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We study a new type of reflected backward stochastic differential equations (RBSDEs), where the
reflecting process enters the drift in a nonlinear manner. This type of the reflected BSDEs is based
on a variance of the Skorohod problem studied recently by Bank and El Karoui [1], and is hence
named the “Variant Reflected BSDEs” (VRBSDE) in this paper. The special nature of the Variant
Skorohod problem leads to a hidden forward-backward feature of the BSDE, and as a consequence
this type of BSDE cannot be treated in a usual way. We shall prove that in a small-time duration
most of the well-posedness, comparison, and stability results are still valid, although some extra
conditions on the boundary process are needed. We will also provide some possible applications
where the VRBSDE can be potentially useful. These applications show that the VRBSDE could
become a novel tool for some problems in finance and optimal stopping problems where no
existing methods can be easily applicable.
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1. Introduction

In this paper we study a new type of reflected backward stochastic differential equations 1
based on the notion of variant Skorohod problem introduced recently by Bank and El Karoui
[1], as an application of a stochastic representation theorem for an optional process. Roughly
speaking, the Variant Skorohod Problem states the following:

for a given optional process X of class (D), null at T , find an F -adapted, right-continuous,
and increasing process A = {At}t≥0 with A0− = −∞ , such that

(i) Yt
Δ= E{

∫T
t f(s,As)ds|Ft} ≤ Xt, t ∈ [0, T], P-a.s.;

(ii) E
∫T
0 |Yt −Xt|dAt = 0.
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The condition (ii) above is called the flat-off condition. If we assume further that F is
generated by a Brownian motion B, then it is easily seen that the problem is equivalent to

finding a pair of processes (A,Z) , where A is increasing and Z is square integrable, such that

Yt =
∫T

t

f(s,As)ds −
∫T

t

ZsdBs ≤ Xt, 0 ≤ t ≤ T, (1.1)

and that the flat-off condition (ii) holds.
We note that the stochastic representation theorem proposed in [1] has already found

interesting applications in various areas, such as nonlinear potential theory [2], optimal
stopping, and stochastic finance (see, e.g., [3, 4]). However, to date the extension of the
Variant Skorohod Problem to the form of an SDE is essentially open, partly due to the highly
technical nature already exhibited in its most primitive form.

In this paper we are interested in the following extension of the Variant Skorohod
Problem: LetX = {Xt}t≥0 be an optional process of class (D), and let f : Ω×[0, T]×R×R×R �→ R

be a random field satisfying appropriate measurability assumptions. Consider the following
backward stochastic differential equation (BSDE for short): for t ∈ [0, T],

Yt = E

{
XT +

∫T

t

f(s, Ys,As)ds | Ft

}
, (1.2)

where the solution (Y,A) is defined to be such that

(i) Yt ≤ Xt, 0 ≤ t ≤ T ; YT = XT ;

(ii) A = {At} is an adapted, increasing process such that A0−
Δ= −∞, and the flat-off

condition holds:

E

∫T

0
|Yt −Xt|dAt = 0. (1.3)

Again, if the filtration F is generated by a Brownian motion B, then we can consider
an even more general form of BSDE as extension of (1.1):

dYt = −f(t, Yt, Zt,At)dt + ZtdWt, Yt ≤ Xt, t ∈ [0, T], YT = XT, (1.4)

where A is an increasing process satisfying the flat-off condition, and (Y,Z) is a pair of
adapted process satisfying some integrable conditions. Hereafter we will call BSDE (1.2) and
(1.4) the Variant Reflected Backward Stochastic Differential Equations (VRBSDEs for short), for
the obvious reasons. We remark that although the “flat-off” condition (iii) looks very similar
to the one in the classic Skorohod problem, there is a fundamental difference. That is, the
process A cannot be used as a measure to directly “push” the process Y downwards as a
reflecting process usually does, but instead it has to act through the drift f , in a sense as a
“density” of a reflecting force. Therefore the problem is beyond all the existing frameworks
of the reflected SDEs.

Our first task in this paper is to study the well-posedness of the VRBSDE. It is
worth noting that the fundamental building block of the nonlinear Skorohod problem is a



Journal of Applied Mathematics and Stochastic Analysis 3

representation theorem, which in essence is to find an optional process L so that the given
optional obstacle process X can be written as

XS = E

{∫T

S

f

(
u, sup

S≤v≤u
Lv

)
du | FS

}
, (1.5)

for all stopping time S taking values in [0, T]. In fact, the “reflecting” process A is exactly
the running maximum of the process L. Consequently, while (1.2) and (1.4) are apparently in
the forms of BSDEs, they have a strong nature of a forward-backward SDEs. This brings
in some very subtle difficulties, which will be reflected in our results. We would like to
mention that the main difficulty here is to find a control for the reflecting process A. In fact,
unlike the classic Skorohod problem, the characterization of reflecting process A is far more
complicated, and there is no simple way to link it with the solution process Y . We will prove,
nevertheless, that the SDE is well-posed over a small-time duration, and a certain continuous
dependance and comparison theorems are still valid.

The second goal of this paper is to present some possible applications where the
VRBSDE could play a role that no existing methods are amenable. In fact, the form of
the VRBSDE (1.2) suggests that the process Y can be viewed as a stochastic recursive
intertemporal utility (see, e.g., [5]). We will show that if we consider the utility optimization
problem with Hindy-Kreps-Huang type preference (see, e.g., [1, 7, 9]), and the goal is
minimizing such a utility while trying to keep it aloft, then the optimal solution will be given
by solving a VRBSDE with the given lower boundary. To our best knowledge, such a result
is novel. Another possible application of the VRBSDE that will be explored in the paper is a
class of optimal stopping problems. We show that the solution to our VRBSDE can be used to
describe the value function of a family of optimal stopping problems, and the corresponding
reflecting process can be used as a universal signal of exercise time, which extends a result of
Bank-Föllmer [3] to an SDE setting.

The rest of the paper is organized as follows. In Section 2 we revisit the stochastic
representation theorem, and give the detailed formulation of the VRBSDE. In Section 3 we
study the well-posedness of the equation. In Sections 4 and 5 we study the comparison
theorem and the continuous dependence results. Finally we present some possible
applications of VRBSDEs in the utility minimization problems and a class of optimal stopping
problems in Section 6.

2. Formulation of the Variant RBSDE

Throughout this paper we assume that (Ω,F, P ;F) is a filtered probability space, where F
Δ=

{Ft}0≤t≤T is a filtration that satisfies the usual hypothses. For simplicity we assume that F =
FT . In the case when the filtration F is generated by a standard Brownian motion B on the
space (Ω,F, P), we say that F is “Brownian” and denote it by F = F

B. We will always assume
that F

B is augmented by all the P -null sets in F.
We will frequently make use the following notations. Let

(i) L
∞
T be the space of all FT measurable bounded random variables,

(ii) H
∞
T the space of all R-valued, progressively measurable, bounded processes,

(iii) H
2
T the space of all R

d-valued, progressively measurable process Z, such that
E
∫T
0 |Z

2
s |ds < ∞,
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(iv) M0.T the set of all the stopping times taking values in [0, T].

Similar to the Variant Skorohod Problem, a VRBSDE involves two basic elements: (1) 2
a boundary process X = {Xt, 0 ≤ t ≤ T} which is assumed to be an optional process of class
(D) (A process X is said to belong to Class (D) on [0, T] if the family of random variables
{Xτ : τ ∈ M0,T} is uniformly integrable), and is lower-semicontinuous in expectation; and
(2) a drift coefficient f . In this paper we will focus only on the case where f is independent
of z, and we assume that it satisfies the following Standing Assumptions:

(H1) the coefficient f : [0, T] ×Ω × R × R × R �→ R enjoys the following properties:

(i) for fixed ω ∈ Ω, t ∈ [0, T], and y ∈ R, the function f(ω, t, y, ·) : R �→ R is continuous
and strictly decreasing from +∞ to −∞,

(ii) for fixed y, l ∈ R
3, the process f(·, ·, y, l) is progressively measurable with

E

∫T

0

∣∣f(t, y, l)∣∣dt ≤ +∞, (2.1)

(iii) there exists a constant L > 0, such that for all fixed t, ω, l it holds that

∣∣f(t, ω, y′, l
)
− f
(
t, ω, y, l

)∣∣ ≤ L
∣∣y′ − y

∣∣, ∀y′, y ∈ R, (2.2)

(iv) there exist two constants k > 0 and K > 0, such that for all fixed t, ω, y it holds that

k
∣∣l′ − l

∣∣ ≤ ∣∣f(t, y, l′) − f
(
t, y, l

)∣∣ ≤ K
∣∣l′ − l

∣∣, ∀ l′, l ∈ R. (2.3)

We remark that the assumption (iv) in (H1) amounts to saying that the derivative of
f with respect to l, if exists, should be bounded from below. While this is merely technical,
it also indicates that we require a certain sensitivity of the solution process Y with respect to
the reflection process A. This is largely due to the nonlinearity between the solution and the
reflecting process, which was not an issue in the classical Skorohod problem.

