In p.16, line 4, the second term has the wrong sign and the correct one should be:

$$
\left[\mathbb{E}_{\tau_{2 i}}^{\mathbb{P}}\left[\hat{L}_{\tau_{2 i+1}}\right]-\hat{U}_{\tau_{2 i}}\right] \mathbf{1}_{\left\{\tau_{2 i}<T\right\}}-\mathbb{E}_{\tau_{2 i}}^{\mathbb{P}}\left[\left[\hat{L}_{\tau_{2 i+1}}-\xi\right] \mathbf{1}_{\left\{\tau_{2 i}<T=\tau_{2 i+1}\right\}}\right] .
$$

Note that, on the set $\left\{\left\{\tau_{2 i}<T=\tau_{2 i+1}\right\}\right.$, by (3.6) either $\hat{L}_{T}=L_{T} \leq \xi$, or by the first equation of (3.29),

$$
\hat{L}_{T}-\xi=L_{T-}-Y_{T} \leq Y_{T-}-Y_{T}=-\Delta K_{T}^{-} \leq 0
$$

Then in both cases we have $\left[\hat{L}_{\tau_{2 i+1}}-\xi\right] \mathbf{1}_{\left\{\tau_{2 i}<T=\tau_{2 i+1}\right\}} \leq 0$, and consequently the inequality in line 5 cannot hold true.

To fix the gap, we modify (3.6) as:

$$
\begin{equation*}
\hat{L}_{t}:=\left[L_{t} \mathbf{1}_{\{t<T\}}+\xi \mathbf{1}_{\{t=T\}}\right] \vee L_{t-}, \quad \hat{U}_{t}:=\left[U_{t} \mathbf{1}_{\{t<T\}}+\xi \mathbf{1}_{\{t=T\}}\right] \wedge U_{t-}, \tag{1}
\end{equation*}
$$

Then

$$
\mathbb{E}_{\tau_{2 i}}^{\mathbb{P}}\left[\left[\hat{L}_{\tau_{2 i+1}}-\xi\right] \mathbf{1}_{\left\{\tau_{2 i}<T=\tau_{2 i+1}\right\}}\right]=\mathbb{E}_{\tau_{2 i}}^{\mathbb{P}}\left[\left[\hat{L}_{T}-\xi\right] \mathbf{1}_{\left\{\tau_{2 i}<T=\tau_{2 i+1}\right\}}\right] \geq 0,
$$

and hence we recover the inequality in line 5 .
Equivalently we improve Assumption 3.1 (iii) to $L_{T}=\xi=U_{T}$. Note that $Y_{T}=\xi$ is already given, so this improvement does not change anything in the BSDE (3.1).

We should remark though that the modified (\hat{L}, \hat{U}) in (1) or the improved Assumption $L_{T}=\xi=U_{T}$ could increase the norm $\|(L, U)\|_{\mathbb{P}}$ in (3.13) slightly. This, however, does not change the spirit of our main results.

