable;

• Ck,`(FB , [0, T ]⇥E;E1) (resp. C
k,`

b

(FB , [0, T ]⇥E;E1), Ck,`

p

(FB , [0, T ]⇥E;E1))

to be the space of all ' 2 Ck,`(FB

T

, [0, T ] ⇥ E;E1) (resp. Ck,`

b

(FB

T

, [0, T ] ⇥
E;E1), Ck,`

p

(FB

T

, [0, T ] ⇥ E;E1)), such that for fixed x 2 E, the mapping
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(t,!) 7! '(t, x,!) is FB-progressively measurable, and for P -a.e. !, the
mapping �(·, ·,!) 2 Ck,`([0, T ]⇥E;E1) (resp. C

k,`

b

([0, T ]⇥E;E1), Ck,`

p

([0, T ]⇥
E;E1)).

If E1 = R, we shall drop E1 from the notation (e.g., Ck,`([0, T ]⇥E), and so on);
and we write C0,0([0, T ] ⇥ E;E1) = C([0, T ] ⇥ E;E1), and C0,0(FB , [0, T ] ⇥ E) =
C(FB , [0, T ]⇥E),..., etc., to simplify notation. Finally, for (t, x, y) 2 [0, T ]⇥Rd⇥R,
we denote D = D

x

= r
x

=
�

@

@x1
, · · · , @

@x

d

�

, D2 = D
xx

= (@2
x

i

x

j

)d
i,j=1, Dy

= @

@y

,

and D
t

= @

@t

. The meaning of D
xy

, D
yy

, etc., should be clear.
Finally, since the random fields that we are interested in are always of the form

of (3), which is an SPDE already, the following definition in [3] is useful. Consider
the fully nonlinear second-order SPDE:

u(t, x) = u0(x)+

Z

t

0
f(s, x, (u,Du,D2u)(s, x))ds+

Z

t

0
g(s, x, (u,Du)(s, x))dB

s

, (5)

where (t, x) 2 [0, T ]⇥ Rd, and f and g are functions with appropriate dimensions.

Definition 2.1. A random field u = {u(t, x,!) : (t, x,!) 2 [0, T ]⇥Rd⇥⌦} is called
a “regular” solution to SPDE (5) if

(i) u 2 C0,2(FB ; [0, T ]⇥ Rd);
(ii) u is an Itô-type random field with the form

u(t, x) = u0(x) +

Z

t

0
u1(s, x)ds+

Z

t

0
u2(s, x)dBs

, (t, x) 2 [0, T ]⇥ Rd,

where

u1(t, x) = f(t, x, (u,Du,D2u)(t, x)), u2(t, x) = g(t, x, (u,Du)(t, x)),

for all (t, x) 2 [0, T ]⇥ Rd, P -a.s. ⇤
In this paper we will consider a special type of “smoothness” for a random field,

defined through what we shall call the “n-fold di↵erentiability” below. Such a
characterization of di↵erentiability is mainly motivated by the “stochastic charac-
teristics” for stochastic PDEs (cf. e.g., [10]), which often take the form of a system
of first order Stochastic PDEs. The idea is actually quite similar to the well-known
transformation from a higher order ordinary di↵erential equation (ODE) to a first
order system of ODEs.

To begin with, we recall that for any multi-index j = (j1, · · · , jd), its “length” is

defined by |j| 4
=
P

d

k=1 jk. We have the following definition.

Definition 2.2. A random field ⇣ 2 C0,n(FB , [0, T ] ⇥ Rd) is called “n-fold” dif-
ferentiable in the spatial variable x if there exist n smooth random fields ⇣

i

2
C0,n(FB , [0, T ]⇥Rd;Rd

i), 2  i  n+1, with d1 = d and d
i

2 N, 2  i  n+1, and

the functions F
i

, G
i

: Rd ⇥ Rd

i+1 ! Rd, i = 1, · · · , n, such that, denoting ⇣1
4
= ⇣,

the following properties are satisfied:

(T1) F
i

, G
i

2 C1
`,p

, i = 1, · · · , n;
(T2) For 1  i  n, it holds that

⇣
i

(t, y) = ⇣
i,0(y) +

Z

t

0
F
i

(y, ⇣
i+1(s, y))ds+

Z

t

0
G

i

(y, ⇣
i+1(s, y))dBs

, (6)

for all (t, y) 2 [0, T ]⇥ Rd, with ⇣
i,0 2 C2(Rd;Rd

i), 1  i  n.
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(T3) For any 1  i  n + 1, m � 1, and multi-index j = (j1, ..., jd) with |j| =
j1 + ...+ j

d

 n, it holds that

sup{|Dj

y

⇣
i

(t, y)|, t 2 [0, T ], |y|  m} 2 L1
� (⌦,F , P ).

We shall call ⇣
i

, i = 2, · · · , n + 1 the “generalized derivatives” of ⇣ = ⇣1, with
“coe�cients” (F

i

, G
i

), i = 1, · · · , n.

For notational convenience we will often write F = F1 and G = G1 when there is
no danger of confusion. We denote the set of all n-fold di↵erentiable random fields

by C
0,(n)
F ([0, T ]⇥ Rd).

Before we state the main result of this paper, let us note again that the main
feature of our stochastic Taylor expansion is that it can be expanded around any
random point (⌧, ⇠), and that the expansion holds almost surely with an excep-
tional set that is independent of the choice of (⌧, ⇠). But this amounts to saying
that the expansion can be performed around any deterministic point (⌧, ⇠) with
any (deterministic) increments, outside a uniform exceptional set. In other words,
the complicated approximating sequences (⌧

k

, ⇠
k

) in (2) can be replaced by simple
deterministic increments (t+ h, x+ k), for all (h, k) near zero. We should also note
that for the purpose of our application, in this paper we consider only the Taylor
expansion up to the second order, and for that purpose the 3-fold di↵erentiability
of the random field would su�ce. The precise statement of our main result is the
following theorem.

Theorem 2.3. Let ⇣ 2 C0,(3)(FB , [0, T ] ⇥ Rd) be a random field satisfying the
standard assumptions (T1)-(T3) with generalized derivatives ⇣

i

, i = 2, 3, 4 and
coe�cients (F

i

, G
i

), i = 1, 2, 3. Then, for every ↵ 2
�

1
3 ,

1
2

�

and every m 2 N
there exists a subset ⌦̃

↵,m

⇢ ⌦ with P{⌦̃
↵,m

} = 1, such that, for all (t, y,!) 2
[0, T ]⇥B

m

(0)⇥ ⌦̃
↵,m

, we have the following Taylor expansion

⇣(t+ h, y + k)� ⇣(t, y)

= ah+ b(B
t+h

�B
t

) +
c

2
(B

t+h

�B
t

)2 + hp, ki+ 1

2
hXk, ki (7)

+hq, ki(B
t+h

�B
t

) + (|h|+ |k|2)3↵R
↵,m

(t, t+ h, y, y + k),

for all (t+ h, y + k) 2 [0, T ]⇥B
m

(0). Here, with (F,G) = (F1, G1), one has

a = F (y, ⇣2(t, y))�
1

2
(D

z

G)(y, ⇣2(t, y))G2(y, ⇣3(t, y)),

b = G(y, ⇣2(t, y)), c = (D
z

G)(y, ⇣2(t, y))G2(y, ⇣3(t, y)),

p = D
y

⇣(t, y), X = D2
y

⇣(t, y), (8)

q = (D
y

G)(y, ⇣2(t, y)) + (D
z

G)(y, ⇣2(t, y))Dy

⇣2(t, y).

Furthermore, the remainder of Taylor expansion R
↵,m

: [0, T ]2 ⇥ (Rd)2 ⇥⌦ 7! R is
a measurable random field such that

R
↵,m

4
= sup

t,s2[0,T ]; y,z2B

m

(0)

|R
↵,m

(t, s, y, z)| 2 L1
� (⌦,F , P ). (9)

Proof. Since the proof of this theorem is quite lengthy and technical, we shall split
it into several cases and carry it out in the following sections. ⇤
Remark 2.4. (i) It is worth noting that the “universal” estimate for the remainder
R

↵,m

is the main reason why the Taylor expansion can now hold around any random
space-time point. In other words, the points (t, y) and (h, k) in Theorem 2.3 can be
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replaced by any (⌧, ⇠), (�, ⌘) 2 L0(FB ; [0, T ])⇥L0(FB ;Rd), such that (⌧+�, ⇠+⌘) 2
[0, T ]⇥B

m

(0), P -a.s. on ⌦̃, except in that case the remainder should read

R̂
↵,m

4
= R

↵,m

(⌧, ⌧ + �, ⇠, ⇠ + ⌘), where |R̂
↵,m

|  R
↵,m

2 L1
� (FB ;P ).

In what follows we denote R
↵,m

to be a generic term satisfying (9), which is allowed
to vary from line to line.

(ii) From the expressions (8) it is clear that the drift term F (= F1) appears only
in the coe�cient a, and it is in its original form. In fact, as we shall see in the proof,
the exact form of F (t, y)(= F (y, ⇣2(t, y))) is not important at all. We could simply
change it to F (t, y) and the results remains the same.

(iii) Theorem 2.3 remains true if the assumption (T1) is replaced by the weaker
assumption:

(T1’) F
j

2 C5�j

`,p

; G
j

2 C7�j

`,p

; 1  j  3.
However, we shall not pursue this generality in this paper due to the length of

the paper.

(iv) The reason for the assumption ↵ 2 ( 13 ,
1
2 ) will become clearer in the coming

sections when the proof proceeds. In particular we would emphasize Proposition
4.1 (forward spatial expansion) as well as Proposition 4.2 and 5.2 (forward and
backward temporal expansions), as the consequence of Proposition 3.1. ⇤

To end this section we give an example, which more or less motivated our study.

