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1. Introduction

Given a group G and a generating set T , one defines the distance of an
element g as the smallest number m so that g can be written as a product
t1 · · · tm of elements of T . A natural question is to fix m and study the
distribution of distance of an element g which is the product of m generators
chosen at random from T . Clearly the distance of g is at most m, and it is
of interest to know when m is a reliable approximation for the distance.

One motivation for this question comes from the study of genome re-
arrangement (see the survey [Du] for details). Here G is the group of
2nn! signed permutations on n symbols, and the generating set consists
of the reversals ρ(i, j). Here a reversal ρ(i, j) applied to a permutation
π = π1 · · ·πi−1πi · · ·πjπj+1 · · ·πn reverses the segment πi · · ·πj to obtain a
new permutation π1 · · ·πi−1 − πj − πj−1 · · · − πiπj+1 · · ·πn. For instance
the reversal ρ(2, 4) would send 4 1 − 5 − 2 3 to 4 2 5 − 1 3. Hannenhalli
and Pevzner [HaPe] found an exact combinatorial formula for the distance
of a signed permutation and Borque and Pevzner [BoPe] perform simula-
tions suggesting the hypothesis that after r random reversals, r is a good
approximation to the distance provided that r/n < .4. While this remains
unproved, the paper [BeDu] obtained definitive results for a simpler model,
where G is Sn (the symmetric group consisting of all n! unsigned permu-
tations), and the generating set consists of all

(
n
2

)
random transpositions.

Then the distance of π is simply n − number of cycles of π. Letting Dr be
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the distance after r iterations of the random transposition walk, they showed
that Dcn/2 ∼ u(c)n, where u is an explicit function satisfying u(c) = c/2
for c ≤ 1 and u(c) < c/2 for c > 1. They also described the fluctuation of
Dcn/2 about its mean in each of three regimes (subcritical where the fluc-
tuations are Poisson, critical, and supercritical where the fluctuations are
normal). They exploit a connection between the transposition walk and
random graphs (about which an enormous amount is known).

Another case considered in the literature is where G = Sn and T consists
of the set of n − 1 adjacent transpositions [EES]. Then the distance of a
permutation π is the number of pairs (i, j) such that 1 ≤ i < j ≤ n and
π(i) > π(j). They give upper and lower bounds for the expected distance
after r iterations, and show that it can be much less than r.

In this paper we study the caseG = Sn where the generating set T consists
of the identity and all permutations whose inverse has exactly one descent.
Here we use the terminology that a permutation has a descent at position
i (where 1 ≤ i ≤ n − 1) if π(i) > π(i + 1). Note that unlike the examples
of the previous paragraphs, this generating set is not symmetric (i.e. the
inverse of a generator need not be a generator). It is technically convenient to
assign probability n+1

2n to the identity and probability 1
2n to each of the other

generators, so that as described in the next paragraph, we obtain the Gilbert-
Shannon-Reeds model of riffle shuffling. Riffle shuffles are mathematically
uniquitous (see [Di] for an overview of connections to dynamical systems,
Lie theory and much else), and the gambler’s question of looking at a deck of
cards and estimating how many shuffles have occurred is in perfect analogy
to the biologist’s question of looking at a signed permutation and estimating
how many reversals have occurred.

Riffle shuffling proceeds as follows. Given a deck of n cards, one cuts it

into 2 packets with probability of respective pile sizes j, n− j given by
(nj)
2n .

Then cards are dropped from the packets with probability proportional to
the packet size at a given time; thus if the current packet sizes are A1, A2,
the next card is dropped from packet i with probability Ai/(A1+A2). Bayer
and Diaconis [BayDi] prove the fundamental result that after r riffle shuffles,

the probability of obtaining the permutation π−1 is
(n+2r−d(π)−1

n )
2rn . Here d(π)

denotes the number of descents of π, that is |{i : 1 ≤ i ≤ n − 1, π(i) >
π(i + 1)}|. For instance the permutation 3 1 4 2 5 has two descents. From
the Bayer-Diaconis formula it is clear that the distance of a permutation π−1

is simply dlog2(d(π)+1)e. Thus the study of distance for riffle shuffles is the

study of the distribution of d(π) under the measure
(n+2r−d(π)−1

n )
2rn . Since a

permutation has at most n− 1 descents, the formula for distance also shows
that the diameter of Sn with the generating set T is dlog2(n)e, much smaller
than the diameter in the biological examples which are polynomial in n.

