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Abstract

We apply the Weil conjectures to the Hessenberg Varieties to obtain information about the

combinatorics of descents in the symmetric group. Combining this with elementary linear algebra

leads to elegant proofs of some identities from the theory of descents.
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1 Introduction

The purpose of this introduction is to give background on the following three topics: permutation

statistics, Hessenberg varieties, and the Weil conjectures. The topics will be described in this

order, and the emphasis will be on their relationship to each other as is relevant to this note.

Permutation statistics are functions from the symmetric group S

n

to the non-negative integers.

Many permutations statistics have interesting combinatorial properties (pages 17-31 of Stanley

[11]) and give rise to metrics which are important in the statistical theory of ranking (Chapter 6

of Diaconis [5]). Volume 3 of Knuth [9] connects permutation statistics with the theory of sorting.

One important statistic is the number of inversions of a permutation. This is denoted Inv(�)

and is equal to the number of pairs (i; j) such that 1 � i < j � n and �(i) > �(j). The

number of inversions of � is also equal to the length of � in terms of the generating reections

f(i; i+1) : 1 � i � n� 1g. Inversions have the following well-known generating function (e.g. page

21 of Stanley [11])

X

�2S

n

q

Inv(�)

=

n

Y

i=1

q

i

� 1

q � 1

which can be used to prove that the distribution of inversions is asymptotically normal when n goes

to in�nity (e.g. Chapter 6 of [5]). The number of complete ags (i.e. V

0

= id � V

1

� � � � � V

n

= V

with dim(V

i

) = i) in an n-dimensional vector space V over a �nite �eld of size q is

Q

n

i=1

q

i

�1

q�1

. This

suggests a connection with algebraic geometry.

A second permutation statistic of interest is the number of descents of a permutation. The

number of descents is denoted d(�) and is de�ned to be the number of pairs (i; i + 1) with 1 �

i � n � 1 and �(i) > �(i + 1). The generating function for descents gives rise to the Eulerian

polynomials

A

n

(q) =

X

�2S

n

q

d(�)+1

:

Pages 243-246 of Comtet [3] describe some properties of the Eulerian polynomials. Two of the most

explicit generating functions involving Eulerian polynomials are

A

n

(q)

(1� q)

n+1

=

X

l�0

l

n

q

l

X

n�0

A

n

(q)t

n

n!

=

1� q

1� qe

t(1�q)

:

Some recurrences for the Eulerian polynomials will be found in Section 2.

Next, we recall the Hessenberg varieties de�ned by DeMari, Procesi, and Shayman [4]. Let G

be a complex, semisimple algebraic group, B a Borel subgroup, and T a maximal torus in B. Let

g;b; t be the lie algebras of G;B; T respectively. Let h be a subspace of g which contains b and is

a b submodule. Let s 2 t be a regular, semi-simple element. De�ne the corresponding Hessenberg

variety (which turns out to depend on G and h but not on s) by

X

H

(s) = fg 2 GjAd(g

�1

)[s] 2 hg

where Ad is the Adjoint action of Lie theory (conjugation in the case of matrix groups).
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The main example to be considered in this note is the following, which we will call Hess(n; p).

Let p be an integer such that 1 � p � n� 1. Let G = SL(n;C) and h be the subspace of sl(n;C)

consisting of those matrices (h

ij

) for which h

ij

= 0 if i � j > p. Let s be any diagonalizable

element of G with distinct eigenvalues. Then the corresponding Hessenberg variety X

H

(s) can

be more simply described as all complete ags V

0

� V

1

� � � � � V

n

satisfying the condition that

s(V

i

) � V

i+p

. For example, Hess(n; n � 1) is the ag variety of SL(n;C).

DeMari, Procesi, and Shayman [4] study the varietiesX

H

(s), proving that they are smooth toric

varieties and computing their Betti numbers. We will require only the following special case. Our

interest is the fact that the Betti numbers of the varieties Hess(n; p) are permutation statistics.

For a di�erent application of the Hessenberg varieties to combinatorics, see [13].