Example 2.5. Let u = {u(t, x)} be a regular solution of the SPDE (5), and for
simplicity we assume that both f and g are “time-homogeneous” (i.e., they are
independent of the variable t), and g is independent of x as well. We define ⇣ =
⇣1 = u, and ⇣

i+1 = (⇣
i

, D⇣
i

, D2⇣
i

), 1  i  3. Then, assuming that the coe�cients
f and g are su�ciently smooth and their derivatives of all order are bounded, one
can show that (T1)–(T3) are satisfied. Furthermore, applying Theorem 2.3 we see
that on some subset e⌦ of ⌦ with P (e⌦) = 1, independent of the expansion point
(t, x) 2 [0, T ]⇥ Rd, the stochastic Taylor expansion (7) holds for u, with

a = f(x, (u,Du,Du2)(t, x))� 1

2

n

(gD
u

g)((u,Du)(t, x))

+D
u

g((u,Du)(t, x))hD
p

g((u,Du)(t, x)), Du(t, x)i

+hD2u(t, x)D
p

g((u,Du)(t, x)), D
p

g((u,Du)(t, x))i
o

b = g((u,Du)(t, x)) (10)

c = (gD
u

g)((u,Du)(t, x)) +D
u

g((u,Du)(t, x))hD
p

g((u,Du)(t, x)), Du(t, x)i
+hD2u(t, x)D

p

g((u,Du)(t, x), D
p

g((u,Du)(t, x))i
p = Du(t, x); X = D2u(t, x)

q = D
u

g((u,Du)(t, x)Du(t, x) +D2u(t, x)D
p

g((u,Du)(t, x)),

for all h 2 R and k 2 Rd such that t + h 2 [0, T ] and |k|  m, respectively. Here,
the coe�cients F2, G2, F3, and G3 are obtained by di↵erentiating (5) with respect
to x.

The explicit expressions of the pathwise Taylor expansion in (10) will be im-
portant for our study of the stochastic characteristics for SPDE (5), which will be
discussed in the last section of this paper. ⇤
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3. Some fundamental estimates. Before we prove the theorem, let us first in-
troduce the so-called Wick-square of the Brownian motion, which is originated in
the Wiener homogeneous chaos expansion (cf., e.g., [7], [17]). For any 0  s  t,
we define the Wick-square of B

t

�B
s

to be

(B
t

�B
s

)⇧2
4
= (B

t

�B
s

)2 � |t� s|.

Moreover, let L0
FB

(⌦;W 0,1
2,loc([0, T ] ⇥ Rd)) denote the space of all random fields

f 2 L0(FB , [0, T ]⇥ Rd) such that f(!, ·, ·) is P -a.s. an element of

W 0,1
2,loc([0, T ]⇥ Rd) = {u 2 L2

loc

([0, T ]⇥ Rd) : D
x

u 2 L2
loc

([0, T ]⇥ Rd)},

where in this case D
x

u denotes the weak partial derivative of u with respect to x.
We begin by proving an important estimate for multiple stochastic integrals.

We consider the multiple stochastic integral defined recursively as follows. Let
f
j

2 L0
FB

(⌦;W 0,1
2,loc([0, T ] ⇥ Rd)), for 1  j  N , N 2 N. Let X0

t,s

(x) ⌘ 1, and for
j = 1, · · · , N ,

Xj

t,s

(x) =

Z

s

t

f
j

(s
j

, x)Xj�1
t,s

j

(x)dB
s

j

, s 2 [t, T ]. (11)

It is also useful to define the similar multiple integrals: for k > 0, let Xk,k�1
t,s

(x) ⌘ 1,
and for l � k,

Xk,l

t,s

(x) =

Z

s

t

f
l

(u
l

, x)Xk,l�1
t,u

l

(x)dB
u

l

, s 2 [t, T ]. (12)

We note that for l � k, Xk,l is a l � k + 1-tuple stochastic integral, and it is clear
that X1,j

t,s

= Xj

t,s

, for j � 1. We have the following regularity result.

Proposition 3.1. Let N 2 N be given. Assume that f
j

2 L0
FB

(⌦;W 0,1
2,loc([0, T ] ⇥

Rd)), 1  j  N , satisfy that

C
m,p

(f
j

)
4
= E

"

Z

|x|m

Z

T

0
|Di

x

f
j

(t, x)|pdtdx
#

< 1, (13)

for all m 2 N, p � 1, and i = (i1, . . . , id) with |i| = i1 + . . .+ i
d

 1. Then it holds
that

⇣
�,m

4
= sup

(

|XN

t,s

(x)|
|s� t|� , 0  t < s  T, |x|  m

)

2 L1
� (⌦,F , P ) (14)

for all � 2
�

0, N

2

�

, m 2 lN.

Proof. The proof is based on the Kolmogorov continuity criterion for random fields
(cf. e.g., [18, Theorem I.2.1]), combined with an induction argument. We note
that throughout the proof we shall use the notations C

m

, C
m,p

, C
M,k

, etc., to
represent the generic constants depending only on f

i

’s, T , and the parameters in
their subscripts, which are allowed to vary from line to line.

We begin with the case N = 1. In this case we write f1 = f and X1 = X for
simplicity. Let m 2 N, � > 2, and 0  t < s  T . Applying Sobolev’s embedding
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theorem, Hölder Inequality, and noting that X0
t,s

= 1, we have

E
h

sup
|x|m

|X
t,s

(x)|�
i

 C
m

E
h⇣

X

|j|1

Z

|x|m

|Dj

x

X
t,s

(x)|d+1dx
⌘

�

d+1
i

 C
m

X

|j|1

⇣

Z

|x|m

E
h

�

�

�

Z

s

t

Dj

x

f(r, x)dB
r

�

�

�

�(d+1)i

dx
⌘

1
d+1

 C
m

X

|j|1

⇣

Z

|x|m

E
h⇣

Z

s

t

|Dj

x

f(r, x)|2dr
⌘

�(d+1)
2
i

dx
⌘

1
d+1

 C
m

X

|j|1

⇣

Z

|x|m

E
h

(s� t)
�(d+1)

2 �1

Z

s

t

|Dj

x

f(r, x)|�(d+1)dr
i

dx
⌘

1
d+1

 C
m

(s� t)
�

2 �
1

d+1

X

|j|1

⇣

E
h

Z

|x|m

Z

T

0
|Dj

x

f(r, x)|�(d+1)drdx
i⌘

1
d+1

.

Consequently,

E

"

sup
|x|m

|X
t,s

(x)|�
#

 C
m,�

(s� t)
�

2 �
1

d+1 .

Endowing the space C(B
m

) of continuous functions defined on the closed m-ball
B

m

:= {x 2 Rd : |x|  m} with the sup-norm, and considering {x 7! X0,s(x); |x| 
m}

s2[0,T ] as a C(B
m

)-valued process, we see that

sup
|x|m

|X
t,s

(x)| = |X0,s(·)�X0,t(·)|
C(B

m

).

Applying the Kolmogorov continuity criterion, we conclude that ⇣
�,m

2 L�(⌦,F , P )

for all � 2
h

0, 1
2 � d+2

�(d+1)

⌘

. Since we can choose � > 2 arbitrarily large, (14) follows.

We now prove the inductive step. That is, we assume that (14) is true for N �1,
and show that it is also true for N . To do this, we shall adapt the proof of the
Kolmogorov continuity criterion given in [18] to our framework. Let 0  t < s  T ,
� > 2, and m 2 N. First note that by a simple application of Burkholder-Davis-
Gundy and Hölder inequalities we have

E
n

sup
r2[t,s]

|XN

t,r

(x)|p
o

= E
n

sup
r2[t,s]

�

�

�

Z

r

t

f
N

(s
N

, x)XN�1
t,s

N

(x)dB
s

N

�

�

�

p

o

 C
p

E
nh

Z

s

t

|f
N

(s
N

, x)|2|XN�1
t,s

N

(x)|2ds
N

i

p/2o

(15)

 C
p

E
n

kf
N

(·, x)kp
L

2([t,s]) sup
s

N

2[t,s]
|XN�1

t,s

N

(x)|p
o

 C
p

n

Ekf
N

(·, x)kpN
L

2([t,s])

o1/Nn

E
n

sup
s

N

2[t,s]
|XN�1

t,s

N

(x)|
pN

N�1

o

N�1
N

.
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By simply iterating the above argument we obtain that

E
n

sup
r2[t,s]

|XN

t,r

(x)|p
o

N

 C
p

Ekf
N

(·, x)kpN
L

2([t,s]) · Ekf
N�1(·, x)kpN

L

2([t,s]) · E
n

sup
s

N

2[t,s]

�

�

�

XN�1
t,s

N

(x)|
pN

N�2

o

N�2

 · · ·  C
p

N

Y

k=1

n

Ekf
k

(·, x)kpN
L

2([t,s])

o

. (16)

Furthermore, with a similar argument as above we can also show that for all M,k 2
N, p > 1, and multi-index i satisfying |i| = 1,

E
n

sup
trs

|DiXM

t,r

(x)|k
o

 E
n

X

|ij |1
j=1,···M

sup
trs

�

�

�

Z

r

t

Di

M

f
M

⇣

Z

s

M

t

· · ·
⇣

Z

s2

t

Di

1

f1dBs1

⌘

· · ·dB
s

M�1

⌘

dB
s

M

�

�

�

k

o

 C
M,k

X

|ij |1
j=1,···M

M

Y

j=1

E
h

kDi

j

f
j

(s
j

, x)kMk

L

2((t,s])

i

1
M

 C
M,k

(s� t)
Mk(p�1)

2p

X

|i1|,...,|iM |1

M

Y

j=1

E
h

kDi

j

f
j

(s
j

, x))kMk

L

2p([t,s])

i

1
M

.

Here, we applied the Hölder inequality in the last step above. Consequently, if
p  Mk

2 , then the assumption (13) implies that, for all m > 0,

Z

|x|m

E
h

sup
trs

|DiXM

t,r

(x)|k
i

dx  C
m,M,k

(s� t)
Mk(p�1)

2p . (17)

We can then conclude that, for all 0  t < s  T , � > 2,

E
h

sup
|x|m

|XN

t,s

(x)|�
i

 C
m

E
h⇣

X

|j|1

Z

|x|m

|Dj

x

XN

t,s

(x)|d+1dx
⌘

�

d+1
i

 C
m

E
h⇣

X

|i|,|j|1

Z

|x|m

�

�

�

Z

s

t

Di

x

XN�1
t,r

(x)Dj

x

f
N

(r, x)dB
r

�

�

�

�(d+1)
dx
⌘

1
d+1
i

 C
m

⇣

X

|i|,|j|1

Z

|x|m

E
h⇣

Z

s

t

|Di

x

XN�1
t,r

(x)|2|Dj

x

f
N

(r, x)|2dr
⌘

�(d+1)
2
i

dx
⌘

1
d+1

 C
m

⇣

X

|i|,|j|1

Z

|x|m

E
h

sup
trs

|Di

x

XN�1
t,r

(x)|�(d+1)kDj

x

f
N

(·, x)k�(d+1)
L

2([t,s])

i

dx
⌘

1
d+1

.
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Consequently, by Hölder inequality and (17) with p = Mk

2 = (N � 1)�(d + 1), we
have

E
h

sup
|x|m

|XN

t,s

(x)|�
i

 C
m

n

X

|i|,|j|1

h

Z

|x|m

E
h

sup
trs

|Di

x

XN�1
t,r

(x)|2�(d+1)
i

dx
i

1
2 ⇥

⇥
⇣

Z

|x|m

E
h

kDj

x

f
N

(·, x)k2�(d+1)
L

2([t,s])

i

dx
⌘

1
2
o

1
d+1

 C
m,�

X

|i|1, j=1,2

⇣

(s� t)
1
2 (N�1)�(d+1)� 1

2 ⇥

⇥
⇣

Z

|x|m

E
h⇣

(s� t)
�(d+1)�1
�(d+1) kDi

x

f
j

(·, x)k2
L

2�(d+1)([t,s])

⌘

�(d+1)i⌘ 1
2
dx
⌘

1
d+1

 C
m,�

(s� t)
N

2 �� 1
d+1

X

|i|1, j=1,2

⇣

E
h

Z

|x|m

kDi

x

f
j

(·, x)k2�(d+1)
L

2�(d+1)([t,s])
dx
i

1
2
⌘

1
d+1

.