We now introduce our variant reflected BSDE. Note that we do not assume that the
filtration F is Brownian at this point.

Definition 2.1. Let ξ ∈ L
∞
T and the boundary process X be given. A pair of processes (Y,A) is

called a solution of Variant Reflected BSDE with terminal value ξ and boundary X if

(i) Y and A are F-adapted processes with càdlàg paths;

(ii) Yt = E{ξ +
∫T
t f(s, Ys,As)dt | Ft};

(ii) Yt ≤ Xt, 0 ≤ t ≤ T ; YT = XT = ξ;

(iv) the process A is F-adapted, increasing, càdlàg , and A0−
Δ= −∞, such that the “flat-

off” condition holds:

E

∫T

0
|Yt −Xt|dAt = 0. (2.4)
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Remark 2.2. The assumption A0− = −∞ has an important implication: the solution Y must
satisfy Y0 = X0. This can be deduced from the flat of condition (2.4), and the fact that dA0 > 0
always holds. Such a fact was implicitly, but frequently, used in [1], and will be crucial in
some of our arguments below.

We note that if we denote Mt = E{
∫T
0f(t, Yt, At)dt | Ft}, t ∈ [0, T] then M is a

martingale on [0, T], and the VRBSDE will read

Yt = ξ +
∫T

t

f(s, Ys,As)dt − (MT −Mt), 0 ≤ t ≤ T. (2.5)

Thus if we assume further that the filtration is Brownian, than we can consider the more
general form of VRBSDE.

Definition 2.3. Assume that the filtration F = F
B, that is, it is generated by a standard Brownian

motion B, with the usual augmentation. Let ξ ∈ L
∞
T and the boundary process X be given. A

triplet of processes {(Yt, Zt,At), 0 ≤ t ≤ T} is called a solution of Variant Reflected BSDE with
terminal value ξ and boundary X if

(i) Y ∈ H
∞
T , Z ∈ H

2
T ,

(ii) Yt = ξ +
∫T
t f(s, Ys, Zs,As)ds −

∫T
t Zs dBs, 0 ≤ t ≤ T,

(iii) Yt ≤ Xt, 0 ≤ t ≤ T ; YT = XT = ξ,

(iv) the process {At} is F-adapted, increasing, càdlàg , and A0− = −∞, such that the
flat-off condition holds: E

∫T
0 |Yt −Xt|dAt = 0.

Our study of VRBSDE is based on a Stochastic Representation Theorem of Bank and El
Karoui [1]. We summarize the stochastic representation and some related fact in the following
theorem, which is slightly modified to suit our situation.

Theorem 2.4 (Bank-El Karoui [1]). Assume (H1)-(i), (ii). Then every optional process X of class
(D) which is lower semicontinuous in expectation admits a representation of the form

XS = E

{
XT +

∫T

S

f

(
u, sup

S≤v≤u
Lv

)
du | FS

}
(2.6)

for any stopping time S ∈ M0,T , where L is an optional process taking values in R∪ {−∞}, and it can
be characterized as follows:

(i) f(u, supS≤v≤uLv) ∈ L1(P ⊗ dt) for any stopping time S,

(ii) LS = ess infτ>SlS,τ , where the “ess inf” is taken over all stopping times S ∈ M0,T such that
S < T , a.s.; and lS,τ is the unique FS-measurable random variable satisfying:

E{XS −Xτ | FS} = E

{∫ τ

S

f(u, lS,τ)du | FS

}
, (2.7)
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(iii) (Gittin Index) if V (t, l) Δ= ess infτ≥tE{E
∫τ
t f(u, l)du + Xτ |Ft}, t ∈ [0, T], is the value

functions of a family of optimal stopping problems indexed by l ∈ R, then

Lt = sup{l : V (t, l) = Xt}, t ∈ [0, T]. (2.8)

We should note here, unlike the original stochastic representation theorem in [1]where
it assumed that XT = 0, we allow arbitrary terminal value for XT . This can be obtained easily

by considering a new process X̃t
Δ= Xt −E[ξ | Ft], t ≥ 0. A direct consequence of the stochastic

representation theorem is the following Variant Skorohod Problem, which is again slightly
adjusted to our non-zero terminal value case.

Theorem 2.5. Assume (H1)-(i), (ii). Then for every optional process X of class (D) which is lower
semicontinuous in expectation, there exists a unique pair of adapted processes (Y,A), where Y is
continuous and A is increasing, such that

Yt = E

{
XT +

∫T

t

f(s,As)ds | Ft

}
, t ∈ [0, T]. (2.9)

Furthermore, the process A can be expressed as At = sup0≤s≤t+Ls, where L is the process in
Theorem 2.4.

We conclude this section bymaking following observations. First, the random variable
lS,τ , defined by (2.7) is FS-measrable for any stopping time τ > S, thus the process s �→ Ls is

F-adapted. However, the running maximum process At
Δ= sup0≤u≤t+Lu depends on the whole

path of process L, whence X. Thus, although the variant Skorohod problem (2.9) looks quite
similar to a standard backward stochastic differential equation, it contains a strong “forward-
backward” nature. These facts will be important in our future discussions.

3. Existence and Uniqueness

In this section we study the well-posedness of the VRBSDE (2.4). We note that in this case we
do not make any restriction on the filtration, as long as it satisfies the usual hypotheses.

Wewill follow the usual technique, namely the contractionmapping theorem, to attack
the existence and uniqueness of the solution. It is worth noting that due to the strong forward-
backward structure as well as the fundamental non-Markovian nature of the problem, a
general result with arbitrary duration is not clear at this point. The results presented in this
section will provide the first look at some basic features of such an equation.

We will make use of the following extra assumptions on the boundary process X and
the drift coefficient f :

(H2) there exists a constant Γ > 0, such that

(i) for any S ∈ M0,T , it holds that

ess sup
τ>S

τ∈M0,T

∣∣∣∣E{Xτ −XS | FS}
E{τ − S | FS}

∣∣∣∣ ≤ Γ, a.s. (3.1)
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(ii) |f(t, 0, 0)| ≤ Γ, t ∈ [0, T].

Remark 3.1. The assumption (3.1) is merely technical. It is motivated by the “Gittin indices”
studied in [6], and it essentially requires a certain “path regularity” on the boundary process
X. However, one should note that it by no means implies the continuity of the paths of X(!).
In fact, a semimartingale with absolutely continuous bounded variation part can easily satisfy
(3.1), but this does not prevent jumps from the martingale part.

We begin by considering the following mapping T on H
∞
T : for a given process y we

define T(y)t
Δ= Yt, t ∈ [0, T], where Y is the unique solution of the Variant Skorohod problem:

Yt = E

{
ξ +
∫T

t

f
(
s, ys,As

)
ds | Fs

}
, t ∈ [0, T],

E

∫T

0
[Xt − Yt]dAt = 0, t ∈ [0, T].

(3.2)

We are to prove that the mapping T is a contraction from H
∞
T to itself. It is not hard to see,

by virtue of Theorems 2.4 and 2.5, that the reflecting process A is determined by y in the
following way: At = sup0≤v≤t+Lv, and L is the solution to the Stochastic Representation:

Xt = E

{
ξ +
∫T

t

f

(
s, ys, sup

t≤v≤s
Lv

)
ds | Ft

}
, t ∈ [0, T]. (3.3)

We should note, however, that the contraction mapping argument does not completely solve
the existence and uniqueness issue for the Variant BSDE. In fact, it only gives the existence of
the fixed point Y , and we will have to argue the uniqueness of the process A separately.

We now establish some a priori estimates that will be useful in our discussion. To begin
with, let us consider the stochastic representation

Xt = E

{
ξ +
∫T

t

f

(
s, 0, sup

t≤v≤s
L0
v

)
ds | Ft

}
. (3.4)

Denote A0
t

Δ= sup0≤s≤t+L
0
t . We have the following estimate for A0.