Theorem 1 (DeMari, Shayman [6])

1. The varieties Hess(n; p) are smooth.

2. The odd Betti numbers �

2k�1

(Hess(n; p)) vanish. The even Betti numbers �

2k

(Hess(n; p))

are equal to the number of � in the symmetric groups S

n

such that jf(i; j) : 1 � i < j �

n; j � i � p; �(i) > �(j)gj = k.

3. For q su�ciently large, the equations de�ning Hess(n; p), reduced to a �eld of q elements,

de�ne a smooth variety.

The third part of Theorem 1 was not stated explicitly in DeMari and Shayman [6], but follows

by the same arguments as in the smooth case, given on pages 224-5 of their article. Note that if

q � n then there does not exist an invertible n by n diagonal matrix with distinct eigenvalues all of

which lie in a �eld of q elements. As two examples of Theorem 1, �

2k

(Hess(n; n�1)) is the number

of permutations in S

n

with k inversions and �

2k

(Hess(n; 1)) is the number of permutations in S

n

with k descents.

Next let us review the Weil conjectures. One use of them is to compute Betti numbers of

continuous varieties by counting points in varieties de�ned over �nite �elds. This will be done

in Section 2, thereby proving identities about the Eulerian polynomials. The version of the Weil

conjectures considered here can be found in Appendix C of Hartshorne [8]. These conjectures are

now, of course, theorems.

Theorem 2 (Weil Conjecture) Given a smooth variety V , its Betti numbers can be computed as

follows. Reduce the equations de�ning V to equations over a �eld of q

s

elements where q is a prime

power, and let N(q

s

) be the number of solutions to these reduced equations. If the reduced variety

is smooth for all such reductions then

exp

 

1

X

s=1

N(q

s

)x

s

s

!

=

P

1

(x)P

3

(x):::P

2��1

(x)

P

0

(x)P

2

(x):::P

2�

(x)

where � is the dimension of V and P

k

(x) =

Q

�

k

j=1

(1� �

k;l

x), with j�

k;l

j = q

k

2

.

Stanley [12] has written Theorem 2 in a form which is somewhat more useful for our purposes.

Proposition 1 (Stanley [12]) Suppose in addition to the assumptions of Theorem 2 that N(q

s

) is

a polynomial

P

k



k

q

ks

in q

s

. Then �

2k

= 

k

.
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Proof:

exp

 

1

X

s=1

N(q

s

)x

s

s

!

= exp

 

1

X

s=1

(

X

k



k

q

ks

)

x

s

s

!

= exp

 

X

k



k

1

X

s=1

(q

k

x)

s

s

!

= exp

 

X

k

�

k

ln(1� q

k

x)

!

=

Y

k

(1� q

k

x)

�

k

2

2 Descent Identities

As an example of the concepts in the introduction, let us use the Weil conjectures to �nd the

generating function for permutations in S

n

by inversions (also known as the Poincar�e series of S

n

).

Theorem 3

X

�2S

n

q

Inv(�)

=

n

Y

i=1

q

i

� 1

q � 1

Proof: Theorem 1 and Proposition 1 applied to Hess(n; n � 1) show that

X

�2S

n

q

Inv(�)

= N(q);

is the number of complete ags V

0

� V

1

� � � � � V

n

over a �eld of q elements. V

1

can be chosen in

q

n

�1

q�1

ways. Given this choice of V

1

, quotienting out the ag by V

1

shows that V

2

can be chosen in

q

n�1

�1

q�1

ways. Continuing in this way and multiplying proves that

N(q) =

n

Y

i=1

q

i

� 1

q � 1

for in�nitely many q, hence for all q since both sides are polynomials. 2

Bott [1] and Chevalley [2] used the topology of compact Lie groups to prove the factorization

of the Poincar�e series for Weyl groups. The argument in Theorem 3 extends to the other Weyl

groups, but this would be somewhat circular because one must know the size of the ag variety

G=B where G is a �nite algebraic group with Weyl group W , and historically jGj was computed

using the Bruhat decomposition and the factorization of the Poincar�e series for Weyl groups.

The linear algebra involved in using the Weil conjectures to study the Eulerian polynomials

A

n

(q) is slightly more involved. We thus establish two straightforward lemmas.