More generally, for k and n integers, we let Rk,n denote the measure on

Sn which chooses π with probability
(n+k−d(π)−1

n )
kn and study the number of
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descents. First let us review what is known. As k → ∞, the distribution
Rk,n tends to the uniform distribution on Sn. It is well known ([CKSS]), [T])

that for n ≥ 2 the number of descents has mean n−1
2 and variance n+1

12 and

that d(π)−(n−1)/2√
(n+1)/12

is asymptotically normal. Aldous [A] proved that 3
2 log2(n)

riffle shuffles are necessary and suffice to be close to the uniform distribution
on Sn. Bayer and Diaconis [BayDi] give more refined asymptotics, proving

that for k = 2cn3/2 with c a real number,

1

2

∑
π∈Sn

∣∣∣∣Rk,n(π)−
1

n!

∣∣∣∣ = 1− 2Φ

(
−2−c

4
√
3

)
+O(n−1/4)

where

Φ(x) =
1√
2π

∫ x

−∞
e−t2/2dt.

Motivated by this result, Mann [Ma] proved that if k = an3/2, with a fixed,

then the number of descents has mean n−1
2 − n1/2

12a + ( 1
720a3

− 1
12a)n

−1/2 +

O(n−3/2) and variance n
12+O(n1/2), and is asymptotically normal as n → ∞.

He deduces this from Tanny’s local limit theorem for d(π) under the uniform
distribution [T] and from the formula for Rk,n.

We prove two new results concerning the distribution of d(π) under the
measure Rk,n. First, we complement the above results on normal approxi-
mation by using Stein’s method to upper bound the total variation distance
between the distribution of k − 1 − d(π) and a Poisson variable with mean
k

n+1 ; our bound shows the approximation to be good when k
n is small. Sec-

ond, we use generating functions to give very precise asymptotic estimates
for the mean and variance of d(π) when k

n > 1
2π . If k = αn with α > 1

2π , we
show that∣∣∣∣∣ERk,n−1

(d(π)) + 1− n

(
α− 1

e1/α − 1

)
− e1/α(−2αe1/α + 2α+ e1/α + 1)

2α2(e1/α − 1)3

∣∣∣∣∣
is at most Cα

n and that∣∣∣∣∣V arRk,n−1
(d(π))− n

(
e1/α(α2e2/α + α2 − 2α2e1/α − e1/α)

α2(e1/α − 1)4

)∣∣∣∣∣ ≤ Aα

where Cα, Aα are constants depending on α (and are universal constants for
α ≥ 1).

The regime k = αn is natural since it corresponds to having the number
of iterations of the same order as the diameter of the generating set; this
is also where the interesting phenomena of [BeDu] occurred. Mann [Ma]
had exact expressions for the mean and variance (which we derive another

way) but only obtained asymptotics described earlier when k = an3/2 with a
fixed. The main technical point and effort of the paper [SGO] on information
loss in card shuffling was to obtain asymptotics for the mean and variance of
d(π) under the measure Rk,n. They used the method of indicator variables to
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study the case k ≥ n2ω(n) with ω(n) → ∞. This yields no information about
the regime of interest to us (k = αn with α fixed). Moreover the bounds
stated in the previous paragraph are typically sharper than their bounds.
To see this note that one can assume k = O(n3/2) since as mentioned earlier
for larger k the distribution Rk,n is essentially the uniform distribution.

Assuming that k > n our error term for the mean is O( 1n) whereas theirs

is O(n
3

k2
) + O(nk ), and our error term for the variance is O(1) whereas their

formula for variance is the asymptotic expression O(n
3

k ) +O(n). Numerical
evidence (requested by the referee) also suggests that our approximation
for the mean and variance are quite good. For instance for a n=52 card
deck, one has the following table obtained by plugging in small values to the
asymptotic estimates :

k 21 22 23 24 25 26 27

Mean(true) 1.00 3.00 6.95 13.10 18.61 21.95 23.71
Mean(us) 1.00 3.00 6.95 13.10 18.60 21.95 23.71
Mean[Ma] 1180.04 126.76 16.63 13.63 18.63 21.95 23.71
Mean[SGO] −87.17 −30.83 −2.67 11.42 18.46 21.98 23.74
V ar(true) 0.00 0.00 0.05 1.17 3.12 4.04 4.32
V ar(us) 0.00 0.00 0.07 1.18 3.10 4.03 4.32
V ar[Ma] 4.33 4.33 4.33 4.33 4.33 4.33 4.33