Lemma 3.2. Assume (H1) and (H2). Then it holds that ‖A0‖∞ ≤ 2Γ/k, where k and Γ are the
constants appearing in (H1) and (H2).

Proof. For fixed s ∈ [0, T] and any stopping time τ > s, let l0s,τ be the Fs measurable random
variable such that

E{Xs −Xτ | Fs} = E

{∫ τ

s

f
(
t, 0, l0s,τ

)
dt | Fs

}
. (3.5)

Then by Theorem 2.4 we have L0
s = ess infτ>sl0s,τ , and A0

t = sup0≤s≤t+L
0
s.



8 Journal of Applied Mathematics and Stochastic Analysis

Now consider the set {ω : l0s,τ(ω) < 0}. Since f(t, 0, ·) is decreasing, we have

E{Xs −Xτ | Fs} − E

{∫ τ

s

f(t, 0, 0)dt | Fs

}
= E

{∫ τ

s

f
(
t, 0, l0s,τ

)
− f(t, 0, 0)dt | Fs

}

≥ E

{∫ τ

s

k
∣∣∣l0s,τ∣∣∣dt | Fs

}
≥ k
∣∣∣l0s,τ∣∣∣E{τ − s | Fs}.

(3.6)

In other words we have

∣∣∣l0s,τ∣∣∣ ≤ 1
k

{
E{Xs −Xτ | Fs}
E{τ − s | Fs}

−
E
{∫τ

sf(t, 0, 0)dt | Fs

}
E{τ − s | Fs}

}
, on

{
l0s,τ < 0

}
. (3.7)

Similarly, one can show that on the set {l0s,τ ≥ 0} it holds that

l0s,τ ≤ 1
k

{
−E{Xs −Xτ | Fs}

E{τ − s | Fs}
+
E
{∫τ

sf(t, 0, 0)dt | Fs

}
E{τ − s | Fs}

}
. (3.8)

Consequently, we have

∣∣∣l0s,τ∣∣∣ ≤ 1
k

{∣∣∣∣E{Xτ −Xs | Fs}
E{τ − s | Fs}

∣∣∣∣ + E
{∫τ

s

∣∣f(t, 0, 0)∣∣dt | Fs

}
E{τ − s | Fs}

}
. (3.9)

Now note that

∣∣∣A0
t

∣∣∣ = ∣∣∣∣∣ sup0≤s≤t+
L0
s

∣∣∣∣∣ ≤ sup
0≤s≤t+

∣∣∣L0
s

∣∣∣ = sup
0≤s≤t+

{
ess inf

τ>s

∣∣∣l0s,τ∣∣∣}, (3.10)

we derive from (3.9) and (H2) that

∣∣∣A0
t

∣∣∣ ≤ sup
0≤s≤t+

{
ess sup

τ>s

∣∣∣l0s,τ∣∣∣} ≤ sup
0≤s≤t+

{
Γ + Γ
k

}
=

2Γ
k
, (3.11)

proving the lemma.
Clearly, a main task in proving thatT is a contraction mapping is to find the control on

the difference of two reflecting processes. To see this let y, y′ ∈ H
∞
T be given, and consider the

two solutions of the variant Skorohod problem: (Y,A) and (Y ′, A′). We would like to control
|A′

s −As| in terms of |y′
s − ys|. The following lemma is crucial.

Lemma 3.3. Assume (H1) and (H2). Then, for any t ∈ [0, T], it holds almost surely that

∣∣A′
t −At

∣∣ ≤ L

k

∥∥y′ − y
∥∥
∞. (3.12)
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Proof. Again, we fix s and let τ ∈ M0,T be such that τ > s, a.s. Recalling Theorem 2.4, we let
ls,τ and l′s,τ be two Fs-measurable random variables such that

E{Xs −Xτ | Fs} = E

{∫ τ

s

f
(
u, yu, ls,τ

)
du | Fs

}
= E

{∫ τ

s

f
(
u, y′

u, l
′
s,τ

)
du | Fs

}
. (3.13)

Define Dτ
s = {ω| l′s,τ (ω) > ls,τ(ω)}, then Dτ

s ∈ Fs, for any stopping time τ > s.Now, from
(3.13) and noting that 1Dτ

s
is Fs-measurable, we deduce that

E

{∫ τ

s

[
f
(
u, yu, ls,τ

)
− f
(
u, yu, l

′
s
)]
1Dτ

s
du | Fs

}

= E

{∫ τ

s

[
f
(
u, y′

u, l
′
s,τ

)
− f
(
u, yu, l

′
s,τ

) ]
1Dτ

s
du | Fs

}
.

(3.14)

Now, by (H1)-(iv), the left-hand side of (3.14) satisfies

E

{∫ τ

s

[
f
(
u, yu, ls,τ

)
− f
(
u, yu, l

′
s,τ

)]
1Dτ

s
du | Fs

}
≥ k

∣∣ls,τ − l′s,τ
∣∣E{τ − s | Fs}1Dτ

s
. (3.15)

On the other hand, by (H1)-(iii)we see that the right-hand side of (3.14) satisfies

E

{∫ τ

s

[
f
(
u, y′

u, l
′
s,τ

)
− f
(
u, yu, l

′
s,τ

)]
1Dτ

s
du | Fs

}

≤ E

{∫ τ

s

∣∣f(u, y′
u, l

′
s,τ

)
− f
(
u, yu, l

′
s,τ

)∣∣1Dτ
s
du | Fs

}
≤ LE

{∥∥y′ − y
∥∥
∞(τ − s) | Fs

}
1Dτ

s
.

(3.16)

Combining above we obtain that

k
∣∣ls,τ − l′s,τ

∣∣E{τ − s | Fs} ≤ L
∥∥y′ − y

∥∥
∞E{τ − s | Fs}, on Dτ

s . (3.17)

Thus |ls,τ − l′s,τ | ≤ (L/k)‖y′ − y‖∞, on Dτ
s , since τ > s, a.s. Similarly, one shows that the

inequality holds on the complement of Dτ
s as well. It follows that

∣∣ls,τ − l′s,τ
∣∣ ≤ L

k

∥∥y′ − y
∥∥
∞. (3.18)

Next, recall from Theorem 2.4 that Ls = ess infτ>sls,τ , L′
s = ess infτ>sl′s,τ , At = sup0≤s≤tLs, and

A′
t = sup0≤s≤tL

′
s. We conclude from (3.18) that, for any t ∈ [0, T],

∣∣A′
t −At

∣∣ = ∣∣∣∣∣ sup0≤s≤t+
L′
s − sup

0≤s≤t+
Ls

∣∣∣∣∣ ≤ sup
0≤s≤t+

∣∣∣∣ess infτ>s
l′s,τ − ess inf

τ>s
ls,τ

∣∣∣∣
≤ sup

0≤s≤t+
ess sup

τ>s

∣∣l′s,τ − ls,τ
∣∣ ≤ L

k

∥∥y′ − y
∥∥
∞, P -a.s.

(3.19)
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The proof is now complete.

Remark 3.4. We observe that the step from (3.16) to (3.17) is seemingly rough. It would be
more desirable if some more delicate estimates, such as

E

{∫ τ

s

∣∣yu − y′
u

∣∣du | Fs

}
≤ CE{τ − s | Fs}E

{
sup
0≤u≤T

∣∣yu − y′
u

∣∣ | Fs

}
(3.20)

could hold for some constant C, so that one can at least remove the boundedness requirement
on the solution. But unfortunately (3.20) is not true in general, unless some conditional
independence is assumed. Here is a quick example: Let T = 1 and let τ be a binomial random
variable that takes value 1 with probability p and 1/n with probability 1 − p. Define two
processes: yt = 1{τ=1}, t ∈ [0, 1]; ht = 1{τ≤t}, t ∈ [0, 1]; and define Ft = σ{(yu, hu) : 0 ≤ u ≤ t}
with F = {Ft}t∈[0,1]. Then τ is an F-stopping time and y is an F-adapted continuous process.
It is easy to check that E{

∫τ
0 |yu|du} = p and E{τ}E{sup0≤u≤1|yu|} = (p + (1/n)(1 − p))p. Thus

if we choose p, n, and a constant c ≥ 1 such that

p <
n − c

(n − 1)c
< 1, (3.21)

then (3.20) will fail at s = 0, with C = c.

We are now ready to prove themain result of this section, the existence and uniqueness
of the solution to the Variant RBSDE.

