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ABSTRACT
In this paper, we are interested in the well-posedness of a class of fully
coupled forward-backward SDE (FBSDE) in which the forward drift
coefficient is allowed to be discontinuous with respect to the backward
component of the solution. Such an FBSDE is motivated by a practical
issue in regime-switching term structure interest rate models, and the
discontinuity makes it beyond any existing framework of FBSDEs. In a
Markovian settingwith non-degenerate forwarddiffusion,we show that
a decoupling function can still be constructed and that it is a Sobolev
solution to the corresponding quasilinear PDE. As a consequence we
can then argue that the FBSDE admits a weak solution in the sense of
[1, 2]. In the one-dimensional case, we further prove that the weak
solution of the FBSDE is actually strong, and it is pathwisely unique. Our
approach does not use the well-known Yamada–Watanabe Theorem,
but instead follows the idea of Krylov for SDEs with measurable
coefficients.

1. Introduction

In this paper, we are interested in the well-posedness of the following Markovian-type
“regime-switching” forward-backward stochastic differential equation (FBSDE):⎧⎨

⎩
Xt = x + ∫ t

0 b(s,Xs,Ys)ds + ∫ t
0 σ (s,Xs,Ys)dWs

Yt = g(XT )− ∫ T
t h(s,Xs,Ys,Zs)ds − ∫ T

t ZsdWs,

X0 = x, YT = g(XT ).

(1.1)

We assume that the coefficients σ , h, and g are deterministic Lipschitz functions, but the drift
coefficient b takes the following form:

b(t, x, y) =
m∑
i=1

bi(t, x)1[ai,ai+1)(y), (t, x, y) ∈ [0,T] × Rd × R, (1.2)

where−∞ < a1 < a2 < · · · < ∞ is a finite partition ofR, and bi’s are deterministic Lipschitz
functions. The main feature of this FBSDE is that the coefficient b has, albeit finitely many,
jumps in the variableY . Thus, it is beyond the scope of any existing literature of FBSDEs, for
which the weakest assumption this far is “Lipschitz” in all spatial variables (see, e.g., [3]), as
far as the strong solution is concerned.
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2 J. CHEN ET AL.

Our problem is motivated by the following “regime-switching” term structure model that
is often seen in practice. Consider, for example, the Black-Karasinski short rate model that is
currently popular in the industry: let r = {rt : t ≥ 0} be the short rate process, and Xt = ln rt ,
t ≥ 0. Then X satisfies the following SDE:

dXt = k(θt − Xt )dt + σdWt , (1.3)

where W is a standard Brownian motion. A simple “regime-switching” version of (1.3) is
that the mean reversion level θ shifts between two values θt ∈ {b1, b2}. The existence of such
structural shift was supported by empirical evidence (see, e.g., [4, 5]), and many dynamic
models of the short rate have been proposed, and some of them are hidden Markovian in
nature, that is, the switch is triggered by an exogenous factor (diffusion) process Y so that
θt = b(Yt ), where b(y) ∈ {b1, b2} (see, e.g., [6–9]). In particular, if we consider the case in
which the triggering process is the long-term rate, then following the argument of a term
structure model (see, for example, Duffie-Ma-Yong [10]), and assuming the triggering level
to be α > 0, we can derive an FBSDE with discontinuous coefficient:⎧⎨

⎩
dXt = [b(Yt )− βXt]dt + σdWt

dYt = [eXtYt − 1]dt + ZtdWt

X0 = x, YT = g(XT ),

(1.4)

whereXt = ln rt ,Yt is the long-term treasury bond price; b(y) = b11{y≤α} + b21{y>α}, b1 �= b2;
and α, β , σ are constants. Clearly, this is a special case of the FBSDE (1.1), and we are aiming
at finding its strong solution in the sense of SDEs.

We should note that the FBSDEs (1.1) or (1.4) has discontinuities in its drift, in the com-
ponent Y . Thus, they fall outside most of the existing works in the literature where at least
the Lipschitz continuity of the coefficients on the componentY is assumed (see [11, 12], and
recently [3]). In a recent work [13], the fully coupled FBSDEs with discontinuous terminal
coefficient was studied, and the well-posedness was proved in the case when the FBSDE takes
a simple form, and the forward diffusion is non-degenerate. The FBSDE considered in this
paper is more general, and the singularity could appear in any time t ∈ [0,T]. Moreover, it
should be emphasized that, unlike the cases of FBSDEwith discontinuous coefficients studied
previously (see, e.g., [14]), the discontinuity of the coefficients considered in this paper appear
on the variable Y , which, in view of the corresponding PDE, is the “solution” variable. Thus,
the singularity is much more malignant, and to our best knowledge, it has not been studied
in any form.

Our plan of attack is quite standard. Since the FBSDE is Markovian, we shall first mollify
the coefficients so that the FBSDE can be solved by Four Step Scheme (see [12, 15]). Then,
with the help of some uniform estimates on the solution to the decoupling PDEs, as well as
its derivatives, we can find a sequence of solutions that converges relatively nicely to a limit
function. The main task is then to argue that this function is exactly a desired “decoupling”
function. We shall carry out this task by first showing that the limit function is indeed a solu-
tion to the corresponding quasilinear PDE in the “distribution” sense. It then follows from the
argument of Kim–Krylov [16] that the regularity of this distribution solution can be raised to
W 1,2

2 ((0,T )× R), so that the Itô–Krylov formula can be applied. This then easily leads to the
existence of a weak solution of the FBSDE (1.1) in the sense of [1] and [2]. Furthermore, in
light of the well-known Yamada–Watanabe Theorem (or the FBSDE version by [1] and [17]),
to obtain the strong existence of the solution we need only show the pathwise uniqueness of
the FBSDE (1.1). But this becomes quite challenging with the presence of the discontinuity in
the coefficients. We therefore take a different route. Namely, we prove directly that the weak
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STOCHASTIC ANALYSIS AND APPLICATIONS 3

existence and uniqueness will actually guarantee the strong existence and uniqueness. The
key trick is a weak convergence argument using the so-called Krylov-type estimate, and the
comparison theorems for SDE with regular coefficients. We note that such an argument has
been frequently employed for PDEs and/or SDEs with measurable coefficients (see, e.g., [18],
[19], or [20]), and it works quite effectively in the current situation.

The rest of the paper is organized as follows. In Section 2, we give the necessary prepara-
tions and introduce notations. In Section 3, we construct the decoupling function and prove
some uniform estimates for the approximating PDEs, which leads to the facts that the limit
function is a distribution solution of the FBSDE, and that it belongs toW 1,2

2 ([0,T] × R). In
Section 4, we prove the weak-well-posedness. In Section 5, we show directly that the weak
solution of FBSDE (1.1) is actually strong, and is pathwisely unique.

2. Preliminary

Throughout this paper we consider a complete, filtered probability space (�,F ,P;F) on
which is defined a standard Brownian motion W . We shall assume that the filtration F =
{Ft}t≥0 is Brownian, that is, F = {FW

t }t≥0, and is augmented by all the P-null sets of F so
that it satisfies the usual hypotheses (see [21]).

In this paper, we shall content ourselves with one-dimensional case. Let [0,T] be a
given finite time interval, and denote RT

�= {(t, x) : t ∈ [0,T], x ∈ R}. The spaces L2(RT )

and C1,2(RT ) are defined in obvious ways. For a function u defined on RT , we denote
its generalized derivatives by ∂tu = ut , ∂xu = ux, and ∂2xxu = uxx, and the Sobolev spaces
H1(RT )

�= {u ∈ L2(RT ) : ux ∈ L2(RT )},W 1,2
2 (RT )

�= {u ∈ L2(RT ) : ut , ux, uxx ∈ L2(RT )}will
be used frequently in the sequel.