Next let us describe the technique we use to study the distribution of d(π)
under Rk,n, as we believe this to be as interesting as the result itself. To
apply Stein’s method to study a statistic W , one often uses an exchange-
able pair (W,W ′) of random variables (this means that the distribution of
(W,W ′) is the same as that of (W ′,W )) such that the conditional expecta-
tion E(W ′|W ) is approximately (1−λ)W for some λ. Typically to construct
such a pair one would use a Markov chain on Sn which is reversible with
respect to the measure Rk,n, choose π from Rk,n, let π

′ be obtained from π
from one step in the chain, and finally set (W,W ′) = (W (π),W (π′)). For
the problem at hand this does not seem easy. Thus we modify the problem;
instead of considering the measure Rk,n, we consider a measure Ck,n which

chooses a permutation π with probability
(n+k−c(π)−1

n−1 )
nkn−1 . Here c(π) is the num-

ber of cyclic descents of π, defined as d(π) if π(n) < π(1) and as d(π) + 1 if
π(n) > π(1). This probability measure was introduced in [Fu1] and C2r,n(π)
gives the chance of obtaining π−1 after first cutting the deck at a uniformly
chosen random position and then performing r iterations of a riffle shuf-
fle. The advantage of working with Ck,n is that it has a natural symmetry
which leaves it invariant, since performing two consecutive cuts at random
positions is the same as performing a single cut. As will be explained in
Section 2, this symmetry leads to an exchangeable pair (d, d′) with the very
convenient property that EC(d

′|π) is approximately (1 − 1
n)d. We obtain

a Poisson approximation theorem for d under the measure Ck,n. Although

the measures Rk,n and Ck,n are not close when k
n is small (a main result of
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[Fu3] is that that the total variation distance between them is roughly n
4k

for k ≥ n), we show that the distribution of k− d under Ck,n is close to the
distribution of k− c under Ck,n which in turn is equal to the distribution of
k − 1− d under Rk,n−1. This implies a Poisson approximation theorem for
the original problem of interest.

Incidentally, it is proved in [Fu1] that r iterations of “cut and then riffle
shuffle” yields exactly the same distribution as performing a single cut and
then iterating r riffle shuffles. Thus the chance of π−1 after r iterations of
“cut and then riffle shuffle” is C2r,n(π), which implies that the distance of
π after the “cut and then riffle shuffle” process is dlog2(c(π))e. Thus the
study of distance for the “cut and then riffle shuffle” procedure is equivalent
to the study of c under the distribution Ck,n. But as mentioned in the last
paragraph, we will prove that this is the same as the distribution of d + 1
under Rk,n−1. Hence the theory of distance for “cut and then riffle shuffle”
is equivalent to the theory for riffle shuffles, and we shall say nothing more
about it.

The reader may wonder why we don’t apply our exchangeable pair for
normal approximation. Most theorems for Stein’s method for normal ap-
proximation assume that the pair (W,W ′) satisfies the property E(W ′|W ) =
(1 − λ)W for some λ. In our case this only approximately holds, that is
E(W ′|W ) = (1 − λ)W + G(W ) where G(W ) is small. There are normal
approximation results in the literature ([RR], [Ch]) for dealing with this sit-

uation, but they require that E|G(W )|
λ goes to 0. Using interesting properties

of Eulerian numbers, we show that even for the uniform distribution (the

k → ∞ limit of Ck,n) the quantity E|G(W )|
λ is bounded away from 0. Find-

ing a version of Stein’s method which allows normal approximation for our
exchangeable pair (even for the uniform distribution) is an important open
problem. Incidentally, for the special case of the uniform distribution, it is
possible to prove a central limit theorem for d(π) by Stein’s method [Fu2],
using a different exchangeable pair.

