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Weak Solutions of Forward–Backward SDE’s
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ABSTRACT

In this note we study a class of forward–backward stochastic differential

equations (FBSDE for short) with functional-type terminal conditions. In

the case when the time duration and the coefficients are “compatible”

(e.g., the time duration is small), we prove the existence and uniqueness

of the strong adapted solution in the usual sense. In the general case we

introduce a notion of weak solution for such FBSDEs, as well as two

notions of uniqueness. We prove the existence of the weak solution under

mild conditions, and we prove that the Yamada–Watanabe Theorem, that

is, pathwise uniqueness implies uniqueness in law, as well as the

Principle of Causality also hold in this context.

Key Words: Backward SDE’s; Backward–forward SDE’s; Weak

solutions.
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1. INTRODUCTION

The theory of backward and forward–backward stochastic differential

equations (BSDE/FBSDE) has been studied quite extensively in the past decade

and its applications have been found in many areas. We refer the reader to the

books of El Karoui-Mazliak[4] and Ma-Yong[15] for an overview on this subject.

In recent years, constant effort has been made to weaken the conditions on the

coefficients so as to enlarge the class of solvable BSDEs/FBSDEs. For example,

the existence and uniqueness of the solutions to BSDEs with non-Lipschitz

coefficients was addressed, among others, by Pardoux–Peng,[19] Mao,[17]

Hamadene[5] and Lepeltier-San Martin;[12] the same problem for FBSDEs can

be found in the works of Hu[6,7] and Hu-Yong.[9]

Besides the regularity of the coefficients, for FBSDEs there is another

difficulty, that is, the length of the time duration, often causing restrictions in

solvability. It is by now well-known that even a very simple FBSDE may not

be solvable over arbitrarily prescribed time duration (see Refs.[1,15] for

examples). So far, the solvability of FBSDE over arbitrary duration has been

discussed only in some special forms, in particular, the existing methods seem

to work only when the terminal condition of the backward equation is a

function of the forward component.[13,8,20] Consequently, the solvability of a

FBSDE of the following type over arbitrary duration seems yet to be known,

no matter how smooth the coefficients are:

Xt ¼ x þ
R t

0
bðs;Xs; YsÞds þ

R t

0
s ðs;Xs; YsÞdWs;

0 # t # T;

Yt ¼ E gðXÞT þ
R T

t
hðs;Xs; YsÞds

���F t

n o
;

8>>><
>>>:

ð1:1Þ

where g(X)T is a functional of the whole trajectory of X ¼ {Xt; 0 # t # T}:
We would like to point out that the terminal conditions of this type have strong

motivation in finance theory. Immediate examples include lookback options,

barrier options, Asian options, etc., where the whole or partial history of the

underlying securities has to be considered in determining the option price.
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We remark here that one of the main advantages of using the special form

(1.1) is that, unlike the usual framework in the BSDE/FBSDE literature, one

can now consider more general probabilistic set-ups for the BSDEs. To be

more precise, an FBSDEs of the form (1.1) could be solvable even without

assuming that the filtration {F t}t$0 is generated by the Brownian motion W, or

any other Brownian motion. In fact, one of the main objectives of this paper is

to explore the possibility of extending the notion of weak solution of SDEs to

the BSDEs and FBSDEs, which does not have any restriction on the

probability set-up a priori. We shall propose a definition of weak solution as

well as two definitions of uniqueness, i.e., pathwise uniqueness and

uniqueness in law, analogous to the usual ones for forward SDEs. We will

also provide an example in the spirit of that of Tanaka, showing that a weak

solution which is not a strong solution does exist. In the case when the

diffusion coefficient of the forward equation is decoupled from the backward

components, we show that the existence of the weak solution can be obtained

under extremely mild conditions, beyond the reach of any existing results for

strong solutions.

We should point out that, as a first attempt on the subject, in this paper we

have not been able to solve the problem of (weak) uniqueness completely,

which seems to require much deeper tools in analysis. Nevertheless, we shall

provide two results that are essential in the theory of weak solutions. First we

prove that the Yamada and Watanabe Theorem, that is, the pathwise uniqueness

implies the uniqueness in law, still holds in this context; second, we prove that

the so-called Principle of Causality, that is, the pathwise uniqueness and weak

existence imply the existence of the strong (adapted) solution, also holds for

FBSDE (1.1), provided that the filtration is “Brownian.”

This paper is organized as follows. In section 2 we give the preliminaries,

including a discussion of the existence and uniqueness of the adapted solution

of FBSDE (1.1) with full generality, within the usual strong solution

paradigm, and an example showing how the functional-type terminal

condition causes the essential difference from the FBSDEs studied so far. In

section 3 we give the definition of weak solutions and the Tanaka-type

example. In section 4 we prove an existence theorem and, finally, in section 5

we discuss the issue of uniqueness of the weak solutions.

2. PRELIMINARIES

Throughout this paper ½0;T� is a finite time interval and ðV;F ;PÞ is a

complete probability space endowed with a filtration {F t}t[½0;T� satisfying
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the “usual hypotheses.” For any 0 , t # T and 1 # p # 1; we denote by

¼½0;t�
Sp and

¼½0;t�
Hp ; the usual spaces of semimartingales defined on ½0; t�; with their

corresponding norms:

kYk
¼½0;t�
Sp

D
¼kY *

t kL pð½0;t�£VÞ ¼ ½Eð
0#s#t
sup jYsj

p
Þ�1=p

kYk
¼½0;t�
Hp

D
¼

Y¼MþA
inf {k½M;M�

1=2
t þ

R t

0
jdAsjkL pðVÞ};

8>><
>>: ð2:2Þ

where the “inf” is taken over all possible decompositions of the semi-

martingale Y (see Ref.[21, V.2]). We shall denote
¼
Sp D
¼

¼½0;T�
Sp and

¼
Hp D

¼
¼½0;t�
Hp for

simplicity.