Theorem 3.5. Assume (H1) and (H2). Assume further that (L + K(L/k)T < 1, then the Variant
reflected BSDE (1.2) admits a unique solution (Y,A).

Proof. We first show that the mapping T defined by (3.2) is from H
∞
t to itself. To see this, we

note that by using assumption (H1) and Lemmas 3.2 and 3.3, one has

∣∣f(s, ys,As

)∣∣ ≤ ∣∣∣f(s, 0, A0
s

)∣∣∣ + L
∣∣ys

∣∣ +K
∣∣∣As −A0

s

∣∣∣
≤
∣∣f(s, 0, 0)∣∣ +K

∣∣∣A0
s

∣∣∣ + L
∥∥y∥∥∞ +K

L

k

∥∥y∥∥∞
≤ Γ +K

2Γ
k

+ L
∥∥y∥∥∞ +K

L

k

∥∥y∥∥∞.
(3.22)

Since ξ ∈ L∞ by assumption, we can then easily deduce that Y = T(y) ∈ H
∞
T . To prove that

T is a contraction, we take y, y′ ∈ H
∞
T , and denote T(y) = Y and T(y′) = Y ′. Then, for any

t ∈ [0, T], applying Lemma 3.3 we have

∣∣T(y)t − T(y′)t
∣∣ ≤ ∣∣∣∣∣E

{∫T

t

[
f
(
s, ys,As

)
− f
(
s, y′

s, As

)]
ds | Ft

}∣∣∣∣∣
≤ T
(
L
∥∥y − y′∥∥

∞ +K
∥∥A −A′∥∥

∞
)
≤ T

(
L +K

L

k

)∥∥y − y′∥∥
∞.

(3.23)
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Since T(L +K(L/k)) < 1 by assumption, we see that T is a contraction. Now, let Y ∈ H
∞
T be

the (unique) fixed point of T, and let A be the corresponding reflecting process defined by
At = sup0≤v≤t+Lv, where L satisfies the representation

Xt = E

{
ξ +
∫T

t

f

(
s, Ys, sup

t≤v≤s
Lv

)
ds | Ft

}
. (3.24)

We now show that (Y,A) is the solution to the Variant RBSDE (1.2). To see this, note that
(3.24), the definition of A, and the monotonicity of the function f (on the variable l) tell us
that, for t ∈ [0, T],

Yt = E

{
ξ +
∫T

t

f(s, Ys,As)ds | Ft

}
≤ E

{
ξ +
∫T

t

f

(
s, Ys, sup

t≤v≤s
Lv

)
ds | Ft

}
= Xt. (3.25)

Thus it remains to show that the flat-off condition holds. But by the properties of optional
projections and definition of L and A, we have

E

∫T

0
[Xt − Yt]dAt = E

∫T

0

{∫T

t

[
f

(
u, Yu, sup

t≤v≤u
Lv

)
− f

(
u, Yu, sup

0≤v≤u+
Lv

)]
du

}
dAt

= E

∫T

0

{∫u

0

[
f

(
u, Yu, sup

t≤v≤u+
Lv

)
− f

(
u, Yu, sup

0≤v≤u+
Lv

)]
dAt

}
du,

(3.26)

here the last equality follows from the Fubini theorem and the fact that the Lebesguesmeasure
does not charge the discontinuities of the paths u �→ supt≤v≤uLv, which are only countably
many. Finally, note that on the set {(t, ω) : dAt(ω) > 0}, t must be a point of increase of
A · (ω). Since A is the running supreme of Lwe conclude that sup0≤v≤t+δLv > sup0≤v≤t−Lv, for
all δ > 0. This yields that

sup
t≤v≤u+

Lv = sup
0≤v≤u+

Lv, on {(t, ω) : dAt(ω) > 0}. (3.27)

Thus the right side of (3.26) is identically zero, and the flat-off condition holds. This proves
the existence of the solution (Y,A). The uniqueness of the solution can be argued as follows.
Suppose that there is another solution (Y ′, A′) to the VRBSDE such that Yt ≤ Xt, Y ′

t ≤ Xt,
t ∈ [0, T], and

Yt = E

{
ξ +
∫T

t

f(u, Yu,Au)du | Ft

}
, E

∫T

0
|Xu − Yu|dAu = 0;

Y ′
t = E

{
ξ +
∫T

t

f
(
u, Y ′

u,A
′
u

)
du | Ft

}
, E

∫T

0

∣∣Xu − Y ′
u

∣∣dA′
u = 0.

(3.28)
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Since both Y and Y ′ are the fixed points of the mapping T, it follows that Yt = Y ′
u, t ∈ [0, T],

P -a.s. Now consider the Variant Skorohod Problem

Ỹt = E

{
ξ +
∫T

t

fY
(
u, Ãu

)
du | Ft

}
,

Ỹt ≤ Xt, ỸT = XT = ξ,

E

∫T

0

∣∣∣Ỹt −Xt

∣∣∣dÃt = 0,

(3.29)

where fY (u, l) Δ= f(u, Yu, l). Then there exists a unique pair of process (Ỹ , Ã) that solves the
Variant Skorohold problem, thanks to Theorem 2.5. But since both (Y,A) and (Y,A′) are the
solutions to the Variant RBSDE (3.29), it follows that Yt = Ỹt and At = A′

t = Ãt, t ∈ [0, T], a.s.,
proving the uniqueness, whence the theorem.

We remark that our existence and uniqueness proof depends heavily on the well-
posedness result of the stochastic representation theorem in [1], which requires thatA0− = −∞
so that t = 0 must be a point of increase of process A. A direct consequence is then Y0 = X0,
by the flat-off condition, as we pointed out in Remark 2.2. The following corollary shows that
this is not the only reason that solution of VRBSDE is actually a “bridge” with respect to the
boundary process X.

Corollary 3.6. Suppose that Y is a solution to VRBSDE with generator f and upper boundary X.
Then Y0 = X0.

Proof. Since Y is a fixed point of the mappingT defined by (3.2), we see that Y0 andX0 satisfy
the following equalities:

X0 = E

{
ξ +
∫T

0
f

(
s, Ys, sup

0≤v≤s
Lv

)
ds

}
,

Y0 = E

{
ξ +
∫T

0
f(s, Ys,As)ds

}
= E

{
ξ +
∫T

0
f

(
s, Ys, sup

0≤v≤s+
Lv

)
ds

}
,

(3.30)

but as we argued before that the paths of the increasing process u �→ sup0≤v≤uLv has
only countably many discontinuities, which are negligible under the Lebesgue measure, we
conclude that Y0 = X0.

4. Comparison Theorems

In this section we study the comparison theorem of the Variant RBSDE, one of the most useful
tools in the theory of the BSDEs. We should note that the method that we will employ below
follows closely to the uniqueness argument used in [1], which was more or less hidden in the
proof of Theorem 3.5 as we applied the uniqueness of the Variant Skorohod problem. As we
will see below, such a method is quite different from all the existing arguments in the BSDE
context.
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We begin by considering two VRBSDEs for i = 1, 2,

Y i
t = E

{
ξi +
∫T

t

f i
(
u, Y i

u,A
i
u

)
du | Ft

}
,

Y i
t ≤ Xi

t, Y i
T = Xi

T = ξi,

E

∫T

0

∣∣∣Y i
t −Xi

t

∣∣∣dAi
t = 0.

(4.1)

In what follows we call (fi, Xi), i = 1, 2, the “parameters” of the VRBSDE (4.1), i = 1, 2,
respectively. Define two stopping times:

s
Δ= inf

{
t ∈ [0, T) | A2

t > A1
t + ε

}
∧ T ;

τ
Δ= inf

{
t ∈ [s, T) | A1

t > A2
t −

ε

2

}
∧ T.

(4.2)

The following statements are similar to the solutions to Variant Skorohod problems
(see [1]). We provide a sketch for completeness.

Lemma 4.1. The stopping times s and τ defined by (4.2) have the following properties:

(i) s, τ are points of increase forA2 andA1, respectively. In other words, for any δ > 0, it holds
that A2

s− < A2
s+δ and A1

τ− < A1
τ+δ,

(ii) P{s < τ} = 1; and A1
t ≤ A2

t − ε/2, for all t ∈ [s, τ], P -a.s.,

(iii) It holds that Y 2
s = X2

s and Y 1
τ = X1

τ , P -a.s.