Having described the main motivations and ideas of the paper, we describe
its organization. Section 2 defines an exchangeable pair to be used in the
study of d(π) under the measure Ck,n, and develops a number of properties
of it. It also gives closed formulas (but not asymptotics) for the mean
and variance of d(π), by relating them to the mean and variance of c(π),
and computing the latter using generating functions. Section 3 uses the
exchangeable pair of Section 2 to prove a Poisson approximation theorem
for k − d(π) under the measure Ck,n (the bounds are valid for all integer

values of k and n but informative only when k
n is small). It then shows how

to deduce from this a Poisson approximation theorem for k−1−d(π) under
the measure Rk,n. Section 4 gives asymptotics for the mean and variance for

c(π) under Ck,n for k
n > 1

2π (and so also for d(π) under Ck,n and Rk,n). It
then explores further properties of the exchangeable pair which are related
to normal approximation. Finally, it gives a quick algorithm for sampling
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from Rk,n, which should be useful in empirically investigating the nature of
the transition from Poisson to normal behavior.

2. The Exchangeable pair, mean, and variance

This section constructs an exchangeable pair (d, d′) for the measure Ck,n

and develops some of its properties. Throughout we let EC denote expecta-
tion with respect to Ck,n. We relate EC(d) and EC(d

2) to EC(c) and EC(c
2),

and then use generating functions to find expressions (whose asymptotics
will be studied later) for EC(c) and EC(c

2).
To begin let us construct an exchangeable pair (d, d′). We represent per-

mutations π in two line form. Thus the permutation represented by

i : 1 2 3 4 5 6 7
π(i) : 6 4 1 5 3 2 7

sends 1 to 6, 2 to 4, and so on. One constructs a permutation π′ by choosing
uniformly at random one of the n cyclic shifts of the symbols in the bottow
row of the two line form of π. For instance with probability 1/7 one obtains
the permutation π′ which is represented by

i : 1 2 3 4 5 6 7
π′(i) : 5 3 2 7 6 4 1

.

An essential point is that if π is chosen from the measure Ck,n, then so is
π′; note that this would not be so for the measure Rk,n. Thus if one chooses
π from Ck,n, defines π′ as above, and sets (d, d′) = (d(π), d(π′)), it follows
that (d, d′) is exchangeable with respect to the measure Ck,n. Observe also
that d′ − d ∈ {0,±1}.

Recall that π is said to have a cyclic descent at position j if either 1 ≤
j ≤ n − 1 and π(j) > π(j + 1) or j = n and π(n) > π(1). It is helpful to
define random variables χj(π) (1 ≤ j ≤ n) where χj(π) = 1 if π has a cyclic
descent at position j and χj(π) = 0 if π does not have a cyclic descent at
position j. We let I denote the indicator function of an event. We also use
the standard notion that if Y is a random variable, E(Y |A) is the conditional
expectation of Y given A.

Lemma 2.1.

EC(d
′ − d|π) = −d

n
+

n− 1

n
Iχn(π)=1.

Proof. Note that d′ = d + 1 occurs only if π has a cyclic descent at n and
that then it occurs with probability n−1−d

n . Note also that d′ = d− 1 occurs
only if π does not have a cyclic descent at n, and that it then occurs with
probability d

n . To summarize,

EC(d
′ − d|π) = −d

n
Iχn(π)=0 +

n− 1− d

n
Iχn(π)=1

= −d

n
+

n− 1

n
Iχn(π)=1.

�
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As a corollary, we obtain EC(d) in terms of EC(c).

Corollary 2.2.

EC(d) =
n− 1

n
EC(c).

Proof. Since (d, d′) is an exchangeable pair, EC(d
′ − d) = 0. It follows that

EC(EC(d
′ − d|π)) = 0. So from Lemma 2.1

EC(d) = (n− 1)EC(Iχn(π)=1).

Since the variables χ1(π), · · · , χn(π) have the same distribution under Ck,n,
and c = χ1(π) + · · ·+ χn(π), the result follows. �

Lemma 2.3 will be helpful at several points in this paper.

Lemma 2.3.

EC(dIχn(π)=1) = EC

(
c(c− 1)

n

)
.

Proof. Observe that

EC(dIχn(π)=1) = EC

(
(c− 1)Iχn(π)=1

)
=

1

n

n∑
i=1

EC

(
(c− 1)Iχi(π)=1

)
=

1

n
EC (c(c− 1)) .