In other words we obtained that

E

"

sup
|x|m

|XN

t,s

(x)|�
#

 C
m,�

(s� t)
N

2 �� 1
d+1 , 0  t < s  T. (18)

Next, recall the multiple integrals Xk,l

t,s

(x) defined by (12). For 0  r1  r2 
r3  T , and 1  n0  N , define

Y N

r1,r2,r3,n0
(x)

4
= XN�n0,N

r2,r3
(x)X1,N�n0�1

r1,r2
(x). (19)

An easy calculation shows that

X1,N
r1,r3

(x) =

Z

r3

r1

X1,N�1
r1,uN

(x)f
N

(u
N

, x)dB
u

N

=

Z

r2

r1

X1,N�1
r1,uN

(x)f
N

(u
N

, x)dB
u

N

+

Z

r3

r2

X1,N�1
r1,uN

(x)f
N

(u
N

, x)dB
u

N

= X1,N
r1,r2

(x) +
N�2
X

n0=0

Y N

r1,r2,r3,n0
(x) +X1,N

r2,r3
(x). (20)

To simplify the further discussion, we now assume without loss of generality
that T = 1. Let D

n

be the set of all tn
i

:= 2�ni, for some 0  i  2n. The set
D =

S

n�1 Dn

is then the set of all dyadic numbers in [0, 1]. Now, let n 2 N and
0  t < s  1 be arbitrary dyadic numbers such that s � t  2�n. Our aim is
to estimate X

t,s

(x) uniformly in t, s 2 D. To this end, we notice that there exists
some k � n such that t, s belong to D

k

. Moreover, denoting

s
j

= sup{r 2 D
j

, r  s}, t
j

= sup{r 2 D
j

, r  t}, n  j  k,
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Xt,sl(y)

Xsl,sl+1(y)

Ytm,sl,sl+1(y)

tm sl

sl

sl+1

sl+1

s=sk

s=sk

tm

Figure 1. X
s,t

= X1,2
s,t

and Y
t,s1,s2 = Y 2

t,s1,s2,n0
for N = 2 and

n0 = 1

we have s
n

 s
n+1  . . .  s

k

= s, t
n

 t
n+1  . . .  t

k

= t. Therefore (see also
Figure 1)

X1,N
t

n

,s

(x) = X1,N
t

n

,s

n

(x) +
k�1
X

j=n

(

X1,N
s

j

,s

j+1
(x) +

N�2
X

n0=0

Y N

t

n

,s

j

,s

j+1,n0
(x)

)

, (21)

X1,N
t

n

,s

(x) = X1,N
t,s

(x) +
k�1
X

j=n

(

X1,N
t

j

,t

j+1
(x) +

N�2
X

n0=0

Y N

t

j

,t

j+1,s,n0
(x)

)

. (22)

In order to estimate Y N

t

n

,s

j

,s

j+1,n0
(x) and Y N

t

j

,t

j+1,s,n0
(x), we notice that

s
j+1 � s

j

2 {0, 2�(j+1)}, t
j+1 � t

j

2 {0, 2�(j+1)}, n  j  k,

and thus
⇢

0  s
j

� t
n

= (s
j

� s
n

) + (s
n

� t
n

)  2 · 2�n;
0  s� t

j+1 = (s� t) + (t� t
j+1)  2 · 2�n,

(23)

for n  j  k. Moreover, by using the inductional hypothesis, we know that
for every ↵ 2 (0, 1

2 ), there exists a ✓
↵

2 L1
� (⌦,F , P ) such that for all l, l0 2 N

with 0  l0 � l + 1  N � 1, the l0 � l + 1-tuple integral X l,l

0
satisfies (14) with
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� = (l0 � l + 1)↵, that is,

P
n

�

�

�

X l,l

0

t,t+h

�

�

�

 ✓
↵

h(l0�l+1)↵, 0  t < t+ h  T, |x|  m
o

= 1.

Thus, we have by (23)

N�2
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|Y N

t

n

,s

j

,s

j+1,n0
(x)| 

N�2
X
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↵
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↵
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j

� t
n

|(N�n0�1)↵
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↵
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✓2
↵
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Similarly, we obtain
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Next, we define K
j

4
= sup{|X

t

j

i

,t

j

i+1
(x)|, |x|  m, 0  i  2j �1}, n  j  k. Then,

combining (21), (22), (25), and (24), we deduce
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Now let (N � 1)↵ < � < N↵ < N

2 . Define

⇣n
�,m

4
= sup

(

|XN

t,s

(x)|
|s� t|� , s, t 2 D, 2�(n+1) < s� t  2�n, |x|  m

)

,
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and M
�,m

4
= sup
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�,m

. Then,
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Noting that by (18)
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we thus obtain for � > 4
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= 2�+N+2C
m,�

⇣ 1

1� 2
�
⇣

N

2 � 2
�

��

⌘ +
N � 1

1� 2�(N↵��)

⇣

E
h

✓2�
↵

i⌘

1
�

⌘

< 1.

Consequently, M
�,m

2 L1
� (⌦,F , P ), for all � 2 (0, N↵). But since ↵ 2 (0, 1

2 ) is
arbitrary, we can extend the result to � 2 (0, N/2). Finally, note that the definitions
of M

�,m

and {⇣n
�,m

}, as well as the continuity of the mapping (t, s) 7! X
t,s

(x), imply
that

b⇣
�,m

4
= sup

(

|XN

t,s

(x)|
|s� t|� , 0 < s� t  2�1, |x|  m

)

2 L1
� (⌦,F , P ),

for all � 2 (0, N/2) and m 2 N. The proposition then follows from the recursive
relation (20). ⇤

The following corollary can be easily obtained by adapting the proof of Proposi-
tion 3.1 in an obvious manner.
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Corollary 3.2. The statement of Proposition 3.1 remains valid if, for 1  i  N ,
dB

s

i

is replaced by dAi

s

i

in (11), where Ai is either the Brownian motion B or

Ai

s

= s, s 2 [0, T ]. Moreover, (14) holds whenever � 2
�

0, l1 +
l2
2

�

, m 2 N, where l1
is the number of i, 1  i  N , for which Ai

s

= s, s 2 [0, T ], and l2 = N � l1.

4. Forward Taylor expansion. In this and next section we shall provide a com-
plete proof of Theorem 2.3. The results in each section, however, can also be applied
independently, and therefore are of interest in their own right. We should note that,
unlike the usual Taylor expansion, in the stochastic case the direction of the time
increment makes significant di↵erence in the argument, due to the “progressive
measurability” of the random fields. We will thus separate the two cases: in this
section we study the forward expansion, and leave the backward case to the next
section.

4.1. Forward temporal expansion. We begin with the forward “temporal” ex-
pansion, that is, only the time variable has the increment. Let us first introduce
the following extra notations. For each T > 0 we define the 2-dimensional simplex

4[0,T ]
4
= {(t, s) 2 [0, T ]⇥ R+ : 0  t < s  T}.

For any real-valued measurable functional ✓ defined on ⌦⇥4[0,T ]⇥IRd+l andm 2 N,
we denote

b✓
m

4
= sup{|✓(t, s, x, z)|, (t, s) 2 4[0,T ], x 2 Rd, z 2 R with |x|, |z|  m}.

Furthermore, by a slight abuse of notations, in what follows we shall denote R
↵

to be any measurable functional ✓
↵

, indexed by ↵ 2
�

1
3 ,

1
2

�

, such that (b✓
↵

)
m

2
L1
� (⌦,F , P ) for all m 2 N, and again, it may vary from line to line.
Our main result of this section is the following Stochastic forward temporal Taylor

expansion.

Proposition 4.1. Assume that ⇣ 2 C0,(3)(FB , [0, T ] ⇥ Rd) satisfies (T1)-(T3).

Then, for all m 2 lN and ↵ 2
�

1
3 ,

1
2

�

there exists a subset e⌦ ⇢ ⌦ such that P (e⌦) = 1,

and that on e⌦, for all 0  t < t+ h  T , x 2 Rd, the following expansion holds

⇣(t+ h, x)� ⇣(t, x) = ah+ b(B
t+h

�B
t

) +
c

2
(B

t+h

�B
t

)2+h3↵R
↵

(t, t+ h, x), (27)

where

a = F (x, ⇣2(t, x))�
1

2
(D

z

G)(x, ⇣2(t, x))G2(x, ⇣3(t, x)),

b = G(x, ⇣2(t, x)), (28)

c = (D
z

G)(x, ⇣2(t, x))G2(x, ⇣3(t, x)).

Proof. Let h > 0 be such that 0  t  t+ h  T . For any x 2 Rd, we write

⇣(t+h, x)� ⇣(t, x) =

Z

t+h

t

F (x, ⇣2(s, x))ds+

Z

t+h

t

G(x, ⇣2(s, x))dBs

4
= I1 + I2, (29)

where Ii = Ii(t, h, x), i = 1, 2, are the two integrals. We shall study their expansions
separately.