The main objective of this paper is the following (Markovian) Forward-Backward SDE
(FBSDE): for t ∈ [0,T],{

Xt = x + ∫ t
0 b(s,Xs,Ys)ds + ∫ t

0 σ (s,Xs,Ys)dWs,

Yt = g(XT )+ ∫ T
t h(s,Xs,Ys,Zs)ds − ∫ T

t ZsdWs,
(2.1)

where

b(t, x, y) =
N∑
i=1

bi(t, x)1[yi−1,yi )(y), for (t, x) ∈ [0,T] × Rn, (2.2)

and −∞ < y1 < · · · < yN < ∞. For simplicity, we shall assume that all the processes
involved are one-dimensional, but as we shall see later, in most of the situation the higher
dimensional cases, especially for the forward component X and the Brownian motionW , can
be argued in an identical way without substantial difficulties.

Our objective is to understand the well-posedness of the solution to (2.1). To this end, we
first recall the two definitions of the solutions (see [1] and [2]).

Definition 2.1. For a given standard set-up (�,F ,P, F,W ), a triplet of process (X,Y,Z),
defined on the set-up, is called a strong solution to (2.1) if

1. (X,Y,Z) are Ft-adapted process, and X ,Y are continuous, such that

E

{
sup

t∈[0,T ]
|Xt |2 + sup

t∈[0,T ]
|Yt |2 +

∫ T

t
|Zt |2dt

}
< ∞

2. (X,Y,Z) satisfies (2.1) P-almost surely.
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4 J. CHEN ET AL.

Definition 2.2. A triplet of process (X,Y,Z) along with a standard set-up (�,F ,P, F,W )

on which X ,Y , Z are defined, is called a weak solution to (2.1) if
1. (X,Y,Z) are Ft-adapted process, and X ,Y are continuous;
2. denoting ft = f (t,Xt ,Yt ) for f = b, σ, h, it holds that

P

{ ∫ T

0
(|bt | + |σt |2 + |ht | + |Zt |2)ds + |g(XT )| < ∞

}

3. (X,Y,Z) satisfies (2.1) P-almost surely.

In this paper, we shall focus on the Markovian case, namely, we assume that the coeffi-
cients bi : RT → R, σ : RT × R → R, h : RT × R × R → R, and g : R → R are all determin-
isticmeasurable functions, such that the following Standing Assumptions hold throughout the
paper.
(H1) Each bi(t, x) is bounded, continuous in t , and uniformly Lipschitz in x, with Lipschitz

constant K > 0;
(H2) The function σ (t, x, y) is continuous, and there exist constants 0 < σ < σ such that

σ ≤ σ (t, x, y) ≤ σ .

Furthermore, for fixed t , σ (t, ·, ·), along with its spatial derivatives, σx and σy are all
uniformly Lipschitz in (x, y) with Lipschitz constant ϒ > 0;

(H3) The function h(t, x, y, z) is bounded, continuous in t and uniformly Lipschitz in
(x, y, z) with Lipschitz constant K > 0;

(H4) The function g(x) is bounded and uniform Lipschitz continuous with Lipschitz con-
stant ϒ > 0.

Remark 2.1.
(i) We should note that although each bi is regular, it is “piecewise continuous” in the

variable y (see (2.2)), which is the main difficulty in this paper.
(ii) Because of the discontinuity of the drift coefficient b in the variable y, we need the

non-degeneracy condition (H2). The following simple example shows that otherwise
the pathwise uniqueness fails, even under the well-known “monotonicity condition”
(see, e.g., [22, 23]).

Example 2.1. Let σ = 0, g(x) = x, X0 = 0. Define H(x) �= 1(0,∞)(x), x ∈ R, and let
b(t, x, y) = H(x), h(t, x, y) = H(y), (t, x, y) ∈ RT × R. That is, we consider the following
FBSDE: {

Xt = ∫ t
0 H(Ys)ds

Yt = XT − ∫ T
t H(Xs)ds − ∫ T

t ZsdWs.
(2.3)

Then, it is easily to check that, for any a ∈ (0,T ), let Xa
t

�= (t − a)1[a,T ](t ), Ya ≡ Xa, and
Za ≡ 0, then {(Xa,Ya,Za) : a ∈ (0,T )} are infinitely many solutions to (2.3).

It is by now well-understood that, in order to solve a fully coupled FBSDE one should look
for a “decoupling random field” u(t, x, ω), such that Yt ≡ u(t,Xt ), for all t ∈ [0,T], P-a.s.
(see, e.g., [3]). In the Markovian case, the decoupling field should be a deterministic function
u : RT 
→ R, and in light of the Four Step Scheme (see [12] and [15]), we expect that such a
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STOCHASTIC ANALYSIS AND APPLICATIONS 5

function u should solve the following quasilinear PDEs, in a certain sense:{
0 = ut + 1

2σ
2(t, x, u)uxx + b(t, x, u)ux + h(t, x, u, σ (t, x, u)ux), (t, x) ∈ [0,T )× R;

u(T, x) = g(x).
(2.4)

We should note that the main difficulty in solving the PDE (2.4) is again the discontinuity
of the coefficient b in the variable u. In fact, to our best knowledge there has been no result in
the literature that treats quasilinear PDEs with discontinuous coefficients in such a manner.
A rather natural plan of attack, however, is to mollify the coefficient b to obtain a family of
smooth coefficients {bε}, such that for each ε the PDE (2.4) has a classical solution, and then
analyze the limit as ε → 0. We shall follow such a route.

To end this section, we shall list some existing a priori estimates for the solution to the
“regulated” version of PDE (2.4) (i.e., with b being mollified). These results are mainly based
on the works [24], [14], [25], [26], [27], and [28], with slightmodifications to fit our needs.We
should note that the key points here is that these estimates are independent of the Lipschitz
constant of b, whence ε(!). Let us denote the uniform bounded in Assumption (H) by� and
recall that the Lipschitz constant of σ and g are denoted byϒ . In what follows we shall denote
Cu > 0 to be a generic constant depending only onϒ , σ , σ ,�, and T , but independent of the
Lipschitz constant of b. We shall allowCu vary from line to line for notational simplicity.

The following result is well-understood (see, e.g., [14, Theorem 3.2]).

Theorem 2.1. Assume (H2)–(H4), and assume that b is bounded and smooth. Let u be the (clas-
sical) solution to (2.4). Then there exists a constant Cu, depending only on ϒ , σ , σ , �, and T,
and a constant 0 < α ≤ 1, depending only on σ , σ , and �, such that for any (t, x) and (s, y)
in [0,T] × R,

|u(t, x)| ≤ Cu, (2.5)
|u(t, x)− u(s, y)| ≤ Cu(|x − y|α + |s − t|α/2). (2.6)

Our argument for the a priori estimates follows closely that of [14], in which the following
linear PDE plays an important role:{

vt + 1
2σ (t )vxx + ϕ(t, x) = 0, (t, x) ∈ [0,T )× R

v(T, x) = ρ(x), x ∈ R,
(2.7)

where σ (with a slight abuse of notation) satisfies (H2) and ϕ is a continuous function. In what
follows we collect some results regarding the solution to the linear PDE (2.7) from [14]. We
shall denote

�(t, s) �
∫ s

t
c(u)du, for all 0 ≤ t < s ≤ T. (2.8)

Lemma 2.1. Assume (H2). Then, there exists a constant C > 0, depending on σ , σ , and p only,
such that for every η ∈ Lp(R) and any (t, s, x) ∈ [0,T )× [0,T] × R, t < s,∣∣∣∣

∫
R

η
(
x + �1/2(t, s)z

) |z| exp(−z2/2)dz
∣∣∣∣ ≤ C(s − t )−

1
2p

[∫
R

|η(z)|pdz
]1/p

. (2.9)

Theorem 2.2. Assume (H2). Assume also that σ, ϕ, ρ are all bounded, such that t 
→ σ (t )
is Hölder continuous; and for some β > 0, ϕ ∈ Cβ/2,β ([0,T] × R,R) and ρ ∈ C2+β (R,R).
Then

(i) there is a unique bounded solution v ∈ C1+β/2,2+β ([0,T] × R,R);
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6 J. CHEN ET AL.