Proof. Since (ii) is obvious by the definition of s and τ and (iii) is a direct consequence of
(i) and the flat-off condition, we need only check property (i).Let ω be fixed. By the right
continuity of A2 and A1, as well as the definition of s, we can find a decreasing sequence of
stopping times {sn} such that sn ↘ s, and A2

sn > A1
sn + ε, for n sufficiently large (may assume

for all n). Since A1 is increasing, we have

A2
sn > A1

sn + ε ≥ A1
s + ε ≥ A1

s− + ε. (4.3)

Note that s is the first time A2 goes above A1 + ε, one has A2
s− ≤ A1

s− + ε. Thus, A2
sn > A2

s−, for
all n. Now for any δ > 0, one can choose n large enough such that sn < s + δ and it follows
that A2

s+δ ≥ A2
sn > A2

s−, that is, s is a point of increase of A2. That τ is a point of increase of A1

can be proved using a similar argument.

We now give a simple analysis that would lead to the comparison theorem. Let (Y i,Ai),
i = 1, 2 be the solutions to two VRBSDEs with boundaries X1 and X2, respectively. Define s
and τ as in (4.2). By Lemma 4.1, s < τ , P -a.s., with Y 2

s = X2
s and Y 1

τ = X1
τ . To simplify notations
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let us denote δΘ = Θ1 − Θ2, Θ = X,Y,A, and ξ. Furthermore, let us define two martingales

Mi
t
Δ= E{

∫T
0f

i(u, Y 1
u ,A

1
u)du | Ft}, t ∈ [0, T], i = 1, 2, then on the set {s < T}we can write

δYs = δYτ +
∫ τ

s

[
f1
(
u, Y 1

u ,A
1
u

)
− f2

(
u, Y 2

u ,A
2
u

)]
du + (δMT − δMs),

= δYτ +
∫ τ

s

∇yf
1
uδYudu +

∫ τ

s

[
δaf

1
u + δ2fu

]
du + (δMT − δMs),

(4.4)

where δM Δ= M1 −M2, and

∇yf
1
u

Δ=
f1(u, Y 1

u ,A
1
u

)
− f1(u, Y 2

u ,A
1
u

)
Y 1
u − Y 2

u

1{Y 1
u /=Y 2

u},

δaf
1
u

Δ= f1
(
u, Y 2

u ,A
1
u

)
− f1

(
u, Y 2

u ,A
2
u

)
,

δ2fu
Δ= f1

(
u, Y 2

u ,A
2
u

)
− f2

(
u, Y 2

u ,A
2
u

)
.

(4.5)

Now, by (H1)we see that∇yf
1 is a bounded process, and by the definition of s, τ , and

the monotonicity of f in the variable l, we have δaf
1 > 0 on the interval [s, τ]. As usual, we

now define Γt = e
∫ t
0∇yf

1
udu, t ∈ [0, T], and apply Itô’s formula to obtain that

ΓsδYs − ΓτδYτ =
∫ τ

s

Γu
(
δaf

1
u + δ2fu

)
du −

∫ τ

s

Γud(δMu). (4.6)

Therefore, if we assume that f1 ≥ f2, then δ2f ≥ 0, dP ⊗ dt-a.s., and consequently,
taking conditional expectation on both sides of (4.6)we have

E{ΓsδYs − ΓτδYτ | Fs} = E

{∫ τ

s

Γu
(
δaf

1
u + δ2fu

)
du | Fs

}
> 0. (4.7)

On the other hand by the flat-off condition and Lemma 4.1-(iii), one can check that
Y 1
s − Y 2

s ≤ X1
s −X2

s and Y 1
τ − Y 2

τ ≥ X1
τ −X2

τ ,

E{ΓsδYs − ΓτδYτ | Fs} ≤ E{ΓsδXs − ΓτδXτ | Fs}. (4.8)

It is now clear that if the right hand above is nonpositive, then (4.8) contradicts (4.7), and
consequently one must have P{s < T} = 0. In other words,A2

t ≤ A1
t + ε, for all t ∈ [0, T], P -a.s.

Since ε is arbitrary, this would entail that

A1
t ≥ A2

t , t ∈ [0, T], P -a.s. (4.9)

We summarize the arguments into the following comparison theorem.



Journal of Applied Mathematics and Stochastic Analysis 15

Theorem 4.2. Suppose that the parameters of the VRBSDEs (4.1) (fi, Xi), i = 1, 2, satisfy (H1) and
(H2). Suppose further that

(i) f1(t, y, a) − f2(t, y, a) ≥ 0, dP × dt a.s.,

(ii) X1
t ≤ X2

t , 0 ≤ t ≤ T , a.s.,

(iii) δXs ≤ E[eL(t−s)δXt | Fs] a.s. for all s and t such that s < t.

Then it holds that A1
t ≥ A2

t , t ∈ [0, T], P -a.s.

We remark that the assumption (iii) in Theorem 4.2 amounts to saying that the process
eLsδXs is a submartingale. This is a merely technical condition required for the comparison
theorem, and it does not add restriction on the regularity of the boundary processes X1 and
X2 themselves, which are only required to be optional processes satisfying (H2).

Proof of Theorem 4.2. We need only show that the right hand side of (4.8) is nonpositive. To
see this, note that since δXτ ≤ 0 by assumption (ii), we derive from (4.8) that

E{ΓsδYs − ΓτδYτ | Fs} ≤ ΓsE
{
δXs − e

∫τ
s∇yf

1
uduδXτ | Fs

}
≤ ΓsE

[
δXs − eL(τ−s)δXτ | Fs

]
≤ 0.

(4.10)

The last inequality is due to Assumption 3(iii) and optional sampling. This proves the
theorem.

We should point out that Theorem 4.2 only gives the comparison between the
reflecting processes A1 and A2, thus it is still one step away from the comparison between
Y 1 and Y 2, which is much desirable for obvious reasons. Unfortunately, the latter is not
necessarily true in general, due to the “opposite” monotonicity on fi’s on the variable l. We
nevertheless have the following corollaries of Theorem 4.2.

Corollary 4.3. Suppose that all the assumptions of Theorem 4.2 hold. Assume further that f1 = f2,
then Y 1

t ≤ Y 2
t , for all t ∈ [0, T], P -a.s.

Proof. Let f = f1 = f2. Define two random functions: f̃ i(t, ω, y) Δ= f(t, ω, y,Ai
t(ω)), for

(t, ω, y) ∈ [0, T] ×Ω × R. Then, Y 1 and Y 2 can be viewed as the solutions of BSDEs

Y i
t = E

{
ξi +
∫T

t

f̃ i
(
s, Y i

u

)
du | Ft

}
, t ∈ [0, T], i = 1, 2. (4.11)

Note that f̃1(t, ω, y) = f(t, ω, y,A1
t (ω)) ≤ f(t, ω, y,A2

t (ω)) = f̃2(t, ω, y), here the inequality
holds due to the fact A1 ≥ A2. Since ξ1 = X1

T ≤ X2
T = ξ2, by the comparison theorem of BSDEs,

we have Y 1
t ≤ Y 2

t , for all t ∈ [0, T], P -a.s.

Finally, we point out that Theorem 4.2 and Corollary 4.3 provide another proof of the
uniqueness of VRBSDE. Namely, f1 = f2 and X1 = X2 imply A1 = A2 and Y 1 = Y 2.



16 Journal of Applied Mathematics and Stochastic Analysis

5. Continuous Dependence Theorems

In this section we study another important aspect of well-posedness of the VRBSDE, namely
the continuous dependence of the solution on the boundary process (whence the terminal as
well).

To begin with, let us denote, for any optional process X and any stopping time s and
τ such that s < τ ,

ms,τ(X) =
E{Xτ −Xs | Fs}
E{τ − s | Fs}

. (5.1)

As we pointed out in Remark 3.1, the random variable ms,τ(X) in a sense measures the path
regularity of the “nonmartingale” part of the boundary process X. We will show that this
will be a major measurement for the “closeness” of the boundary processes, as far as the
continuous dependence is concerned.

Let {Xn}∞n=1 be a sequence optional processes satisfying (H2). We assume that {Xn}
converge to X0

t in H
∞
T , and that that X0 satisfies (H2) as well.

Let (Yn,An) be the solutions to the VRBSDE’s with parameters (f,Xn), for n =
0, 1, 2, . . .. To be more precise, for i = 0, 1, 2, . . ., we have

Xn
t = E

{
ξn +

∫T

t

f

(
s, Yn

s , sup
t≤v≤s

Ln
v

)
ds | Ft

}
,

An
t = sup

0≤v≤t+
Ln
v,

Yn
t = E

{
ξn +

∫T

t

f(s, Yn
s ,A

n
s )ds | Ft

}
.