We begin by I1. The argument is very similar to that of [3], we provide a sketch
for completeness. Let

H1(x, z2, z3)
4
= (D

z

F )(x, z2)F2(x, z3) +
1

2
tr[G2(G2)

⇤(x, z3)D
2
z

F (x, z2)]
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for (x, z2, z3) 2 Rd ⇥ Rd2 ⇥ Rd3 . Then, applying Itô’s formula, we have

F (x, ⇣2(s, x))� F (x, ⇣2(t, x)) =

Z

s

t

H1(x, ⇣2(r, x), ⇣3(r, x))dr (30)

+

Z

s

t

h(D
z

F )(x, ⇣2(r, x)), G2(x, ⇣3(r, x)) i dBr

,

for 0  t  s  T and x 2 Rd, P -a.s. We now show that there is a universal subset
⌦0 ✓ ⌦ with P (⌦0) = 1, on which (30) holds for all 0  t  s  T . But for this it
su�ces to prove the random fields

(s, t, x) 7!
Z

s

t

H1(x, ⇣2(r, x), ⇣3(r, x))dr,

Z

s

t

h(D
z

F )(x, ⇣2(r, x)), G2(x, ⇣3(r, x)) i dBr

have continuous versions. To see this, we try to make use of the Kolmogorov
continuity criterion. For notational simplicity let us denote

�(t, x)
4
= (D

z

F )(x, ⇣2(t, x))G2(x, ⇣3(t, x)), (t, x) 2 [0, T ]⇥ Rd.

Then, we can deduce from (T3) and the Burkholder-Davis-Gundy inequality that,
for each k > 2,

E
�

�

�

Z

s

t

�(r, x)dB
r

�
Z

s

0

t

0
�(r, x0)dB

r

�

�

�

k

 C
k

n

E
�

�

�

Z

t

0

t

|(�(r, x)|2dr
�

�

�

k

2
+ E

�

�

�

Z

s

s

0
|�(r, x)|2dr

�

�

�

k

2

+E
⇣

Z

T

0
|�(r, x)� �(r, x0)|2dr

⌘

k

2
o

 C
k

⇣

|t0 � t| k2 + |s0 � s| k2
⌘

E
n

sup
r2[0,T ],
|x|m

|�(r, x)|k
o

+C
k

|x� x0|kE
n

sup
r2[0,T ],
|x|m

|D
x

�(r, x)|k
o

 C
k

⇣

|t0 � t| k2 + |s0 � s| k2 + |x� x0|k
⌘

for 0  s  t  T , 0  s0  t0  T , |x|, |x0|  m, and k 2 N. Hence, the Kolmogorov

continuity criterion renders that the random field
n

R

s

t

�(r, x)dB
r

, 0  t  s 

T, |x|  m
o

possesses a version that is continuous in (t, s, x). A similar estimate

allows to prove that also the first integral in (30) admits a version continuous in
(t, s, x) as well. Hence, we conclude that on some ⌦0 ⇢ ⌦ of full probability measure
the relation (30) holds for all 0  t  s  T and |x|, |x0|  m.

Consequently, writing the integral I1 as

I1(t, h, x) = F (x, ⇣2(t, x))h+

Z

t+h

t

Z

s

t

H1(x, ⇣2(r, x), ⇣3(r, x))drds

+

Z

t+h

t

Z

s

t

(D
z

F )(x, ⇣2(r, x))G2(x, ⇣3(r, x))dBr

ds,

and using the conclusion above we see that as a function of (t, h, x), I1 is jointly
continuous for all 0  t  t + h  T and x 2 Rd, over the universal set ⌦0. It
is clear that the first integral on the right hand side above is of order h2. Thus,
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applying Corollary 3.2 (with N = 2, l1 = l2 = 1) to the second integral we see
that for all � 2 (0, 1

2 ), there exists an ⌦00 ✓ ⌦0 with P (⌦00) = 1 such that for all
0  t  t+ h  T , x 2 Rd, it holds that

I1(t, h, x) = F (x, ⇣2(t, x)h+ h1+�R
�

(t, t+ h, x). (31)

In what follows we will not distinguish ⌦00 from ⌦0.
We now turn our attention to I2. Again, we begin by denoting, for (x, z2, z3) 2

Rd ⇥ Rd2 ⇥ Rd3 ,

H2(x, z2, z3)
4
= (D

z

G)(x, z2)F2(x, z3) +
1

2
tr[G2(G2)

⇤(x, z3)D
2
z

G(x, z2)]. (32)

Then, for every x 2 Rd, we again apply Itô’s formula to get, for 0  t  s  T , and
P -a.s.,

G(x, ⇣2(s, x))�G(x, ⇣2(t, x)) =

Z

s

t

H2(x, ⇣2(r, x), ⇣3(r, x))dr (33)

+

Z

s

t

(D
z

G)(x, ⇣2(r, x))G2(x, ⇣3(r, x))dBr

.

Using the similar arguments as before we can find another universal subset, still
denoted by ⌦0 ✓ ⌦ with P (⌦0) = 1, on which (33) holds for all 0  t  s  T .

Next, using (33) it is easy to see that I2 can be written as

I2(t, h, x) = G(x, ⇣2(t, x))(Bt+h

�B
t

) +

Z

t+h

t

Z

s

t

H2(x, ⇣2(r, x), ⇣3(r, x))drdBs

+

Z

t+h

t

Z

s

t

(D
z

G)(x, ⇣2(r, x))G2(x, ⇣3(r, x))dBr

dB
s

4
= G(x, ⇣2(t, x))(Bt+h

�B
t

) + I2,1(t, h, x) + I2,2(t, h, x), (34)

and we can claim as before that (34) holds for all 0  t < t+ h  T , |x|  m, over
a universal subset of full probability measure, again denoted by ⌦0.

We now analyze I2,1 and I2,2 separately. Using integration by parts we see that

I2,1 = (B
t+h

�B
t

)

Z

t+h

t

H2(x, ⇣2(r, x), ⇣3(r, x))dr

�
Z

t+h

t

(B
r

�B
t

)H(x, ⇣2(r, x), ⇣3(r, x))dr.

Then, following the argument developed in the previous part, we can show that the
equality holds for all 0  t < t + h  T , x 2 Rd, over an ⌦0 ✓ ⌦ with P (⌦0) = 1.
Now for � 2 (0, 1

2 ), by Proposition 3.1 one has

sup
0t<t+hT

{h�� |B
t+h

�B
t

|} 2 L1
� (⌦,F , P ), (35)

and it follows that over ⌦0,

I2,1(t, h, x) = h1+�R
�

(t, t+ h, x). (36)
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The estimate for I2,2 is slightly more involved. For notational simplicity let us
define

bK(x, z2, z3)
4
= (D

z

G)(x, z2)G2(x, z3), (x, z2, z3) 2 Rd ⇥ Rd2 ⇥ Rd3 ,

bF (x, z3, z4)
4
= (F2(x, z3), F3(x, z4)), (x, z3, z4) 2 Rd ⇥ Rd3 ⇥ Rd4 ,

bG(x, z3, z4)
4
= (G2(x, z3), G3(x, z4)),

bH(x, bz2, bz3)
4
= Dbz2

bK(x, bz2) bF (x, bz3) +
1

2
tr[ bG bG⇤(x, bz3)D

2
bz2
bK(x, bz2)],

where bz2 = (z2, z3) and bz3 = (z3, z4). Moreover, we denote

b⇣
i

(s, x) = (⇣
i

(s, x), ⇣
i+1(s, x)), i = 2, 3.

Then, applying Itô’s formula we have,

bK(x, b⇣2(s, x))� bK(x, b⇣2(t, x)) =

Z

s

t

bH(x, b⇣2(r, x), b⇣3(r, x))dr

+

Z

s

t

Dbz2
bK(x, b⇣2(r, x)) bG(x, b⇣3(r, x))dBr

.

Again, we assume that the equality holds for all 0  s  t  T and x 2 Rd, on ⌦0.
Therefore

I2,2(t, h, x) =

Z

t+h

t

Z

s

t

bK(x, b⇣2(r, x))dBr

dB
s

=
1

2
(D

z

G)(x, ⇣2(t, x))G2(x, ⇣3(t, x))(Bt+h

�B
t

)⇧2 (37)

+

Z

t+h

t

Z

s

t

Z

r

t

bH(x, b⇣2(v, x), b⇣3(v, x))dvdBr

dB
s

+

Z

t+h

t

Z

s

t

Z

r

t

Dbz2
bK(x, b⇣2(v, x)) bG(x, b⇣3(v, x))dBv

dB
r

dB
s

.

Moreover, for � 2 (0, 1
2 ), Proposition 3.1 (with N = 3) implies that

h�(1+�)

Z

t+h

t

Z

s

t

Z

r

t

Dbz2
bK(x, b⇣2(v, x)) bG(x, b⇣3(v, x))dBv

dB
r

dB
s

= R
�

(t, t+ h, x);

and Corollary 3.2 (with `1 = 1 and `2 = 2) implies that

h�(1+2�)

Z

t+h

t

Z

s

t

Z

r

t

bH(x, b⇣2(v, x), b⇣3(v, x))dvdBr

dB
s

= R
�

(t, t+ h, x).

Consequently, we see that, over ⌦0, (37) becomes

I2,2(t, h, x) =
1

2
(D

z

G)(x, ⇣2(t, x))G2(x, ⇣3(t, x))(Bt+h

�B
t

)⇧2 +h1+�R
�

(t, t+h, x).

(38)
Finally, note for each � 2 (0, 1

2 ), we can find ↵ 2 ( 13 ,
1
2 ) so that 3↵ = (1 + �).

Plugging (31), (34), (36), and (38) into (29) and changing R
�

to R
↵

, we obtain (27)
and (28) with a universal exceptional null set, proving the proposition. ⇤
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4.2. Forward temporal-spatial Taylor expansion. Based on the forward tem-
poral Taylor expansion Proposition 4.1, we now add the spatial increment. Our
main result of this section is the following proposition.

Proposition 4.2. Assume that ⇣ 2 C0,(3)(FB , [0, T ],Rd) satisfying (T1)-(T3).

Then, for all m 2 lN and ↵ 2
�

1
3 ,

1
2

�

there exists some subset e⌦ ⇢ ⌦ such that

P (e⌦) = 1, and that on e⌦, for all 0  t < t+ h  T and x, k 2 Rd,

⇣(t+ h, x+ k)� ⇣(t, x)

= ah+ b(B
t+h

�B
t

) +
c

2
(B

t+h

�B
t

)2 + h p, k i+1

2
hXk, ki (39)

+ h q, k i(B
t+h

�B
t

) + (h+ |k|2)3↵R
↵

(t, t+ h, x, x+ k),

where

a = F (x, ⇣2(t, x))�
1

2
(D

z

G)(x, ⇣2(t, x))G2(x, ⇣3(t, x));

b = G(x, ⇣2(t, x)); c = (D
z

G)(x, ⇣2(t, x))G2(x, ⇣3(t, x)); (40)

p = (D
x

⇣)(t, x); X = D2
x

⇣(t, x);

q = (D
x

G)(x, ⇣2(t, x)) + (D
z

G)(x, ⇣2(t, x))Dx

⇣2(t, x).