The following relations between the
¼
Sp and

¼
Hp norms are useful (see

Ref.[21, V.2]). For any 1 # p , 1; there exists a constant cp . 0; such that for

any semimartingale X with X0 ¼ 0; it holds that kXk
¼
Sp # cpkXk

¼
Hp :

Further, for any semimartingale X and any adapted, càglàd process H,

taken any 1 # p; q; r # 1; with 1
p
þ 1

q
¼ 1

r
; Emery’s inequality holds:

Z 1

0

Hs dXs












¼
Hr

# kHk
¼
SpkXk

¼
Hq : ð2:3Þ

Let us now consider the FBSDE (1.1) in the strong solution paradigm. We

note that in this case we can treat the FBSDEs with full generality as follows:

Xt ¼ x þ

Z t

0

bðs;Xs; YsÞdAs þ

Z t

0

s ðs;Xs; YsÞdMs ð2:4Þ

Yt ¼ E gðXÞT þ

Z T

t

hðs;Xs; YsÞdCs

����F t

� �
; ð2:5Þ

where M is a continuous, square integrable martingale, and A and C are two

processes with finite variation paths. For notational simplicity we consider

only the one-dimensional case, but our arguments can be extended to higher

dimensional cases without substantial difficulties. We shall make use of the

following assumptions:

(H1) The processes A, C, and M belong to
¼
H1;

Antonelli and Ma496

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.



(H2) b; h;s : V £ ½0; T� £ R £ R! R are progressively measurable for any

x; y [ R and there exists a constant k1 . 0 such that

j f ðt; x1; y1Þ2 f ðt; x2; y2Þj # k1ðjx1 2 x2j þ jy1 2 y2jÞ;

P-a.s., for all t [ ½0; T�; x1; y1; x2; y2 [ Rð f ¼ b;s; hÞ;

(H3) the mapping g : V £ Cð½0; T�;RÞ! R is F T £ BðCð½0; T�;RÞÞ-

measurable, and for some k2 . 0; for all u1; u2 [ Cð½0; T�;RÞ it holds that

jgðu2ÞT 2 gðu1ÞT j # k2
0#t#T

sup ju2
t 2 u1

t j P 2 a:s:;

(H4) the following integrability conditions hold:

E

Z T

0

jbðs; 0; 0ÞkdAsj

� �2

; E

Z T

0

jhðs; 0; 0ÞkdCsj

� �2

, 1;

E

Z T

0

js ðs; 0; 0Þj
2
d½M;M�s

� �
, 1; E{jgð0Þj

2
T } , 1:

We note that (H4) may be substituted by a sublinear growth condition on

the coefficients. The following theorem is not surprising and since the proof is

rather standard, we give only a sketch for completeness.

Theorem 2.1. Assume (H1)– (H4) and that the following “compatibility

condition” holds:

2k1½ðkAk
2

¼
H1 þ 4kMk

2

¼
H1Þð8k2

2 þ 1Þ þ 2kCk
2

¼
H1 �

1
2 , 1: ð2:6Þ

Then the SDEs (2.4)– (2.5) has a unique solution in the space
¼
S2 £

¼
S2:

Proof. Let S D
¼

¼
S2 £

¼
S2: It is known that S is a Banach space with the norm

kðX; YÞk
¼
S2£

¼
S2 D
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kXk

2

¼
S2 þ kYk

2

¼
S2

r
: For any ðX; YÞ [ S; define the mapping

L
Xt

Yt

 !
¼

FðX; YÞt

GðX; YÞt

 !

¼

x þ
R t

0
bðs;Xs; YsÞdAs þ

R t

0
s ðs;Xs; YsÞdMs

E gðFðX; YÞÞT þ
R T

t
hðs;Xs; YsÞdCs

����F t

� �
0
BB@

1
CCA:
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We first notice that L maps S into itself. Indeed, for any ðX; YÞ [ S; it is

straightforward to verify, by using (H2), Doob’s and Emery’s inequalities, that

for any t in ½0; T�;

kFðX;YÞk
2

¼½0;t�
S2 #3jxj

2
þ9k2

1 kAk
2

¼½0;t�
H1 þ36kMk

2

¼½0;t�
H1

� �
kXk

2

¼½0;t�
S2 þkYk

2

¼½0;t�
S2

� �

þE 9

Z T

0

jbðs;0;0ÞkdAsj

� �2

þ36

Z T

0

js ðs;0;0Þj
2
d½M;M�s

 !
,1:

Similarly, applying (H2)–(H4) and Doob’s inequality we obtain

kGðX;YÞk
2

¼
S2 #8 kgð0Þk

2
2þE

Z T

0

jhðs;0;0ÞkdCsj

� �2
 !(

þk2
1kCk

2

¼
H1ðkXk

2

¼
S2 þkYk

2

¼
S2 Þþk2

2kFðX;YÞk
2

¼
S2

�
,1:

Next, we show that the operator L is a contraction on S under assumption

(2.6). Indeed, given ðX 1;Y 1Þ;ðX 2;Y 2Þ[
¼
S2; using arguments similar to those

before and assumption (H3), one shows that

kFðX 2;Y 2Þ2FðX 1;Y 1Þk
2

¼½0;t�
S2 #4k2

1ðkAk
2

¼½0;t�
H1 þ4kMk

2

¼½0;t�
H1 Þ

£ ðkX 22X 1k
2

¼½0;t�
S2 þkY 22Y 1k

2

¼½0;t�
S2Þ

kGðX 2;Y 2Þ2GðX 1;Y 1Þk
2

¼
S2 #8k2

2kFðX 2;Y 2Þ2FðX 1;Y 1Þk
2

¼
S2

þ8k2
1kCk

2

¼
H1 ðkX 22X 1k

2

¼
S2 þkY 22Y 1k

2

¼
S2 Þ:

Therefore we conclude that

kFðX 2;Y 2Þ2 FðX 1;Y 1Þk
2

¼
S2 þ kGðX 2;Y 2Þ2 GðX 1;Y 1Þk

2
s2

# 4k2
1

�
ðkAk

2

¼
H1 þ 4kMk

2

¼
H1Þð8k2

2 þ 1Þ þ 2kCk
2

¼
H1

�

	

�
kX 2 2 X 1k

2

¼
S2 þ kY 2 2 Y 1k

2

¼
S2

�
;

proving the theorem. A
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Remark 2.2. Assumption (2.6) is far from stringent. It only reflects the fact

that the Lipschitz constants of the coefficients and the length of the interval

have to be “compatible”, as it is often seen in the FBSDE literature. Using

different norms or different techniques, Eq. (2.6) can appear in rather different

forms, but they will essentially be of the same nature. We note that if At ¼

Ct ¼ t and M is a Brownian motion, then we return to the “classical” form of

the FBSDEs. In such a case (2.6) can be simplified to, for example,

2k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T½ð1 þ TÞ þ 2k2

2ðT þ 4Þ�

q
, 1; from which the “compatibility” nature of

this condition is more clearly seen.

To see the necessity of the “compatibility condition”, we have the

following easy example.

Example 2.3. Consider the following FBSDE with coefficients uniformly

Lipschitz with constant 1:

Xt ¼ x þ
R t

0
Ys ds þ sWt;

Yt ¼ E X*
T þ

R T

t
jXsj dsjF t

n o
8><
>: ;

where x . 0; s is a constant, and X*t
D
¼ sup0#s#tjXsj: It is then clear that Y is

positive and so that Yt $ E{X *
T jF t}: On the other hand

Xt ¼ XT 2

Z T

t

Ys ds 2 s ðWT 2 WtÞ # X *
T 2

Z T

t

Ys ds 2 s ðWT 2 WtÞ;

and taking expectations we obtain

0 , x # x þ E

Z T

t

Ys ds ¼ EðXtÞ # EðX *
T Þ

2 E

Z T

t

Ys ds # EðX *
T Þð1 2 T þ tÞ;

for all 0 # t # T ; which is possible only if T , 1: A

One of the main focuses in the theory of FBSDE has been finding proper

conditions under which solvability over arbitrary duration can be established.

In the case when the terminal value is of a function type, that is, YT ¼ gðXT Þ

where g(·) is a function, several methods, including the Four Step Scheme by

Ma-Protter-Yong,[13] the method of continuation by Hu-Peng[8] and Yong,[22]

and a variation of this method by Pardoux–Tang,[20] are considered rather
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effective. However, the situation will change drastically when the terminal

value is of the functional type, that is, YT ¼ gðXÞT ; where g : C½0; T� 7!

C½0; T� is a functional. For example, the essence of the Four Step Scheme is

that there exists a function u : ½0; T� £ Rn 7! Rm; such that Yt ¼ uðt;XtÞ; ;t [
½0; T�; P-a.s.. The following example shows that even in a “Markovian” case

this may not be true.

Example 2.4. Consider the following FBSDE on ½0; 1�

Xt ¼ x þ
R t

0
s ðXs; YsÞdWs

Yt ¼ E
R 1

0
Xs ds þ

R 1

t
½Ys 2 Xs�ds

����F t

� �
;

8>><
>>: ð2:7Þ

where 0 , s0 # s ðx; yÞ # C; for some constants s0;C . 0; for all x; y [ R:
We show that for such an FBSDE it does not exist any strong solution ðX; YÞ

for which Yt ¼ uðt;XtÞ holds for t [ ½0; T�; P-a.s., where u is some smooth

deterministic function.

To see this, we first observe that if ðX; YÞ is a (strong) solution on some

ðV;F ;P; {F t}Þ; with given {Ft} -Brownian motion W, then X must be an {Ft}

-martingale and a Markov process. Further, if we define Ht ¼
R t

0
Xs ds; t [

½0; T�; then the backward equation in Eq. (2.7) can be written as

Yt ¼ Ht þ E

Z 1

t

Ys ds

����F t

� �
: ð2:8Þ

A straightforward calculation using Fubini’s theorem verifies that the (unique)

solution to Eq. (2.8) is

Yt ¼ Ht þ E

Z 1

t

eðs2tÞHs ds

����F t

� �
: ð2:9Þ

By integration by parts and the martingale property of X, we deduce from (2.9)

that

e tYt ¼ e tHt þ E eH1 2 e tHt 2

Z 1

t

e s dHs

����F t

� �

¼ E e

Z 1

0

Xs ds 2

Z 1

t

e sXs ds

����F t

� �

¼ e

�Z t

0

Xs ds þ Xtð1 2 tÞ

�
2 Xt

Z 1

t

e s ds ¼ ðe t 2 etÞXt þ e

Z t

0

Xs ds:

Antonelli and Ma500

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.