(5.2)

We now follow the similar arguments as in Theorem 3.5 to obtain the following
obvious estimate:

∣∣∣Yn
t − Y 0

t

∣∣∣ ≤ ∥∥∥ξn − ξ0
∥∥∥
∞
+ T
(
L
∥∥∥Yn − Y 0

∥∥∥
∞
+K
∥∥∥An

u −A0
u

∥∥∥). (5.3)

Again, we need the following lemma that provides the control of |An
u −A0

u|.

Lemma 5.1. Assume (H1) and (H2). Then for all t ∈ [0, T], it holds that

∣∣∣An
t −A0

t

∣∣∣ ≤ sup
s∈[0,T]

ess sup
τ>s

1
k

∣∣∣mn
s,τ −m0

s,τ

∣∣∣ + L

k

∥∥∥Yn − Y 0
∥∥∥
∞
, (5.4)

wheremn = m(Xn), for n = 0, 1, 2, . . ..
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Proof. The proof is very similar to that of Lemma 3.3. Let lns,τ , n = 0, 1, 2, . . . be the Fs random
variables such that

E{Xn
s −Xn

τ | Fs} = E

{∫ τ

s

f
(
u, Yn

u , l
n
s,τ

)
du | Fs

}
. (5.5)

Then

E

{∫ τ

s

f
(
u, Yn

u , l
n
s,τ

)
− f
(
u, Y 0

u , l
0
s,τ

)
du | Fs

}
= E{Xn

s −Xn
τ | Fs} − E

{
X0

s −X0
τ | Fs

}
. (5.6)

Then on the set Dτ
s = {lns,τ < l0s,τ} ∈ Fs we have

1Dτ
s

{
E{Xn

s −Xn
τ | Fs} − E

{
X0

s −X0
τ | Fs

}}
= E

{
1Dτ

s

∫ τ

s

[
f
(
u, Yn

u , l
n
s,τ

)
− f
(
s, Y 0

u , l
n
s,τ

)
+ f
(
s, Y 0

u , l
n
s,τ

)
− f
(
u, Y 0

u , l
0
s,τ

)]
du | Fs

}
.

(5.7)

Since f(s, Y 0
u , l

n
s,τ) > f(u, Y 0

u , l
0
s,τ) on Dτ

s , we have by (H1) that f(s, Y 0
u , l

n
s,τ) − f(u, Y 0

u , l
0
s,τ) ≥

k|lns,τ − l0s,τ | on Dτ
s and hence

1Dτ
s
k
∣∣∣lns,τ − l0s,τ

∣∣∣E{τ − s | Fs} ≤ 1Dτ
s

{
E{Xn

s −Xn
τ | Fs} − E

{
X0

s −X0
τ | Fs

}}
+ 1Dτ

s
E

{∫ τ

s

L
∣∣∣Yn

u − Y 0
u

∣∣∣du | Fs

}
.

(5.8)

We thus conclude that

∣∣∣lns,τ − l0s,τ

∣∣∣ ≤ 1
k

∣∣∣mn
s,τ −m0

s,τ

∣∣∣ + L

k

∥∥∥Yn − Y 0
∥∥∥
∞
, P -a.s. on Dτ

s . (5.9)

A similar argument also shows that (5.9) holds on (Dτ
s )

c. Hence (5.9) holds almost
surely.Finally, using the facts that |Ln

s −L0
s| = |ess infτ>slns,τ − ess infτ>sl0s,τ | ≤ ess supτ>s|lns,τ − l0s,τ |,

we conclude that, for any t ∈ [0, T], it holds P -almost surely that

∣∣∣An
t −A0

t

∣∣∣ = ∣∣∣∣∣ sup0≤s≤t+
Ln
s − sup

0≤s≤t+
L0
s

∣∣∣∣∣ ≤ sup
0≤s≤T

∣∣∣Ln
s − L0

s

∣∣∣
≤ sup

0≤s≤T
ess sup

τ>s

1
k

∣∣∣mn
s,τ −m0

s,τ

∣∣∣ + L

k

∥∥∥Yn − Y 0
∥∥∥
∞
,

(5.10)

proving the lemma.

Combining (5.3) and Lemma 5.1 we have the following theorem.
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Theorem 5.2. Assume (H1) and (H2). Assume further that (L +K(L/k))T < 1. Then it holds that

∣∣∣Yn
t − Y 0

t

∣∣∣ ≤ 1
1 − (1 + (K/k))LT

{∥∥∥ξn − ξ0
∥∥∥
∞
+
KT

k

∥∥∥∥∥ sup
s∈[0,T]

ess sup
τ>s

|mn
s,τ −m0

s,τ |
∥∥∥∥∥
∞

}
. (5.11)

6. Applications of Variant Reflected BSDEs

In this section we consider some possible applications of VRBSDEs. We should note that
while these problems are more or less ad hoc, we nevertheless believe that they are novel in
that they cannot be solved by standard (or “classical”) techniques, and the theory of Variant
RBSDEs seems to provide exactly the right solution.

6.1. A Recursive Intertemporal Utility Minization Problem

As one of the main applications of the stochastic representation theorem, Bank and Riedel
studied both utility maximization problems and stochastic equilibrium problems with
Hindy-Huang-Kreps type of preferences (cf. [7, 8]). We will consider a slight variation of
these problems, and show that the VRBSDE is the natural solution.

The main idea of Hindy-Huang-Kreps utility functional is as follows. Instead of
considering utility functionals depending directly on the consumption rate, one assumes that
that the utilities are derived from the current level of satisfaction, defined as a weighted average
of the accumulated consumptions:

At = A(C)t
Δ= ηt +

∫ t

0
θ(t, s)dCs, t ∈ [0, T], (6.1)

where η : [0, T] �→ R represents the exogenously given level of satisfaction at time t; θ :
[0, T]2 �→ R are the instantaneous weights assigned to consumptions made up to time t; and
t �→ Ct is the accumulated consumption up to time t (hence C = {Ct : t ≥ 0} is an increasing
process, called a consumption plan). The Hindy-Huang-Kreps utility is then defined by (cf.
[9])

EU(C) Δ= E

{
V (CT ) +

∫T

0
u(t, A(C)t)dt

}
, (6.2)

here both V (·) and u(t, ·) are concave and increasing (utility) functions.
It is now natural to extend the problem to the recursive utility setting. In fact, in [8] it

was indicated that, following the similar argument of Duffie-Epstein [5], the recursive utility

Ut(C) = E

{
VT +

∫T

t

u(r,Ur(C), A(C)r)dr | Ft

}
, t ∈ [0, T] (6.3)

is well-defined for each consumption plan C. Here u(r, y, a) : [0, T] × R × R �→ R

denotes a felicity function which is continuous, increasing and concave in a; and A(C) is the
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corresponding level of satisfaction defined by (6.1). In what follows wewill denoteU = U(C)
and A = A(C) for simplicity.

Let us now consider the following optimization problem. Let us assume that η and θ
in (6.1) are chosen so that for any consumption plan C, A(C) is an increasing process, and
that for a given increasing process A, there is a unique consumption plan C satisfying (6.1).
Furthermore, we assume that there is an exogenous lower bound of the utility at each time t
(e.g., the minimum cost to execute any consumption plan). We denote it by X̃, and assume
that it is an optional process of Class (D) so that Ut ≥ X̃t at each time t. Let us define the set
of admissible consumption plans, denoted by A, to be the set of all right-continuous increasing
processes C, such that the corresponding recursive utility Ut = Ut(C) ≥ X̃t, t ∈ [0, T], P -a.s.
Our goal is then to find C∗ ∈ A that minimizes the expected utility (or cost)

EU0
Δ= E

{
X̃T +

∫T

0
u(r,Ur,Ar)dr

}
, (6.4)

where A = A(C) is determined by C via (6.1). A consumption plan C∗ is optimal if the
associated recursive utility U∗ satisfies EU∗

0 = min
C∈A

E{U0(C)}.
We remark that the set of admissible consumption plans A is not empty. In fact, let

Yt = −Ut, Zt = −Z̃t, Xt = −X̃t and define f(t, y, l) Δ= −u(t,−y, l). Then we can write the
recursive utility as

Yt = E

{
YT +

∫T

t

f(s, Ys,As)ds | Ft

}
, t ∈ [0, T]. (6.5)

Let us now assume further that the function f and the processX satisfy (H1) and (H2),
then we can solve the VRBSDE with parameters (f,X), to obtain a unique solution (Y 0, A0).
Rewriting U0 = −Y 0, then (−U0, A0) satisfies the following VRBSDE:

U0
t = E

{
X̃T +

∫T

t

u
(
r,U0

r , A
0
r

)
dr | Ft

}
, U0

t ≥ X̃t, t ∈ [0, T],

E

∫T

0

∣∣∣U0
t − X̃t

∣∣∣dA0
t = 0.