Proof. First let us write

⇣(t+ h, x+ k)� ⇣(t, x) = [⇣(t+ h, x+ k)� ⇣(t+ h, x)] + [⇣(t+ h, x)� ⇣(t, x)],

where the second [· · · ] above is the forward temporal expansion studied in the
previous subsection. In light of Proposition 4.1, we need only prove the following
stochastic spatial Taylor expansion for ↵ 2 ( 13 ,

1
2 ):

⇣(t+ h, x+ k)� ⇣(t+ h, x) = D
x

⇣(t, x)k +
1

2
hD2

x

⇣(t, x)k, ki+ {(D
x

G)(x, ⇣2(t, x))

+(D
z

G)(x, ⇣2(t, x))Dx

⇣2(t, x)}k(Bt+h

�B
t

)

+(h+ |k|2)3↵R1
↵

(t, t+ h, x, x+ k). (41)

To this end, we first apply the standard Taylor expansion and use the assumption
(T3) to get

⇣(t+ h, x+ k)� ⇣(t+ h, x) = D
x

⇣(t+ h, x)k +
1

2
hD2

x

⇣(t+ h, x)k, ki

+|k|3R1
↵

(t, t+ h, x, x+ k), (42)

for all 0  t < t + h  T , x, k 2 Rd, P -a.s. Next, di↵erentiating the equation for
⇣ = ⇣1 in (6) we have

D
x

⇣(t, x) =D
x

⇣0(x) +

Z

t

0
{(D

x

F )(x, ⇣2(s, x)) + (D
z

F )(x, ⇣2(s, x))Dx

⇣2(s, x)} ds

+

Z

t

0
{(D

x

G)(x, ⇣2(s, x)) + (D
z

G)(x, ⇣2(s, x))Dx

⇣2(s, x))} dBs

,
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for all t 2 [0, T ], x 2 Rd, P -a.s. Now, applying Proposition 4.1 (to D
x

⇣) one can
check that, for ↵ 2 ( 13 ,

1
2 ),

D
x

⇣(t+ h, x)

= D
x

⇣(t, x) + {(D
x

F )(x, ⇣2(t, x)) + (D
z

F )(x, ⇣2(t, x))Dx

⇣2(t, x)}h

�1

2
{D

x

[(D
z

G)(x, ⇣2(t, x))]G2(x, ⇣3) +D
z

G(x, ⇣2(t, x))Dx

[G2(x, ⇣3)]}h

+{(D
x

G)(x, ⇣2(t, x)) + (D
z

G)(x, ⇣2(t, x))Dx

⇣2(t, x)}(Bt+h

�B
t

)

+
1

2
{D

x

[(D
z

G)(x, ⇣2(t, x))]G2(x, ⇣3)

+D
z

G(x, ⇣2(t, x))Dx

[G2(x, ⇣3)]}(Bt+h

�B
t

)⇧2 + h3↵R
↵

(t, t+ h, x),

for all 0  t < t+ h  T , x 2 Rd, P -a.s. Consequently, it follows from (35) that

D
x

⇣(t+ h, x) = D
x

⇣(t, x) + {(D
x

G)(x, ⇣2(t, x)) (43)

+ (D
z

G)(x, ⇣2(t, x))Dx

⇣2(t, x)}(Bt+h

�B
t

) + h2↵R
↵

(t, t+ h, x),

for all 0  t < t+ h  T , x 2 Rd, P -a.s. Similarly, one shows that

D2
x

⇣(t+ h, x) = D2
x

⇣(t, x) + h↵R
↵

(t, t+ h, x), 0  t < t+ h  T, x 2 Rd. (44)

Combining (42), (43), and (44), we obtain for all ↵ 2 ( 13 ,
1
2 ) that

⇣(t+ h, x+ k)� ⇣(t+ h, x)

= D
x

⇣(t+ h, x)k +
1

2
hD2

x

⇣(t+ h, x)k, ki+ |k|3R1
↵

(t, t+ h, x, x+ k)

= D
x

⇣(t, x)k +
1

2
hD2

x

⇣(t, x)k, ki

+{(D
x

G)(x, ⇣2(t, x)) + (D
z

G)(x, ⇣2(t, x))Dx

⇣2(t, x)}k(Bt+h

�B
t

)

+|k|3R1
↵

(t, t+ h, x, x+ k) + h2↵R
↵

(t, t+ h, x)k + h↵hR
↵

(t, t+ h, x)k, ki,

for 0  t < t+ h  T , x, k 2 Rd, P -a.s. Finally, noting that

|k|3 + h2↵|k|+ h↵|k|2  C
m

(h3↵ + |k|3)  C
m

(h+ |k|2)3↵

for all h 2 [0, T ], |k|  m, we see that (41) holds, and the proposition follows. ⇤

5. Backward Taylor expansion. In this section we treat the backward Taylor
expansion, that is, when the temporal increments are negative. As a general belief
such an expansion would be more di�cult than the forward one, due to the obvious
“adaptedness” issue. But we shall see, with our “pathwise” approach, such di�culty
is eliminated. We nevertheless would like to separate its proof from the forward case
because of the slight di↵erence in the arguments. We again take two steps: first the
backward temporal expansion, and then the mixed time-space expansion.

5.1. Backward temporal expansion. We have the following analogy of Propo-
sition 4.1.

Proposition 5.1. Assume that ⇣ 2 C0,(3)(FB , [0, T ],Rd) satisfies (T1)-(T3). Then,
for all m 2 N and ↵ 2

�

1
3 ,

1
2

�

, there exists some subset e⌦ ⇢ ⌦ with P (e⌦) = 1, such

that on e⌦, for all 0  t� h < t  T , x 2 Rd, the following expansion holds

⇣(t� h, x)� ⇣(t, x) = ah+ b(B
t�h

�B
t

) +
c

2
(B

t�h

�B
t

)2

+h1+↵R
↵

(t� h, t, x) (45)
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where

a = �
⇢

F (x, ⇣2(t, x))�
1

2
(D

z

G)(x, ⇣2(t, x))G2(x, ⇣3(t, x))

�

;

b = G(x, ⇣2(t, x)); (46)

c = (D
z

G)(x, ⇣2(t, x))G2(x, ⇣3(t, x).

Proof. Let us fix an arbitrary ↵ 2 ( 13 ,
1
2 ). Applying the forward Taylor expansion

Proposition 4.1, we have

⇣(t, x)� ⇣(t� h, x)

=

⇢

F (x, ⇣2(t� h, x))� 1

2
(D

z

G)(x, ⇣2(t� h, x))G2(x, ⇣3(t� h, x))

�

h

+G(x, ⇣2(t� h, x))(B
t

�B
t�h

)

+
1

2
(D

z

G)(x, ⇣2(t� h, x))G2(x, ⇣3(t� h, x))(B
t

�B
t�h

)2 (47)

+h1+↵R
↵

(t� h, t, x),

for all 0  t� h < t  T , x 2 Rd, on a full probability set ⌦0. Our main task is to
replace the temporal variable t� h by t. To do this, we first apply Itô’s formula to
G(x, ⇣2(t, x)) to obtain

G(x, ⇣2(t, x)) = G(x, ⇣2(0, x)) +

Z

t

0
H(x, b⇣2(s, x))ds+

Z

t

0
L(x, b⇣2(s, x))dBs

, (48)

where b⇣2(t, x) = (⇣2(t, x), ⇣3(t, x)), and
(

H(x, (z2, z3))
4
= (D

z

G)(x, z2)F2(x, z3) +
1
2 tr[G2G

⇤
2(x, z3)(D

2
z

G)(x, z2)],

L(x, (z2, z3))
4
= (D

z

G)(x, z2)G2(x, z3).
(49)

Next, we denote bz = (z2, z3), and define b⇣3(t, x)
4
= (⇣3(t, x), ⇣4(t, x)), bG(t, x)

4
=

G(x, ⇣2(t, x)) and
bG3(x, (z3, z4)) = (G2(x, z3), G3(x, z4)).

Applying Proposition 4.1 to G(·, ·) and using (48), we deduce that

bG(t, x)� bG(t� h, x)

=

⇢

H(x, b⇣2(t� h, x))� 1

2
DbzL(x, b⇣2(t� h, x)) bG3(x, b⇣3(t� h, x))

�

h

+L(x, b⇣2(t� h, x))(B
t

�B
t�h

)

+
1

2
DbzL(x, b⇣2(t� h, x)) bG3(x, b⇣3(t� h, x))(B

t

�B
t�h

)2

+h1+↵R
↵

(t� h, t, x),

for all 0  t� h < t  T, x 2 Rd, which also holds on the set ⌦0. Consequently, we
obtain that

bG(t, x)� bG(t� h, x)

= L(x, b⇣2(t� h, x))(B
t

�B
t�h

) + h2↵R
↵

(t� h, t, x)

= (D
z

G)(x, ⇣2(t� h, x))G2(x, ⇣3(t� h, x))(B
t

�B
t�h

) (50)

+h2↵R
↵

(t� h, t, x).



458 RAINER BUCKDAHN, INGO BULLA AND JIN MA

In particular, by virtue of the Hölder continuity of the Brownian motion (35) and
the assumption (T3) we see from (50) that

G(x, ⇣2(t, x))�G(x, ⇣2(t� h, x)) = h↵R
↵

(t� h, t, x). (51)

Similarly, we can also derive the following (recall (49)):
⇢

F (x, ⇣2(t, x))� F (x, ⇣2(t� h, x)) = h↵R
↵

(t� h, t, x);

L(x, b⇣2(t, x))� L(x, b⇣2(t� h, x)) = h↵R
↵

(t� h, t, x),
(52)

for all 0  t � h  t  T , |x|  m, on the set ⌦0. Now combining (49)—(52), we
obtain that, possibly on a di↵erent set e⌦, with P (e⌦) = 1,

G(x, ⇣2(t� h, x))(B
t

�B
t�h

)

= G(x, ⇣2(t, x))(Bt

�B
t�h

)�D
z

G(x, ⇣2(t� h, x))G2(x, ⇣3(t� h, x))(B
t

�B
t�h

)2

+h3↵R
↵

(t� h, t, x)

= G(x, ⇣2(t, x))(Bt

�B
t�h

)�D
z

G(x, ⇣2(t, x))G2(x, ⇣3(t, x))(Bt

�B
t�h

)2

+h3↵R
↵

(t� h, t, x).

