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DYNAMIC PROGRAMMING EQUATION FOR THE MEAN FIELD
OPTIMAL STOPPING PROBLEM*

MEHDI TALBI\dagger , NIZAR TOUZI\ddagger , AND JIANFENG ZHANG\S 

Abstract. We study the optimal stopping problem of McKean--Vlasov diffusions when the
criterion is a function of the law of the stopped process. A remarkable new feature in this setting
is that the stopping time also impacts the dynamics of the stopped process through the dependence
of the coefficients on the law. The mean field stopping problem is introduced in weak formulation
in terms of the joint marginal law of the stopped underlying process and the survival process. This
specification satisfies a dynamic programming principle. The corresponding dynamic programming
equation is an obstacle problem on the Wasserstein space and is obtained by means of a general It\^o
formula for flows of marginal laws of c\`adl\`ag semimartingales. Our verification result characterizes
the nature of optimal stopping policies, highlighting the crucial need to randomize stopping. The
effectiveness of our dynamic programming equation is illustrated by various examples including the
mean variance optimal stopping problem.

Key words. mean field optimal stopping, McKean--Vlasov SDEs, dynamic programming
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1. Introduction. In this paper we study a McKean--Vlasov type of optimal
stopping problem, where the state dynamics and/or the reward function depends on
the law of the stopped process. To be precise, given X0 and an independent Brownian
motion W , consider

Xt =X0 +

\int t\wedge \tau 

0

b(s,Xs,\scrL Xs)ds+

\int t\wedge \tau 

0

\sigma (s,Xs,\scrL Xs)dWs,(1.1)

where \tau is a stopping time and \scrL Xs denotes the law of Xs. We emphasize the impact
of \tau on \scrL Xs

, in particular, \scrL Xs
is equal neither to \scrL X0

\tau \wedge s
nor to \scrL X0

s
| s=\tau , where X

0

denotes the unstopped process:

X0
t =X0 +

\int t

0

b(s,X0
s ,\scrL X0

s
)ds+

\int t

0

\sigma (s,X0
s ,\scrL X0

s
)dWs.(1.2)

Our optimization problem is, for some functionals f and g, defined on a space of
probability laws,

V0 := sup
\tau 

E

\biggl[ \int \tau 

0

f(s,Xs,\scrL Xs)ds

\biggr] 
+ g(\scrL X\tau ).(1.3)
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MEAN FIELD OPTIMAL STOPPING 2141

When b, \sigma , and f do not depend on \scrL Xs and g(\scrL X\tau ) = E[\varphi (X\tau )] for some function
\varphi : Rd \rightarrow R, the above problem reduces to a standard optimal stopping problem; see,
e.g., Shiryaev [25]. The mean field optimal stopping problem (1.3) can be viewed as
the limit of a multiple stopping problem over a large system interacting through the
empirical measure:

Xi
t = xi +

\int t\wedge \tau i

0

b(s,Xi
s, \=\mu s)ds+ \sigma (s,Xi

s, \=\mu s)dW
i
s , \=\mu s :=

1

N

N\sum 
i=1

\delta Xi
s
;

V N
0 := sup

(\tau 1,...,\tau N )

E

\Biggl[ 
1

N

N\sum 
i=1

\int \tau i

0

f(s,Xi
s, \=\mu s)ds+ g

\Biggl( 
1

N

N\sum 
i=1

\delta Xi
\tau i

\Biggr) \Biggr] 
,

(1.4)

where \delta x denotes the Dirac-measure, and (W 1, . . . ,WN ) areN\times d-dimensional Brown-
ian motions. We refer to Kobylanski, Quenez, and Rouy-Mironescu [17] for general
multiple stopping problems, and we shall investigate the convergence issue in an ac-
companying paper [26].

There has been much attention on mean field games of optimal stopping in the
literature; see, e.g., Bertucci [2], Bouveret, Dumitrescu, and Tankov [4], Carmona,
Delarue, and Lacker [10], and Nutz [21]. Given \{ \mu t\} t\geq 0, consider the optimal stopping
problem,

V \mu \cdot 
0 := sup

\tau 
E

\biggl[ \int \tau 

0

f(s,X\mu .
s , \mu s)ds+ g(\tau ,X\mu \cdot 

\tau , \mu \tau )

\biggr] 
,(1.5)

where X\mu is unstopped and solves a standard SDE (not McKean--Vlasov type as in
(1.2)):

X\mu \cdot 
t =X0 +

\int t

0

b(s,X\mu \cdot 
s , \mu s)ds+

\int t

0

\sigma (s,X\mu \cdot 
s , \mu s)dWs.

Assume the above problem has an optimal stopping time \tau \ast (\mu \cdot ); then the mean field
game problem is to find a fixed point \{ \mu t\} t\geq 0, namely the mean field equilibrium:
\scrL X\mu \cdot 

\tau \ast (\mu \cdot )\wedge t
= \mu t, t\geq 0. We remark that in the last mean field game, for given \{ \mu t\} t\geq 0,

the dynamics of X\mu \cdot does not depend on the stopping time \tau and the optimal stopping
problem (1.5) is a standard one as in [25], so it has a completely different structure
than our optimal stopping problem. We would also like to mention Li [18], Briand,
Elie, and Hu [5], and Djehiche, Elie, and Hamad\`ene [12] for closely related works
on mean field type reflected BSDEs, and see Belomestny and Schoenmakers [1] for
a numerical method for mean field type optimal stopping problems. However, in all
these works, again the dynamics of the state process does not depend on the stopping
time \tau . To our best knowledge, our work is the first in the literature to study the
optimal stopping problem where the dynamics depends on the law of the stopped
process, or, say, as in (1.4) the interaction is through the stopped particles.

Besides the obvious connection with large interacting particle systems, the general
form (1.3) is convenient for many other applications. For example, by considering the
unstopped state process X0 in (1.2), the optimal stopping of mean variance problem
sup\tau 

\bigl\{ 
E[X0

\tau ] - 1
2Var(X

0
\tau )
\bigr\} 
corresponds to g(\mu ) =

\int 
R(x - 

1
2x

2)\mu (dx)+(
\int 

R x\mu (dx))
2 for a

square integrable measure \mu . Another example is the optimal stopping problem under
probability distortion, used in behavioral economics, which corresponds to g(\mu ) =\int \infty 
0
\varphi (\mu ([U - 1(y),\infty ))dy, for some utility function U : R \rightarrow [0,\infty ), and some distortion

function \varphi : [0,1]  - \rightarrow [0,1]. When X0 is a geometric Brownian motion and the time
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2142 MEHDI TALBI, NIZAR TOUZI, AND JIANFENG ZHANG

horizon is infinite, Pedersen and Peskir [22] proved the existence of optimal stopping
time for the mean variance problem, and Xu and Zhou [29] obtained the optimal
stopping time for the probability distortion problem for some special shapes of the
functions \varphi and U (convex, concave, or reverse S-shaped). We remark that these
problems are typically considered to be time inconsistent problems, as we will explain
in the next paragraph, and the existing literature considers only the static problem,
namely the existence of optimal stopping time for the problem over a fixed time
interval ([0,\infty ) or [0, T ]). We shall study the problem (1.3) systematically and, more
importantly, dynamically. We remark that, even when we consider only the unstopped
state process X0, our dynamic approach for the optimal stopping problem (1.3) seems
new.

It is well known that standard optimal stopping problems can be solved by the
dynamic programming approach; see, e.g., El Karoui [14] and Shiryaev [25]. The
situation here is more subtle because of the involvement of the law. In order to have
a dynamic programming principle (DPP), it is crucial to choose the right variable,
which stands for the information one needs to make the dynamic system ``Markovian.""
Indeed, if we define V (t, x) as the dynamic value function for problem (1.3) on [t, T ]
with initial condition Xt = x, which in the case (1.4) means we observe only the
state xi of one particular player i, the DPP would fail. Consequently the problem is
often viewed as time inconsistent in the standard sense. Moreover, even if we define
V (t, \mu ) as the dynamic value function for problem (1.3) on [t, T ] with initial condition
\scrL Xt

= \mu , the DPP would still fail.
Our first observation is that a successful DPP requires the introduction of the

survival process It := 1\{ \tau >t\} . To be precise, we will have the desired DPP if we write
the dynamic value function as V (t,\scrL (Xt,It)), that is, to maintain the time consistency,
we need to know not only the current states of all particles, but also which particles
are still surviving. Moreover, we formulate a weak relaxed version of (1.1) by allowing
for randomized stopping times induced by the set \scrP (t,m) of all joint distributions P
of the stopped process and the corresponding stopping time, started at time t from
the initial distribution m. Such a weak formulation is particularly convenient here for
two reasons:

\bullet the set of controls has been shifted from the stopping times into \scrP (t,m), which
we will prove to be compact, implying the existence of an optimal P\ast to the mean
field optimal stopping problem as long as f and g are upper-semicontinuous;

\bullet shifting the state variable from the process X into the flow of joint marginal
distributions, denoted as \{ P(Xt,It)\} in order to emphasize its dependence on P, enables
us to establish a DPP and to derive a dynamic programming equation on the space
of measures to characterize the value function V .
More precisely, given that the laws are deterministic, our following DPP is very easy
to establish:

V (t,m) = sup
P\in \scrP (t,m)

\int s

t

E[f(r,Xr,P(Xr,Ir))Ir]dr+ V
\bigl( 
s,P(Xs,Is)

\bigr) 
.

Such a dynamic programming approach has also been used successfully in the mean
field control literature, where the state variable is \scrL Xt

; see, e.g., Carmona and Delarue
[9, Chapter 6], Pham and Wei [23], Wu and Zhang [28], and Djete, Possama\"{\i}, and
Tan [13].

The corresponding dynamic programming equation is as usual derived by means of
It\^o's formula. It\^o's formula for functions on Wasserstein space of probability measures
has been established for continuous diffusions by Buckdahn et al. [6] and Chassagneux,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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MEAN FIELD OPTIMAL STOPPING 2143

Crisan, and Delarue [11] and for jump-diffusions by Li [19] and Burzoni et al. [7].
However, [19, 7] require the law of the state process to be continuous under the
Wasserstein distance, while in our case it is quite possible that t \mapsto  - \rightarrow PIt is dis-
continuous. We thus first extend It\^o's formula so that both the state process and its
law can have jumps. Our proof follows the standard derivation, based on the linear
functional derivative. We introduce an appropriate time discretization and reduce our
derivation to the standard It\^o's formula for c\`adl\`ag semimartingales. We also refer to
the independent work of Guo, Pham, and Wei [15], who prove similar results by using
density arguments under slightly different technical conditions; see Remark 3.3.

Together with the DPP, our It\^o's formula immediately leads to the desired dy-
namic programming equation, an obstacle problem on the Wasserstein space. We
shall characterize the value function, provided its sufficient regularity, as the unique
classical solution of the obstacle problem, and we will use the value function to charac-
terize the structure of the optimal stopping time. The regularity of the value function,
of course, remains a challenging problem in general, and we will therefore investigate
the viscosity solution approach for the obstacle problem in another accompanying
paper [27].