In other words,

e t½dYt þ Yt dt� ¼ dðe tYtÞ ¼ d½ðe t 2 etÞXt� þ eXt dt

¼ ðe t 2 etÞdXt þ e tXt dt;

or equivalently,

dYt ¼ ð1 2 te12tÞdXt þ ðXt 2 YtÞdt

¼ ð1 2 te12tÞs ðXt; YtÞdWt þ ½Xt 2 Yt�dt:

If Yt ¼ uðt;XtÞ for some smooth function u, then the above becomes

dYt ¼ ð1 2 te12tÞs ðXt; uðt;XtÞÞdWt þ ½Xt 2 uðt;XtÞ�dt: ð2:10Þ

On the other hand, by Itô’s formula we would have

dYt ¼ {utðt;XtÞ þ
s2ðXt; uðt;XtÞÞ

2
uxxðt;XtÞ}dt

þ s ðXt; uðt;XtÞÞuxðt;XtÞdWt:

Comparing this with Eq. (2.10), by the Markov property of X and the

uniqueness of Doob–Meyer decomposition, we obtain that

utðt; xÞ þ 1
2
s2ðx; uðt; xÞÞuxxðt; xÞ2 x þ uðt; xÞ ¼ 0

;ðt; xÞ [ ½0; 1� £ R

s ðx; uðt; xÞÞuxðt; xÞ ¼ s ðx; uðt; xÞÞ½1 2 te12t�;

8>>>><
>>>>: ð2:11Þ

Since s ðx; yÞ $ s0 . 0; the second equation in Eq. (2.11) implies that

uxðt; xÞ ¼ ½1 2 te12t�; ; ðt; xÞ [ ½0; T� £ R:

Thus uðt; xÞ ¼ ½1 2 te12t�x þ fðtÞ; ;ðt; xÞ [ ½0; T� £ R; for some smooth

function f. Substitute such a function u into the first PDE in Eq. (2.11) and do

a little computation, we see that f has to satisfy the differential equation

f0ðtÞ þ fðtÞ2 e12tx ¼ 0; for any x [ R: This is impossible, hence a

contradiction. A
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3. WEAK SOLUTIONS: DEFINITIONS AND EXAMPLES

In this section we propose a notion of weak solution for BFSDE’s,

analogous to the concept in the theory of forward SDE’s (see Ref.[10]).

To begin with, let us make some remarks on the probabilistic set-ups. In

what follows we call a quintuple ðV;F ;P; {F t}t[½0;T�;WÞ a standard set-up if

(V,F,P) is a complete probability space, {F t}t[½0;T� is a filtration satisfying

the usual hypotheses and W is an {Ft} -Brownian motion. In particular, if Ft is

FW
t ; the natural filtration generated by the Brownian motion W, augmented by

all the P -null sets of F, we say that the set-up is Brownian.

Fix a standard set-up, let us consider the following FBSDE (in vector

form):

Xt ¼ x þ
R t

0
bðs;Xs; YsÞds þ

R t

0
s ðs;Xs; YsÞdWs

Yt ¼ E gðXÞT þ
R T

t
hðs;Xs; YsÞds

����F t

� �
8>><
>>: ;

ð3:1Þ

where x [ Rn and

b : ½0; T� £ Rn £ Rm ! Rn s : ½0; T� £ Rn £ Rm ! Rn£d

h : ½0; T� £ Rn £ Rm ! Rm g : Cð½0; T�; RnÞ! Rm

are jointly measurable with respect to all of their variables. We remind the

reader that if the set-up is Brownian, then the FBSDE (1.1) can be rewritten as

Xt ¼ x þ
R t

0
bðs;Xs; YsÞds þ

R t

0
s ðs;Xs; YsÞdWs

Yt ¼ gðXÞT þ
R T

t
hðs;Xs; YsÞds 2

R T

t
Zs dWs:

8<
: ð3:2Þ

We first give the following definitions.

Definition 3.1. Let ðV;F ;P; {F t};WÞ be a standard set-up. The pair of

processes ðX; YÞ; defined on this set-up, is called a strong solution of Eq. (3.1) if

(i) the set-up is Brownian,

(ii) ðX;YÞ are both {Ft}-adapted, continuous processes such that

E
t[½0;T�
sup jXtj

2
þ

t[½0;T�
sup jYtj

2

( )
,1; and E

Z T

0

s2ðXs;YsÞds

� �
,1

(iii) ðX;YÞ satisfies Eq. (3.1) P-a.s.
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Definition 3.2. A pair of processes ðX; YÞ; together with a standard set-up

ðV;F ;P; {F t}t[½0;T�;WÞ on which X and Y are defined, is called a weak

solution of Eq. (3.1) if

(i) the process X is continuous, Y is càdlàg and both are {Ft}-adapted;

(ii) P
R T

0
½jbj þ jsj

2
þ jhj

2
�ðs;Xs; YsÞds þ jgðXÞT j

2
, 1

n o
¼ 1

(iii) X and Y verify Eq. (3.1) P-a.s.

The notion of weak solution can be extended to more general FBSDEs

often met in the classical theory.

Definition 3.3. A triple of processes ðX; Y ; ZÞ; together with a standard set-up

ðV;F ;P; {F t};WÞ where X, Y, Z are defined, is called a weak solution of

Xt ¼ x þ
R t

0
bðs;Xs; Ys; ZsÞds þ

R t

0
s ðs;Xs; Ys; ZsÞdWs

Yt ¼ gðXÞT þ
R T

t
hðs;Xs; Ys; ZsÞds 2

R T

t
ZsdWs;

8<
: ð3:3Þ

where b, h, and s are deterministic functions of ðt; x; y; zÞ; if

(i) the process X is continuous, Y is càdlàg and X, Y, Z are all

F t- adapted;

(ii) P
R T

0
½ðjbj þ jsj

2
þ jhj

2
Þðs;Xs; Ys; ZsÞ þ jZsj

2
�ds þ jgðXÞT j

2
, 1

� �
¼ 1

(iii) ðX; Y; ZÞ verifies Eq. (3.3) P-a.s.

Next we give an example showing that our definition of weak solution is

not fictitious. Namely, we show that there exist FBSDEs that admit only weak

solutions but not strong solutions. Of course, in a completely decoupled

setting, the well-known Tanaka example (see, e.g., Ref.[11, Example 5.3.5]) would

serve the purpose, but the following one seems slightly non-trivial.