Moreover, rewriting (52) as F (x, ⇣2(t�h, x))h = F (x, ⇣2(t, x))h+h1+↵R
↵

(t�h, t, x),
and noting from (52) (recall definition (49)) that

(D
z

G)(x, ⇣2(t� h, x))G2(x, ⇣3(t� h, x))(B
t

�B
t�h

)2

= (D
z

G)(x, ⇣2(t, x))G2(x, ⇣3(t, x))(Bt

�B
t�h

)2 + h3↵R
↵

(t� h, t, x),

and that

(D
z

G)(x, ⇣2(t� h, x))G2(x, ⇣3(t� h, x))h

= (D
z

G)(x, ⇣2(t, x))G2(x, ⇣3(t, x))h+ h1+↵R
↵

(t� h, t, x),

we obtain from (47) that

⇣(t, x)� ⇣(t� h, x)

=
n

F (x, ⇣2(t, x))�
1

2
(D

z

G)(x, ⇣2(t, x))G2(x, ⇣3(t, x))
o

h

+G(x, ⇣2(t, x))(Bt

�B
t�h

)� 1

2
(D

z

G)(x, ⇣2(t, x))G2(x, ⇣3(t, x))(Bt

�B
t�h

)2

+h3↵R
↵

(t� h, t, x).

Finally, since ↵ 2
�

1
3 ,

1
2

�

is arbitrary, the proposition follows. ⇤

5.2. Backward temporal-spatial expansion. We now give the complete state-
ment of the backward temporal-spatial expansion.

Proposition 5.2. Assume that ⇣ 2 C0,(3)(FB , [0, T ],Rd) satisfying (T1)-(T3).

Then, for all m 2 N and ↵ 2
�

1
3 ,

1
2

�

there exists some subset e⌦ ⇢ ⌦ such that

P (e⌦) = 1, and that on e⌦, for all 0  t� h < t  T , x, k 2 Rd,

⇣(t� h, x+ k)� ⇣(t, x)

= ah+ b(B
t�h

�B
t

) +
c

2
(B

t�h

�B
t

)2 + h p, k i+1

2
hXk, k i (53)

+ h q, k i(B
t�h

�B
t

) + (h+ |k|2)3↵R
↵

(t� h, t, x, x+ k),
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where

a = �
⇢

F (x, ⇣2(t, x))�
1

2
(D

z

G)(x, ⇣2(t, x))G2(x, ⇣3(t, x))

�

;

b = G(x, ⇣2(t, x));

c = (D
z

G)(x, ⇣2(t, x))G2(x, ⇣3(t, x)); (54)

p = (D
x

⇣)(t, x);

X = D2
x

⇣(t, x);

q = (D
x

G)(x, ⇣2(t, x)) + (D
z

G)(x, ⇣2(t, x))Dx

⇣2(t, x).

Proof. As in the forward expansion case, we need only show that for all m 2 N and
↵ 2

�

1
3 ,

1
2

�

there exists some subset e⌦ ⇢ ⌦ of full probability such that on e⌦, for all
0  t� h < t  T , x, k 2 Rd,

⇣(t� h, x+ k)� ⇣(t� h, x)

= D
x

⇣(t, x)k +
1

2
h(D2

x

⇣(t, x)k, ki (55)

+{(D
x

G)(x, ⇣2(t, x)) + (D
z

G)(x, ⇣2(t, x))Dx

⇣2(t, x)}k(Bt�h

�B
t

)

+(h+ |k|2)3↵R
↵

(t� h, t, x, x+ k).

From the usual Taylor expansion with the remainder in the Lagrange form, we
have

⇣(t� h, x+ k)� ⇣(t� h, x)

= D
x

⇣(t� h, x)k +
1

2
h(D2

x

⇣(t� h, x)k, ki+ |k|3R
↵

(t� h, t, x, x+ k),

for 0  t � h < t  T , x, k 2 Rd, P -a.s. Moreover, from Proposition 5.1 it follows
that

D
x

⇣(t, x)�D
x

⇣(t� h, x)

= D
x

[G(x, ⇣2(t, x))](Bt

�B
t�h

) + h2↵R
↵

(t� h, t, x)

= {(D
x

G)(x, ⇣2(t, x)) + (D
z

G)(x, ⇣2(t, x))Dx

⇣2(t, x)}(Bt

�B
t�h

)

+h2↵R
↵

(t� h, t, x)

and
D2

x

⇣(t, x)�D2
x

⇣(t� h, x) = h↵R
↵

(t� h, t, x).

Consequently,

⇣(t� h, x+ k)� ⇣(t� h, x)

= D
x

⇣(t, x)k +
1

2
h(D2

x

⇣(t, x)k, ki

+{(D
x

G)(x, ⇣2(t, x)) + (D
z

G)(x, ⇣2(t, x))Dx

⇣2(t, x)}k(Bt�h

�B
t

)

+|k|6↵R
↵

(t� h, t� h, x, k) + h2↵kR
↵

(t� h, t, x) + h↵hR
↵

(t� h, t, x)k, ki.
Thus, by virtue of

|k|6↵ + h2↵|k|+ h↵|k|2  C
m

(h+ |k|2)3↵,
for h 2 [0, T ] and |k|  m, we derive (55). This, combined with (48), leads us to
the backward temporal-spatial expansion (53). ⇤

Finally, by combining Proposition 4.2 and Proposition 5.2, we have completed
the proof of Theorem 2.3.
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6. Application to stochastic PDEs. Having tried so hard to develop the various
forms of stochastic Taylor expansion, as an application in this section we shall try to
use it to study the stochastic viscosity solutions for fully nonlinear SPDE, following
the idea that we developed in our earlier work [3]. In order not to over-complicate
the computation we shall consider the following simpler version of the fully nonlinear
SPDE (5): for (t, x) 2 [0,1)⇥ Rd,

u(t, x) = u0(x) +

Z

t

0
f(x, u,Du,D2u)ds+

Z

t

0
g(x,Du) � dB

s

. (56)

Compared to SPDE (5), as well as Example 2.5, we see that here the di↵usion
coe�cient g in (56) is independent of u. The general case could be treated in a
similar way but with more complicated expressions. Since our purpose here is to
outline our idea of a new definition of stochastic viscosity solution, without adding
too much technical complexity into this already lengthy paper, we shall leave the
study of the general case to a forthcoming paper. We should also note that in (56)
we are using the Stratonovich integral instead of the Itô integral for the simplicity
of the presentation, the following relation is worth noting:

g(x,Du) � dB
t

= g(x,Du)dB
t

+
1

2
D

z

g(x,Du)D
x

[g(s,Du)]dt. (57)

It is worth pointing out that even in this simplified form, the nonlinearity of the
function g on Du already makes it di�cult to apply the rough path approach of [6]
directly here.

To explain our idea of the definition of stochastic viscosity solution, let us first
apply Theorem 2.3 to the regular solution u. Bearing the relation (57) in mind we
have:

u(t+ h, x+ k)� u(t, x)

= ah+ b(B
t+h

�B
t

) +
c

2
(B

t+h

�B
t

)2 + hp, ki+ 1

2
hXk, ki (58)

+hq, ki(B
t+h

�B
t

) +
�

|h|+ |k|2
�3↵

R
↵,m

(t, t+ h, x, k),

where

a = f(x, (u,Du,Du2)(t, x)),

b = g(x,Du(t, x)) (59)

c = hD
z

g(x,Du(t, x)), D
x

[g(x,Du(t, x))] i,
p = Du(t, x), X = D2u(t, x),

q = D
x

[g((x,Du)(t, x)] = D
x

g(x,Du) +D2u(t, x)D
z

g(x,Du(t, x)).

It is interesting to note that in this simple case the terms involving D2u can be
written collectively as (suppressing variables):

f(· · · , D2u) + h[D2u]D
z

g(x,Du)(B
t+h

�B
t

), ki

+
1

2
h[D2u]D

z

g(x,Du), D
z

g(x,Du)i)(B
t+h

�B
t

)2 +
1

2
h[D2u]k, ki

= f(· · · , D2u)

+
1

2
h[D2u](D

z

g(x,Du)(B
t+h

�B
t

) + k), D
z

g(x,Du)(B
t+h

�B
t

) + k i .

Compared to the classical deterministic Taylor expansion, and the SPDEs studied
in [3] in which g is independent of Du, we can see that in a general case the terms
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involving D2u become much more complicated, and our previous method (via Doss-
Sussmann) will face a fundamental challenge, especially in the uniqueness proof.
We therefore will try to find a di↵erent approach to define the stochastic viscosity
solutions, using the stochastic characteristics introduced by Kunita [10], combined
with our results on stochastic Taylor expansions. This new method also reflects the
basic ideas of the works of Lions and Souganidis [11], [12], [14], and [15], and in
a sense includes our previous work [3] as special case. For simplicity we shall now
assume all processes involved are real valued.

To motivate our definition of the stochastic viscosity solution let us suppose in
a first step that the coe�cients of SPDE (4) are su�ciently smooth and that this
equation admits a regular solution u 2 C0,1(FB , [0, T ]⇥R). Under this assumption,
we compare the solution u with a smooth test field ' 2 C0,1(FB , [0, T ]⇥R) defined
as the unique solution of the equation

d'(t, x) = ✓(t, x)dt+ g(x,D'(t, x)) � dB
t

, (60)

'(0, x) = '0(x),

for t 2 [0, T ], x 2 Rd, where ✓ 2 C1
`,b

([0, T ] ⇥ R), g 2 C1
`,b

(R ⇥ R;R), and '0 2
C1

p

(R).
Let us now fix an FB-measurable [0, T ]-valued random variable ⌧ and an FB-

measurable Rd-valued random variable ⇠. We say that u � ' achieves a local left-
maximum in (⌧, ⇠) if for almost all ! 2 {⌧ < T} there is some ⇢ > 0 (which may
depend on !) such that

(u� ')(!, t, x)  (u� ')(!, ⌧(!), ⇠(!)),

for all (t, x) 2 [0, T ]⇥ Rd with t 2 ((⌧(!)� ⇢)+, ⌧(!)] and |x� ⇠(!)|  ⇢.
Following the approach by Kunita (see Theorem 6.1.2 in [10]), we formally in-

troduce the following stochastic characteristics. For the moment let us assume that
the random time ⌧ is actually deterministic to avoid further complications (keep in
mind, however, that the Taylor expansion will hold even for the arbitrary random
time ⌧ !).