The paper is structured as follows. In section 2, we set the mean field opti-
mal stopping problem in weak formulation and establish the DPP. In section 3 we
prove the It\^o's formula for possibly discontinuous flows of measures of semimartin-
gales, which in particular allows us to differentiate smooth functions along the flow
\{ P(Xt,It)\} t\in [0,T ]. In section 4 we derive the dynamic programming equation for the
value function and establish its classical solution theory. Section 5 is dedicated to
some examples illustrating the connection with the standard optimal stopping theory
and shedding more light on a class of criteria including the mean variance one. We also
provide an explicit example which exhibits both features of pure stopping strategies
and randomized ones. In section 6 we provide two extensions. Subsection 6.1 extends
our results to the infinite horizon setting, and subsection 6.2 provides a quick discus-
sion of the extension to the case where the process X is a jump-diffusion. Finally,
Appendices A and B report some technical proofs.

Notation. We denote by \scrP (\Omega ,\scrF ) the set of probability measures on a measurable
space (\Omega ,\scrF ) and by \scrP 2(\Omega ,\scrF ) the subset of square integrable probability measures in
\scrP (\Omega ,\scrF ), equipped with the 2-Wasserstein distance \scrW 2. When (\Omega ,\scrF ) = (Rd,\scrB (Rd)),
we simply denote them as \scrP (Rd) and \scrP 2(Rd). For a random variable Z and a proba-
bility P, we denote by PZ := P \circ Z - 1 the law of Z under P. For vectors x, y \in Rn and
matrices A,B \in Rn\times m, denote x \cdot y :=

\sum n
i=1 xiyi and A :B := tr(AB\top ).

2. Formulation of the mean field optimal stopping problem. Let T <\infty 
be fixed, and let \Omega :=C0([ - 1, T ],Rd)\times I0([ - 1, T ]) be the canonical space, where

\bullet C0([ - 1, T ],Rd) is the set of continuous paths from [ - 1, T ] to Rd, constant on
[ - 1,0);

\bullet I0([ - 1, T ]) is the set of nonincreasing and c\`adl\`ag maps from [ - 1, T ] to \{ 0,1\} ,
constant on [ - 1,0), and ending with value 0 at T .
We equip \Omega with the Skorokhod distance, under which it is a Polish space. The choice
of the extension to  - 1 is arbitrary; the extension of time to the left of the origin is
only needed to allow for an immediate stop at time t= 0.

We denote Y := (X,I) the canonical process, with state space S := Rd\times \{ 0,1\} , its
canonical filtration F= (\scrF t)t\in [ - 1,T ], and the corresponding jump time of the survival
process I:

\tau := inf\{ t\geq 0 : It = 0\} so that It := I0 - 1t<\tau for all t\in [ - 1, T ].(2.1)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2144 MEHDI TALBI, NIZAR TOUZI, AND JIANFENG ZHANG

By the c\`adl\`ag property of I, \tau is an F-stopping time. Denote further

Qt := [t, T )\times \scrP 2(S), and Qt := [t, T ]\times \scrP 2(S), t\in [0, T ).

Let (b, \sigma , f) : [0, T ]\times Rd \times \scrP 2(S) \rightarrow Rd \times \scrS +
d \times R and g : \scrP 2(Rd) \rightarrow R, where \scrS +

d

denotes the set of d \times d nonnegative symmetric matrices. Throughout the paper,
the following assumption will always be in force, where \scrP 2(S) is equipped with the
\scrW 2-distance.

Assumption 2.1. (i) b, \sigma are continuous in t and uniformly Lipschitz continuous
in (x,m).

(ii) f is Borel measurable and has quadratic growth in x \in Rd, and the following
function F is continuous on [0, T ]\times \scrP 2(S):

F (t,m) :=

\int 
Rd

f(t, x,m)m(dx,1).(2.2)

(iii) g is upper-semicontinuous and locally bounded and is extended to \scrP 2(S) by
g(m) := g(m(\cdot ,\{ 0,1\} )).

Define the stopped McKean--Vlasov dynamics on [0, T ]:

Xs =X0 +

\int s

0

b(r,Xr,PYr
)Irdr+

\int s

0

\sigma (r,Xr,PYr
)IrdW

P
r and Is = I0 - 1s<\tau ,

(2.3)

where a solution P of the last SDE is defined by the requirement that the following
processes M and N are P-martingales on [0, T ]:

M. :=X.  - 
\int .

0

b(r,Xr,PYr )Irdr and N. :=M2
.  - 

\int .

0

\sigma 2(r,Xr,PYr )Irdr.(2.4)

Note that X. =X.\wedge \tau , and in particular XT =X\tau , P-a.s.
We then focus on the mean field optimal stopping problem: given \mu \in \scrP 2(Rd),

V0 := sup
P

EP

\biggl[ \int \tau 

0

f(r,Xr,PYr
)dr

\biggr] 
+ g(PX\tau 

) = sup
P

\int T

0

F (r,PYr
)dr+ g(PYT

),(2.5)

where the supremum is taken over all solutions P of the McKean--Vlasov SDE sat-
isfying the constraint PX0 = \mu and P(I0 - = 1) = 1. We recall that this problem is
motivated by the N -multiple optimal stopping problem (1.4), whose convergence is
studied in our accompanying paper [26].

In order to solve this problem, we use the dynamic programming approach, made
possible by an appropriate dynamic version of the problem. This requires taking as
a state the joint distribution mt of the variables Yt = (Xt, It), which leads to the
dynamic value function

V (t,m) := sup
P\in \scrP (t,m)

\int T

t

F (r,PYr
)dr+ g(PYT

), (t,m)\in Q0,(2.6)

where \scrP (t,m) is the set of probability measures P on (\Omega ,\scrF T ) such that
\bullet PYt - =m and s\in [ - 1, t)\rightarrow Ys is constant, P-a.s.;
\bullet the processes M,N of (2.4) are P-martingales on [t, T ], so that, for some P-

Brownian motion WP,

Xs =Xt +

\int s

t

b(r,Xr,PYr )Irdr+ \sigma (r,Xr,PYr )IrdW
P
r , Is = It - 1s<\tau , P-a.s.(2.7)
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MEAN FIELD OPTIMAL STOPPING 2145

Proposition 2.2. For any (t,m) \in Q0, the set \scrP (t,m) is compact under the
Wasserstein distance \scrW 2. Consequently, existence holds for the mean field optimal
stopping problem (2.6).

We relegate this proof to Appendix A. Our main result of this section is the
following DPP.

Theorem 2.3. For any (t,m)\in Q0 and s\in [t, T ], we have the DPP

V (t,m) = sup
P\in \scrP (t,m)

\int s

t

F (r,PYr
)dr+ V (s,PYs - )(2.8)

= sup
P\in \scrP (t,m)

\int s

t

F (r,PYr
)dr+ V (s,PYs

).

Proof. Denote, for any probability measure P on (\Omega ,\scrF T ),

J(t,P) :=
\int T

t

F (r,PYr )dr+ g(PYT
).

We start with proving the first equality of (2.8). Let \~V (t,m) denote the middle term
of (2.8). Fix an arbitrary P\in \scrP (t,m), and denote \~m := PYs - .

First, for any time partition \pi : - 1 = t0 < \cdot \cdot \cdot < tm < s\leq tm+1 < \cdot \cdot \cdot < tm+n = T ,
introduce the finite measure: for any Ai \in \scrB (S),

\nu \pi (A0 \times \cdot \cdot \cdot \times Am+n) := P
\Bigl( 
Ys - \in \cap m

i=0Ai, Ytm+j
\in Am+j , j = 1, . . . , n

\Bigr) 
.

It is clear that \{ \nu \pi \} \pi satisfies the consistency condition, and thus it follows from the
Kolmogorov extension theorem that there exists a probability measure \~P on (\Omega ,\scrF T )
such that \{ \nu \pi \} \pi is the finite distribution of the process Y under \~P. It is straightforward
to verify \~P \in \scrP (s, \~m), and \~PYr

= PYr
for all r \in [s,T ]. Thus,

J(t,P) =
\int s

t

F (r,PYr )dr+ J(s,P)

=

\int s

t

F (r,PYr )dr+ J(s, \~P)\leq 
\int s

t

F (r,PYr )dr+ V (s,PYs - ).

Since P\in \scrP (t,m) is arbitrary, we obtain V (t,m)\leq \~V (t,m).
On the other hand, given \~m, by Proposition 2.2 there exists \~P \in \scrP (s, \~m) such

that J(s, \~P) = V (s, \~m). For the above time partition \pi , we introduce another finite
measure: for any Ai \in \scrB (S),

\nu \pi (A0 \times \cdot \cdot \cdot \times Am+n)

:=

\int 
S

EP

\Biggl[ 
m\prod 
i=0

1Ai(Yti)
\bigm| \bigm| \bigm| Ys - = y

\Biggr] 
\times E

\~P

\left[  n\prod 
j=1

1Am+j (Ytm+j )
\bigm| \bigm| Ys - = y

\right]  \~m(dy).

Applying the Kolmogorov extension theorem again there exists a probability measure
\^P on (\Omega ,\scrF T ) such that \{ \nu \pi \} \pi is the finite distribution of the process Y under \^P. It
is clear that \^P = P on \scrF s - , and \{ Ys - , Yr, s\leq r \leq T\} has the same distribution under
\^P and \~P, and \{ Yr, r < s\} and \{ Yr, r \geq s\} are conditionally independent under \^P,
conditional on Ys - . We shall emphasize that this conditional independence is valid
only conditional on Ys - , and the process Y is in general not Markov under \^P. It is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2146 MEHDI TALBI, NIZAR TOUZI, AND JIANFENG ZHANG

obvious that the processesM,N in (2.4) remain \^P-martingales on [t, s]. Moreover, for
any s \leq s1 < s2 \leq T , any 0 = t0 < \cdot \cdot \cdot < tm < s \leq tm+1 < \cdot \cdot \cdot < tm+n = s1, and any
bounded measurable function \varphi 1 : R(m+1)d \rightarrow R, \varphi 2 : Rnd \rightarrow R,

E
\^P
\Bigl[ 
[Ms2  - Ms1 ]\varphi 1(Yt0 , . . . , Ytm)\varphi 2(Ytm+1

, . . . , Ytm+n
)
\Bigr] 

= E
\^P
\Bigl[ 
E
\~P
\bigl[ 
[Ms2  - Ms1 ]\varphi 2(Ytm+1

, . . . , Ytm+n
)
\bigm| \bigm| Ys - \bigr] \times EP

\bigl[ 
\varphi 1(Yt0 , . . . , Ytm)

\bigm| \bigm| Ys - \bigr] \Bigr] 
= E

\^P
\Bigl[ 
0\times EP

\bigl[ 
\varphi 1(Yt0 , . . . , Ytm)

\bigm| \bigm| Ys - \bigr] \Bigr] = 0.

Then M is a \^P-martingale on [s,T ] as well, and hence a \^P-martingale on [t, T ]. Simi-
larly we can show that N is a \^P-martingale on [t, T ], then \^P\in \scrP (t,m). Therefore,\int s

t

F (r,PYr
)dr+ V (s,PYs - ) =

\int s

t

F (r,PYr
)dr+ J(s, \~P)

=

\int s

t

F (r, \^PYr
)dr+ J(s, \^P) = J(t, \^P)\leq V (t,m).

Since P\in \scrP (t,m) is arbitrary, we obtain \~V (t,m)\leq V (t,m), and hence the first equality
of (2.8).