�

As a consequence, we obtain EC(d
2) in terms of EC(c) and EC(c

2).

Corollary 2.4.

EC(d
2) =

(
1− 2

n

)
EC(c

2) +
1

n
EC(c).

Proof.

EC(c
2) = EC(d+ Iχn(π)=1)

2

= EC(d
2) + 2EC(dIχn(π)=1) + EC(Iχn(π)=1)

= EC(d
2) +

2

n
EC(c

2 − c) +
1

n
EC(c),

where the final equality is Lemma 2.3. This is equivalent to the statement
of the corollary. �

Next we use generating functions to compute EC(c) and EC(c
2). For this

some lemmas are useful.

Lemma 2.5. ([Fu1]) For n > 1, the number of elements in Sn with i cyclic
descents is equal to n multiplied by the number of elements in Sn−1 with i−1
descents.
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Lemma 2.6. ∑
π∈Sn

tc(π)

(1− t)n
= n

∑
m≥0

mn−1tm.

Proof. Given Lemma 2.5, the result now follows from the well known gen-
erating function for descents (e.g. [FoS])∑

π∈Sn
td(π)+1

(1− t)n+1
=
∑
m≥0

mntm.

�

Proposition 2.7 gives a closed formula for EC(c).

Proposition 2.7. For n > 1,

EC(c) = k − n

kn−1

k−1∑
j=1

jn−1.

Proof. Multiplying the equation of Lemma 2.6 by (1 − t)n and then differ-
entiating with respect to t, one obtains the equation∑

π∈Sn

c(π)tc(π)−1 = n(1− t)n
∑
m≥0

mntm−1 − n2(1− t)n−1
∑
m≥0

mn−1tm.

Multiplying both sides by t
nkn−1(1−t)n

gives the equation

∑
π∈Sn

c(π)tc(π)

nkn−1(1− t)n
=

1

kn−1

∑
m≥0

mntm − n

kn−1(1− t)

∑
m≥0

mn−1tm+1.

The coefficient of tk on the left hand side is precisely the expected value of
c under the measure Ck,n. The proposition now follows by computing the

coefficient of tk on the right hand side. �

By a similar argument, one obtains an exact expression for EC(c
2).

Proposition 2.8. For n > 1,

EC(c
2) = k2 − n(n+ 1)

kn−1

k−1∑
j=1

jn +
n(nk − n− k)

kn−1

k−1∑
j=1

jn−1.

Proof. From the proof of Proposition 2.7, we know that∑
π∈Sn

c(π)tc(π) = n(1− t)n
∑
m≥0

mntm − n2(1− t)n−1
∑
m≥0

mn−1tm+1.

Differentiate with respect to t, multiply both sides by t
nkn−1(1−t)n

, and take

the coefficient of tk. On the left hand side one gets EC(c
2). On the right
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hand side one obtains the coefficient of tk in

1

kn−1

∑
m≥0

mn+1tm − 2n

kn−1(1− t)

∑
m≥0

mntm+1

− n

kn−1(1− t)

∑
m≥0

mn−1tm+1 +
n(n− 1)

kn−1(1− t)2

∑
m≥0

mn−1tm+2.

After elementary simplifications the result follows. �

3. Poisson regime

A main result of this section is a Stein’s method proof that for k much
smaller than n, the random variable X(π) := k − d(π) under the measure
Ck,n is approximately Poisson with mean λ := k

n . Then we show how this
can be used to deduce Poisson limits for k − c(π) under the measure Ck,n

and for k − 1− d(π) under the measure Rk,n.
To begin we recall Stein’s method for Poisson approximation. A book

length treatment of Stein’s method for Poisson approximation is [BarHJ],
but that book emphasizes the coupling approach. We prefer to work from
first principles along the lines of Stein’s original formulation as presented in
[St]. A very recent survey of this approach is the paper [ChDiMe].

Throughout we use the exchangeable pair (X,X ′), where π and π′ are as
in Section 2, X(π) = k − d(π), X ′ = X(π′), and the underlying probability
measure is Ck,n. Let Pλ denote probability under the Poisson distribution of
mean λ, and as usual let PC denote probability with respect to the measure
Ck,n. Let A be subset of Z+, the set of non-negative integers. Stein’s method
is based on the following “Stein’s equation”

PC(X ∈ A)− Pλ(A) = EC(iTλ − Tα)gλ,A.