(ii) there exists a constant Cv , depending on σ and σ only, such that for all (t, x) ∈ [0,T )×
R,

|vx(t, x)| ≤ Cv

{
(T − t )−1/2

∫
R

[∣∣ρ(
x + �1/2(t,T )z

) − ρ(x)
∣∣|z| exp(−z2/2)

]
dz

+
∫ T

t

∫
R

[
(s − t )−1/2

∣∣ϕ(
s, x + �1/2(t, s)z

)∣∣|z| exp(−z2/2)
]
dzds

}
;

(2.10)

(iii) furthermore, if ϕ(t, 0) ≡ 0, t ∈ [0,T], then for any t ∈ [0,T ),

∣∣vxx(t, 0)∣∣ ≤ Cv

{
(T − t )−1

∫
R

[ ∣∣ρ(
�1/2(t,T )z

) − ρ(0)
∣∣(1 + z2) exp(−z2/2)

]
dz

+
∫ T

t

∫
R

[
(s − t )−1

∣∣ϕ(
s, �1/2(t, s)z

)∣∣(1 + z2) exp(−z2/2)
]
dzds

}
;

(2.11)

(iv) if ρ ≡ 0, then for any θ ∈ (0, 1), set θ ′ = (1 + θ )/2. Then for any p ≥ 1, z ∈ R and
R > 0, the solution v satisfies

(1 − θ )2pR2p
∫ T

0

∫ z+θR

z−θR

∣∣vxx(t, x)∣∣pdxdt
≤ Cv

[
(1 − θ ′)2pR2p

∫ T

0

∫ z+θ ′R

z−θ ′R

∣∣ϕ(t, x)∣∣pdxdt +
∫ T

0

∫ z+θ ′R

z−θ ′R

∣∣v(t, x)∣∣pdxdt
]

+ 1
2
(1 − θ ′)2pR2p

∫ T

0

∫ z+θ ′R

z−θ ′R

∣∣vxx(t, x)∣∣pdxdt,
where Cp

v depends only on σ , σ , and p;
(v) if ϕ ≡ 0, then the linear PDE{

wt + 1
2σ

2(t, x, u(t, x))wxx = 0, (t, x) ∈ [0,T )× R

w(T, x) = g(x), x ∈ R
(2.12)

admits a unique bounded strong solution w ∈ C1,2([0,T] × R,R), and there exist two
constantsCw and rw, depending onϒ , σ , σ ,�, and T, such that for all (t, x) ∈ [0,T )×
R, ∣∣wxx(t, x)

∣∣ ≤ Cw(T − t )−1+rw . (2.13)

Finally, we recall Gagliardo–Nirenberg inequality.

Lemma 2.2 (Lemma 6.3, [14]). Consider a triple (p, q1, q2), where q1, q2 ∈ [1,∞], and 1
p =

1
2q1

+ 1
2q2

. Then there exists a constant C > 0, depending on p, q1, and q2, such that for every
smooth function ϕ : B(0, 1) → R,

∫
B(0,1)

∣∣ϕx(x)∣∣pdx ≤ C

[∫
B(0,1)

[
2∑
�=0

|∂(�)x ϕ(x)|q1
]
dx

] p
2q1 [∫

B(0,1)
|ϕ(x)|q2dx

] p
2q2
.
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STOCHASTIC ANALYSIS AND APPLICATIONS 7

3. Construction of the decoupling function

In this section, we begin to construct the desired decoupling function u. The idea is straight-
forward: we first mollify the coefficient b(t, x, y) in the variable y by defining

bε(t, x, y) =
∫

b(t, x, z)mε(y − z)dz, (3.1)

where mε ∈ C∞ with compact support, such that
∫
mε(z)dz = 1. We note that each bε is

smooth in y, and satisfies (H1) in the variables (t, x), but bε(t, x, y) → b(t, x, y) only point-
wisely due to the discontinuity of b in y.

Let us now consider the mollified version of (2.4):{
ut + 1

2σ
2(t, x, u)uxx + bε(t, x, u)ux + h(t, x, u, σ (t, x, u)ux) = 0,

u(T, x) = g(x). (3.2)

By Theorem 2.1, for each ε > 0 the PDE (3.2) admits a unique solution uε ∈ C1,2, such that
the sequence {uε} is uniformly bounded and equi-continuous in (t, x). Therefore, applying
Arzela–Ascoli Theorem we see that uε converges, uniformly on compacta, to a continuous
function û ∈ C([0,T] × R). We shall argue that this function is exactly the decoupling func-
tion that we are looking for.

It is worth noting that because the coefficient b is discontinuous, the stability result of vis-
cosity solution does not apply here, and at this point it is by nomeans clear that û is a “solution”
to the limiting equation (2.4) in any sense. The following theorem plays an important role in
our study of the uniform regularity of {uε}, whence that of û.

Theorem 3.1. Assume (H1)–(H4), and let bε be defined by (3.1). Then, there exists a constant
r ∈ (0, 1], depending only onϒ , σ , σ ,�, and T, such that for any ε > 0 and any p ≥ 1, R ≥ 1,
δ ∈ (0,T], and z ∈ R,

∫ T

T−δ

∫ z+R

z−R

[
(T − s)1−r(|uεt (s, y)| + |uεx(s, y)|2 + |uεxx(s, y)|

)]p
dyds ≤ Cu,pδR, (3.3)

where Cu,p is a constant depending only on p, ϒ , σ , σ ,�, and T.

Proof. The argument follows closely that of [29], we provide only a sketch of the proof for
the completeness. Without loss of generality let us assume z = 0. For notational simplicity, in
what follows we fix an ε > 0, and denote u = uε. Consider the following linear PDE:{

wt (t, x)+ 1
2σ

2(t, x, u(t, x))wxx(t, x)+ ϕ(t, x) = 0, (t, x) ∈ [0,T )× R

w(T, x) = 0, x ∈ R,
(3.4)

where ϕ(t, x) = −h(t, x, u(t, x))+ b(t, x, u(t, x))ux(t, x), for all (t, x) ∈ RT . By Theorem
2.1 and Assumption (H), clearly that the linear PDE (3.4) admits a unique bounded solution
w0 ∈ C1,2(RT ) with bounded and uniformly Hölder continuous partial derivatives of order
one in t and of order one and two in x. Let w̄ = u − w0. It can be checked that w̄ is a solution to
the linear PDE (2.12). Thus by Theorem 2.2 and Theorem 2.1, there exist r,C > 0, depending
only on ϒ , σ , σ ,�, and T , such that any R > 0, δ ∈ (0,T],

∫ T

T−δ

∫ R

−R

[
(T − s)1−r

∣∣w̄xx(s, y)
∣∣]p

dsdy ≤ CδR. (3.5)
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8 J. CHEN ET AL.

We now denote, for any α > 0, and ϕ ∈ C([0,T] × R), [[ϕ]]α(t, x) �= (T − t )1−αϕ(t, x).
Since w0 is Hölder continuous on [0,T] × R, so is [[w0]]r. Define two operators Lt and L0

t ,

Lt = 1
2
σ 2(t, x, u(t, x))∂2xx, L0

t = 1
2
σ 2(t, 0, u(t, 0))∂2xx. (3.6)

Then it is straightforward to check from (3.4) that [[w0]]r satisfies the following PDE:

[[w]]rt (t, x)+ L0
t [w](t, x) = −[[ϕ]]r(t, x)+ [L0

t − Lt
]
[[w0]]r(t, x)+ (1 − r)[[w0]]r+1

(t, x).
(3.7)

Now applying Theorem 2.2-(iv) to (3.7) on interval (T − δ,T ) (noting the boundedness and
uniform Hölder continuity of the right-hand side in (3.7)), we obtain that

(1 − θ )2pR2p
∫ T

T−δ

∫ θR

−θR

∣∣[[w0
xx]]

r
(t, x)

∣∣p dxdt
≤ C(1 − θ ′)2pR2p

∫ T

T−δ

∫ θ ′R

−θ ′R

∣∣[[ϕ]]r(t, x)∣∣pdxdt
+C(1 − θ ′)2pR2p

∫ T

T−δ

∫ θ ′R

−θ ′R

[ ∣∣[[[σ 2(·, ·, u(·, ·))− σ 2(0, ·, u(0, ·))]w0
xx]]

r
(t, x)

∣∣p ]
dxdt

+C(1 − θ ′)2pR2p
∫ T

T−δ

∫ θ ′R

−θ ′R

∣∣[[w0]]r+1
(t, x)