It remains to prove the second equality of (2.8). First, since Is \leq Is - , it is obvious
that \scrP (s,PYs) \subset \scrP (s,Ys - ), and thus V (s,PYs) \leq V (s,PYs - ) for all P \in \scrP (t,m). On

the other hand, for any P \in \scrP (t,m), set \~P \in \scrP (t,m) to be such that \~P = P on \scrF s - 
and Ir = Is - for all r\geq s, \~P-a.s. Then \~PYs

= PYs - , and thus\int s

t

F (r,PYr )dr+ V (s,PYs - ) =

\int s

t

F (r, \~PYr )dr+ V (s, \~PYs
)

\leq sup
P\in \scrP (t,m)

\int s

t

F (r,PYr
)dr+ V (s,PYs

).

This completes the proof immediately.

In order to derive the dynamic programming equation, we follow the usual proce-
dure, which requires It\^o's formula along the flow of measures \{ PYs\} t\leq s\leq T , as we shall
develop in the next section.

3. It\^o's formula for flows of laws of semimartingales. In contrast with the
available literature reviewed in the introduction, our It\^o's formula allows for possible
jumps for both the semimartingale and its flow of marginal laws m = \{ ms\} . The
mapping s \mapsto \rightarrow ms is also c\`adl\`ag and we shall denote

JT(m) := \{ s\in T :ms \not =ms - \} , Jc
T(m) := \{ s\in T :ms =ms - \} for all T\subset [0, T ].

(3.1)

We first introduce the notion of linear functional derivative in the same spirit as
Carmona and Delarue [9, Definition 5.43] and Cardialaguet et al. [8].

Definition 3.1. (i) u : \scrP 2(Rd\prime 
)  - \rightarrow R has a linear functional derivative if there

exists

\delta mu :\scrP 2(R
d\prime 
)\times Rd\prime 

\rightarrow R

such that \delta mu is continuous for the product topology and
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MEAN FIELD OPTIMAL STOPPING 2147

\bullet the mapping y \mapsto \rightarrow \delta mu(m,y) has quadratic growth in y, locally uniformly in m.
That is, for any compact set \Xi \subset \scrP 2(Rd\prime 

), supm\in \Xi | \delta mu(m,y)| \leq C\Xi [1 + | y| 2];
\bullet for all m,m\prime \in \scrP 2(Rd\prime 

),

u(m\prime ) - u(m) =

\int 1

0

\int 
Rd\prime 

\delta mu(\lambda m
\prime + (1 - \lambda )m,y)(m\prime  - m)(dy)d\lambda ;(3.2)

(ii) C1,2
2 ([0, T ] \times \scrP 2(Rd\prime 

)) denotes the set of functions u : [0, T ] \times \scrP 2(Rd\prime 
) \rightarrow R such

that
\bullet \partial tu, \delta mu, \partial y\delta mu, \partial 2yy\delta mu exist and are continuous in all variables;
\bullet \partial 2yy\delta mu is bounded in y, locally uniformly in (t,m).

Here the subscript 2 in C
1,2
2 refers to the growth conditions so as to ensure appropriate

square integrability in the analysis below.
By abusing the notation, in the following statement, we let Y denote a general

c\`adl\`ag Rd\prime 
-valued semimartingale on [0, T ]. We denote Y c the continuous part of Y ;

Y c
t = Y0+M

c
t +A

c
t the Doob--Meyer decomposition, where M c is the martingale part

and Ac is the finite variation part; \| Ac\| t the total variation process of Ac; and \langle M c\rangle t
the quadratic variation process of M c.

Theorem 3.2 (It\^o's formula). Let u\in C1,2
2 ([0, T ]\times \scrP 2(Rd\prime 

)), and assume

E

\left[   \| Ac\| 2T + \langle M c\rangle T +

\left(  \sum 
0<s\leq T

| Ys  - Ys - | 

\right)  2
\right]   <\infty .(3.3)

Then, denoting m= \{ ms\} 0\leq s\leq T the marginal laws of Ys,

u(T,mT ) = u(0,m0) +

\int T

0

\partial tu(s,ms)ds

(3.4)

+ E

\Biggl[ \int T

0

\partial y\delta mu(s,ms, Ys) \cdot dAc
s +

1

2

\int T

0

\partial 2yy\delta mu(s,ms, Ys) : d\langle M c\rangle s

\Biggr] 

+
\sum 

s\in J(0,T ](m)

[u(s,ms) - u(s,ms - )] + E

\left[  \sum 
s\in Jc

(0,T ]
(m)

\bigl( 
\delta mu(s,ms, Ys) - \delta mu(s,ms, Ys - )

\bigr) \right]  .
The proof of this result is relegated to Appendix B. Note that (3.4) exhibits

two different sums: one refers to the jumps of Y and the other to the jumps of the
marginals m. The Poisson process provides a simple example of pure jump process
with continuous marginals (i.e., J(0,T ](m) = \emptyset ).

Remark 3.3. The above It\^o's formula was derived independently by Guo, Pham,
and Wei [15] by using a density argument through cylindrical functions. Our approach
is more straightforward, as it reduces quickly to the proof of the standard It\^o's for-
mula. Notice that our set of conditions is slightly different from theirs (none of them
implies the other); see Remark 3.14 in [15]. Notice also that we may have stated our
results under different sets of assumptions, as the proof requires appropriate integra-
bility conditions on the product between the derivatives of u and the corresponding
characteristics of the semimartingale Y . Clearly, this can be achieved by a trade-off
between the conditions on u and Y .
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2148 MEHDI TALBI, NIZAR TOUZI, AND JIANFENG ZHANG

We now specialize the discussion to the case Y := (X,I). Noting that \scrP 2(S) \subset 
\scrP 2(Rd+1), we may restrict Definition 3.1 to \scrP 2(S) only.

Definition 3.4. Let C1,2
2 (Q0) denote the set of functions u :Q0 \rightarrow R such that

\partial tu, \delta mu,\partial x\delta mu, \partial 
2
xx\delta mu exist and are continuous in all variables, and \partial 2xx\delta mu is

bounded in x, locally uniformly in (t,m), where the functional linear derivative takes
the form \delta mu : (t,m,x, i) \in Q0 \times Rd \times \{ 0,1\} \rightarrow R satisfying, for any t \in [0, T ] and
m,m\prime \in \scrP 2(S),

u(t,m\prime ) - u(t,m) =

\int 1

0

\int 
S

\delta mu(t, \lambda m
\prime + (1 - \lambda )m,x, i)(m\prime  - m)(dx,di)d\lambda .

In this case, of course there is no need to consider the derivative of \delta mu with
respect to the i-variable. Instead, we denote

\delta mui(t,m,x) := \delta mu(t,m,x, i) for i\in \{ 0,1\} and DIu := \delta mu1  - \delta mu0.(3.5)

Example 3.5. Let us define, for a given probability measure P, u(m) := \varphi (m[\psi ]),
with \psi smooth and m[\psi ] :=

\sum 
i=0,1

\int 
Rd \psi (x, i)m(dx, i). Then we compute

\delta mu(m,x, i) =\varphi \prime (m[\psi ])\psi (x, i) and DIu(m,x) =\varphi \prime (m[\psi ])[\psi (x,1) - \psi (x,0)].

Recalling the infinitesimal generator of X, we define

Lu(t,m) := \partial tu(t,m) +

\int 
Rd

\scrL x\delta mu1(t,m,x)m(dx,1), where(3.6)

\scrL x\delta mu1(t,m,x) := b(t, x,m) \cdot \partial x\delta mu1(t,m,x) +
1

2
\sigma 2(t, x,m) : \partial 2xx\delta mu1(t,m,x).

We now state the It\^o formula form := \{ ms := PYs\} s\in [ - 1,T ]. Note that in Theorem 3.2,
we consider the jumps on (0, T ]. However, in light of DPP (2.8), it is more convenient
to consider the jumps on [0, T ), namely we include the jump at the initial point instead
of the ending point. Such an adjustment is straightforward.

Corollary 3.6. Let m\in \scrP 2(S), P\in \scrP (0,m), and u\in C1,2
2 (Q0). Then,

u(T,mT - ) = u(0,m) +

\int T

0

Lu(s,ms)ds(3.7)

+
\sum 

s\in J[0,T )(m)

[u(s,ms) - u(s,ms - )] + EP

\Biggl[ \int 
Jc
[0,T )

(m)

DIu(s,ms,Xs)dIs

\Biggr] 
.

Proof. We can easily see that Ys  - Ys - = (0, Is  - Is - ) and

Y c
s = (Xs, I0 - ), dM c

s = (\sigma (s,Xs,ms)dW
P
s ,0), dAc

s = (b(s,Xs,ms)ds,0).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

08
/1

9/
23

 to
 1

32
.1

74
.2

55
.3

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



MEAN FIELD OPTIMAL STOPPING 2149

Then (3.3) obviously holds true. Now following Theorem 3.2, but by considering the
jump at 0 instead of at T , we have

u(T,mT - ) - u(0,m) =

\int T

0

\partial tu(s,ms)ds+ EP

\Biggl[ \int T

0

\partial y\delta mu1(s,ms,Xs) \cdot b(s,Xs,ms)ds

+
1

2

\int T

0

\partial 2xx\delta mu1(s,ms,Xs) : d\langle X\rangle s

\Biggr] 
+

\sum 
s\in J[0,T )(m)

[u(s,ms) - u(s,ms - )]

+EP

\left[  \sum 
s\in Jc

[0,T )
(m)

\bigl[ 
\delta mu(s,ms, Ys) - \delta mu(s,ms, Ys - )

\bigr] \right]  
=

\int T

0

Lu(s,ms)ds+
\sum 

s\in J[0,T )(m)

[u(s,ms) - u(s,ms - )] + EP

\Biggl[ \int 
Jc
[0,T )

(m)

DIu(s,ms,Xs)dIs

\Biggr] 
,

where the last equality is thanks to the fact that Is \not = Is - if and only if Is = 0,
Is - = 1.

We remark that in this case J[0,T ](m) = \{ s \in [0, T ] : P(\tau = s) > 0\} . That is,
J[0,T ](m) is the collection of all atoms of \tau under P.

4. Obstacle problem on the Wasserstein space.

4.1. The dynamic programming equation. We first introduce a partial order
\preceq on \scrP 2(S): we say that m\prime \preceq m if

m\prime (dx,1) = p(x)m(dx,1), and m\prime (dx,0) = [1 - p(x)]m(dx,1) +m(dx,0),(4.1)

for some measurable p : Rd \rightarrow [0,1], i.e., m\prime (dx,1) is obtained from m by randomly
stopping a proportion 1 - p(x) of the surviving particles. In our context, mt - = PYt - 

and mt = PYt
, with P \in \scrP (t,m), so that mt \preceq mt - with conditional transition

probability

p(x) = p(t, x) := P(It = 1 | Xt = x, It - = 1).(4.2)

Remark 4.1. The set \{ m\prime : m\prime \preceq m\} is compact, as it is in continuous bijection
with \{ \^m \in \scrP 2(S\times \{ 0,1\} ) : \^m \circ (x, i) - 1 =m\} , with (x, i, i\prime ) the projection coordinates
on S\times \{ 0,1\} .