�
t

(x, z) = x�
Z

t

⌧

D
z

g((�
s

,�
s

)(x, z)) � dB
s

,

⌘
t

(x, y, z) = y +

Z

t

⌧

{g((�
s

,�
s

)(x, z))� �
s

(x, z)D
z

g((�
s

,�
s

)(x, z))} � dB
s

,

�
t

(x, z) = z +

Z

t

⌧

D
x

g((�
s

,�
s

)(x, z)) � dB
s

, (61)

where t 2 [0, ⌧ ], (x, y, z) 2 R3, and we hope to be able to define a transformation
 (t, x) by

'(t,�
t

(x,D (t, x))) = ⌘
t

(x, (t, x), D (t, x)). (62)

For notational simplicity let us now denote:

l(x, z) = �D
z

g(x, z); h(x, z) = g(x, z)� zD
z

g(x, z); k(x, z) = D
x

g(x, z).

Remark 6.1. We note that if the function g is linear in Du, then the situation will
become much simpler, and the arguments below would become straightforward. To
be more precise, let us consider the following two cases:

(i) g(x,Du) = hH,Du i, where H is a constant vector. Since D
x

g = D
x

V (x)
and D

z

g = H, the Taylor expansion (59) is drastically simplified. Also, the charac-
teristics (61) becomes almost trivial: � ⌘ z, ⌘ ⌘ y, and � ⌘ x�H(t� ⌧).
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(ii) g(x,Du) = V (x)Du (see [6]). In this case one has D
x

g(x, z) = D
x

V (x)z,
D

z

g(x, z) = V (x), thus the Taylor expansion (59) will also become much simpler.
Furthermore, the characteristics (61) now become “disentangled” SDEs:

�
t

(x) = x�
Z

t

⌧

V (�
s

(x)) � dB
s

,

⌘
t

(x, y, z) ⌘ y,

�
t

(x, z) = z +

Z

t

⌧

D
x

V (�
s

(x))�
s

(x, z) � dB
s

,

and (62) takes the special form:  (t, x) = '(t,�
t

(x)). In other words, the transfor-
mation  is globally well-defined by an easy and explicit expression. ⇤

In what follows we shall denote ⇥
4
= (l, h, k). Also, for any function � = �(x, y, z)

we denote r� = (D
x

�, D
y

�, D
z

�)T . Then we can write, for example, the first
equation in (61) in the Itô integral from:

�
t

(x, z) = x+

Z

t

⌧

l((�
s

,�
s

)(x, z)) � dB
s

(63)

= x+

Z

t

⌧

1

2
hrl,⇥ i((�

s

,�
s

)(x, z))ds+

Z

t

⌧

l((�
s

,�
s

)(x, z))dB
s

.

Now, treating the random fields ⌘ and � in (61) the same way, and applying
the stochastic (backward temporal) Taylor expansion to (�, ⌘,�) we have, for all
↵ 2 ( 13 ,

1
2 ),

8

>

>

>

>

<

>

>

>

>

:

�
t

(x, z) = x+ l(x, z)(B
t

�B
⌧

) +
1

2
hrl,⇥ i(B

t

�B
⌧

)2 + |t� ⌧ |3↵R
↵,m

,

⌘
t

(x, y, z) = y + h(x, z)(B
t

�B
⌧

)+
1

2
hrh,⇥ i(B

t

�B
⌧

)2 + |t� ⌧ |3↵R
↵,m

,

�
t

(x, z) = z + k(x, z)(B
t

�B
⌧

) +
1

2
hrk,⇥ i(B

t

�B
⌧

)2 + |t� ⌧ |3↵R
↵,m

.

(64)

On the other hand, writing (60) in an Itô integral form we have

'(t, x) = '0(x) +

Z

t

⌧

{✓(s, x) + 1

2
D

z

g(x,D'(s, x))D
x

[g(x,D'(s, x))]}ds

+

Z

t

⌧

g(x,D'(s, x))dB
s

(65)

4
= '0(x) +

Z

t

⌧

F (s, x)ds+

Z

t

⌧

G(x, ⇣2(s, x))dBs

,

where F and G are defined in an obvious way, and with

⇣1(t, x)
4
= '(t, x), ⇣2(t, x)

4
= D'(t, x), ⇣3(t, x) = (D', D2')(t, x).

Note that di↵erentiating the both sides of (65) we have

dD'(t, x) = D
x

F (t, x)dt+ {D
x

g(x,D'(t, x)) +D
z

g(x,D'(t, x))D2
x

'(t, x))}dB
t

.

Applying the backward temporal Taylor expansion (Theorem 2.3) again to the ran-
dom field ' around any point (⌧, &), with

F2(t, x)
4
= D

x

F (t, x); G2(x, z1, z2)
4
= D

x

g(x, z1) +D
z

g(x, z1)z2,
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we obtain, after some simple cancelations, that

'(t, x) ='(⌧, &) + ✓(⌧, &)(t� ⌧) + g(&, D'(⌧, &))(B
t

�B
⌧

)

+
1

2

n

[D
z

gD
x

g](&, D'(⌧, &)) + (D
z

g(&, D'(⌧, &)))2D2
x

'(⌧, &)
o

(B
t

�B
⌧

)2

+D'(⌧, &)(x� &) +D
x

[g(·, D'(·, ·))](⌧, &)(x� &)(B
t

�B
⌧

) (66)

+
1

2
D2

x

'(⌧, &)(x� &)2 + (|t� ⌧ |+ |x� &|2)3↵R
↵,m

.

We note that the above holds for all (⌧, &) and all ! 2 e⌦
↵,m

.
Let us now define the desired random field  . We should note that our main

purpose here is to find such a transformation so as to eliminate the stochastic
integral. In other words, we shall look for such  that has the following first order
Taylor expansion:

⇢

 (t, x) = '(⌧, x) + @�
t

 (⌧, x)(t� ⌧) + |t� ⌧ |3↵R
↵,m

;
D (t, x) = D'(⌧, x) + @�

t

D (⌧, x)(t� ⌧) + |t� ⌧ |3↵R
↵,m

.
(67)

Here @�
t

denotes the left partial derivative with respect to t. To this end, we note
that (61) and (62) imply that for t = ⌧ , one has

'(⌧, x) = '(⌧,�
⌧

(x,D (⌧, x))) = ⌘
⌧

(x, (⌧, x), D (⌧, x)) =  (⌧, x), x 2 R,

and hence D'(⌧, x) = D (⌧, x) holds for all x 2 R as well. Next, we look at the
Taylor expansion for both � and ⌘. Recalling (63) and the Taylor expansions (64)
we shall first take x = (x, (t, x), D (t, x))), and then replace x by �

t

(x,D (t, x))
and & by x in (66). It should be noted that after these substitutions the remainder
will look like R

↵,m

(t, ⌧, x,�
t

(x,D (t, x))), a slightly more complicated than the
original ones. To make sure the accuracy of the expansion in what follows we shall
denote

R
↵,m,loc

= sup
t,s2[0,T ]; x2B

m

(0)

|R
↵,m

(t, s, x,�
t

(x,D (t, x)))|.

Then it is not hard to show that there exists an increasing sequence {⌦
`

, ` � 1} ⇢
FB with lim

`!+1 P (⌦
`

) = 1, such that,

R
↵,m,loc

I⌦
`

2 L1
� (⌦,F , P ), for all ` � 1.
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Keeping such a modification in mind, we can now proceed to write down the
Taylor expansion:

'(t,�
t

(x,D (t, x)))

= '(⌧, x) + ✓(⌧, x)(t� ⌧) + g(x,D'(⌧, x))(B
t

�B
⌧

)

+
1

2

n

[D
z

gD
x

g](x,D'(⌧, x)) + (D
z

g(x,D'(⌧, x))2D2
x

'(⌧, x)
o

(B
t

�B
⌧

)2

�D'(⌧, x)D
z

g(x,D'(⌧, x))(B
t

�B
⌧

)

�D'(⌧, x)D2
z

g(x,D'(⌧, x))@�
t

D (⌧, x)(t� ⌧)(B
t

�B
⌧

)

+
1

2
D'(⌧, x) hrl,⇥ i(x,D'(⌧, x))(B

t

�B
⌧

)2 (68)

�1

2
D2

x

'(⌧, x)(D
z

g(x,D'(⌧, x)))2(B
t

�B
⌧

)2

�D
x

g(x,D'(⌧, x))D
z

g(x,D'(⌧, x))(B
t

�B
⌧

)2 + |t� ⌧ |3↵R
↵,m,loc

= '(⌧, x) + ✓(⌧, x)(t� ⌧) + g(x,D'(⌧, x))(B
t

�B
⌧

)

�1

2
[D

z

gD
x

g](x,D'(⌧, x))(B
t

�B
⌧

)2 �D'(⌧, x)D
z

g(x,D'(⌧, x))(B
t

�B
⌧

)

+
1

2
D'(⌧, x) hrl,⇥ i(x,D'(⌧, x))(B

t

�B
⌧

)2

�D'(⌧, x)D2
z

g(x,D'(⌧, x))@�
t

D (⌧, x)(t� ⌧)(B
t

�B
⌧

) + |t� ⌧ |3↵R
↵,m,loc

.

On the other hand, from (61) we see that

 (t, x) = ⌘
t

(x, (t, x), D (t, x))� h(x,D (t, x))(B
t

�B
⌧

)

�1

2
hrh,⇥ i(x,D (t, x))(B

t

�B
⌧

)2 + |t� ⌧ |3↵R
↵,m,loc

.

Using the form (67) and the smoothness assumptions on all the coe�cients, and
then noting (68) one can easily rewrite above as

 (t, x) = ⌘
t

(x, (t, x), D (t, x))� h(x,D'(⌧, x))(B
t

�B
⌧

)

�D
z

h(x,D'(⌧, x))@�
t

D (⌧, x)(t� ⌧)(B
t

�B
⌧

)

�1

2
hrh,⇥ i(x,D'(⌧, x))(B

t

�B
⌧

)2 + |t� ⌧ |3↵R
↵,m,loc

.
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Now recalling the relation (62), the fact (68), and the definition of h preceding
Remark 6.1, we obtain

 (t, x)

= ⌘
t

(x, (t, x), D (t, x))� h(x,D'(⌧, x))(B
t

�B
⌧

)

�1

2
hrh,⇥ i(x,D'(⌧, x))(B

t

�B
⌧

)2 + |t� ⌧ |3↵R
↵,m

= '(⌧, x) + ✓(⌧, x)(t� ⌧) + g(x,D'(⌧, x))(B
t

�B
⌧

)

�1

2
[D

z

gD
x

g](x,D'(⌧, x))(B
t

�B
⌧

)2 �D'(⌧, x)D
z

g(x,D'(⌧, x))(B
t

�B
⌧

)

+
1

2
D'(⌧, x) hrl,⇥ i(x,D'(⌧, x))(B

t

�B
⌧

)2

�D'(⌧, x)D2
x

g(x,D'(⌧, x))@�
t

D (⌧, x)(t� ⌧)(B
t

�B
⌧

) (69)

�[g(x,D'(⌧, x))�D'(⌧, x)D
z

g(x,D'(⌧, x))](B
t

�B
⌧

)

�D
z

h(x,D'(⌧, x))@�
t

D (⌧, x)(t� ⌧)(B
t

�B
⌧

)

�1

2
hrh,⇥ i(x,D'(⌧, x))(B

t

�B
⌧

)2 + |t� ⌧ |3↵R
↵,m,loc

= '(⌧, x) + ✓(⌧, x)(t� ⌧)� 1

2
[D

z

gD
x

g](x,D'(⌧, x))(B
t

�B
⌧

)2

+
1

2
D'(⌧, x) hrl,⇥ i(x,D'(⌧, x))(B

t

�B
⌧

)2

�D'(⌧, x)D2
x

g(x,D'(⌧, x))@�
t

D (⌧, x)(t� ⌧)(B
t

�B
⌧

)

�D
z

h(x,D'(⌧, x))@�
t

D (⌧, x)(t� ⌧)(B
t

�B
⌧

)

�1

2
hrh,⇥ i(x,D'(⌧, x))(B

t

�B
⌧

)2 + |t� ⌧ |3↵R
↵,m,loc

.