∣∣p dxdt +C
∫ T

T−δ

∫ θ ′R

−θ ′R

∣∣[[w0]]r(t, x)
∣∣p dxdt

+ 1
2
(1 − θ ′)2pR2p

∫ T

T−δ

∫ θ ′R

−θ ′R

∣∣[[w0
xx]]

r
(t, x)

∣∣p dxdt
≤ C(1 − θ ′)2pR(2+r)p

∫ T

T−δ

∫ θ ′R

−θ ′R

∣∣[[uxx]]r(t, x)∣∣p dxdt
+ (1 − θ ′)2pR2p(CRrp + 1/2)

∫ T

T−δ

∫ θ ′R

−θ ′R

∣∣[[w0
xx]]

r
(t, x)

∣∣p dxdt +Cδ, (3.8)

for any p ≥ 1, 0 < R ≤ 1, θ ∈ (0, 1), and θ ′ = (1 + θ )/2. In the last inequality above we have
used Assumption (H), Lemma 2.2, a scaling argument to the triple (2p, p,∞), and the fact
that u and σ 2(·, ·, u(·, ·)) are uniformlyHölder continuous. Since u = w̄ + w0, it then follows
from (3.5) and (3.8) that

(1 − θ )2pR2p
∫ T

T−δ

∫ θR

−θR

∣∣[[uxx]]r(t, x)∣∣p dxdt
≤ (1 − θ ′)2pR2p(CRrp + 1/2)

∫ T

T−δ

∫ θ ′R

−θ ′R

∣∣[[uxx]]r(t, x)∣∣p dxdt +Cδ.

Let R0 be the number such thatCRrp
0 + 1/2 = 3/4, and let R1 = min(R0, 1). Thus,

R2p
1 sup
θ∈(0,1)

{
(1 − θ )2p

∫ T

T−δ

∫ θR1

−θR1

∣∣[[uxx]]r(t, x)∣∣p dxdt} ≤ 4Cδ.

Taking θ = 1/2, we have∫ T

T−δ

∫ R1/2

−R1/2

∣∣[[uxx]]r(t, x)∣∣p dxdt ≤ 4CδR−2p
1

�= Cδ.
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STOCHASTIC ANALYSIS AND APPLICATIONS 9

Note that this inequality holds for (z − R1/2, z + R1/2), any z ∈ R. For any R > 1 and z ∈ R,
since (z − R, z + R) can be covered by [ 2RR1 + 1] intervals of length R1, we see that∫ T

T−δ

∫ z+R

z−R

∣∣[[uxx]]r(t, x)∣∣p dxdt ≤ CδR.

The estimate on ux can be obtained by applying Lemma 2.2 oncemore. Finally, the estimate on
ut can be obtained because of the uniform boundedness of the coefficients and the estimates
on ux and uxx. �
Theorem 3.2. In the same setting as Theorem 3.1, there exist constants r,C > 0, depending on
ϒ , σ , σ ,�, and T, such that for any ε > 0 and any (t, x) ∈ [0,T )× R,

|uεx(t, x)| ≤ C(T − t )−(1−r)/2. (3.9)

Proof. Again we fix ε > 0, and denote u = uε. Let η : R → [0, 1] be a smooth function such
that η(x) = 1 when x ∈ (0, 1) and η(x) = 0 when x /∈ (−2, 2). For all (t, x), define ũ(t, x) �
u(t, x)η(x), g̃(x) � g(x)η(x), and

ϕ̃(t, x) �= (Lt − L0
t )[ũ](t, x)+ η(x)ϕ(t, x)

− σ 2(t, x, u(t, x))η′(x)ux(t, x)− u(t, x)Lt[η](x),

where ϕ(t, x) is defined as in the proof of Theorem 3.1. From Assumption (H) and Theorem
2.1, we know that for any (t, x),

|ϕ̃(t, x)| ≤ C1
(
1 + |ux(t, x)|2 + |uxx(t, x)|

)
1{|x|≤2},

whereC1 is a constant depending only on σ ,�, and T . By Theorem 2.2,

|ux(t, 0)| = |ũx(t, 0)|
≤ C2

{
(T − t )−1/2

∫
R

[ ∣∣g̃(�1/2(t,T )z
) − g̃(0)

∣∣|z| exp(−z2/2)
]
dz

+
∫ T

t

∫
R

[
(s − t )−1/2

∣∣ϕ̃(
s, �1/2(t, s)z

)∣∣|z| exp(−z2/2)
]
dzds

}
� T (1)+ T (2),

(3.10)

where C2 is a constant depending on σ and σ . By the boundedness of coefficients and
Lipschitz continuity of g, we know T (1) ≤ C3, whereC3 is a constant depending on ϒ , σ , σ ,
�, and T . Let r be that in Theorem 3.1, and let p = 1/r in Lemma 2.1. Then by the estimate
of ϕ̃ and Theorem 3.1, one gets

T (2) ≤ C
∫ T

t
(s − t )−(1+r)/2

[∫ 2

−2

∣∣ϕ̃(s, z)∣∣ 1r dz]r

ds

= C
∫ T

t
(s − t )−(1+r)/2(T − s)−(1−r)

[∫ 2

−2
|[[ϕ̃]]r(s, z)| 1r dz

]r

ds

≤ C
[∫ T

t
(s − t )−

1+r
2(1−r) (T − s)−1ds

]1−r [∫ T

t

∫ 2

−2
|[[ϕ̃]]r| 1r dzds

]r

≤ C(T − t )−
1+r
2 −(1−r)+1 = C(T − t )−

(1−r)
2 , (3.11)

whereCε is a constant depending on ε, ϒ , σ , σ ,�, and T , proving the theorem. �

The following theorem shows the regularity of {uεx}.
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10 J. CHEN ET AL.

Theorem 3.3. Assume that the assumptions of Theorem 3.2 are in force. Then there exist con-
stants r,C > 0, depending onϒ , σ , σ ,�, and T, such that for any ε > 0 and any (t, x), (s, y) ∈
[0,T )× R, t ≤ s,∣∣uεx(t, x)− uεx(s, y)

∣∣ ≤ C(T − s)−(1−r)/2
(
|x − y|r + |t − s|r/2

)
.

Proof. Let us first fix t and ε, and denote u = uε. We shall prove the following inequality

|ux(t, x)− ux(t, y)| ≤ C(T − t )−(1−r)/2|x − y|r, (3.12)

for some r,C > 0. In light of Theorem 3.2, without loss of generality, we assume y = 0 and
|x| ≤ 1. Let η, ũ, g̃, and ϕ̃ be defined as in Theorem 3.2. Thus by Theorem 2.2, we have

ũx(t, x) =
∫
R

g̃(z)ψ(c)
x (t, x;T, z)dz +

∫ T

t

∫
R

ϕ̃(s, z)ψ(c)
x (t, x; s, z)dzds

�= R1(t, x)+ R2(t, x), ∀(t, x) ∈ [0,T )× R. (3.13)

Here ψ(c) is the kernel defined by

ψ(c)(t, x; s, y) � (2π)−1/2(�(t, s))−1/2 exp
(−(x − y)2

2�(t, s)

)
, ∀ x, y ∈ R, 0 ≤ t < s ≤ T.

Clearly,R1(t, x) is differentiable with respect to x. Moreover, since g is bounded and Lipschitz,
slightly modifying the proof of Theorem 2.2 and by the definition ofψ(c), one obtains that for
some r,C > 0, it holds that

|∂xR1(t, x)| ≤ C(T − t )−(1−r), and |R1(t, x)| ≤ C(T − t )−(1−r)/2, ∀x ∈ R.