Let us specify the terms on the right hand side of the equation, in the
special case of interest to us.

(1) The function g = gλ,A : Z+ 7→ R is constructed to solve the equation

λg(j + 1)− jg(j) = Ij∈A − Pλ{A}, j ≥ 0

where g(0) is taken to be 0. We also need the following lemma which
bounds certain quantities related to g.

Lemma 3.1. ([BarHJ], Lemma 1.1.1)
(a) Let ||g|| denote supj |gλ,A(j)|. Then ||g|| ≤ 1 for all A.
(b) Let ∆(g) denote supj |gλ,A(j+1)− gλ,A(j)|. Then ∆(g) ≤ 1 for

all A.

(2) The map Tλ sends real valued functions on Z+ to real valued func-
tions on Z+ and is defined by Tλ(f)[j] = λf(j + 1)− jf(j).

(3) The map i sends real valued functions on Z+ to real valued functions
on Sn, the symmetric group. It is defined by (if)[π] = f(X(π)).
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(4) The map T is a map from the set of real valued antisymmetric func-
tions on Sn×Sn to the set of real valued functions on Sn. It is defined
by Tf [π] = EC(f(π, π

′)|π). (Since the pair (π, π′) is exchangeable,
EC(Tf) = 0, which is crucial for the proof of the Stein equation).

(5) Finally (and this is where one has to make a careful choice), the map
α is a map from real valued functions on Z+ to antisymmetric real
valued functions on Sn × Sn. In the proof of Theorem 3.3 we will
specify which α we use.

In order to approximate X by a Poisson(λ) random variable, it will be

useful to approximate the mean of the random variable c(π)
n by λ. This is

accomplished in the next lemma, the second part of which is not needed in
the sequel.

Lemma 3.2. Let λ = k
n , where k, n are positive integers.

(1) ∣∣∣∣EC(c)

n
− λ

∣∣∣∣ ≤ k(1− 1

k
)n.

(2) ∣∣∣∣EC(c)

n
− λ

∣∣∣∣ ≤ k

n
.

Proof. For the first assertion, note that by Proposition 2.7,∣∣∣∣EC(c)

n
− λ

∣∣∣∣ = 1

kn−1

k−1∑
j=1

jn−1 ≤ (k − 1)n

kn−1
.

The second assertion follows since the formula for Ck,n forces c ≤ k with
probability 1. �

Theorem 3.3. Let λ = k
n where k, n are positive integers. Then for any

A ⊆ Z+,

|PC(k − d(π) ∈ A)− Pλ(A)| ≤
(
k

n

)2

+ k(n+ 1)

(
1− 1

k

)n

.

Proof. As above, let X(π) = k− d(π) and X ′(π) = k− d(π′). Since A, λ are
fixed, throughout the proof the function gλ,A is denoted by g. We specify
the map α to be used in the “Stein equation”

PC(X ∈ A)− Pλ(A) = EC(iTλ − Tα)g.

Given a real valued function f on Z+, we define αf by

αf [π1, π2] = f(X(π2))IX(π2)=X(π1)+1 − f(X(π1))IX(π1)=X(π2)+1.

Note that as required this is an antisymmetric function on Sn × Sn.
Then one computes that Tαg is the function on Sn defined by

Tαg(π) = EC(αg(π, π
′)|π) = EC

(
g(X ′)IX′=X+1 − g(X)IX=X′+1|π

)
.
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Thus by the reasoning of Lemma 2.1,

Tαg(π) = g(X + 1)Iχn(π)=0
c(π)

n
− g(X)Iχn(π)=1

(
1− c(π)

n

)
.

Since iTλg(π) = λg(X + 1) − Xg(X) and Iχn(π)=0 = 1 − Iχn(π)=1, one
concludes that

(iTλg − Tαg)[π]

=

[
(λ− c(π)

n
)g(X + 1)

]
+
[
(Iχn(π)=1 −X)g(X)

]
+

[
c(π)

n
Iχn(π)=1 (g(X + 1)− g(X))

]
=

[
(λ− c(π)

n
)g(X + 1)

]
+ [(c(π)− k)g(X)]

+

[
c(π)

n
Iχn(π)=1 (g(X + 1)− g(X))

]
.