Example 3.4. Consider the coupled FBSDE:

Xt ¼

Z t

0

sgnðYsÞdWs ð3:4Þ

Yt ¼ E XT þ

Z T

t

ðXs 2 YsÞds

����F t

� �
; ð3:5Þ

where sgnðxÞ ¼ 1{x.0} 2 1{x#0}: We first show that the weak solution of

Eq. (3.4) and (3.5) exists. Indeed, let X be a Brownian motion defined on some
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probability space (V,F, P). Setting F t ¼ FX
t ; t [ ½0; T� we can solve

the linear backward SDE (3.5) (or simply by observation) to obtain that

Yt ¼ Xt; ;t [ ½0; T�;P 2 a:s: Thus the forward equation (3.4) becomes

Xt ¼

Z t

0

sgnðXsÞdWs: ð3:6Þ

Therefore, defining Wt ¼
R t

0
sgnðXsÞdXs we see that {ðX; YÞ;

ðV;F ;P; {F t}Þ;W} is a weak solution to Eqs. (3.4) and (3.5).

Next we show that Eqs. (3.4) and (3.5) do not admit any strong

solution. Suppose the contrary and let ðX; YÞ be a strong solution defined

on a given set-up {ðV;F ;P; {F t}Þ;W} such that F t ¼ FW
t ; t [ ½0; T�: It

is easy to see that X is an {FW
t } -Brownian motion and one can still

deduce from Eq. (3.5) that Yt ¼ Xt; ;t [ ½0; T�; P -a.s.. Consequently,

Eq. (3.6) still holds. But this leads to the absurd inclusion: FX
t # F jXj

t ;
;t [ ½0; T�; as we saw in Tanaka’s example (see, again, Ref.[11, pp. 302], a

contradiction. Indeed Eq. (3.5) can be written as a more explicit backward

SDE driven by W, even if F t ¼ FX
t $ FW

t ; t [ ½0; T�: Since X is an {FX
t }

-Brownian motion, we can apply the Martingale Representation Theorem

to conclude that there exists an FX -predictable process Ẑ such that

Yt ¼ XT þ

Z T

t

ðXs 2 YsÞds 2

Z T

t

Ẑ dXs

¼ XT þ

Z T

t

ðXs 2 YsÞds 2

Z T

t

Ẑ sgnðXsÞdWs

¼ XT þ

Z T

t

ðXs 2 YsÞds 2

Z T

t

Zs dWs:

The main difference here (as opposed to the usual framework) is that we

cannot expect Y and Z to be FW
t -adapted in general. A

To end this section we turn our attention to the uniqueness of weak

solutions of FBSDE’s. In section 5, we consider only FBSDE’s of the form

(3.1) rather than (3.3). In light of the standard (forward) SDE’s theory, taking

into account the path regularity requirement in Definition 3.2, we introduce

the following canonical space which will be useful in our future discussion.

Ck ¼ C½0; T�; RkÞ for k ¼ n; d; Dm ¼ D½0;T�ðR
mÞ

Q ¼ Cd £ Cn £Dm;

BðQÞ ¼ BðCdÞ^BðCnÞ^BðDmÞ: ð3:7Þ
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where by D½0;T�ðR
mÞ we denote the space of R m -valued, càdlàg functions on

½0; T�: We remark that Dm is a complete separable space, under the Skorohod

topology. Furthermore, if the processes are in fact continuous, the Skorohod

topology reduces to the sup-norm topology. We denote by u ¼ ðw; x; yÞ the

generic element of Q.

Definition 3.5. If ðX; YÞ and ð ~X; ~YÞ are two weak solutions of Eq. (3.1)

defined on the same set-up ðV;F ;P; {F t};WÞ; we say that pathwise

uniqueness holds if

P ðXt; Y tÞ ¼ ð ~Xt; ~YtÞ; ;t [ ½0; T�
 !

¼ 1:

If {ðX; YÞ; ðV;F ;P; {F t};WÞ} and {ð ~X; ~YÞ; ð ~V; ~F ; ~P; { ~F t}; ~WÞ} are two weak

solutions of Eq. (3.1), we say that uniqueness in the sense of probability laws

(or uniqueness in law) holds if ðX; YÞ and ð ~X; ~YÞ have the same probability

distribution on the space ðCd £Dm;BðCd £DmÞÞ:
The same definition can be naturally extended to the case of Eq. (3.3)

4. EXISTENCE OF WEAK SOLUTIONS

As in the forward SDE literature, one of the main differences between

weak and strong solutions is that a weak solution does not require that the

probability space be fixed a priori. In fact, we do not even require that

the filtration be Brownian, a key assumption in the standard theory of BSDEs.

The following result shows how such a relaxation can drastically reduce the

difficulty in proving the existence of the solution, compared to the usual

results for strongly coupled FBSDEs.

Let us consider the FBSDE of the form (3.3), that is

Xt ¼ x þ
R t

0
bðs;Xs; Ys; ZsÞds þ

R t

0
s ðs;Xs; Ys; ZsÞdWs

Yt ¼ gðXÞT þ
R T

t
hðs;Xs; Ys; ZsÞds 2

R T

t
ZsdWs:

8<
: ð4:1Þ

For simplicity let us assume that d ¼ n and m ¼ 1: We shall make the

following extra assumptions.

(H5) (i) b and s are bounded and continuous. Further, s is independent of

y and z and for some constant c0 . 0; s2ðs; xÞ $ c0; for all ðs; xÞ [
½0; T� £ Rn;
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(ii) h is continuous and there exists a constant C . 0 such that

jhðt; x; y; zÞj # Cð1 þ jyj þ jzjÞ:

We have the following theorem.