Our main objective is to show that the dynamic programming equation corre-
sponding to our mean field optimal stopping problem, as deduced from the DPP
(2.8), is

min
m\prime \in Cu(t,m)

[ - (Lu+ F )(t,m\prime )] = 0, DIu(t,m, \cdot )\geq 0, u(T, \cdot ) = g, for all (t,m)\in Q0,

(4.3)

where Cu(t,m) :=
\Bigl\{ 
m\prime \preceq m : u(t,m\prime ) = u(t,m)

\Bigr\} 
.

By analogy with standard optimal stopping, we call (4.3) the obstacle problem on
the Wasserstein space. The different components of this equation have the following
interpretation.

Remark 4.2. (i) As will be proved in Lemma 4.3, the inequality DIu(t,m, \cdot ) \geq 0
expresses the natural monotonicity of the optimal stopping problem, i.e., u is increas-
ing for \preceq . In other words, the larger the set of surviving particles, the larger the value
function.
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2150 MEHDI TALBI, NIZAR TOUZI, AND JIANFENG ZHANG

(ii) Cu(t,m) is the collection of admissible stopping strategies at time t, i.e., those
that preserve the value function for smaller sets of surviving particles.

(iii) The equation minm\prime \in Cu(t,m) - (Lu + F )(t,m\prime ) = 0 characterizes the sets of
particles that are optimal to keep diffusing (in the same spirit as the classical HJB
equation, where the min characterizes the optimal controls). Note that Cu(t,m) is
compact, as a closed subset of the compact set \{ m\prime \preceq m\} ; see Remark 4.1. Therefore
the min is attained by the continuity of (Lu+ F )(t, \cdot ). Finally, as m \in Cu(t,m), we
have  - (Lu+ F )(t,m)\geq 0.

(iv) The boundary condition u(T, \cdot ) = g is due to (2.6) directly. Moreover, the
boundary condition implies that u(t,m) = g(m) for all t \in [0, T ] and m \in \partial \scrP 2(S) :=
\{ m \in \scrP 2(S) : m(Rd,1) = 0\} , i.e., all particles are stopped. Indeed, in this case
\{ m\prime : m\prime \preceq m\} = \{ m\} and thus Cu(t,m) = \{ m\} . Recall (2.2) and (3.6); then (4.3)
implies that  - \partial tu(t,m) =  - (Lu + F )(t,m) = 0. This clearly implies that u(t,m) =
u(T,m) = g(m) for all t\in [0, T ].

Lemma 4.3. Let u : \scrP 2(S) \rightarrow R admit a linear functional derivative. Then u is
nondecreasing for \preceq if and only if DIu(m, \cdot )\geq 0 for all m\in \scrP 2(S).

Proof. First, assume DIu(m, \cdot ) \geq 0 for all m \in \scrP 2(Rd). Then, for m\prime \preceq m with
corresponding transition probability p, we have

u(m) - u(m\prime ) =

\int 1

0

\int 
Rd

DIu(\lambda m+ (1 - \lambda )m\prime , x)[1 - p(x)]m(dx,1)d\lambda \geq 0.

Conversely, assume that u is nondecreasing for \preceq , i.e., u(m\prime ) \preceq u(m) for all
m\prime \preceq m. Introduce \scrN := \{ x : DIu(m,x) < 0\} ; p\varepsilon (x) := 1  - \varepsilon 1\scrN (x), \varepsilon \in (0,1),
and the corresponding measure m\prime 

\varepsilon defined by (4.1). Then (m - m\prime 
\varepsilon )(dx,di) = (2i - 

1)\varepsilon 1\scrN (x)m(dx,1), and thus

0\leq 1

\varepsilon 
[u(m) - u(m\prime )] =

1

\varepsilon 

\int 1

0

\int 
S

\delta mu
\bigl( 
\lambda m+ [1 - \lambda ]m\prime 

\varepsilon , x, i
\bigr) 
(m - m\prime 

\varepsilon )(dx,di)d\lambda 

=

\int 1

0

\int 
\scrN 
DIu(\lambda m+ [1 - \lambda ]m\prime 

\varepsilon , x)m(dx,1)d\lambda .(4.4)

Note that \{ \lambda m+ [1 - \lambda ]m\prime 
\varepsilon : \lambda \in [0,1], \varepsilon \in [0,1]\} \subset \scrP 2(S) is compact; then DIu(\lambda m+

[1 - \lambda ]m\prime 
\varepsilon , x) has quadratic growth in x, uniformly in \lambda , \varepsilon . Moreover, sending \varepsilon \rightarrow 0,

since m\prime 
\varepsilon \rightarrow m and DIu is continuous in m, applying the dominated convergence

theorem we obtain from (4.4) that
\int 
\scrN DIu(m,x)m(dx,1)\geq 0, which is possible only

if m(\scrN ,1) = 0. That is, DIu(m,x)\geq 0 for m(\cdot ,1)-a.e. x. Since DIu is continuous in
(m,x) and the set \{ m \in \scrP 2(S) : supp (m(\cdot ,1)) = Rd\} is dense in \scrP 2(S), then one can
easily show that DIu(m,x)\geq 0 for all (m,x)\in \scrP 2(S)\times Rd.

4.2. The main results.
Theorem 4.4. If V defined in (2.6) is in C1,2

2 (Q0), then it is a solution of (4.3).
Moreover, for any (t,m) \in [0, T )\times \scrP 2(S), P\ast \in \scrP (t,m) is optimal for V (t,m) if

and only if, denoting m\ast = \{ m\ast 
s := P\ast 

Ys
\} 0\leq s\leq T ,

 - (LV + F )(s,m\ast 
s) = 0, V (s,m\ast 

s) = V (s,m\ast 
s - ), for all s\in [t, T ],

DIV (\tau ,m\ast 
\tau ,X\tau )1Jc

[t,T )
(m\ast )(\tau ) = 0, P\ast -a.s., where m\ast 

\tau :=m\ast 
s| s=\tau .

(4.5)

Proof. Step 1. We first prove that

 - (LV + F )(t,m)\geq 0, DIV (t,m,x)\geq 0, for all (t,m,x)\in Q0 \times Rd.(4.6)
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MEAN FIELD OPTIMAL STOPPING 2151

Fix (t,m). For any m\prime \preceq m, we may choose P \in \scrP (t,m) such that PYt = m\prime , and
Is = It, s\in [t, T ), P-a.s. For \delta \in (0, T  - t), by DPP (2.8) we have

V (t,m)\geq 
\int t+\delta 

t

F (s,PYs)ds+ V (t+ \delta ,P(Xt+\delta ,It)).

Send \delta \rightarrow 0, and note that P(Xt+\delta ,It) \rightarrow P(Xt,It) = m\prime . Then by the continuity of V
we have V (t,m) \geq V (t,m\prime ). Since m\prime \preceq m is arbitrary, by Lemma 4.3 we see that
DIV \geq 0.

To prove that  - (LV + F )(t,m) \geq 0, we consider P \in \scrP (t,m) such that Is = It - ,
s \in [t, T ], P-a.s. Applying It\^o's formula (3.7) on [t, t+ .] under P, we see that all the
terms involving the jumps are equal to 0. Then by DPP (2.8) we have, denoting
ms := PYs

,

0\geq V (t+ \delta ,m(t+\delta ) - ) - V (t,m) +

\int t+\delta 

t

F (s,ms)ds=

\int t+\delta 

t

(Lu+ F )(s,ms)ds.

Note that ms \rightarrow m as s \downarrow t. Then by the continuity of Lu+F one can easily see that
 - (LV + F )(t,m)\geq 0.

Step 2. In this step we prove the equivalence of the optimality condition (4.5).
First, if P\ast \in \scrP (t,m) satisfies (4.5), applying It\^o's formula (3.7) on [t, T ) we obtain
immediately

V (t,m) = V (T,P\ast 
YT - 

) - 
\int T

t

LV (s,P\ast 
Ys
)ds= g(P\ast 

YT
) +

\int T

t

F (s,P\ast 
Ys
)ds.

As f has quadratic growth in x, locally uniformly in (t,m), we may switch the integral
and the expectation in the expression of F , and thus P\ast is optimal.

Next, fix an optimal P\ast \in \scrP (t,m) such that V (t,m) =
\int T

t
F (s,P\ast 

Ys
)ds

+ g(P\ast 
YT

). Denoting m\ast 
s := P\ast 

Ys
, s \geq t, with m = m\ast 

t - , then by DPP (2.8) and It\^o's
formula (3.7) we have

0 =

\int T

t

(LV + F )(s,m\ast 
s)ds+

\sum 
s\in J[t,T )(m\ast )

[V (s,m\ast 
s) - V (s,m\ast 

s - )]

+ E

\Biggl[ \int 
Jc
[t,T )

(m\ast )

DIV (s,m\ast 
s,Xs)dIs

\Biggr] 
.

By Step 1 we have V (s,m\ast 
s) \leq V (s,m\ast 

s - ). Together with (4.6), we see that all three
terms in the right side above are nonpositive, and then all of them should be 0:

(LV + F )(s,m\ast 
s) = 0, a.e. s\in [t, T ]; V (s,m\ast 

s) = V (s,m\ast 
s - ) for all s\in J[t,T )(m

\ast );\int 
Jc
[t,T )

(m\ast )

DIV (s,m\ast 
s,Xs)dIs = 0, P\ast -a.s.

(4.7)

Since LV +F is continuous and, for s\in Jc
[t,T )(m

\ast ), by definition m\ast 
s =m\ast 

s - and hence
V (s,m\ast 

s) = V (s,m\ast 
s - ), then the first line of (4.7) implies that the first line of (4.5)

holds for all s \in [t, T ). Moreover, since \tau is the only jump point of I, the second line
of (4.7) is clearly equivalent to the second line of (4.5).

Step 3. Finally we complete the verification of (4.3). First by (2.6) V (T,m) =
g(m). Then, by Step 1, it remains to verify minm\prime \in CV (t,m)[ - (LV + F )(t,m\prime )] = 0.
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2152 MEHDI TALBI, NIZAR TOUZI, AND JIANFENG ZHANG

Noting thatm\ast 
t - =m and setting s= t in the first line of (4.5), we havem\ast 

t \in CV (t,m).
Thus

0\leq min
m\prime \in CV (t,m)

[ - (LV + F )(t,m\prime )]\leq  - (LV + F )(t,m\ast 
t ) = 0,

and therefore the equality holds.

Theorem 4.5 (verification). Let u \in C1,2
2 (Q0) be a solution of (4.3). Then

u= V .

Proof. We prove the theorem by using the obstacle equation (4.3) to construct
an \varepsilon -optimal control for (2.6). We fix m\in \scrP 2(S) and assume for simplicity that t= 0.

Step 1. We first prove that u \geq V . For an arbitrary P \in \scrP (0,m), we apply It\^o's
formula (3.7) and obtain, again denoting m= \{ ms := PYs\} ,

u(T,mT - ) = u(0,m) +

\int T

0

Lu(s,ms)ds

+
\sum 

s\in J[0,T )(m)

[u(s,ms) - u(s,ms - )] + EP

\Biggl[ \int 
Jc
[0,T )

(m)

DIu(s,ms,Xs)dIs

\Biggr] 
.

(4.8)

By (4.3) and Lemma 4.3 we have u(s,ms) \leq u(s,ms - ). Then, (4.3) and (4.8) imply
that

u(0,m)\geq u(T,mT - ) - 
\int T

t

Lu(s,ms)ds\geq g(mT ) +

\int T

t

F (s,ms)ds.