Hence for every ε ∈ (0, 1] and (t, x) ∈ [0,T ] × B(0, 1),

|R1(t, x)− R1(t, 0)| = |R1(t, x)− R1(t, 0)|1−ε|R1(t, x)− R1(t, 0)|ε
≤ 2 sup

y∈R
|R1(t, y)|1−ε sup

y∈R
|∇R1(t, y)|ε|x|ε

≤ C(T − t )−(1−r)(1−ε)/2−(1−r)ε|x|ε ≤ C(T − t )−(1−r/2)/2|x|r. (3.14)

The last step in the above inequality is achieved by choosing appropriate ε and r.
To estimate R2(t, x), let us denote

r2(s, x) �
∫
R

ϕ̃(s, z)∇ψ(c)(t, x; s, z)dz

so that R2(t, x) = ∫ T
t r2(s, x)ds. By a change of variable and applying Lemma 2.1, one deduce

easily that

|r2(s, x)| ≤ C√
�(t, s)

∫
R

ϕ̃(s, x + z�1/2(t, s))|z| exp
(

−|z|2
2

)
dz

≤ C(s − t )−(1+ε)/2
{∫

R

|ϕ̃(s, z)|1/εdz
}ε
,

for any 0 < ε < 1. Here C > 0 is a generic constant depending only on ϒ , σ , σ , �, and T ,
and is allowed to vary from line to line. Applying the same technique again, one obtains

|∂xr2(s, x)| ≤ C(s − t )−(1+ε/2)
{∫

R

|ϕ̃(s, z)|1/εdz
}ε
.
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STOCHASTIC ANALYSIS AND APPLICATIONS 11

Thus similar to (3.14), we obtain

|r2(s, x)− r2(s, 0)| ≤ C(s − t )−1/2−ε
{∫

R

|ϕ̃(s, z)|1/εdz
}ε

|x|ε.

Finally, by definition of R2 we obtain

|R2(t, x)− R2(t, 0)| ≤ C|x|ε
∫ T

t
(s − t )−1/2−ε

{∫
R

|ϕ̃(s, z)|1/εdz
}ε

ds.

Similar to (3.11), we can conclude that

|R2(t, x)− R2(t, 0)| ≤ C(T − t )−(1−r/2)/2|x|r, ∀x ∈ B(0, 1). (3.15)

Combining (3.14) and (3.15) we derive (3.12).
To conclude the proof we note that, by the similar argument we can show that for fixed x,

|ux(t, x)− ux(s, x)| ≤ C(T − s)−(1−r)/2(s − t )r/2, ∀0 ≤ t < s < T.

This proves the theorem. �

We are now ready to prove the main result of this section. First, note that by (H1), we can
rewrite (2.4) in a divergence form:

ut − ∂x

{
1
2
σ 2(t, x, u)ux

}
+ b̃(t, x, u, ux)ux + h(t, x, u, σ (t, x, u)ux) = 0, (3.16)

where b̃(t, x, u, ux)
�= σ (t, x, u)σx(t, x, u)+ σ (t, x, u)σy(t, x, u)ux − b(t, x, u).We say that

a continuous function u is a distribution solution of (2.4) if for any ϕ ∈ C∞((0,T )× R) such
that ϕ(t, ·) ∈ C∞

0 (R) for all t ∈ (0,T], and that for all 0 < s < t < T it holds that∫
R

u(r, x)ϕ(r, x)dx
∣∣∣t
s
+

∫
(s,t )×R

[
−uϕt + 1

2
σ 2(·, ·, u)uxϕx

+ b̃(·, ·, u, ux)uxϕ + h(r, x, u, σ (·, ·, u)ux)ϕ
]
(r, x)dxdr = 0. (3.17)

We have the following result.

Theorem 3.4. Assume (H1)–(H4). Then the limit function û(t, x) is a distributional solution to
(2.4).

Proof. First, we note that Theorem 3.2 and Theorem 3.3 guarantee that the sequence {uεx} is
also uniformly bounded and equi-continuous on every compact subset of [0,T )× R. Thus
by Arzela–Ascoli theorem again, we can further extract a subsequence, may assume itself,
converging uniformly on compacta in [0,T )× R to a limit v̂ . It is readily seen that v̂ = ûx.

Furthermore, Theorem 3.1 guarantees that there are subsequences, denoted by {uεkxx} and
{uεkt }, converging weakly in Lp([0,T (1 − δ)] × B(0, 1/δ)) for every 0 < δ < 1 and p > 1.
Again, it is clear that these limits are ûxx and ût , respectively, in the distribution sense.

Wenow argue that û is a distribution solution to (3.16). For notational simplicity, we denote
uk = uεk , bk(t, x, y) = bεk (t, x, y), and

σ k(t, x) = σ (t, x, uk(t, x)), hk(t, x) = h(t, x, uk(t, x), [σ kukx](t, x)).
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12 J. CHEN ET AL.

Note that for each k, uk is a classical solution to (3.16). For ϕ ∈ C∞((0,T )× R), multiplying
ϕ to both sides of (3.16), and integrating by parts, we get (suppressing variables)∫

R

uk(r, x)ϕ(r, x)dx
∣∣∣t
s
+

∫ t

s

∫
R

[
−ukϕt + 1

2
(σ k)2ukxϕx

+ ukx
(
σ kσ k

x + σ kσ k
u u

k
x

)
ϕ − ukxb

k(t, x, uk)ϕ + hkϕ
]
dxdr = 0. (3.18)

By the uniform convergence of uk and ukx and that σ , σx, σu, h are all bounded continuous
functions, we see that

σ k → σ (t, x, û), and hk → h(t, x, û, σ (t, x, û)ûx), as k → ∞,

uniformly on compacta in [0,T )× R. Therefore by Dominated Convergence Theorem, all
the term in (3.18) converges to the right limit (replacing uk by û), except for the term∫ t
s

∫
R
ukxbk(t, x, uk)ϕdxdr, due to the discontinuity of b in the variable y. To analyze this term,

we define

Bk(t, x, y) =
∫ y

0
bk(t, x, z)dz, B(t, x, y) =

∫ y

0
b(t, x, z)dz.

Clearly, Bk and B are both continuous, and Bk converges to B pointwisely. Next, note that bk,
uk, and b are all bounded, say, by a constantM > 0. We have

∣∣∣Bk(t, x, uk)− B(t, x, û)
∣∣∣ =

∣∣∣∣∣
∫ uk

0
bk(t, x, y)dy −

∫ û

0
b(t, x, y)dy

∣∣∣∣∣
≤

∫ uk

0
|bk(t, x, y)− b(t, x, y)|dy +

∣∣∣∣∣
∫ û

uk
b(t, x, y)dy

∣∣∣∣∣
≤

∫ M

−M
|bk(t, x, y)− b(t, x, y)|dy + M|û(t, x)− uk(t, x)|. (3.19)

NowbyDominatedConvergence theorem, and thatuk → û, we see thatBk(t, x, uk) converges
to B(t, x, û), and the limit is uniform in (t, x) on compacts in [0,T )× R. Similarly, we can
show that, uniformly in t on any compact subset of [0,T ),

∫
R

∫ uk

0
bkx(t, x, y)ϕ(t, x)dydx →

∫
R

∫ û

0
bx(t, x, y)ϕ(t, x)dydx.

Finally, note that

Bk
x(t, x, u

k) =
∫ uk

0
bkx(t, x, y)dy + bk(t, x, uk)ukx, Bx(t, x, û)

=
∫ û

0
bx(t, x, y)dy + b(t, x, û)ûx.

Thus, integrating by parts and applying Dominated Convergence Theorem again, we obtain
that, as k → ∞, for any 0 ≤ s < t < T , it holds
∫ t

s

∫
R

ukxb
k(r, x, uk)ϕ(r, x)dxdr =

∫ t

s

∫
R

[
Bk
x(r, x, u

k)−
∫ uk

0
bkx(r, x, y)dy

]
ϕ(r, x)dxdr
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STOCHASTIC ANALYSIS AND APPLICATIONS 13

= −
∫ t

s

∫
R

Bk(r, x, uk)ϕx(r, x)dxdr

−
∫ t

s

∫
R

∫ uk

0
bkx(r, x, y)ϕ(r, x)dydxdr

−→ −
∫ t

s

∫
R

B(r, x, û)ϕx(r, x)dxdr

−
∫ t

s

∫
R

∫ û

0
bx(r, x, y)ϕ(r, x)dydxdr

=
∫ t

s

∫
R

[
Bx(r, x, û)−

∫ t

s

∫ û

0
bx(r, x, y)dy

]
ϕ(r, x)dxdr

=
∫ t

s

∫
R

ûxb(r, x, û)ϕ(r, x)dxdr.