Thus to complete the proof, for each of the three terms in square brackets,
we bound the expectation under the measure Ck,n. Lemma 3.1 and part 1
of Lemma 3.2 give that∣∣∣∣EC

(
g(X + 1)(λ− c(π)

n
)

)∣∣∣∣ ≤ ||g||EC

∣∣∣∣λ− c(π)

n

∣∣∣∣
≤ EC

∣∣∣∣λ− c(π)

n

∣∣∣∣
≤ k(1− 1

k
)n.

For the second term in square brackets, one argues as for the first term in
square brackets to get an upper bound of nk(1− 1

k )
n.

To bound the expectation of the third term in square brackets, note that
the nonnegativity of c(π)Iχn(π)=1 and Lemma 3.1 imply that∣∣∣∣EC

[
c(π)

n
Iχn(π)=1 (g(X + 1)− g(X))

]∣∣∣∣
≤ ∆(g)EC

(
c(π)

n
Iχn(π)=1

)
≤ EC

(
c(π)

n
Iχn(π)=1

)
= EC

(
c(π)

n2

n∑
i=1

Iχi(π)=1

)

= EC

(
c(π)2

n2

)
.
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By the explicit formula for Ck,n, it follows that c(π) ≤ k with probability 1.

Hence this is at most ( kn)
2. �

To conclude this section, we show how Theorem 3.3 can be used to deduce
Poisson approximations for the two statistics we really care about: k− c(π)
under the measure Ck,n and k − 1− d(π) under the measure Rk,n.

Proposition 3.4. For all A ⊆ Z+,

|PC(k − d(π) ∈ A)− PC(k − c(π) ∈ A)| ≤ 2k

n
.

Proof. Observe that for any l ≥ 0,

PC(d = l)

= PC(d
′ = l)

= PC(d
′ = l, c = l) + PC(d

′ = l, c = l + 1)

= PC(c = l)PC(d
′ = l|c = l) + PC(c = l + 1)PC(d

′ = l|c = l + 1)

= PC(c = l)
n− l

n
+ PC(c = l + 1)

l + 1

n
.

Thus

PC(d = l)− PC(c = l) = − l

n
PC(c = l) +

l + 1

n
PC(c = l + 1)

which implies that

|PC(d = l)− PC(c = l)| ≤ l

n
PC(c = l) +

l + 1

n
PC(c = l + 1).

Summing over l ≥ 0 gives that∑
l≥0

|PC(d = l)− PC(c = l)| ≤
∑
l≥0

(
l

n
PC(c = l) +

l + 1

n
PC(c = l + 1)

)
=

2

n

∑
l≥0

lPC(c = l)

=
2

n
EC(c)

≤ 2k

n
,

where the final inequality is Proposition 2.7 (or also since c ≤ k with prob-
ability 1). The result follows. �

Corollary 3.5. Let λ = k
n where k, n are positive integers. Then for any

A ⊆ Z+,

|PC(k − c(π) ∈ A)− Pλ(A)| ≤
(
k

n

)2

+
2k

n
+ k(n+ 1)

(
1− 1

k

)n

.

Proof. This is immediate from Theorem 3.3 and Proposition 3.4. �
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Proposition 3.6 shows that the distribution of d(π)+1 under the measure
Rk,n is exactly the same as the distribution of c(π) under the measure Ck,n+1.

Proposition 3.6. For any r ≥ 0,

PRk,n
(d(π) = r) = PCk,n+1

(c(π) = r + 1).

Proof. Note from the formula for Rk,n that for any r, the probability of r

descents under the measure Rk,n is
(n+k−r−1

n )
kn multiplied by the number of

permutations in Sn with r descents. Similarly, from the formula for Ck,n+1

one sees that for any r, the probability of r + 1 cyclic descents under the

measure Ck,n+1 is
(n+k−r−1

n )
(n+1)kn multiplied by the number of permutations in

Sn+1 with r + 1 cyclic descents. The result follows from Lemma 2.5. �
Corollary 3.7. Let λ = k

n+1 where k, n are positive integers. Then for any

A ⊆ Z+, ∣∣PRk,n
(k − 1− d(π) ∈ A)− Pλ(A)

∣∣
≤

(
k

n+ 1

)2

+
2k

n+ 1
+ k(n+ 2)

(
1− 1

k

)n+1

.