Since P\in \scrP (0,m) is arbitrary, we obtain u(0,m)\geq V (0,m).
Step 2. We now show that u \leq V . Let n \geq 1, tj :=

j
nT , j = 0, . . . , n. We define

Pn \in \scrP (0,m) and mn
s := Pn

Ys
recursively such that mn

0 - =m, and for j = 0, . . . , n - 1,
thanks to Remark 4.1,

mn
tj \in Cu(tj ,m

n
tj - ) s.t. - (Lu+ F )(tj ,m

n
tj )=0 and mn

s \circ i - 1=mn
tj \circ i

 - 1,s\in [tj , tj+1).

By the arguments of Proposition 2.2 applied to \scrP (0,m), and by (2.7), one can easily
show that \scrW 2(m

n
s ,m

n
tj ) \leq 

Cm\surd 
n
, s \in [tj , tj+1), for some constant Cm > 0 which may

depend on m but is uniform on n. Moreover, by Proposition 2.2 and the compactness
of [0, T ], we see that the set \{ PYs

,PYs - : s \in [0, T ],P \in \scrP (0,m)\} is compact. As

u\in C1,2
2 (Q0), Lu+F is continuous and then uniformly continuous on this set. Then,

there exists a modulus of continuity function \rho such that

 - (Lu+ F )(s,mn
s )

= - (Lu+ F )(s,mn
s ) + (Lu+ F )(tj ,m

n
tj )\leq \rho 

\biggl( 
T

n
+
Cm\surd 
n

\biggr) 
, s\in [tj , tj+1).

By It\^o's formula (3.7), and noting that Pn is constructed such that there is no con-
tribution of the jump terms, we have

u(0,m) = u(T,mn
T - ) - 

\int T

0

Lu(s,mn
s )ds

\leq g(mn
T ) +

\int T

t

F (s,mn
s )ds+ T\rho 

\biggl( 
T

n
+
Cm\surd 
n

\biggr) 
\leq V (0,m) + T\rho 

\biggl( 
T

n
+
Cm\surd 
n

\biggr) 
.

Sending n\rightarrow \infty , we obtain u(0,m)\leq V (0,m).
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MEAN FIELD OPTIMAL STOPPING 2153

4.3. Some discussions on optimal stopping policies. Proposition 2.2 guar-
antees that the mean field optimal stopping problem has an optimal randomized
stopping strategy, i.e., a probability measure P\ast on \Omega s.t. g(P\ast 

YT
) +
\int T

t
F (s,P\ast 

Ys
)ds=

V (t,m). A pure stopping strategy corresponds to the case where the conditional
transition probability in (4.2) ps(\cdot ) \in \{ 0,1\} for all s \in [t, T ]. In this case, the optimal
stopping time is in closed-loop, i.e., \tau is a stopping time w.r.t. to the P\ast -augmented
filtration of X, and the obstacle equation (4.3) reduces to

(4.9)

min
A\in \scrB u(t,m)

[ - (Lu+ F )(t,mA)]=0, u(t,m)= max
A\in \scrB (Rd)

u(t,mA), u| t=T =g, (t,m)\in Q0,

where mA :=m \circ (x, i1A(x))
 - 1, and \scrB u(t,m) := \{ A\in \scrB (Rd) : u(t,mA) = u(t,m)\} .

We now discuss heuristically how to use the value function V to construct an
optimal stopping time, provided V \in C1,2

2 (Q0). In light of (4.5) and recalling that
DIV \geq 0, introduce

K(t,m) :=
\bigl\{ 
x\in Rd :DIV (t,m,x) = 0

\bigr\} 
.(4.10)

Fix (0,m0 - ). We set m\ast 
0 - :=m0 - and construct m\ast for V (0,m0 - ) in several steps.

Step 1. First, by (4.3) and Remark 4.1, there exists m\ast 
0 \in CV (0,m

\ast 
0 - ) such that

m\ast 
0 \preceq m\ast 

0 - and (LV + F )(0,m\ast 
0) = 0. In particular, if m\ast 

0 - \circ x - 1 is continuous on
\{ I0 - = 1\} , there exists A \in \scrB (Rd) such that I0 = I0 - 1Ac(X0), and thus the optimal
stopping time is a pure strategy at 0.

Step 2. Let P\ast be a weak solution to the following McKean--Vlasov SDE:

P\ast 
Y0

=m\ast 
0, X satisfies (2.3) and It = I01\{ Xs\in K(s,P\ast 

Ys
),0<s\leq t\} , P\ast -a.s.(4.11)

Assume m\ast 
t := P\ast 

Yt
is continuous up to certain t1 > 0. Then the optimal stopping

time between [0, t1) is a pure strategy: \tau = inf\{ t \geq 0 : Xt /\in K(t,m\ast 
t )\} . Note that,

since V is the value function, we should have (LV + F )(t,m\ast 
t ) = 0 for t \in [0, t1). We

shall remark though that the McKean--Vlasov SDE (4.11) is path dependent and has
discontinuous coefficients, so in general it is hard to solve. Moreover, the case that
t1 = 0 is even more difficult to solve.

Step 3. We have obtained m\ast 
t1 - from Step 2. As in Step 1, we may find m\ast 

t1 \in 
CV (t1,m

\ast 
t1 - ) at t1 such that m\ast 

t1 \preceq m\ast 
t1 - and (LV + F )(t1,m

\ast 
t1) = 0. Then following

Step 2 again we can hopefully extend m\ast to certain t2 > t1. Repeating the procedure,
we may construct m\ast on [0, T ].

We emphasize again that this procedure is just to illustrate the idea, in particular,
it could be helpful for constructing approximate optimal stopping times, as we saw
in the proof of Theorem 4.5, Step 2. In general it is hard to realize this procedure, in
fact, even the existence of a classical solution is a very challenging task. Nevertheless,
in subsection 5.3 below we will present an example where V is smooth and we can
construct the \tau explicitly. We also remark again that the optimal stopping time in
the continuous region constructed in Step 2 above is always a pure strategy, while in
the jump region in Step 1 the optimal stopping time could be indeed mixed, but will
also be a pure strategy when the distribution of the survival particles at that time is
continuous.

5. Examples.

5.1. Connection with standard optimal stopping. In this subsection we
consider the case that b and \sigma do not depend on the \scrP 2(S)-valued variable. For a
measurable function \varphi , we define the optimal stopping problem
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2154 MEHDI TALBI, NIZAR TOUZI, AND JIANFENG ZHANG

V (t,m) := sup
P\in \scrP (t,m)

EP[\varphi (XT )], (t,m)\in Q0.(5.1)

We also introduce v(t, x) := V (t, \delta (x,1)), which is related to the standard obstacle
problem

min\{  - (\partial tv+\scrL v), v - \varphi \} = 0, v(T, \cdot ) =\varphi , where \scrL v := b \cdot \partial xv+
1

2
\sigma 2 : \partial 2xxv.

(5.2)

To be consistent with Definition 3.4, let C1,2
2 ([0, T ] \times Rd) denote the set of v \in 

C1,2([0, T ] \times Rd) such that \partial 2xxv is bounded. This condition can be relaxed in this
case though.

Proposition 5.1. Assume v \in C1,2
2 ([0, T ]\times Rd). Then,

(i) V (t,m) =
\int 
S
(v(t, x)i+ \varphi (x)(1 - i))m(dx,di), and V is a classical solution of

the corresponding obstacle equation on the Wasserstein space;
(ii) the probability measure P\ast s.t. \tau = inf\{ s\geq t : v(s,Xs) =\varphi (Xs)\} on \{ It - = 1\} ,

P\ast -a.s., is optimal for the problem V (t,m). In particular, we see that \tau is a pure
stopping strategy under P\ast .

Proof. Denote by u the right-hand side of the expression in (i). Then u\in C1,2
2 (Q0)

with

\partial tu(t,m) =

\int 
Rd

\partial tv(t, x)m(dx,1), \delta mu(t,m,x, i) = v(t, x)i+\varphi (x)(1 - i),

\partial x\delta mu1(t,m,x) = \partial xv(t, x), \partial 
2
xx\delta mu1(t,m,x) = \partial 2xxv(t, x) for all (x, i)\in S.

We then show that u is a solution of (4.3). First, by (5.2),

DIu= v - \varphi \geq 0 and  - Lu(t,m) =

\int 
Rd

 - \scrL v(t, x)m(dx,1)\geq 0.

Defining At := \{ x : v(t, x) - \varphi (x)> 0\} and mAt :=m \circ (x, i1At
(x)) - 1, we have

u(t,m) - u(t,mAt) =

\int 
Ac

t

[v(t, x) - \varphi (x)]m(dx,1) = 0,

and therefore mAt \in Cu(t,m). As  - \scrL v(t, x) = 0, x \in At, we have  - Lu(t,mAt) = 0.
Thus, u is a solution of (4.3), and we deduce that u= V by Theorem 4.5.

To see that (ii) holds, notice that the flow m\ast 
s := P\ast 

Ys
is s.t. m\ast 

s = (m\ast 
s - )

As for all
s\in [t, T ]. Then P\ast clearly satisfies (4.5) and thus is optimal for V (t,m).

5.2. Convex functions of the expectation. Let d = 1, \psi ,h,\varphi : R \rightarrow R, with
\varphi convex. We consider the optimal stopping problem:

V (t,m) := sup
P\in \scrP (t,m)

\Bigl[ 
EP[\psi (XT )] +\varphi 

\bigl( 
EP[h(XT )]

\bigr) \Bigr] 
.(5.3)

This is an extension of the mean variance optimal stopping problem. Introducing the
convex dual \varphi \ast (\alpha ) := sup\beta \in R\{ \alpha \beta  - \varphi (\beta )\} , we may write

V (t,m) = sup
\alpha \in R

\bigl[ 
 - \varphi \ast (\alpha ) + V\alpha (t,m)

\bigr] 
, with V\alpha (t,m)

:= sup
P\in \scrP (t,m)

EP[\psi \alpha (XT )], \psi \alpha :=\psi + \alpha h.
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MEAN FIELD OPTIMAL STOPPING 2155

Assuming u\alpha (t, x) := V\alpha (t, \delta (x,1)) \in C1,2
2 ([0, T ] \times R), it follows from Proposition 5.1

that

V\alpha (t,m) =

\int 
S

\bigl[ 
u\alpha (t, x)i+ f\alpha (x)[1 - i]

\bigr] 
m(dx,di),

 - LV\alpha (t,mAt) = 0, whereAt := \{ x : u\alpha (t, x)>\varphi (t, x)\} ;
DIV\alpha (t,m,x) = u\alpha (t, x) - \varphi (t, x) = 0, when u\alpha (t, x) =\varphi (t, x).

(5.4)

Since \alpha is one-dimensional, it is not hard to find \alpha \ast (t,m) s.t. V (t,m) = V\alpha \ast (t,m)(t,m) - 
\varphi \ast (\alpha \ast (t,m)).

Moreover, fix (t,m) and let P\ast \in \scrP (t,m) be the optimal measure for the problem
V\alpha \ast (t,m)(t,m), as constructed in the previous subsection. Then it is obvious that P\ast 

is optimal for V (t,m) as well, and by Proposition 5.1(ii), \tau is an optimal stopping
strategy under P\ast .