Theorem 4.1. Suppose that the coefficients of Eq. (4.1) satisfy (H5). Then

there exists at least one weak solution of FBSDE (4.1).

Remark 4.2. (i) Since the FBSDE is strongly coupled in every coefficient

except for s and the terminal condition is of a functional form, to our best

knowledge, there has been no results concerning the existence and uniqueness

of the strong solution of Eq. (4.1) under such mild conditions. In fact, it seems

quite unlikely that any of the existing techniques would work;

(ii) From Definitions 3.1and 3.2, it is easily seen that Theorem 4.1 covers

also the existence of the weak solution of Eq. (3.1).

Proof. First, consider the forward SDE

Xt ¼ x þ

Z t

0

s ðs;XsÞdBs: ð4:2Þ

By (H5) (i), it is well-known that Eq. (4.2) has a (unique) weak solution. Thus,

there exists a standard set-up ðV;F ;P; {F t};BÞ on which a process X is

defined so that Eq. (4.2)) holds P -a.s.. We point out that by virtue of the

conditions on s and the fact that the initial state of X is deterministic, one can

show that FX
t ¼ FB

t ; ;t [ ½0; T� (see, e.g., Ref.[11, Theorem 5.4.22] for the

construction of the weak solution and note that the inclusion FB
t # FX

t is

trivial due to the nondegeneracy of s ). So, we may assume without loss of

generality that the set-up is indeed Brownian and replace {Ft} with {FB
t }:

Next, let us define the function

~hðt; x; y; zÞ D
¼ hðt; x; y; zÞ2 zs21ðt; xÞbðt; x; y; zÞ; ;ðt; x; y; zÞ:

Clearly, h̃ is continuous, and satisfies (ii) of (H5) as well.

For the given set-up ðV;F ;P; {FB
t };BÞ we consider the following BSDE:

Yt ¼ gðXÞT þ

Z T

t

~hðs;Xs; Ys; ZsÞds 2

Z T

t

Zs dBs; ð4:3Þ
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where the process X is the weak solution of Eq. (4.2). Since FX ¼ FB;

j
D
¼ gðXÞT is FB

T -measurable. Thus, using the result of Ref.[12] we know that

Eq. (4.3) has a strong adapted solution ðY ; ZÞ on the given set-up

ðV;F ;P; {FB
t };BÞ:

The rest of the proof is obvious. We define

Mt ¼ exp

Z t

0

kQs; dBsl2
1

2

Z t

0

kQsk
2

ds

� �
; t [ ½0;T�;

where Qt
D
¼s21ðt;XtÞbðt;Xt; Yt; ZtÞ; t [ ½0; T�: Since Q is a bounded {FB

t } -

adapted process, M is an {FB
t } -martingale, and by Girsanov’s theorem we

have that under the new probability measure P̃ defined by d ~P
dP

¼ MT ; the

process Wt
D
¼Bt 2

R t

0
Qs ds is an {FB

t } -Brownian motion and the triple

ðX; Y ;ZÞ satisfies the FBSDE

Xt ¼ x þ
R t

0
bðs;Xs; Ys; ZsÞds þ

R t

0
s ðs;XsÞdWs

Yt ¼ gðXÞT þ
R T

t
ð~hðs;Xs; Ys; ZsÞ þ ZsQsÞds 2

R T

t
ZsdWs

¼ gðXÞT þ
R T

t
hðs;Xs; Ys; ZsÞds 2

R T

t
Zs dWs;

8>>><
>>>:

ð4:4Þ

proving the theorem. A

5. UNIQUENESS OF WEAK SOLUTIONS

In this section we discuss the issues concerning the uniqueness of weak

solutions. We first prove a result that is well known in the forward SDE case,

that is, pathwise uniqueness implies uniqueness in law. We should point out that

the situation here is a little more delicate than the standard one, because the law

of the backward component might call for an evaluation of the distributions of

the martingale part, indeed expressed by means of the conditional expectation.

We have the following extension of Yamada–Watanabe Theorem.

Theorem 5.1. Assume (H5), then pathwise uniqueness implies uniqueness

in law.

Proof. Let {ðX i; Y iÞ; ðVi;F i;m i; {F i
t};W iÞ}; i ¼ 1; 2 be two weak solutions

of Eq. (3.1). Our first step is to construct an appropriate space to contain both

set-ups.
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Let Q be the canonical path space defined by Eq. (3.7) and let Pi, i ¼ 1; 2;
be the distributions of {ðW i;X i; Y iÞ on ðQ;BðQÞÞ respectively, that is

PiðAÞ ¼ mi{ðW
i;X i; Y iÞ [ A} ;A [ BðQÞ; i ¼ 1; 2:

Since the marginal distribution of both P1 and P2 on the w coordinate is the

Wiener measure, denoted by P*, let us denote the regular conditional

probability of Pi given W i ¼ w on ðQ;BðQÞÞ by

Qiðw; AÞ
D
¼Pi{AjWi ¼ w}; ;w [ Q:

Now let us restrict Qiðw; ·Þ to the following “cylindrical” sets

A ¼ ~F ¼ Cd £ F : F [ BðCnÞ^BðDmÞ
 !

[ BðQÞ:

Then it is easily checked, by definition of the regular conditional probability,

that for all F [ BðCnÞ^BðDmÞ and G [ BðCdÞ; it holds that

PiðG £ FÞ ¼

Z
G

Qiðw; FÞP* ðdwÞ:

Next, we slightly enlarge the canonical space defined by Eq. (3.7): let

V ¼ Q £ Cn £Dm; F ¼ BðQÞ^F ðCnÞ^BðDnÞ; ð5:1Þ

with v ¼ ðw; x1; y1; x2; y2Þ denoting the generic element of V. We define a

probability on ðV;F Þ by

PðdvÞ ¼ Q1ðw; ðdx1dy1ÞÞQ2ðw; ðdx2dy2ÞÞP* ðdwÞ: ð5:2Þ

For each t [ ½0; T�; let Gt ¼ s ð{ðw; x1; y1; x2; y2ÞðsÞ; 0 # s # t}Þ and {F t} be

the usual P -augmentation of {Gt}: The filtration {F t} clearly satisfies the

usual hypotheses and the coordinate process WtðvÞ
D
¼wðtÞ; t [ ½0; T� is an {Ft}

-Brownian motion.