This shows that û is a distribution solution of (3.16), proving the theorem. �

4. Weak solution of FBSDE

Although we have identified a distribution solution û of the decoupling PDE (2.4), we still
need to argue that the function û can be used as the desired decoupling function. More pre-
cisely, we shall argue that it is regular enough for us to apply a certain form of Itô’s formula, a
crucial step in the Four-Step Scheme.

We begin by recalling the identify (3.16). One can easily check that it can be rewritten as∫
QT

uϕtdxdt =
∫
QT

(F∇ϕ + gϕ)dxdt, (4.1)

where F = 1
2σ

2ûx and g = ûxσσx + (ûx)2σσu − bûx + h), both are in L2(RT ), and ϕ ∈
C∞
0 (QT ). Or in other words, by definition (see, e.g., [30]) û ∈ W 1,2

2 ((0,T )× R), with

‖u‖W1,2
2

= ‖ut‖L2 + inf

{(∫
[0,T ]×R

(|F|2 + |g|2)dxdt
)1/2

}
. (4.2)

Furthermore, since σ is uniformly non-degenerate and all the coefficients are bounded, it
follows from [16] that the non-divergence form PDE (2.4) has a uniqueW 1,2

2 -solution. Thus
it must coincide with û. It is now clear that the function û is a good candidate for the desired
decoupling function.

We now consider the following FBSDE on [t,T]:{
Xt,x
s = x + ∫ s

t b(r,X
t,x
r ,Yt,x

r )dr + ∫ s
t σ (r,X

t,x
r ,Yt,x

r )dWr;
Yt,x
s = g(Xt,x

T )− ∫ T
s h(r,Xt,x

r ,Yt,x
r )dr − ∫ T

s Zt,x
r dWr,

(4.3)

where b, σ , h, and g satisfy (H1)–(H4). We first show that the FBSDE (4.3) possesses at least a
weak solution (Xt,x

s ,Yt,x
s ,Zt,x

s ) in the sense of Definition 2.2, such that the following “decou-
pling relation” holds

Yt,x
s = u(s,Xt,x

s ), Zt,x
s = σ (s,Xt,x

s , u(s,X
t,x
s ))ux(s,Xt,x

s ). (4.4)

To begin with, let us define

b̄(t, x) = b(t, x, û(t, x)), σ̄ (t, x) = σ (t, x, û(t, x)), (4.5)
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14 J. CHEN ET AL.

and consider the following forward SDE:

Xt,x
s = x +

∫ s

t
b̄(r,Xt,x

r )dr +
∫ s

t
σ̄ (r,Xt,x

r )dWr. (4.6)

Without loss of generality in what follows we assume t = 0. We claim that this SDE possesses
a weak solution. Indeed, on any given probability space (�,F,P) on which is defined a stan-
dard Brownian motionW , consider the following SDE:

Xt = x +
∫ t

0
σ̄ (r,Xr)dWr. (4.7)

We note that, by the construction in the previous section, the function û ∈ W 1,2
2 (RT ) actually

has a bounded spatial derivative ûx. Combining with (H1), it is readily seen that the coeffi-
cient σ (t, x) is uniformly Lipschitz in x. Thus, the SDE (4.7) admits a unique strong solution,
denoted by X = X0,x.

Next, define θ (t, x) = b̄(t,x)
σ̄ (t,x) , which is bounded, thanks to (H1) and (H2). Thus,

Mt � exp
{∫ t

0
θ (s,Xs)dWs − 1

2

∫ t

0
|θ (s,Xs)|2ds

}
, t ≥ 0, (4.8)

is a martingale under P. Now define dQ
dP

∣∣∣
Ft

= Mt , t ∈ [0,T]. Then by the Girsanov theorem,

under Q the process W̄t = Wt − ∫ t
0 θ (s,X

0,x
s )ds is a Brownian motion, and X satisfies (4.6).

In other words, (�,F,P;W̄ ,X ) is a weak solution of (4.6).
Let us now define Yt = Y 0,x

t
�= û(t,Xt ). Since û is a W 1,2

2 -solution to (2.4), by the Itô–
Krylov formula we have

YT −Yt = û(T,XT )− û(t,Xt )

=
∫ T

t

(
ût (r,Xr)+ 1

2
σ̄ 2
r ûxx(r,Xr)+ b̄rûx(r,Xr)

)
dr +

∫ τ

t
σ̄rûx(r,Xr)dW̄r

= −
∫ T

t
h(r,Xr, û(r,Xr), σ̄ (r,Xr)ûx(r,Xr))dr +

∫ T

t
ZrdW̄r, (4.9)

where Zt = Z0,x
t

�= σ (r,Xr, û(r,Xr))ûx(r,Xr). That is, we have shown that the seven-tuple
(�,F,Q,W̄ ,X,Y,Z) is a weak solution to the FBSDE (4.3).

We now state our main result of the section.

Theorem 4.1. Assume (H1)–(H4). There exists a unique weak solution to the FBSDEs (1.1), for
any (t, x) ∈ [0,T] × R.

Proof. The argument preceding the theorem proves the existence. Thus we shall only argue
the uniqueness. Suppose there is another weak solution (X̂, Ŷ , Ẑ) = (X̂t,x, Ŷ t,x, Ẑt,x) of (4.3)
on a filtered space (�̂, F̂, P̂,Ŵ ). We first claim that (X̂, Ŷ , Ẑ) must satisfy the decoupling
relation as well. To see this, denoting

Ỹt = û(t, X̂t )− Ŷt , Z̃t = σ̄ (t, X̂t )ûx(t, X̂t )− Ẑt

and applying the Itô–Krylov formula to û(t, X̂t,x
t ) we get

dỸt = d
{
û(s, X̂s)− Ŷs

}
=

{
ût (s, X̂s)+ 1

2
ûxx(s, X̂s)σ

2(s, X̂s, û(s, X̂s))+ ûx(s, X̂s)b(s, X̂s, û(s, X̂s))
}
ds
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STOCHASTIC ANALYSIS AND APPLICATIONS 15

+ ûx(s, X̂s)σ (s, X̂s, û(s, X̂s))dŴs − h(s, X̂s, Ŷs, Ẑs)ds − ẐsdŴs

=
{
h(s, X̂s, û(s, X̂s), σ̄ (r,Xr)ûx(r,Xr)))− h(s, X̂s, Ŷs, Ẑs)

}
ds + Z̃sdŴs

= [αsỸs + βsZ̃s]ds + Z̃sdŴs,

where α and β are two bounded processes, thanks to the Lipschitz property of h on (y, z).
Now note that ỸT = 0, by a standard argument first applying Girsanov theorem and then
exponentiating Ỹ we obtain that Ỹt ≡ 0 for t ∈ [0,T], and consequently,

u(t, X̂t ) = Ŷt and Ẑt = ux(t, X̂t )σ (s, X̂t , u(t, X̂t )), t ∈ [0,T], P̂-a.s. (4.10)

From (4.10) we see that to show P ◦ (X,Y,Z,W )−1 = P̂ ◦ (X̂, Ŷ , Ẑ,Ŵ )−1 it suffices to
show that (X̂,Ŵ ) and (X,W ) are identical in law. But from the existence argument we see
that by the Girsanov Theorem using the same kernel θ (t, ξt ) � b̄(t,ξt )

σ̄ (t,ξt )
, where

b̄(s, x) � b(s, x, u(s, x)), σ̄ (s, x) � σ (s, x, u(s, x)),

and ξ = X and X̂ , respectively, we can find two probability measures Q and Q̂, under which
the processes

W 1
s �Ws +

∫ s

t
θ (r,Xt,x

r )dr and W 2
s � Ŵs +

∫ s

t
θ (r, X̂t,x

r )dr

are Brownian motions, respectively, and (X,W 1) and (X̂,W 2) satisfies the same SDE:

X̄s = x +
∫ s

t
σ (r, X̄r, û(r, X̄r))dW̄r, s ∈ [t,T ]. (4.11)

But the SDE (4.11) is pathwise unique, whence unique in law, we have thatQ ◦ (X,W 1)−1 =
Q̂ ◦ (X̂,W 2)−1. It is then readily seen that, using the fact that the Girsanov kernel are the
same, P ◦ (X,W )−1 = P̂ ◦ (X̂,Ŵ )−1. This proves the theorem. �

5. Strong solution of the FBSDE

Wenow turn our attention to the strong solution. Sincewe have proved theweak existence and
uniqueness of the FBSDE (1.1), it is tempting to follow the Yamada–Watanabe Theorem (see,
e.g., [1]) to argue only the pathwise uniqueness.However, it should be noted that in the current
situation the degree of difficulty for proving the pathwise uniqueness is actually the same as
proving the strong existence. We will therefore present a direct method for the existence and
uniqueness of the strong solutions without invoking the Yamada–Watanabe type of results.
The argument is similar to that of [19] (see also [20]).