Remark 5.2. Let d= 1. Another natural example is the optimal stopping of the
expected shortfall:

V (t,m) := inf
P\in \scrP (t,m)

ESP
\alpha (XT ) for all (t,m)\in Q0

for some fixed \alpha \in (0,1), where ESP
\alpha denotes the expected shortfall under P, i.e., for

any random variable Z with law \mu ,

g(\mu ) := ESP
\alpha (Z) :=

1

\alpha 

\int \alpha 

0

q\gamma (Z)d\gamma = inf
\beta \in R

\Bigl\{ 
\beta +

1

1 - \alpha 

\int 
R
(x - \beta )+\mu (dx)

\Bigr\} 
,(5.5)

where q\gamma (Z) := inf\{ z : \mu (Z \leq z)>\gamma \} .

Here the second equality has been established by Rockafellar and Uryasev [24]. It
is not clear whether this value function is smooth, so that the result of the current
paper does not apply. A similar comment applies to the optimal stopping under prob-
ability distortion. These two examples are discussed in our accompanying paper [27],
which addresses the possible nonsmoothness by introducing an appropriate notion of
viscosity solution.

5.3. Construction of a smooth solution. In this subsection we construct an
example where the obstacle problem indeed has a classical solution. First, set b= 0,
\sigma = 1, and thus, for any P\in \scrP (t,m),

Xs =Xt +WP
\tau \wedge s  - WP

t P-a.s. on \{ It - = 1\} .(5.6)

Next, let a\in C1([0, T ]) and \varphi \in C1,2
2 ([0, T ]\times R+) be positive functions such that

\partial x\varphi (t, x) = 0 for x\geq at and \partial x\varphi (t, x)> 0 for x< at.(5.7)

One such example can be \varphi (t, x) := e - [(at - x)+]3 . Moreover, we introduce another
positive function \psi \in C2(R) with bounded derivatives and set

u0(t,m) := [T  - t]\varphi (t, v0(m)), where v0(m) :=

\int 
R
\psi (x)m(dx,1).(5.8)

Proposition 5.3. Under the above setting, u0 \in C1,2
2 ([0, T ]\times \scrP 2(S)), and u0 is

the classical solution to the obstacle problem (4.3) with

F (t,m) := - Lu0(t,m) - 
\bigl[ 
v0(m) - at

\bigr] +
, g := 0.(5.9)
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2156 MEHDI TALBI, NIZAR TOUZI, AND JIANFENG ZHANG

We remark that this F may not take the specific form of (2.2), which is mainly
motivated from applications but not really required for our theory. Since this example
is just for illustration of the theory, we content ourselves by allowing for this more
general F . We emphasize again that in general it is hard to have classical solution
for our obstacle problem, and therefore we shall investigate viscosity solutions in our
accompanying paper [27].

Proof. First, by Definition 3.1 one may easily verify \delta mv0(m,x,1) = \psi (x), \delta mv0
(m,x,0) = 0, \partial tu0(t,m) = [T  - t]\partial t\varphi (t, v0(m))  - \varphi (t, v0(m)), \delta mu0(t,m,x,1) = [T  - 
t]\partial x\varphi (t, v0(m))\psi (x), \delta mu0(t,m,x,0) = 0. Then it is clear that u0 \in C1,2

2 (Q0).
We now show that u0 satisfies (4.3). Clearly, u0(T, .) = 0= g, and

DIu0(t,m,x) = [T  - t]\partial x\varphi (t, v0(m))\psi (x)\geq 0,  - Lu0(t,m) - F (t,m)(5.10)

=
\bigl[ 
v0(m) - at

\bigr] + \geq 0.

In particular,  - (Lu0 + F )(t,m) = 0 when v0(m) \leq at. Finally, when v0(m) > at,
combining (5.7) and (5.8), we have

Cu0(t,m) = \{ m\prime \preceq m : v0(m
\prime )\in [at, v0(m)]\} , t < T.(5.11)

Set m\prime 
\ast \preceq m by (4.1) with p(x) \equiv at

v0(m) . Then m\prime 
\ast \in Cu0(t,m) with v0(m

\prime 
\ast ) = at.

Therefore,

min
m\prime \in Cu0

(t,m)
 - (Lu0 + F )(t,m\prime )\leq  - (Lu0 + F )(t,m\prime 

\ast ) =
\bigl[ 
v0(m

\prime 
\ast ) - at

\bigr] +
= 0.

This, together with (5.10), completes the proof.

In the rest of this subsection, we construct an optimal P\ast \in \scrP (0,m0 - ) for the
problem V0 := V (0,m0 - ) = u0(0,m0 - ). For simplicity we assume

T = 2, \psi (x) := e - 
x2

2 , and X0 = 0, I0 - = 1, m0 - -a.s.(5.12)

We next specify the function a, which relies on two functions \kappa i on [0, T ]\times R:

\kappa 0(t, x) := E
\bigl[ 
\psi (x+Wt)

\bigr] 
, \kappa 1(t, x) := E

\bigl[ 
\psi (x+Wt)1\{ W\ast 

t <1\} 
\bigr] 
,

at :=
1
2

\bigl[ 
\kappa 0(t,0) + t2(1 - t)2

\bigr] 
1[0,1](t) +

1
2E
\bigl[ 
\kappa 1(t - 1,W1)

\bigr] 
1(1,2](t),

(5.13)

whereW \ast 
t := sup0\leq s\leq tWs. Recalling Karatzas and Shreve [16, Chapter 2, Proposition

8.1] for the joint density of (Wt,W
\ast 
t ), by direct calculations we have 0\leq \partial t\kappa 0(t, x) - 

\partial t\kappa 1(t, x)\rightarrow 0 as t\rightarrow 0. Then \partial t\kappa 1(0, x) = \partial t\kappa 0(0, x), which implies that a\prime 1+ = h\prime 1 =
a\prime 1 - , that is, a\in C1([0, T ]).

Proposition 5.4. Under the above setting, an optimal P\ast has the following
structure:
(i) At time 0, there is a massive stop with P\ast (I0 = 1) = 1

2 .
(ii)There is no stop during the time interval (0,1]: It = I0, 0\leq t\leq 1, P\ast -a.s.
(iii) Particles stop continuously during the time interval (1,2):

\tau = inf\{ t > 1 :Xt  - X1 \geq 1\} \wedge 2, P\ast -a.s.on \{ I0 = 1\} .(5.14)

(iv) All the remaining particles stop at time 2.
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Proof. (i) Note that in this case

v0(m0 - ) = Em0 - 
\bigl[ 
\psi (X0)I0 - 

\bigr] 
=\psi (0) = 1>

1

2
=

1

2
\kappa 0(0,0) = a0.(5.15)

Then  - (Lu0 + F )(0,m0 - ) = v0(m0 - )  - a0 > 0, and we have to stop some particles
immediately. We may choose m\ast 

0 such that m\ast 
0(I0 = 1) = 1

2 , and then t= 0 is a jump
point of m\ast , and

v0(m
\ast 
0) = Em\ast 

0
\bigl[ 
\psi (X0)I0

\bigr] 
=

1

2
, and thus  - (Lu0 + F )(0,m\ast 

0) = v0(m
\ast 
0) - a0 = 0.

Moreover, since v0(m
\ast 
0) \in [a0, v0(m0 - )], by (5.11) we have m\ast 

0 \in Cu0
(0,m0 - ). This

implies that u0(0,m
\ast 
0) = u0(0,m

\ast 
0 - ), and then it follows from (4.5) that P\ast is optimal

at t= 0.
(ii) For the P\ast specified in the proposition, we have It = I0 and hence Xt =WP\ast 

t

on \{ I0 = 1\} , 0 \leq t \leq 1, P\ast -a.s. By (5.13) we see that v0(m
\ast 
t ) =

1
2\kappa 0(t,0) \leq at, which

implies that  - (Lu0 + F )(0,m\ast 
t ) = 0, 0 \leq t \leq 1. Since no particle stops during this

period, then by (4.5) again P\ast is optimal on [0,1].
(iii) We first note that if we continue to keep all particles on \{ I0 = 1\} alive

after t = 1, then we will have v0(mt) = 1
2\kappa 0(t,0) > at (since \kappa 0 > \kappa 1) and thus

 - (Lu0+F )(0,mt)> 0, which is not optimal. So after t= 1, we start to stop particles,
and our structure allows us to stop the particles continuously in the sense m\ast 

t is
continuous in t. Indeed, by (5.6) and (5.14),

\tau = inf\{ t > 1 :WP\ast 

t  - WP\ast 

1 \geq 1\} \wedge 2, P\ast -a.s. on \{ I0 = 1\} .

Then, for t\in (1,2),

v0(m
\ast 
t ) = EP\ast 

\Bigl[ 
\psi (Xt)It

\Bigr] 
= EP\ast 

\Bigl[ 
\psi (Xt)I01\{ \tau >t\} 

\Bigr] 
= EP\ast 

\Bigl[ 
\psi (WP\ast 

1 +WP\ast 

t  - WP\ast 

1 )1\{ I0=1\} 1\{ sup1\leq s\leq t[W
P\ast 
s  - WP\ast 

1 ]<1\} 

\Bigr] 
=

1

2
EP\ast 
\Bigl[ 
\kappa 1(t - 1,WP\ast 

1 )
\Bigr] 
= at.

Therefore,  - (Lu0 + F )(0,m\ast 
t ) = 0, 1< t< 2.

Next, for any 1< t< 2, clearly m\ast 
t is continuous, and thus u0(t,m

\ast 
t ) = u0(t,m

\ast 
t - ).

Moreover, since v0(m
\ast 
t ) = at, by (5.10) and (5.7) we have

DIu0(t,m
\ast 
t ,Xt) = [T  - t]\partial x\varphi (t, v0(m

\ast 
t ))\psi (Xt) = [T  - t]\partial x\varphi (t, at)\psi (Xt) = 0.

Then by (4.5) again we see that P\ast is optimal on [1,2).
(iv) This is required by our formulation of the problem.

Remark 5.5. (i) For the P\ast in Proposition (5.4), m\ast 
t has two jumps, one at t= 0

and the other at t = 2. In particular, the stopping at t = 0 is randomized. Indeed,
since X0 \equiv 0 under m0 - , there is no A\in \scrB (R) such that Em0 - [\psi (X0)1A(X0)] = a0.
(ii) If X0 has continuous distribution under m0 - , say, with density \rho 0(x), then it is
possible to have a pure stopping strategy. Indeed, let x0 be a median of X0. Set T ,
\psi , I0 - , \kappa 0, \kappa 1 as in (5.12) and (5.13), and modify the a in (5.13) as follows:

at :=

\biggl[ \int x0

 - \infty 
\kappa 0(t, x)\rho 0(x)dx+ t2(1 - t)2

\biggr] 
1[0,1](t)

+

\int x0

 - \infty 
E[\kappa 1(t - 1, x+W1)]\rho 0(x)dx1(1,2](t).
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2158 MEHDI TALBI, NIZAR TOUZI, AND JIANFENG ZHANG

By the same arguments as in Proposition 5.4, the following pure stopping strategy is
optimal:

\bullet At time 0, there is a massive stop for the particles X0 > x0: I0 = 1\{ X0\leq x0\} ,
P\ast -a.s.