By construction, for all A [ BðQÞ; one has

P{v [ Vðw; x1; y1Þ [ A}

¼

Z
A

Z
Cn

Z
Dm

Q2ðw; dx2dy2ÞQ1ðw; dx1dy1ÞP* ðdwÞ

¼

Z
A

Z
Cn£Dm

Q2ðw; dx2dy2Þ

� �
Q1ðw; dx1dy1ÞP* ðdwÞ

¼

Z
A

Q1ðw; dx1dy1ÞP* ðdwÞ ¼ P1ðAÞ ¼ m1{ðW 1;X 1; Y 1Þ [ A}:

ð5:3Þ
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Similarly, for any A [ B(Q) we also have

m2{ðW 2;X 2; Y 2Þ [ A} ¼ P{v [ V : ðw; x2; y2Þ [ A}: ð5:4Þ

Consequently, if the pathwise uniqueness holds, then we have P{v [ V :

ðx1; y1Þ ¼ ðx2; y2Þ} ¼ 1: Applying Eqs. (5.3) and (5.4), we conclude

immediately that

m1{ðW 1;X 1; Y 1Þ [ A} ¼ m2{ðW 2;X 2; Y 2Þ [ A}; for all A [ BðQÞ:

That is, the two weak solutions have the same distribution under P. A

In the rest of this section we shall prove the so-called Principle of

Causality, namely that “weak existence” and “pathwise uniqueness” imply

strong existence of the solution. To do this we need the following lemma.

Lemma 5.2. Let H be an R m -valued, adapted process with càdlàg paths,

defined on some probabilitic set-up ð ~V; ~F ; ~P; { ~F t}Þ; and assume that the

filtration { ~F t} is Brownian. Then there exists a process h defined on the

canonical space ðV;F ;PÞ; given by Eqs. (5.1) and (5.2), such that h is {Ft} -

adapted, has càdlàg paths and has the same distribution as H.

Proof. First, we note that ~F is Brownian by assumption, we may assume

without loss of generality that ~F t ¼ F ~W
t ; where W̃ is an {Ft} -Brownian

motion. Next, let t $ 0 be fixed. Since Ht is F ~W
t -measurable, and F ~W

t is

generated by the random variables of the form W†^t; one can apply

the classical result for s to show (see, e.g., Ref.[2]) that there exists a Borel

measurable function Ct : Cd ! Rm such that

HtðvÞ ¼ Ctð ~W†ðvÞÞ ¼ Ctð ~W†^tðvÞÞ for ~P 2 a:e:v:

Let us now denote Nt
D
¼ {v [ V : HtðvÞ – Ctð ~W†^tðvÞÞ} and

N
D
¼
S

r[½0;T�>Q Nr: Then obviously ~PðNÞ ¼ 0:
Now on the canonical space ðV;F ;PÞ; we define a process

htðw; x1; y1; x2; y2Þ ¼ Ctðw†^tÞ; for 0 # t # T and w [ Cd: We are to show

that h is what we want. To see this we first note that

~P ’t [ ½0; T�> Q : HtðvÞ – htð ~W†ðvÞÞ
 !# $
¼ ~P ’t [ ½0; T�> Q : HtðvÞ – Ctð ~W†ðvÞÞ

 !# $
¼ ~PðNÞ ¼ 0;

that is, Htð·Þ ¼ htð ~Wð·ÞÞ; for all t [ Q; P̃- a.e. Consequently, for any n [ N;
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any partition 0 # t1 , · · · , tn # T ; where ti [ Q; and any n bounded

continuous function f i : Rm £ Rd ! R; the following holds

E ~P

Yn

i¼1

f iðHti
; ~Wti

Þ

 !
¼ EP*

Yn

i¼1

f iðCti
ðw†^tÞ;wti

Þ

 !

¼ EP

Yn

i¼1

f iðhti
ð†Þ;wti

ð†ÞÞ

 !
ð5:5Þ

where P is defined by Eq. (5.2).

To show that h and H has the same distribution (in fact ðh; ~WÞ and ðH; ~WÞ

have the same joint distribution), we need to extend Eq. (5.5) to all partitions

with arbitrary partition points. To this end we first show that the process h is in

fact càdlàg.

To see this we first note that the set A0 ¼ {v [ ~V : H†ðvÞ is not càdlàg}

in (Ṽ,F,P̃) is a P̃ -null set. Therefore if we denote

A ¼ {ðw; x1; y1; x2; y2Þ [ V : h†ðw; x1; y1; x2; y2Þ is not c�adl�ag}

¼ {ðw; x1; y1; x2; y2Þ [ V : C†ðwÞ is not c�adl�ag};

and A1 ¼ {w [ Cd : C†ðwÞ is not c�adl�ag}; then we see, from the definition

of C and h that

PðAÞ ¼ P* ðA1Þ ¼ ~P+ ~W21ðA1Þ ¼ ~PðA0Þ ¼ 0:

This last equality amounts to saying that h has càdlàg paths P -a.s.

Since h is jointly measurable in ðt;wÞ and {Fw
t } -adapted, taking limits in

Eq. (5.5), we have that the same equality holds for any choice of 0 # t1 ,

· · · , tn # T (not necessarily rational), hence h and H have the same

distribution, proving the lemma. A

We now prove the main result of this section.