(6.6)

Clearly, this implies that A0 ∈ A. Furthermore, for any ε > 0, define Aε
t = A0

t + ε, and let Uε

be the solution to the BSDE Uε
t = E{X̃T +

∫T
t u(r,U

ε
r ,A

ε
r)dr | FT}. By the comparison theorem

of BSDEs, the utility Uε
t ≥ U0

t ≥ X̃t, thus Aε ∈ A as well. In other words, the set A contains
infinitely many elements if it is not empty.

Intuitively, the best choice of the consumption plan would be the one whose
corresponding level of satisfaction A is such that the associated utility U coincides with the
lower boundary X̃. But this amounts to saying that the boundary process X must satisfy a
backward SDE, which is clearly not necessarily true in general.

The second best guess is then that the optimal level A∗ allows its associated recursive
utilityU∗ follow the VRBSDEwith the exogenous lower bound X̃. This turns out to be exactly



20 Journal of Applied Mathematics and Stochastic Analysis

the case: recall fromCorollary 3.6 that the solutionU0 = −Y 0 of the VRBSDE (6.6)must satisfy
U0

0 = −Y0 = −X0 = X̃0 ≤ U(C), P -a.s., for all C ∈ A. Thus A0 is indeed the optimal level of
satisfaction. The following theorem is thus essentially trivial.

Theorem 6.1. Assume that (−U0, A0) is the solution to VRBSDE (6.6), then for any admissible
consumption plan C ∈ A, it holds that U0

0 ≤ U0(C) almost surely. Consequently, A0 is the optimal
level of satisfaction.

Finally, we note that the Theorem 4.2 also leads to the comparison between different
recursive utilities corresponding to different lower boundaries. Namely, if X̃i, i = 1, 2 are
two lower utility boundaries satisfying the conditions in Theorem 4.2, and Ui, i = 1, 2 are
the corresponding minimal recursive utilities satisfying (6.6), then X̃1

t ≥ X̃2
t , 0 ≤ t ≤ T , a.s.,

implies that U1
t ≥ U2

t and A1
t ≥ A2

t , 0 ≤ t ≤ T , a.s. In particular, it holds that E[U1
0] ≥ E[U2

0].

6.2. VRBSDE and Optimal Stopping Problems

We now look at a possible extension of the so-called multiarmed bandits problem proposed by
El Karoui and Karatzas [10]. To be more precise, let us consider a family of optimal stopping
problems, parameterized by a given process Y ∈ H

∞
T :

V (t, l;Y ) Δ= ess inf
τ≥t

E

{∫ τ

t

f(u, Yu, l)du +Xτ | Ft

}
. (6.7)

Here l could be either a constant or a random variable. We note that by choosing the stopping
time τ ≡ t, we deduce the natural upper boundary of the value function

V (t, l;Y ) ≤ Xt, t ∈ [0,T], P -a.s. (6.8)

The following result characterize the relation between the VRBSDE and the value of the
optimal stopping problem.

Theorem 6.2. Assume that the parameters (f,X) in (6.7) satisfies (H1) and (H2). Then a pair of
processes (Y,A) is a solution to the VRBSDE (1.2) if and only if they solve the following optimal
stopping problems:

(i) Yt = V (t, At;Y ), 0 ≤ t ≤ T ,

(ii) At = sup0≤s≤t+Ls and Ls = sup{l ∈ R : V (s, l;Y ) = Xs},

(iii) It holds that

Yt = ess inf
τ≥t

E

{∫ τ

t

f(u, Yu,Au)du +Xτ | Ft

}
, t ∈ [0, T]. (6.9)

Furthermore, the stopping time τ∗t = inf{t ≤ u ≤ T : Yu = Xu} is optimal.
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Proof. We first asssume that (Y,A) is a solution to the variant RBSDE with parameter (f,X).
Note that for any stopping time τ ≥ t, we have

Yt = E

{
Yτ +

∫ τ

t

f(u, Yu,Au)du | Ft

}
, t ∈ [0, T]. (6.10)

Since A is increasing, we have Au ≥ At, for all u ∈ [t, τ]. Thus by using the monotonicity of f
one has

Yt ≤ E

{
Xτ +

∫ τ

t

f(u, Yu,At)du | Ft

}
. (6.11)

Note that this holds for all stopping times τ ≥ t, we conclude that

Yt ≤ ess inf
τ≥t

E

{
Xτ +

∫ τ

t

f(u, Yu,At)du | Ft

}
= V (t, At;Y ), P -a.s. (6.12)

Next, define τ∗t
Δ= inf {t ≤ u ≤ T ; Yu = Xu} ∧ T . Then τ∗t is a stopping time, and the flat-

off condition implies that E
∫τ∗t
t |Yu − Xu|dAu = 0, and therefore Au = At, for all u ∈ [t, τ∗t ).

Consequently,

Yt = E

{
Yτ∗t

+
∫ τ∗t

t

f(u, Yu,Au)du | Ft

}

= E

{
Xτ∗t

+
∫ τ∗t

t

f(u, Yu,At)du | Ft

}

≥ V (t, At;Y ), P -a.s.

(6.13)

Combining (6.12) and (6.13) we obtain (i) and (iii).To prove (ii), we note that by the
uniqueness the VRBSDE, we have the solution (Y,A) of VRBSDE must satisfy

Xt = E

{
ξ +
∫T

t

f

(
s, Ys, sup

τ≤v≤s
Lv

)
ds | Ft

}
,

At = sup
0≤v≤t+

Lv.

(6.14)

As Bank and El Karoui have shown in [1], if we define V (t, l;Y ) as (6.7), then the level process
L in the stochastic representation in (6.14) satisfies

Lt = sup{l ∈ R | V (t, l;Y ) = Xt}, P -a.s., (6.15)

hence (Y,A) is the solution to (i)–(iii).We now prove the converse, that is, any solution (Y,A)
of (i)–(iii) must be the solution to the VRBSDE (1.2) with parameters (f,X). The uniqueness
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of the solution to problem (i)–(iii)will then follow from Theorem 3.5.To see this, let (Y,A) be
the solution to (i)–(iii). By using the Stochastic Representation of [1], one can check that

Xτ = E

{
ξ +
∫T

τ

f

(
u, Yu, sup

τ≤v≤u
Lv

)
du | Fτ

}
, (6.16)

for any stopping time τ ≥ t.Next, we define Ut
Δ= Yt +

∫ t
0f(u, Yu,Au)du. Then by definition

of the optimal stopping problem we see that Ut is the value function of an optimal stopping
problem with payoff Ht =

∫ t
0f(u, Yu,Au)du + Xt, that is, Ut = ess infτ≥tE[Hτ | Ft]. It then

follows that −U is the Snell envelope of −H, that is, −U is the smallest supermartingale that
dominates −H.Now denote

τ∗t
Δ= inf {t ≤ s ≤ T : −Us = −Hs} ∧ T = inf {t ≤ t ≤ T : Ys = Xs} ∧ T. (6.17)

By the theory of Snell envelope (cf., e.g., [? ]), we know that −Ut = E{−Hτ∗t
| Ft}, or

equivalently

Yt = E

{∫ τ∗t

t

f(u, Yu,Au)du +Xτ∗t
| Ft

}

= E

{
ξ +
∫ τ∗t

t

f(u, Yu,Au)du +
∫T

τ∗t

f

(
u, Yu, sup

∗̂t≤v≤u
Lu

)
du | Ft

}
.

(6.18)

The last equality is due to the Stochastic representation (6.16). From definition (ii)we see that
A is the running supreme of L and by assumption the mapping l �→ f(u, Yu, l) is decreasing,
we have

Yt ≥ E

{
ξ +
∫T

t

f(u, Yu,Au)du | Ft

}
. (6.19)

But on the other hand the definition (iii) implies that the reverse direction of the above
inequality also holds, thus (Y,A) satisfies (1.2). Finally, following the same argument as that
in Theorem 3.5 by using the definition (ii) it’s easy to check that the flat-off condition holds.
Namly (Y,A) is a solution to the VRBSDE (1.2). The proof is now complete.