\bullet There is no stop during the time interval (0,1]: It = I0, 0\leq t\leq 1, P\ast -a.s.
\bullet Particles stop continuously during the time interval (1,2) following (5.14).
\bullet All the remaining particles stop at time 2.

6. Some extensions.

6.1. Infinite horizon case. This subsection is dedicated to the case T =+\infty .
For any (t,m) \in Q0, let \scrP (t,m) denote the set of P such that PYt - = m and (2.7)
holds on [t,\infty ). We shall always assume as follows.

Assumption 6.1. (i) Assumption 2.1 holds true on [0,\infty );
(ii)

\int \infty 
0

supm\in \scrP 2(S) | F (t,m)| dt <\infty ;
(iii) for any (t,m) and P\in \scrP (t,m), X\infty := limt\rightarrow \infty Xt exists, P-a.s.

We remark that one sufficient condition of (ii) above is that | f(t, x,m)| \leq Ce - \lambda t for
some constants C,\lambda > 0, and a special case of (iii) is

d= 1, b= b0x, \sigma = \sigma 0x, b0  - 
1

2
\sigma 2
0 < 0.(6.1)

That is, the unstopped process X0 in (1.2) is a geometric Brownian motion and
X0

\infty = 0.
We also define I\infty := 0. This allows the case \tau =+\infty and guarantees that \scrP (t,m)

is compact. The infinite horizon optimal stopping problem then is written simply

V (t,m) := sup
P\in \scrP (t,m)

\int \infty 

t

F (s,PYs)ds+ g(PX\infty ) for all (t,m)\in Q0.(6.2)

The corresponding obstacle equation on Wasserstein space is

min
m\prime \in Cu(t,m)

 - [Lu+ F ](t,m\prime ) = 0, DIu(t,m, \cdot )\geq 0, (t,m)\in Q0,(6.3)

with boundary condition u(\infty , \cdot ) = g.
Now by considering the problem on [0,\infty ], we see that all the definitions as well as

all the results in the previous sections on the finite horizon remain true in the infinite
horizon.

Remark 6.2. In the infinite horizon, one may naturally consider the time ho-
mogeneous case, that is, b, \sigma , f do not depend on t. Then V = V (m) is also time
homogeneous, and thus (6.3) becomes an elliptic problem: recalling (3.6),

min
m\prime \in Cu(m)

 - 
\biggl[ \int 

Rd

\scrL x\delta mu1(m
\prime , x)m\prime (dx,1) + F (m\prime )

\biggr] 
= 0, DIu(m, \cdot )\geq 0,(6.4)

for all m\in \scrP 2(S),

with boundary condition u = g on \partial \scrP 2(S) := \{ m \in \scrP 2(S) : m(Rd,1) = 0\} . We leave
the details to interested readers.

6.2. Mean field optimal stopping of a jump-diffusion. This last subsection
is dedicated to an informal discussion about the case where (X,I) is a stopped jump-
diffusion, i.e., Is = It - 1s<\tau and
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MEAN FIELD OPTIMAL STOPPING 2159

(6.5)

Xs =Xt +

\int s

t

b(r,Xr,mr)Irdr+

\int s

t

\sigma (r,Xr,mr)IrdWr +

\int s

t

\gamma (r,Xr - ,mr - )Ir - d\eta r,

where \eta is a pure jump process with intensity \lambda s := \lambda s(s,Xs,ms) and whose jump size
is defined by a distribution \nu , and \gamma s := \gamma (s,Xs - ,ms - ) satisfies the usual conditions.
We refer to Burzoni et al. [7], who characterized the mean field optimal control of
a jump-diffusion by a dynamic programming equation (in the viscosity sense). The
result of this section may be seen as a complement to the context of mean field
optimal stopping. We consider the optimal stopping problem (2.6), where \scrP (t,m) is
the set of probability measures such that the canonical process (X,I) satisfies (6.5).
Then, the value function still satisfies the DPP (2.8). In order to formally derive
the corresponding dynamic programming equation, we need to find the differential
operator associated with the dynamics (6.5), which follows from It\^o's formula (3.4) in
the present jump-diffusion case. Let u\in C1,2

2 (Q0). Observing that the discontinuities
in the flow m = \{ ms\} are only due to I (as \eta has an intensity, hence no atoms), by
shifting the jump at s to t as in (3.7), we have

u(s,ms - ) = u(t,mt - ) +

\int s

t

Lu(r,mr)dr+
\sum 

r\in J[t,s)(m)

[u(r,mr) - u(r,mr - )] +\scrJ D,

where \scrJ D := EP

\left[  \sum 
r\in Jc

[t,s)
(m)

\bigl( 
\delta mu(r,mr,Xr, Ir) - \delta mu(t,mr,Xr - , Ir - )

\bigr) \right]  .
We next compute \scrJ D. Denote \varphi r(\cdot ) := \varphi (r,mr, \cdot ) for any function \varphi and \Delta \eta r :=

\eta r - \eta r - . Note again that J[t,s)(m) is countable and thus \eta does not jump at J[t,s)(m),
a.s. Then

\scrJ D = EP

\left[  \sum 
r\in Jc

[t,s)
(m)

\bigl[ 
\delta mur(Xr - + \gamma r(Xr - )Ir - \Delta \eta r, Ir) - \delta mur(Xr - , Ir - )

\bigr] \right]  
= EP

\left[  \sum 
r\in Jc

[t,s)
(m)

\bigl[ 
\delta mur(Xr - + \gamma r(Xr - )Ir - \Delta \eta r, Ir) - \delta mur(Xr - , Ir)

\bigr] \right]  
+ EP

\left[  \sum 
r\in Jc

[t,s)
(m)

\bigl[ 
\delta mur(Xr - , Ir) - \delta mur(Xr - , Ir - )

\bigr] \right]  
= EP

\biggl[ \int s

t

\int 
Rd

\bigl[ 
\delta mur(Xr + y\gamma r(Xr)Ir, Ir) - \delta mur(Xr, Ir)

\bigr] 
\nu (dy)\gamma r(Xr)\lambda r(Xr)Irdr

\biggr] 
+ EP

\Biggl[ \int 
Jc
[t,s)

(m)

DIur(Xr)dIr

\Biggr] 
,

which implies that the differential operator corresponding to the dynamics (6.5) is

LJDu(t,m) := Lu(t,m) +

\int 
(Rd)2

\bigl[ 
\delta mu1(t,m,x+ y\gamma (t,m,x))

 - \delta mu1(t,m,x)
\bigr] 
\gamma \lambda (t,m,x)\nu (dy)m(dx,1).

Then, the dynamic programming equation corresponding to our problem is

min
m\prime \in Cu(t,m)

 - (LJDu+ F )(t,m\prime ) = 0, DIu(t,m, .)\geq 0, u(T, \cdot ) = g, (t,m)\in [0, T ]\times \scrP 2(S).
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2160 MEHDI TALBI, NIZAR TOUZI, AND JIANFENG ZHANG

All the results of the previous sections can be adapted under appropriate assumptions.

Appendix A. Proof of Proposition 2.2. We assume for simplicity t= 0 and
fix m\in \scrP 2(S). Let Cm denote a generic constant which may depend on T and m but
is independent of P. We proceed in three steps.

Step 1. We first prove the following uniform integrability: denoting X\ast 
T :=

sup0\leq s\leq T | Xs| ,

sup
P\in \scrP (0,m)

EP
\bigl[ 
| X\ast 

T | 2
\bigr] 
\leq Cm, lim

R\rightarrow \infty 
sup

P\in \scrP (0,m)

EP
\bigl[ 
| X\ast 

T | 21\{ X\ast 
T\geq R\} 

\bigr] 
= 0.(A.1)

Indeed, for any P \in \scrP (0,m), first by standard arguments we derive from (2.7) that
EP[| X\ast 

T | 2]\leq CEm[1 + | X0| 2]\leq Cm. In particular, this implies that the set \{ PYs
: P \in 

\scrP (0,m),0 \leq s \leq T\} is bounded under \scrW 2. Then, for any p > 2, by (2.7) again we
have EP[| X\ast 

T | p| \scrF 0]\leq Cm,p[1+ | X0| p], P-a.s., where Cm,p may depend on p as well, but
is still independent of P. Now for any R> 0,

EP
\Bigl[ 
| X\ast 

T | 21\{ X\ast 
T\geq R\} 

\Bigr] 
\leq EP

\Bigl[ 
| X\ast 

T | 21\{ 1+| X0| \geq 
\surd 
R\} 

\Bigr] 
+ EP

\Bigl[ 
| X\ast 

T | 21\{ 
X\ast 

T
1+| X0| \geq 

\surd 
R\} 

\Bigr] 
\leq EP

\Bigl[ 
| X\ast 

T | 21\{ 1+| X0| \geq 
\surd 
R\} 

\Bigr] 
+

1\surd 
R

EP
\Bigl[ | X\ast 

T | 3

1 + | X0| 

\Bigr] 
= EP

\Bigl[ 
EP
\bigl[ 
| X\ast 

T | 2
\bigm| \bigm| \scrF 0

\bigr] 
1\{ 1+| X0| \geq 

\surd 
R\} 

\Bigr] 
+

1\surd 
R

EP
\Bigl[ EP

\bigl[ 
| X\ast 

T | 3
\bigm| \bigm| \scrF 0

\bigr] 
1 + | X0| 

\Bigr] 
\leq Cm,2Em

\Bigl[ 
[1 + | X0| 2]1\{ 1+| X0| \geq 

\surd 
R\} 

\Bigr] 
+
Cm,3\surd 
R

Em
\Bigl[ 
1 + | X0| 2

\Bigr] 
.

Notice that the right side above does not depend on P; then it clearly implies (A.1).
Step 2. We next show that \scrP (0,m) is closed under the weak convergence. Let

\{ Pn\} n\geq 1 \subset \scrP (0,m) converge weakly to some P\infty . Since Pn
(X0,I0 - ) = m for all n,

we have P\infty 
Y0 - 

= m. Then it suffices to show that the processes M,N in (2.4) are
P\infty -martingales on [0, T ]. We shall report only the detailed argument for M , as it is
immediately adapted to N .

Notice that the support of P\infty is separable under the Skorokhod distance dSK , as
a subspace of the separable metric space \Omega . Then it follows from the Skorokhod's rep-
resentation theorem (see Billingsley [3, Theorem 6.7]) that there exists a probability
space (\Omega 0,\scrF 0,P0) and processes \{ Y n := (Xn, In)\} n\geq 1 and Y\infty := (X\infty , I\infty ) defined
on this space such that

Pn
Y = P0

Y n for all n\leq \infty , and dSK(Y n, Y\infty )  - \rightarrow 
n\rightarrow \infty 

0, P0-a.s.(A.2)

For all n\geq 1, the Pn-martingale property of M translates to

EP0

[(Mn
s  - Mn

t )\psi (Y
n
.\wedge t)] = 0 for all \psi \in Cb(\Omega ) and 0\leq t\leq s\leq T(A.3)

with Mn
s =Xn

t  - 
\int s

t
b(r,Xn

r ,P
0
Y n
r
)Inr dr and Cb(\Omega ) the set of Rd-valued bounded con-

tinuous functions on \Omega . Moreover, for r \in [t, T ], by the Lipschitz continuity of b we
have

| b(r,Xn
r ,P

0
Y n
r
) - b(r,X\infty 

r ,P0
Y \infty 
r
)| \leq C

\bigl[ 
| Xn

r  - X\infty 
r | +\scrW 2(P

0
Y n
r
,P0

Y \infty 
r
)
\bigr] 
.