Lemma 1 Let M 2 GL(n;K) act on an n-dimensional vector space V over a �eld K such that

M has distinct eigenvalues which are all contained in K. Then there are exactly

�

n

m

�

subspaces of

dimension m which are invariant under M .
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Proof: Let W be a subspace of dimension m which is invariant under M . The characteristic

polynomial of M restricted to W divides the characteristic polynomial of M on V , since W is

invariant. Since M has distinct eigenvalues on V , its characteristic polynomial consists of distinct

linear factors, so the same is true for the characteristic polynomial ofM onW . ThusW is spanned

by some m of the n 1-dimensional eigenspaces for the action of M on V . 2

Given a linear transformation M on a n-dimensional vector space V , call a vector ~v primitive

if the set f~v;M~v;M

2

~v; : : : ;M

n�1

~vg forms a basis of V .

Lemma 2 Let M 2 GL(n;K) act on an n-dimensional vector space V over a �eld K such that

M has distinct eigenvalues which are all contained in K. Then a vector ~v is primitive if and only

if its components with respect to a basis of eigenvectors of M are all non-zero. Thus when the �eld

K is �nite of cardinality q, there are (q � 1)

n

primitive vectors.

Proof: Pick a basis of eigenvectors ~e

1

; :::; ~e

n

of M with eigenvalues �

1

; : : : ; �

n

. Let ~v have compo-

nents (v

1

; � � � ; v

n

) with respect to this basis. ThenM

i

~v has components (�

i

1

v

1

; : : : ; �

i

n

v

n

). Clearly ~v

is primitive if and only if the determinant of the matrix with rows ~v;M~v; : : : ;M

n�1

~v written with

respect to the basis of eigenvectors, is non-vanishing. The value of this determinant is

n

Y

i=1

v

i

� det

0

B

B

B

@

1 1 � � � 1

�

1

�

2

� � � �

n

� � � � � � � � � � � �

�

n�1

1

�

n�1

2

� � � �

n�1

n

1

C

C

C

A

=

n

Y

i=1

v

i

�

Y

1�i<j�n

(�

j

� �

i

);

which is non-vanishing precisely when all v

i

are non-vanishing because the eigenvalues �

i

of M are

distinct. 2

Recall that A

n

(q) denotes the nth Eulerian polynomial

P

�2S

n

q

d(�)+1

. For convenience set

A

0

(q) = q. Theorem 4 is likely known, though we have not seen it in the literature before.

Theorem 4 A

n

(q) =

P

n

i=1

�

n

i

�

(q � 1)

i�1

A

n�i

(q).

Proof: Let N(q; n) be the number of ags 0 = V

0

� V

1

� � � � � V

n

= V over the �eld of q elements

such thatMV

j

� V

j+1

for all j, whereM 2 GL(n; q) is a diagonal matrix with distinct eigenvalues.

Let i be the smallest number between 1 and n such that MV

i

= V

i

. By Lemma 1, there are

�

n

i

�

ways of choosing V

i

. The part of the ag between V

1

and V

i

is determined by V

1

, which is spanned

by a primitive vector in the i dimensional space V

i

. There are, by Lemma 2, (q � 1)

i

primitive

vectors for V

i

, and hence (q� 1)

i�1

choices for V

1

. Quotienting out the part of the ag between V

i

and V

n

= V by V

i

shows that there are N(q; n� i) possibilities for this part of the ag. We thus

have the recurrence

N(q; n) =

n

X

i=1

 

n

i

!

(q � 1)

i�1

N(q; n� i):

By Proposition 1, A

n

(q) = qN(q; n), proving the theorem. 2

The recurrence in Theorem 4 was proved by splitting the ag at the �rst subspace invariant

under M and summing over such splittings. Theorem 5 will come from splitting the ag at all the

W

i

invariant under M , and then summing over all such splittings. The identity in Theorem 5 is

known and goes back to [7], though the proof is completely di�erent. The Stirling number of the

second kind S(n; r) is de�ned to be the number of partitions of the set f1; � � � ; ng into r blocks.
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Theorem 5 (Frobenius [7]) A

n

(q) = q

P

n

r=1

r!S(n; r)(q � 1)

n�r

.