Since rl = (�D
xz

g, 0,�D2
z

g) and rh = (D
x

g � zD
xz

g, 0,�zD2
z

g), one has

�1

2
[D

z

gD
x

g](x,D'(⌧, x)) +
1

2
D'(⌧, x) hrl,⇥ i(x,D'(⌧, x))

�1

2
hrh,⇥ i(x,D'(⌧, x)) = 0,

and

�D'(⌧, x)D2
z

g(x,D'(⌧, x))@�
t

D (⌧, x))(t� ⌧)(B
t

�B
⌧

)

�D
z

h(x,D'(⌧, x))@�
t

D (⌧, x)(t� ⌧)(B
t

�B
⌧

) = 0.

In other words, (69) leads to that

 (t, x) = '(⌧, x) + ✓(⌧, x)(t� ⌧) + |t� ⌧ |3↵R
↵,m,loc

. (70)

Clearly, (70) indicates that

@�
t

 (⌧, x) = ✓(⌧, x), @�
t

D (⌧, x) = D✓(⌧, x).

We can now define the notion of stochastic viscosity solution for (4).

Definition 6.2. A random field u 2 C([0, T ] ⇥ Rd) is called a stochastic viscosity
subsolution (resp. supersolution) of (4), if u(0, x)  u0(x) (u(0, x) � u0(x)) for all
x 2 Rd and if for any ⌧ 2 L0(FB , [0, T ]), ⇠ 2 L0(FB ,Rd), and any (not necessarily
adapted) random field ' 2 C0,2([0, T ]⇥Rd) having the expansion (66), it holds that

✓(⌧, ⇠)  (�) f(⇠, u(⌧, ⇠), D'(⌧, ⇠), D2
x

'(⌧, ⇠)).
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P -a.s. on the subset of ⌦ on which u�'  (�)(u�')(⌧, ⇠) = 0 at a left neighborhood
of (⌧, ⇠). A random field u 2 C([0, T ]⇥ Rd) is called a stochastic viscosity solution
of (4), if it is both a stochastic viscosity subsolution and a supersolution.

Remark 6.3. We would like to note that in Definition 6.2 the (possibly anticipat-
ing) test functions ' can be directly defined by the expansion (66) with '(⌧, ⇠) being
replaced by u(⌧, ⇠) and (✓(⌧, ⇠), D

x

'(⌧, ⇠), D2
x

'(⌧, ⇠)) being replaced by a triplet of
random variables (�, p, A). The main advantage here is that the random field '
is now defined globally, overcoming the essential di�culties in the theory of sto-
chastic viscosity solution thus far, and will significantly facilitate the uniqueness
proof. Moreover, on the subset of ⌦ where u � ' achieves the local left-maximum
(resp., left-minimum) at the point (⌧, ⇠), the triplet (�, p, A) can be considered as
a stochastic sub- (resp.super-)jet, as it was traditionally done. These issues will be
further explored in our forthcoming publications. ⇤

In the rest of this section we shall verify that a regular solution must be a
stochastic viscosity solution in the sense of Definition 6.2, which will provide a
justification for our new definition. To this end, let us assume that the coe�cient
f is proper in the following sense

(H1) The function F (t, u, p,X)
4
= �f(x, u, p,X) is “degenerate elliptic”. That

is, f is continuous in all variables, and is non-decreasing in the variable X.

Assume that u is a regular solution to (4), then we have

u(t, x) = u0(x) +

Z

t

0
F (s, x)ds+

Z

t

0
g(x,Du(s, x))dB

s

, t � 0, (71)

where

F (t, x) = f(x, (u,Du,D2u)(t, x)) +
1

2
D

z

g(x,Du(t, x))D
x

[g(·, Du(t, ·))] (t, x).

For any given pair of random variables (⌧, ⇠) and an arbitrary test field ' such
that u � ' attains a local left-maximum at (⌧, ⇠) on a subset of ⌦ with positive
probability, let  be the process associated to ' by (70) (where the remainder can
be chosen to be zero!), and � be defined by (64).

We first apply the Taylor expansion on u at point (⌧, x), and evaluated at
(t,�

t

(x,D (t, x))) to get

u(t,�
t

(x,D (t, x)))

= u(⌧, x) + f(x, (u,Du,D2u)(⌧, x))(t� ⌧) + g(x,Du(⌧, x))(B
t

�B
⌧

)

+
1

2

�

D
z

g(x,Du(⌧, x))D
x

g(x,Du(⌧, x))

+D
z

g(x,Du(⌧, x))2D2
xx

u(t, x)
 

(B
t

�B
⌧

)2

+D
x

u(⌧, x)(�
t

(x,D (t, x))� x) +
1

2
D2

xx

u(⌧, x)(�
t

(x,D (t, x))� x)2

+D
x

[g(x,Du(⌧, x))](B
t

�B
⌧

)(�
t

(x,D (t, x))� x) (72)

+|t� ⌧ |3↵R
↵,m

(⌧, t, x,�
t

(x,D (t, x))).
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Next, we use the expansion of �
t

(t,D (t, x)) (recall (64)) so that the right hand
side of (72) becomes

u(⌧, x) + f(x, (u,Du,D2u)(⌧, x)(t� ⌧) + g(x,Du(⌧, x))(B
t

�B
⌧

)

+
1

2

n

[D
z

gD
x

g](x,Du(⌧, x)) + (D
z

g(x,Du(⌧, x))2D2
x

u(⌧, x)
o

(B
t

�B
⌧

)2 (73)

�Du(⌧, x)D
z

g(x,D'(⌧, x))(B
t

�B
⌧

)

�Du(⌧, x)D2
z

g(x,D'(⌧, x))@�
t

D (⌧, x))(t� ⌧)(B
t

�B
⌧

)

+
1

2
Du(⌧, x)hrf,⇥i(x,D'(⌧, x))(B

t

�B
⌧

)2

+
1

2
D2

x

u(⌧, x)(D
z

g(x,D'(⌧, x)))2(B
t

�B
⌧

)2

�(D
x

g)(x,Du(⌧, x))D
z

g(x,D'(⌧, x))(B
t

�B
⌧

)2

�(D
z

g)(x,Du(⌧, x))D
z

g(x,D'(⌧, x))D2
x

u(⌧, x)(B
t

�B
⌧

)2 + |t� ⌧ |3↵R
↵,m,loc

.

We will now replace x by the random point ⇠. To specify the “left-neighhood”
required for the viscosity property, we also define for any ⇢ > 0 the following subset
of ⌦:

�',⇢

⌧,⇠

4
= {! : (u�')(!, t, x)  (u�')(!, ⌧(!), ⇠(!)), (t� ⌧(!))� < ⇢, x 2 B

⇢

(⇠(!))},

To wit, �',⇢

⌧,⇠

is the subset of ⌦ on which u�' attains a left local maximum at (⌧, ⇠).
Now setting x = ⇠ in (72), and noting that Du(⌧, ⇠) = D'(⌧, ⇠) and u(⌧, ⇠) =
'(⌧, ⇠), we have

u(t,�
t

(⇠, D (t, ⇠)))

= u(⌧, ⇠) + f(⇠, (u,Du,D2u)(⌧, ⇠))(t� ⌧) + g(⇠, Du(⌧, ⇠))(B
t

�B
⌧

)

�1

2
[D

z

gD
x

g](⇠, Du(⌧, ⇠))(B
t

�B
⌧

)2 �Du(⌧, x)D
z

g(⇠, Du(⌧, ⇠))(B
t

�B
⌧

)

+
1

2
Du(⌧, ⇠)hrf,⇥i(x,Du(⌧, ⇠))(B

t

�B
⌧

)2

�Du(⌧, ⇠)D2
z

g(⇠, Du(⌧, ⇠))@�
t

D (⌧, ⇠))(t� ⌧)(B
t

�B
⌧

) + |t� ⌧ |3↵R
↵,m,loc

,

almost surely on �',⇢

⌧,⇠

. Consequently, from (68) we obtain that, P -a.s. on �'

⌧,⇠

,

0 �
�

u(t,�
t

(⇠, D (t, ⇠)))� u(⌧, ⇠)
�

�
�

'(t,�
t

(⇠, D (t, ⇠)))� '(⌧, ⇠)
�

= {f(⇠, (u,Du,D2u)(⌧, ⇠))� ✓(⌧, ⇠)}(t� ⌧) + |t� ⌧ |3↵R
↵,m,loc

.

Since t  ⌧ on �'

⌧,⇠

, we deduce that

f(⇠, (u,Du,D2u)(⌧, ⇠))� ✓(⌧, ⇠) � 0, P -a.s. on �'

⌧,⇠

.

Finally, since the mapping X 7! f(x, u, p,X) is non-decreasing, thanks to (H1), and
since D2'(⌧, ⇠) � D2u(⌧, ⇠) on �'

⌧,⇠

we have

f(⇠, (', D', D2')(⌧, ⇠)) � ✓(⌧, ⇠) P -a.s. on �'

⌧,⇠

.

This proves that the classical solution u is a stochastic viscosity subsolution. That
u is also a supersolution can be proved using a similar argument. Therefore, u is a
stochastic viscosity solution.
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et solutions de viscosité, in “Seminaire: Équations aux Dérivées Partielles,” 1998–1999, Sémin.
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