Sending n\rightarrow \infty , by (A.2) we have | Xn
r  - X\infty 

r | \rightarrow 0, P0-a.s. and P0
Y n
r
\rightarrow P0

Y \infty 
r

weakly.

Then, by the 2-uniform integrability (A.1) of \{ P0
Y n
r
\} n\geq 1, we have \scrW 2(P0

Y n
r
,P0

Y \infty 
r
)\rightarrow 0;

see Carmona and Delarue [9, Theorem 5.5]. Thus
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MEAN FIELD OPTIMAL STOPPING 2161

b(r,Xn
r ,P

0
Y n
r
)  - \rightarrow 
n\rightarrow \infty 

b(r,X\infty 
r ,P0

Y \infty 
r
), P0-a.s.

Moreover, as b is Lipschitz and \{ Xn\} n\geq 1 are uniformly integrable (as the 2-uniform
integrability of (A.1) implies the 1-uniform integrability), then \{ Mn\} n\geq 1 are uni-
formly integrable. The convergence for the Skorokhod distance also implies the con-
vergence of In.\wedge t to I

\infty 
.\wedge t. This allows us to take the limit in (A.3) as \psi \in Cb(\Omega ), hence

EP0

[(M\infty 
s  - M\infty 

t )\psi (Y\infty 
.\wedge t)] = 0. By the arbitrariness of \psi \in Cb(\Omega ), this proves M

\infty is a
P0-martingale, or equivalently that M is a P\infty -martingale.

Step 3. We now show that \scrP (0,m) is compact under \scrW 2. Let \{ Pn\} n\geq 1 \subset \scrP (0,m).
First, by the first estimate in (A.1) and noticing that I is bounded by 1, one can easily
obtain a uniform bound for the conditional variation of Y under all Pn; then by Meyer
and Zheng [20, Theorem 4] we see that \{ Pn\} n\geq 1 is relatively weakly compact, namely
there exists a weakly convergent subsequence. By Step 2, without loss of generality
we assume the whole sequence Pn \rightarrow P\infty \in \scrP (0,m) weakly. Moreover, by the second
estimate in (A.1) \{ Pn\} n\geq 1 is 2-uniformly integrable; then it follows from Carmona
and Delarue [9, Theorem 5.5] again that limn\rightarrow \infty \scrW 2(Pn,P\infty ) = 0. This proves the
compactness of \scrP (0,m).

Finally, since g is upper-semicontinuous, the above compactness implies the exis-
tence of optimal P\ast for the mean field optimal stopping problem (2.6).

Appendix B. Proof of Theorem 3.2. Let \Xi m denote the convex hull of
\{ ms,ms - : 0\leq s\leq T\} :

\Xi m :=
\Bigl\{ 
\lambda ms\prime + (1 - \lambda )mt\prime : 0\leq \lambda \leq 1,0\leq s\leq t\leq T, s\prime = s, s - , t\prime = t, t - 

\Bigr\} 
\subset \scrP 2(R

d\prime 
).

We first show that \Xi m is compact. Indeed, for any (\lambda n, s
\prime 
n, t

\prime 
n), there exists a conver-

gent subsequence and we may assume without loss of generality that (\lambda n, sn, tn) \rightarrow 
(\lambda , s, t). By considering different cases, one can easily show that, possibly along a
subsequence, for some s\prime , t\prime we have \lambda nms\prime n

+ (1 - \lambda )mt\prime n
\rightarrow \lambda ms\prime + (1 - \lambda )mt\prime \in \Xi m,

and thus \Xi m is compact.
Denote \Delta Ys := Ys  - Ys - and Y D

t :=
\sum 

0<s\leq t\Delta Ys. By (3.3) it is clear that

E
\bigl[ 
| Y \ast 

T | 2 + \| Y D\| 2T
\bigr] 
<\infty , where Y \ast 

T := sup
0\leq s\leq T

| Ys| , \| Y D\| t :=
\sum 

0<s\leq t

| \Delta Ys| .(B.1)

For n\geq 1, set \Delta t := T
n , ti := i\Delta t, i= 0, . . . , n. Then, for each i,

u(ti+1,mti+1) - u(ti,mti) =

\int ti+1

ti

\partial tu(s,mti+1)ds+

\int 1

0

E[\xi \lambda ti+1
]d\lambda ,(B.2)

where \xi \lambda ti+1
:= \delta mu(ti,m

\lambda 
ti , Yti+1

) - \delta mu(ti,m
\lambda 
ti , Yti), m\lambda 

ti := \lambda mti + [1 - \lambda ]mti+1
.

By the standard It\^o's formula,

\xi \lambda ti+1
=

\int tn+1

tn

\biggl[ 
\Gamma 2,\lambda 
s \cdot dY c

s +
1

2
\Gamma 3,\lambda 
s : d\langle Y c\rangle s

\biggr] 
+

\int 
(tn,tn+1]

\Gamma 4,\lambda 
s dY D

s ,

where \Gamma 1
s := \partial tu(s,mti+1), \Gamma 2,\lambda 

s := \partial y\delta mu(ti,m
\lambda 
ti , Ys), \Gamma 3,\lambda 

s := \partial 2yy\delta mu(ti,m
\lambda 
ti , Ys),

\Gamma 4,\lambda 
s :=

\int 1

0

\partial y\delta mu
\bigl( 
ti,m

\lambda 
ti , \theta Ys + [1 - \theta ]Ys - 

\bigr) 
d\theta .
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2162 MEHDI TALBI, NIZAR TOUZI, AND JIANFENG ZHANG

Note that mti+1 ,m
\lambda 
ti \in \Xi m, and by the growth conditions in Definition 3.1 we have

| \Gamma 1
s| \leq C, | \Gamma 2,\lambda 

s | \leq C[1 + | Ys| ], | \Gamma 3,\lambda 
s | \leq C, | \Gamma 4,\lambda 

s | \leq C[1 + | Ys| + | Ys - | ].
(B.3)

Then

E
\Bigl[ \Bigl( \int tn+1

tn

\Gamma 2,\lambda 
s (\Gamma 2,\lambda 

s )\top : d\langle M c\rangle s
\Bigr) 1

2
\Bigr] 
\leq CE

\Bigl[ \Bigl( 
[1 + | Y \ast 

T | 2]\langle M c\rangle T
\Bigr) 1

2
\Bigr] 

\leq CE
\Bigl[ 
1 + | Y \ast 

T | 2 + \langle M c\rangle T
\Bigr] 
<\infty .

This implies
\int 1

0
E[
\int tn+1

tn
\Gamma 2,\lambda 
s \cdot dM c

s ]d\lambda = 0, and thus

u(T,mT ) = u(0,m0) +

\int T

0

\Gamma 1
sds

+

\int 1

0

E

\Biggl[ \int T

0

\bigl[ 
\Gamma 2,\lambda 
s \cdot dAc

s +\Gamma 3,\lambda 
s : d\langle Y c\rangle s

\bigr] 
+

\int 
(0,T ]

\Gamma 4,\lambda 
s dY D

s

\Biggr] 
d\lambda .

Fix l, s, and send n\rightarrow \infty . By the regularity of u we have, denoting m\lambda 
s := \lambda ms - +

[1 - \lambda ]ms,

\Gamma 1
s \rightarrow \partial tu(s,ms), \Gamma 2,\lambda 

s \rightarrow \partial y\delta mu(s,m
\lambda 
s , Ys), \Gamma 3,\lambda 

s \rightarrow \partial 2yy\delta mu(s,m
\lambda 
s , Ys),

\Gamma 4,\lambda 
s \rightarrow 

\int 1

0

\partial y\delta mu
\bigl( 
s,m\lambda 

s , \theta Ys + [1 - \theta ]Ys - 
\bigr) 
d\theta , a.s.

By (3.3), (B.1), and (B.3), we may apply the dominated convergence theorem to
obtain

u(T,mT ) = u(0,m0) +

\int T

0

\partial tu(s,ms)ds+

\int 1

0

E

\Biggl[ \int T

0

\bigl[ 
\partial y\delta mu(s,m

\lambda 
s , Ys) \cdot dAc

s

+\partial 2yy\delta mu(s,m
\lambda 
s , Ys) : d\langle Y c\rangle s

\bigr] 
+

\int 
(0,T ]

\int 1

0

\partial y\delta mu
\bigl( 
s,m\lambda 

s , \theta Ys + [1 - \theta ]Ys - 
\bigr) 
d\theta dY D

s

\Biggr] 
d\lambda .

Since Ac and \langle Y c\rangle are continuous, and ms has at most countably many jumps, then

u(T,mT ) = u(0,m0) +

\int T

0

\partial tu(s,ms)ds+\scrJ D

+ E

\Biggl[ \int T

0

\bigl[ 
\partial y\delta mu(s,ms, Ys) \cdot dAc

s + \partial 2yy\delta mu(s,ms, Ys) : d\langle Y c\rangle s
\bigr] \Biggr] 
,(B.4)

where \scrJ D := E

\Biggl[ \int 1

0

\int 
(0,T ]

\int 1

0

\partial y\delta mu
\bigl( 
s,m\lambda 

s , \theta Ys + [1 - \theta ]Ys - 
\bigr) 
d\theta dY D

s d\lambda 

\Biggr] 
.

It remains to compute \scrJ D. First, by Fubini's theorem,

\scrJ D = E

\left[  \sum 
s\in (0,T ]

\int 1

0

\int 1

0

\partial y\delta mu
\bigl( 
s,m\lambda 

s , \theta Ys + [1 - \theta ]Ys - 
\bigr) 
d\theta d\lambda \Delta Ys

\right]  = E

\left[  \sum 
s\in (0,T ]

\Delta \delta mus

\right]  ,
(B.5)

where \Delta \delta mus :=

\int 1

0

\bigl[ 
\delta mu(s,m

\lambda 
s , Ys) - \delta mu(s,m

\lambda 
s , Ys - )

\bigr] 
d\lambda .
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Note that (0, T ] = J(0,T ](m)\cup Jc
(0,T ](m). Since J(0,T ](m) is countable, then

E

\left[  \sum 
s\in J(0,T ](m)

\Delta \delta mus

\right]  =
\sum 

s\in J(0,T ](m)

E
\bigl[ 
\Delta \delta mus

\bigr] 
=

\sum 
s\in J(0,T ](m)

\bigl[ 
\delta mu(s,ms) - \delta mu(s,ms - )

\bigr] 
,

(B.6)

where the second equality is due to (3.2). Next, for s \in Jc
(0,T ](m), we have m\lambda 

s =ms,
0\leq \lambda \leq 1. Then

E

\left[  \sum 
s\in Jc

(0,T ]
(m)

\Delta \delta mus

\right]  = E

\left[  \sum 
s\in Jc

(0,T ]
(m)

\bigl[ 
\delta mu(s,ms, Ys) - \delta mu(s,ms, Ys - )

\bigr] \right]  .(B.7)

We emphasize that, since Jc
(0,T ](m) is uncountable, unlike in (B.6) we cannot switch

the order of E and
\sum 

s\in Jc
(0,T ]

(m) as above. Now plugging (B.6), (B.7) into (B.5), and

then plugging (B.5) into (B.4), we complete the proof.
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