Proof: Proposition 1 shows that A

n

(q) = qN(q; n), where N(q; n) is the number of ags 0 = V

0

�

V

1

� � � � � V

n

= V such thatMV

j

� V

j+1

for 1 � j � n�1 andM 2 GL(n; q) is a diagonal matrix

with distinct eigenvalues. We count these ags by the set I of i > 0 such that V

i

is invariant under

M . For each subset I = fi

1

; i

2

; � � � ; i

r

= ng of f1; � � � ; ng, there are, by Lemma 1,

�

n

i

r�1

��

i

r�1

i

r�2

�

:::

�

i

2

i

1

�

ways of picking the invariant subspaces V

i

1

; V

i

2

; � � � ; V

i

r

=n

of dimensions fi

1

; i

2

; � � � ; i

r

= ng so as to

respect the inclusion relations. Consider the portion of the ag between two consecutive invariant

subspaces, say V

i

1

� V

i

1

+1

� ::: � V

i

2

. Quotienting out this whole sequence by V

i

1

shows that

V

i

1

+1

=V

i

1

must be spanned by a primitive vector for the action of M on V

i

2

=V

i

1

. The dimension of

the quotient is i

2

� i

1

so by Lemma 2 there are (q � 1)

i

2

�i

1

primitive vectors. Since we are only

interested in the subspace spanned by the vector, we divide out by q � 1. Multiplying out these

choices of primitive vectors, one sees that there are (q � 1)

n�r

such choices. Therefore,

A

n

(q) = qN(q; n)

= q

n

X

r=1

(q � 1)

n�r

X

I�f1;���;ng

n2I;jIj=r

 

n

i

r�1

! 

i

r�1

i

r�2

!

:::

 

i

2

i

1

!

= q

n

X

r=1

r!S(n; r)(q � 1)

n�r

:

The last equality follows because

X

I�f1;���;ng

n2I;jIj=r

 

n

n� i

r�1

! 

i

r�1

i

r�1

� i

r�2

!

:::

 

i

2

i

2

� i

1

!

is the number of ways of choosing a set partition of f1; � � � ; ng into r blocks with an ordering on

the blocks (the �rst block has size n � i

r�1

and can be chosen in

�

n

n�i

r�1

�

ways, the second block

has size i

r�1

� i

r�2

and can be chosen in

�

i

r�1

i

r�1

�i

r�2

�

ways, etc.) However by the de�nition of the

Stirling numbers of the second kind, the number of set partitions of f1; � � � ; ng into r blocks with

an ordering on the blocks is equal to r!S(n; r). 2

3 Concluding Remarks

The proofs of the descent identities given here admittedly use a lot of machinery. Nevertheless,

given this machinery, the method of counting ags employed in Theorems 3, 4, and 5 is natural

and gives one a feel for where the recurrences come from. However, suppose one wants a recurrence

for the Eulerian numbers A(n; k) which are the number of permutations on n symbols with k + 1

descents. It is easy to see combinatorially that

A(n; k) = (n� k + 1)A(n� 1; k � 1) + kA(n� 1; k):

Thus direct combinatorics seems superior for �nding recursions satis�ed by the coe�cients of the

Eulerian polynomials, but the ag counting methods seem well-adapted toward �nding recurrences

satis�ed by the polynomials themselves.

It would be interesting to use the Weil conjectures to �nd recurrences for the generating func-

tions for the permutation statistics de�ned by jf(i; j) : 1 � i < j � n; j � i � p; �(i) > �(j)gj at
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the permutation �. Descents and inversions are the limiting cases p = 1; n � 1 and are the Betti

numbers of Hess(n; 1) and Hess(n; n�1) respectively. We have not made much progress for other

values of p. Direct combinatorial arguments have not been successfully applied to this problem

either.

Finally, it is natural to extend these results to other �nite Coxeter groups W . The de�nition of

a descent of an element w 2 W is a simple positive root which w maps to a negative root. Reiner

[10] has studied the distribution of descents in other Coxeter groups.
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