We begin by recalling that, for SDE (4.6), the following comparison theorem. The proof is
standard, we omit it.

Lemma 5.1. Assume (H1) and (H2). Let b̄1 and b̄2 be measurable and bounded functions such
that

b̄1(t, x) ≤ b̄2(t, x) for all t and x.

Assume one of them is Lipschitz in x, uniformly in s. If X1 and X2 are the solutions to (4.6) with
coefficients b̄1 and b̄2, respectively, then X1

t ≤ X2
t , for all t ∈ [0,T], a.s.
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16 J. CHEN ET AL.

Next, we give a well-known estimate of the density of the solution for forward SDEs. Con-
sider the SDE on [t,T ]:

X = x +
∫ s

t
b(r,Xr)dr +

∫ s

t
σ (r,Xr)dWr, t ≥ 0. (5.1)

Assume that the coefficients b and σ are Lipschitz in (s, y), and that there exist 0 < c < C,
such that

|b(s, y)| + |σ (s, y)| ≤ C, ∀(s, y) ∈ [t,T] × R, (5.2)
c ≤ σ (s, y) ≤ C, ∀(s, y) ∈ [t,T] × R. (5.3)

Clearly, under these assumptions the SDE (5.1) has a unique strong solution, denote it byXt,x.
Furthermore, denoting μ(s, dy; t, x) � P{Xt,x

s ∈ dy} = P{Xs ∈ dy|Xt = x} to be the transi-
tion probability of Xs starting from (t, x) and p(s, y; t, x) to be its density, the following esti-
mate is well-known (see [31] and [32]):

Lemma 5.2. There exist constants m,M, λ,� > 0, so that the density function p(s, y; t, x) sat-
isfies the following estimation:

m(s − t )−
1
2 exp

{−λ|y − x|2
s − t

}
≤ p(s, y; t, x) ≤ M(s − t )−

1
2 exp

{−�|y − x|2
s − t

}
. (5.4)

We now turn our attention to the case when b is only bounded and measurable, and con-
sider only the weak solution of (5.1), still denote it by Xt,x. The following Krylov estimate will
be crucial in proving the strong well-posedness of the decoupled SDE (4.6).

Lemma5.3. Assume that the coefficient b : [t,T ] × R → R is only a boundedmeasurable func-
tion, and let X be (unique)weak solution of (5.1). Then forρ > 3

2 , there exists a constantK(T, ρ)
depending on T, ρ, and the uniform bound of b, such that for any Borel measurable function
f : [t,T ] × R → R,

E

∫ T

t
| f (s,X )|ds ≤ K(T, ρ)

{∫ T

t

∫ ∞

−∞
| f (s, y)|ρdyds

} 1
ρ

. (5.5)

Proof. Similar to the arguments in the previous section, we start from the strong solution of
the following SDE

Xs = x +
∫ s

t
σ̄ (r,Xr)dW̃r, t ≥ 0, (5.6)

where W̃ is a Brownian motion defined on a probability space (�,F, P̃,F). Next, denote
θ (s, x) � b(s,y)

σ̄ (s,y) . Define

Ms � exp
{∫ s

t
θ (r,Xr)dW̃r − 1

2

∫ s

t
|θ (r,Xr)|2dr

}
, s ≥ t,

and a new probability measure dP � MTdP̃. Then under P,Ws
�= W̃s −

∫ s
t θ (r,Xr)dr, s ≥ t ,

is a Brownian motion, and (�,F,P,F,X,W ) is a weak solution to SDE (5.1).
Now let p(s, y; t, x) be the transition density ofX under P̃. Then by Lemma 5.2, there exist

constantsM and�, such that

0 < p(s, y; t, x) ≤ M(s − t )−
1
2 exp

{−�|y − x|2
s − t

}
.
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STOCHASTIC ANALYSIS AND APPLICATIONS 17

On the other hand, for any measurable function f : [t,T] × R → R, by the Hölder
inequality,

E

∫ T

t
| f (s,Xs)|ds =

∫
�

∫ T

t
| f (s,Xs)|dsdP =

∫
�

∫ T

t
| f (s,Xs)|dsMTdP̃

≤ K(T )
{
EP̃(Mα

T )
} 1
α

{
EP̃

(∫ T

t
| f (s,Xs)|βds

)} 1
β

≤ K(T, α)
{∫ ∞

−∞

∫ T

t
| f (s, y)|β p(s, y)dsdy

} 1
β

≤ K(T, α)
{∫ ∞

−∞

∫ T

t
| f (s, y)|βγ dsdy

} 1
βγ

{∫ ∞

−∞

∫ T

t
|p(s, y)|δdsdy

} 1
βδ

,

(5.7)

where α, β , γ > 1, such that
1
α

+ 1
β

= 1 and
1
γ

+ 1
δ

= 1.

Then for 3 > δ > 1, we have{∫ ∞

−∞

∫ T

t
|p(s, y)|δdsdy

} 1
βδ

≤
{∫ T

t

∫ ∞

−∞
Mδ(s − t )−

δ
2 exp

{−δ�|y − x|2
s − t

}
dyds

} 1
βδ

= K(M,�, δ)
{∫ T

t
(s − t )

1−δ
2 ds

} 1
βδ

< ∞. (5.8)

Now, let ρ � βγ and denote K(T, ρ) to be a generic constant depending on T , ρ, M, �, δ,
and the uniform bound of b, which could vary from line to line, then we deduce from (5.7)
and (5.8) that

E

∫ T

t
| f (s,Xs)|ds ≤ K(T, ρ)

{∫ T

t

∫ ∞

−∞
| f (s, y)|ρdyds

} 1
ρ

. (5.9)

Finally, note that δ < 3 implies γ > 3
2 . By letting β close to 1 we have ρ > 3

2 , proving the
lemma. �

The following lemma shows the stability of the Krylov estimate (5.5).

Lemma 5.4. Suppose that {bn(s, y)}∞
n=1 are measurable functions and bounded uniformly in n.

Suppose that Xn is a solution of (5.1) with drift bn. Suppose that there exists X such that for every
t,

lim
n→∞

Xn
t = Xt , P-a.s.

Then the estimate (5.5) holds for X.

Proof. By a Monotone Class argument we need only consider the case where f is a continu-
ous, nonnegative, and bounded function. But since {bn}∞

n=1 are bounded uniformly in n, the
constant K(T, ρ) is independent of n. The result then follows from an easy application of
Bounded Convergence Theorem. �

The following result, which is a direct consequence of the Krylov estimate (5.5), will be
instrumental in the main argument below.
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18 J. CHEN ET AL.

Lemma 5.5. Assume that the conditions in Lemma 5.4 are in force. In addition, suppose that
there exists a measurable function b, such that

lim
n→∞

bn(s, y) = b(s, y), for a.e. (s, y) ∈ [t,T] × R.

Then it holds that

lim
n→∞

E

∫ T

t
|bn(s,Xn

s )− b(s,Xs)|ds = 0.

Proof. The argument ismore or less standard (see, e.g., [18], [19], or [20]), we provide a sketch
for completeness . First, we note that

E

∫ T

t
|bn(s,Xn

s )− b(s,Xs)|ds ≤ sup
k

J1(n, k)+ J2(n),

where

J1(n, k) � E

∫ T

t
|bk(s,Xn

s )− bk(s,Xs)|ds; J2(n) � E

∫ T

t
|bn(s,XS)− b(s,Xs)|ds.