Theorem 5.3. Assume (H5), and that there exists a weak solution of FBSDE

(4.1) ððX; Y; ZÞ; ðV;F ;P; {F t}Þ;WÞ; such that

(i) F t ¼ FW
t ; t [ ½0; T�;

(ii) there exists a version of the process Z that has càdlàg paths.
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Assume further that the pathwise uniqueness hold. Then FBSDE (4.1)

admits a unique strong solution. Consequently, the same result holds for the

FBSDE (3.1).

Remark 5.4. The assumption that Z has a càdlàg version is by no means a

stringent condition. In fact, many sufficient condtions, most of them quite

minor, have been obtained recently, even in the case when the terminal values

are of functional form. We refer the readers to Ref.[16] and Ref.[14] for details.

Proof. Since we are in the case of Brownian filtrations, Y 1 and Y 2 have

necessarily continuous paths. Thus we restrict the canonical space to Cd £

Cn £ Cm:
For each t [ ½0; T� we define a truncation mapping w : J 7! J; where

J ¼ Cd; Cn; Cm; by

wtðzÞð·Þ
D
¼zð· ^ tÞ;

and we introduce the s -algebra

BtðJÞ ¼ s ðzðsÞ; s # t; z [ JÞ ¼ f21
t ðJÞ:

Proceeding as before, we may define

ðQ;BtðQÞÞ ¼ ðCd £ Cn £ Cm;BtðCdÞ^BtðCnÞ^BtðCmÞÞ

with probabilities Pt
i ¼ miððW

i;X i; Y iÞ [ AÞ; for A [ BtðQÞ and i ¼ 1; 2:
We now let Qt

iðw; FÞ be the regular conditional probabilities of Pt
i given

ftW
i ¼ ftw: Then for any F [ BtðCnÞ^BtðCmÞ; it holds that

PiðG £ FÞ ¼

Z
G

Qt
iðw; FÞP* ðdwÞ ð5:6Þ

for all G [ BtðCdÞ; where P is the Wiener measure on Cd: We are to show that

Eq. (5.6) holds for any G [ BðCdÞ:
To this end, we choose G in the family

H ¼ {G ¼ f21
t G1 > s21

t G2;G1;G2 [ BðCdÞ};

where stwðsÞ ¼ wðt þ sÞ2 wðsÞ; which is a Dynkin system generating the

Borel s -algebra B(Cd). For i ¼ 1; 2; since the coordinate process WtðwÞ ¼

wðtÞ is a Brownian motion under P* ; we see that f21
t G1 and s21

t G2 are
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independent under P, therefore,Z
G

Qt
iðw; FÞP* ðdwÞ ¼

Z
V

Qt
iðw; FÞ1f21

t G1
1s21

t G2
P* ðdwÞ

¼

Z
V

E* ðQ
t
iðw; FÞ1f21

t G1
1s21

t G2
jBtðCdÞÞP* ðdwÞ

¼

Z
V

Qt
iðw; FÞ1f21

t G1
E* ð1s21

t G2
jBtðCdÞÞP* ðdwÞ

¼

Z
V

Qt
iðw; FÞ1f21

t G1
P* ðs

21
t G2ÞP* ðdwÞ

¼ P* ðs
21
t G2ÞPiðf

21
t G1 £ FÞ:

On the other hand, since Piðf
21
t G1 £ FÞ ¼ mi{ftW

i [ G2; ðX
i;Y iÞ [ F};

and P* ðs
21
t G2Þ ¼ Pi{ðw; x; yÞ [ Q;stw [ G2} ¼ mi{stW

i [ G2}; we

conclude thatZ
G

Qt
iðw; FÞP* ðdwÞ ¼ mi{ftW

i [ G2; ðX
i; Y iÞ [ F}mi{stW

i [ G2}

¼ mi{W i [ G; ðX i; Y iÞ [ F} ¼ PiðG £ FÞ:

Since we can extend the previous inequality to any set G [ BðCdÞ; for F [
BtðCnÞ^BtðCmÞ we have that Qt

iðw; FÞ ¼ Qiðw; FÞ; P -a.s.

Now let us define the probability

Qðw; dx1dy1; dx2dy2Þ ¼ Q1ðw; dx1dy1ÞQ2ðw; dx2dy2Þ

By definition, we know that PðG £ BÞ ¼
R

G
Qðw; BÞP* ðdwÞ for any G [

BðCdÞ and B [ ðBðCnÞ^BðCmÞÞ^
2

: In particular, if we choose the set

G £ B ¼ Cd £ {ðx1; y1Þ; ðx2; y2Þ [ ðCn £ CmÞ2 : ðx1; y1Þ ¼ ðx2; y2Þ};

the definition of P and the pathwise uniqueness allows to conclude that

1 ¼ PðG £ BÞ ¼

Z
G

Qðw; BÞP* ðdwÞ;

which holds only if there exists a set N such that P* ðNÞ ¼ 0 and Qðw; BÞ ¼ 1

for any w � N; consequently

1 ¼

Z
Cn£Cm

Q1ðw; {ðx1; y1}ÞQ2ðw; dx1 £ dy1Þ: ð5:7Þ
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Note that the last equality is possible only if there exists a point, possibly

depending on w, where the two measures concentrate; in other words if there

exists ðx; yÞ ¼ ðh1ðwÞ; h2ðwÞÞ; so that Qiðw; ðh1ðwÞ; h2ðwÞÞ ¼ 1: This amounts

to saying that there exists a solution to our equation that is of the form

ðX; YÞ ¼ ðh1ðWÞ; h2ðWÞÞ: It is then easy to check that this is the strong solution

we are looking for. A
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