We now consider a special case where VRBSDE is linear, in the sense that f(t, y, a) =
ϕt + βty + γta, where ϕ, β, and γ are bounded, adapted processes. In particular, let us assume
that |βt|, |ϕt| ≤ L and −K ≤ γt ≤ −k < 0, for all t ∈ [0, T], P -a.s. Here k,K, and L are some given
positive constants.

Suppose that the linear VRBSDE (f,X) has a solution (Y,A). Then, we define a
martingale Mt = E{

∫T
0f(s, Ys,As)ds | Ft}, t ∈ [0, T] and write the VRBSDE as

Yt = XT +
∫T

t

f(s, Ys,As)ds − (MT −Mt), t ∈ [0, T]. (6.20)
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Next, we define Γt
Δ= e

∫ t
0βsds, and denote ξ̃t = Γtξt, for ξ = X,Y, ϕ, γ , respectively. An easy

application of Itô’s formula then leads to that

Ỹt = E

{
X̃T +

∫T

t

[
ϕ̃s + γ̃sAs

]
ds | Ft

}
, t ∈ [0, T]. (6.21)

Furthermore, one also has Ỹt ≤ X̃t, t ∈ [0, T]; and

E

{∫T

0

∣∣∣Ỹt − X̃t

∣∣∣dAt

}
≤ ‖Γ‖∞E

{∫T

0
|Yt −Xt|dAt

}
= 0. (6.22)

Namely, the flat-off condition holds.

Summarizing, if we define Ṽ (t, l) Δ= ess infτ≥tE{
∫τ
t [ϕ̃s + γ̃sl]ds + X̃τ | Ft}. We then have

the following corollary of Proposition 6.2. 3

Corollary 6.3. The linear variant RBSDE has unique solution of the form

Yt = Γ−1t ess inf
τ≥t

E

{∫ τ

t

Γsϕs + ΓsγsAtds + ΓτXτ | Ft

}
,

At = sup
0≤s≤t+

Lt,

Lt = sup
{
l | Ṽ (t, l) = ΓtXt

}
.

(6.23)

6.3. Universal Signal for a Family of Optimal Stopping Problems.

Continuing from the previous subsection, we conclude by considering the so-called universal
exercise signal for a family of optimal stopping problems, in the spirit of the “universal exercise
time” for the family of American options proposed by Bank-Föllmer [3]. To be more precise,
let (Y,A) be the solution to our VRBSDE with generator f and lower bound X, consider the
following family of optimal stopping problems indexed by l:

min
τ∈S[0,T]

E

{∫ τ

0
f(u, Yu, l)du +Xτ

}
, l ∈ R. (6.24)

A standard approach for solving such a problem could be to find the Snell envelope
for each l. But this is obviously tedious, and often becomes unpractical when l ranges in a
large family. Instead, in [3] it was noted that a universal exercise signal for the whole family
of optimal stopping problems (6.24) could be determined by the processA, which we present
in the following theorem.

Theorem 6.4. Suppose that (Y,A) is a solution to the VRBSDE (1.2). For each l ∈ R, define

τ∗l
Δ= inf {u ≥ 0 | Au > l} ∧ T. (6.25)
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Then τ∗l is the optimal stopping time for the problem (l) in (6.24). Namely, it holds that

E

{∫ τ∗
l

0
f(u, Yu, l)du +Xτ∗

l

}
= inf

τ∈S[0,T]
E

{∫ τ

0
f(u, Yu, l)du +Xτ

}
, l ∈ R. (6.26)

Proof. Let τ be any stopping time in S[0, T]. By the definition of A we have

E

{∫ τ

0
f(u, Yu, l)du +Xτ

}
= E

{∫ τ

0

[
f(u, Yu, l) − f(u, Yu,Au)

]
du

}

+ E

{∫ τ

0
f(u, Yu,Au)du +Xτ

}
= I1 + I2,

(6.27)

where I1 and I2 are the two integrals, respectively. Note that we can further decompose I1 as
follows

I1 = E

{∫ τ

0

[
f(u, Yu, l) − f(u, Yu,Au)

]
du1{τ≤τ∗

l
}

}

+ E

{∫ τ

0

[
f(u, Yu, l) − f(u, Yu,Au)

]
du1{τ>τ∗

l
}

}
= I11 + I21 .

(6.28)

Since on the set {τ ≤ τ∗l }, we have Au ≤ l, for all u ∈ [τ, τ∗l ], almost surely. The monotonicity
of f then yields that

I11 = E

{(∫ τ∗
l

0
−
∫ τ∗

l

τ

)[
f(u, Yu, l) − f(u, Yu,Au)

]
du1{τ≤τ∗

l
}

}

≥ E

{∫ τ∗
l

0

[
f(u, Yu, l) − f(u, Yu,Au)

]
du1{τ≤τ∗

l
}

}
.

(6.29)

On the other hand, since A is an increasing process, thus Au ≥ l for all u ≥ τ∗l , In particular,
on the set {τ > τ∗

l
}, it must hold that f(u, Yu, l) − f(u, Yu,Au) ≥ 0 for all u ∈ [τ∗

l
, τ]. In other

words, we have

I21 = E

{(∫ τ∗
l

0
+
∫ τ

τ∗
l

)[
f(u, Yu, l) − f(u, Yu,Au)

]
du1{τ>τ∗

l
}

}

≥ E

{∫ τ∗
l

0

[
f(u, Yu, l) − f(u, Yu,Au)

]
du1{τ>τ∗

l
}

}
≥ 0,

(6.30)

Combining (6.29) and (6.30)we obtain that

I1 ≥ E

{∫ τ∗
l

0

[
f(u, Yu, l) − f(u, Yu,Au)

]
du

}
. (6.31)
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We now analyze I2. First note that since X is the upper boundary, one must have

I2 = E

{∫ τ

0
f(u, Yu,Au)du +Xτ

}
≥ E

{∫ τ

0
f(u, Yu,Au)du + Yτ

}
. (6.32)

But the right hand side above is equal to EY0, since (Y,A) solve the VRBSDE (1.2), and for
the same reason we can deduce (replacing τ by τ∗λ) that

I2 ≥ E

{∫ τ

0
f(u, Yu,Au)du + Yτ

}
= EY0 = E

{∫ τ∗
l

0
f(u, Yu,Au)du + Yτ∗

l

}
. (6.33)

We now claim that, P -almost surely, τ∗l is either a point of increase of A or τ∗l = T . Indeed,
for each fixed ω, let us assume without loss of generality that τ∗l (ω) < T . Then, we show that
Aτ∗

l
− < Aτ∗

l
+ε for any ε > 0 as long as τ∗

l
+ ε ≤ T . To see this we first recall that by definition

of τ∗
l
, and the fact that A is an increasing process we must have Au ≥ l for all u ∈ [τ∗

l
, T]. We

are to show that for any given ε > 0, there exists t0 = t0(ε) ∈ [τ∗l , τ
∗
l + ε] such that At0 > l.

In fact, if not, then Au = l for all u ∈ [τ∗
l
, τ∗

l
+ ε], and this will easily lead to a contradiction

to the definition of τ∗
l
. It then follows that Aτ∗

l
+ε ≥ At0 > l ≤ Aτ∗

l
−, proving the claim.The

direct consequence of the above claim is that Yτ∗
l
= Xτ∗

l
, thanks to the flat-off and the terminal

conditions. We then derive from (6.33) that

I2 ≥ E

{∫ τ∗
l

0
f(u, Yu,Au)du + Yτ∗

l

}
= E

{∫ τ∗
l

0
f(u, Yu,Au)du +Xτ∗

l

}
. (6.34)

This, together with (6.27) and (6.31), shows that

E

{∫ τ

0
f(u, Yu, l)du +Xτ

}
≥ E

{∫ τ∗
l

0
f(u, Yu, l)du +Xτ∗

l

}
. (6.35)

Namely, τ∗
l
it the optimal stopping time, proving the theorem.

Theorem 6.4 shows that the “reflecting process” in the solution of VRBSDE can be used
as a universal signal for exercise, and the optimal exercise time for each problem (l) is exactly
the time when process A crosses level l. A further extension of such an idea is to consider a
combination of Variant Reflected BSDE with a traditional reflecting boundary, which would
have the potential to be applied to study the family of callable and convertible bonds with
different interest rates. We hope to address this issue in our future publications.
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