Let κ : R → R be a smooth function such that κ(0) = 1, 0 ≤ κ(y) ≤ 1, for y ∈ (−1, 1); and
κ(y) = 0, otherwise. Then, for any ε > 0, there exists R0 > 0, such that

E

∫ T

t
|1 − κ(X/R0)|ds < ε. (5.10)

Now for fixed R0, the sequence {bn} converges in L2([t,T] × [−R0,R0]), we can find finitely
many elements of {bn}, denoting them as b1, b2, . . . , bN , such that for every k, there is an
1 ≤ ik ≤ N, such that ‖bk − bik‖L2([t,T ]×[−R0,R0]) < ε. Now let us write

lim
n→∞

sup
k

J1(n, k) ≤ lim
n→∞

sup
k

I1(n, k)+ lim
n→∞

I2(n)+ sup
k

I3(k),

where ⎧⎪⎪⎨
⎪⎪⎩
I1(n, k)

�= E
∫ T
t |bk(s,Xn

s )− bik (s,X
n
s )|ds;

I2(n)
�= ∑N

j=1 E
∫ T
t |b j(s,Xn

s )− b j(s,Xs)|ds;
I3(k)

�= E
∫ T
t |bk(s,Xs)− bik (s,Xs)|ds.

Applying the Krylov estimate in Lemma 5.3, we see that

I1(n, k) = E

∫ T

t
κ(Xn/R0)|bk(s,Xn

s )− bik (s,X
n
s )|ds

+ E

∫ T

t
(1 − κ(Xn

s /R0))|bk(s,Xn
s )− bik (s,X

n
s )|ds

≤ K‖bk − bik‖L2([t,T ]×[−R0,R0]) + KE
∫ T

t
(1 − κ(Xn

s /R0))ds ≤ 2Kε,

for some constantK > 0, independent of k and n. Thus, taking the supreme in k and the limit
in n, and then sending ε → 0 we obtain that

lim
n→∞

sup
k

I1(n, k) = 0.

D
ow

nl
oa

de
d 

by
 [

47
.1

44
.1

77
.8

8]
 a

t 0
0:

56
 1

5 
D

ec
em

be
r 

20
17

 



STOCHASTIC ANALYSIS AND APPLICATIONS 19

Similarly, by Lemma 5.4, one can also show that supk I3(k) ≤ Lε for some constant L, and
limn→∞ I2(n) = 0. Thus, letting ε → 0 we get

lim
n→∞

sup
k

J1(n, k) = 0.

Finally, it is easy to see that limn→∞ J2(n) = 0, the proof is complete. �

Now we are ready to prove the strong well-posedness of the FBSDE (1.1). We proceed as
follows. Let (�,F,P) be a given probability space onwhich is defined a BrownianmotionW .
We assume that the filtration F = FW is Brownian. Let û ∈ W 1,2

2 ([0,T] × R) be the decou-
pling function, and is the unique solution to the quasilinear PDE (2.4). Recall the functions
b̄ and σ̄ defined in (4.5), and let {bj}∞

j=1 be the usual mollifiers of b̄ so that bj(t, x) → b̄(t, x)
pointwisely as j → ∞.

Remark 5.1. We should note that the mollifiers {bj(t, x)} defined above are different from
the functions bε(t, x, û(t, x)), where bε(t, x, ·) are the mollifiers of b(t, x, ·) (in the variable
y) defined before. In fact, it is by no means clear that bε(t, x, û(t, x)) → b(t, x, û(t, x)), a.e.
(t, x), as ε → 0, since the set {(t, x) : û(t, x) ∈ jump points of b(t, x, ·)} could have a positive
measure.

Denote

bnk �
k∧
j=n

bj, n ≤ k, and Bn �
∞∧
j=n

bj.

Then for a.e. x and any t , it holds that,

bnk ↘ Bn as k → ∞, and Bn ↗ b̄ as n → ∞.

Since each bnk is uniformly Lipschitz, the SDE (5.1) with b = bnk has a unique strong solution,
denoted by Xnk. Now by the standard Comparison Theorem for (forward) SDEs we know
that the sequence {Xnk} is decreasing in k. The boundedness of the coefficients then renders
the pathwise uniform boundedness of Xnk, and consequently Xn

t � limk→∞ Xnk
t exists, for all

t ∈ [0,T], P-a.s.
Now applying Lemma 5.5, it is easy to see that Xn is a solution of the SDE (5.1) with b =

Bn. Furthermore, since for any n ≤ m ≤ k, bnk ≤ bmk, by comparison theorem, we know that
Xnk ≤ Xmk for every k > 0. ThusXn ≤ Xm, and again the limit X � limn→∞ Xn exists. Lemma
5.5 thus implies that X solves (5.1). In other words we have proved the existence of the strong
solution (5.1).

Our main result of this section is the following theorem.

Theorem 5.1. Assume (H1)–(H4). Then there exists a unique strong solution to FBSDE (1.1).

Proof. The arguments preceding the theorem show the existence of the strong solution. We
shall prove only the pathwise uniqueness. To this end, let (X,Y,Z) and (X̂, Ŷ , Ẑ) be two
(weak) solutions defined on the same probability space (�,F,P).

By the weak uniqueness they must be identical in law, and the decoupling relationship

Yt = û(t,Xt ), Zt = σ̄ (t,Xt )ûx(t,Xt ); Ŷt = û(t, X̂t ), Ẑt = σ̄ (t, X̂t )ûx(t, X̂t )

hold for all t ∈ [0,T], P-a.s.
Let us denote ϕ(t ) � b̄(t, X̂t ), and consider the SDE (5.1) with b = b̃nk �= bnk ∨ ϕ. Since

|a ∨ ϕ − b∨ ϕ| ≤ |a − b|, we know that bnk ∨ ϕ, albeit random, is still uniformly Lipschitz
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20 J. CHEN ET AL.

in x, uniform in (t, ω). Thus, the SDE (5.1) with b̃nk admits a unique strong solution X̃nk.
Again, by comparison theorem of the SDEs, we know that {X̃nk}∞

k=1 is a decreasing sequence
as k increases. We then conclude that X̃n � limk→∞ X̃nk exists, and that X̃n solves the SDE
(5.1) with b = Bn ∨ ϕ.

Now note that, by definition of Bn, we have Bn(t, X̂t ) ≤ ϕ(t ) = b̄(t, X̂t ), t ∈ [0,T], a.s.
Thus X̂ itself is also a solution to SDE (5.1) with b = Bn ∨ ϕ. Since bnk ∨ ϕ ≥ Bn ∨ ϕ, applying
the comparison theorem again we see that X̂t ≤ X̃nk

t , t ∈ [0,T], a.s., and consequently X̂t ≤
X̃n
t , t ∈ [0,T], a.s. On the other hand, similar to the proof of Theorem 4.1, we know that weak

uniqueness holds for (5.1). Therefore X̃n
t and X̂ have the same law. Thus, we must have

P

{
sup
0≤t≤T

(X̃n
t − X̂t ) = 0

}
= 1. (5.11)

Indeed, if not, then P{sup0≤t≤T (X̃n
t − X̂t ) > 0} > 0, and there exists a rational number r

and t > 0 such that P{X̃n
t > r > X̂t} > 0. But since {X̃n

t > r} = {X̂t > r} ∪ {X̃n
t > r ≥ X̂t},

we have

P{X̃n
t > r} = P(X̂t > r} + P{X̃n

t > r > X̂t} > P{X̂t > r}.
This contradicts with the fact that X̃n

t and X̂t have the same law. But (5.11) clearly implies that
X̂t = X̃n

t , t ∈ [0,T], a.s. That is, X̂t = limk→∞ X̃nk
t , t ∈ [0,T], P-a.s., for all n.

To conclude, we note that bnk ≤ bnk ∨ ϕ. Thus by comparison, we know thatXnk ≤ X̃nk, a.s.
Thus Xn ≤ X̃n = X̂ , a.s., which implies X ≤ X̂ . Again by the weak uniqueness, we know that
X and X̂ have the same distribution. Repeating the arguments before we obtain that Xt = X̂t ,
t ∈ [0,T], P-a.s., proving the pathwise uniqueness. �
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