Proof. This is immediate Corollary 3.5 and Proposition 3.6. �

4. Other regimes

This section is organized into three subsections. Subsection 4.1 gives good
asymptotic results for the mean and variance of c(π) under Ck,n (and so also
for d(π) under Dk,n). Subsection 4.2 develops further properties of the ex-
changeable pair d, d′ under Ck,n which are relevant to normal approximation.
Subsection 4.3 gives a speedy algorithm for sampling from the measures Ck,n

and Rk,n.

4.1. Asymptotics of mean and variance. This subsection derives sharp
estimates for the mean and variance of c(π) under the measure Ck,n when
k
n ≥ 1

2π . Since by Proposition 3.6 the distribution of d(π) under Rk,n is the
same as the distribution of c(π)− 1 under Ck,n+1, one immediately obtains
results (which we stated in the introduction) for the mean and variance of
d(π) under Rk,n. We also remark that Corollaries 2.2 and 2.4 imply results
for d(π) under Ck,n.

Throughout we will use information about the Bernoulli numbers Bn.
They are defined by the generating function f(z) =

∑
n≥0

Bnzn

n! = z
ez−1 so

that B0 = 1, B1 = −1
2 , B2 = 1

6 , B3 = 0, B4 = − 1
30 and Bi = 0 if i ≥ 3 is

odd. The zero at 0 in the denominator of f(z) cancels with the zero of z, so
f(z) is analytic for |z| < 2π but has first order poles at z = ±2πi,±4πi, · · · .
We also use the notation that (n)t denotes n(n− 1) · · · (n− t+ 1) and that
(n)0 = 1.

To see the connection with Bernoulli numbers, Lemma 4.1 shows how to
write EC(c) in terms of them.
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Lemma 4.1.

EC(c) = −k
n−1∑
t=1

Bt(n)t
t!kt

.

Proof. This follows from Proposition 2.7 and by the expansion of partial
power sums in [GR]:

a−1∑
r=0

rn =
an

n+ 1

(
a+

n−1∑
t=0

Bt+1(n+ 1)t+1

(t+ 1)!at

)
.

�

Lemmas 4.2 and 4.3 give two elementary estimates.

Lemma 4.2. For 0 ≤ t ≤ n,∣∣∣∣∣
(
1− (n)t

nt

)
−
(
t
2

)
n

∣∣∣∣∣ ≤
(
t
2

)2
2n2

.

Proof. For t = 0, 1 the result is clear, so suppose that t ≥ 2. We show that(
t
2

)
n

−
(
t
2

)2
2n2

≤ 1− (n)t
nt

≤
(
t
2

)
n

.

To see this write 1− (n)t
nt = 1− (1− 1

n)(1−
2
n) · · · (1−

t−1
n ). One proves by

induction that if 0 < x1, · · · , xn < 1, then
∏

j(1− xj) ≥ 1−
∑

xj . Thus

(1− 1

n
) · · · (1− t− 1

n
) ≥ 1−

t−1∑
j=1

j

n
= 1−

(
t
2

)
n

which proves the upper bound. For the lower bound note that

(1− 1

n
) · · · (1− t− 1

n
) = elog((1−1/n)···(1−(t−1)/n))

≤ e−( 1
n
+···+ (t−1)

n
)

= e−
(t2)
n

≤ 1−
(
t
2

)
n

+

(
t
2

)2
2n2

.

The last inequality is on page 103 of [HLP]. �

Lemma 4.3. Suppose that α > 1
2π . Then for n ≥ 1,

∞∑
t=n

|Bt|tl

αtt!
≤

Cl,αn
l

(2πα)n

where Cl,α is a constant depending on l and α (and if α ≥ 1 the constant
depends only on l).
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Proof. Recall that Bt vanishes for t ≥ 3 odd and that there is a bound
|B2t| ≤ 8

√
πt( t

πe)
2t for t ≥ 1 [Le]. Combining this with Stirling’s bound

t! ≥
√
2πt( te)

te1/(12t+1) [Fe] one concludes that

∞∑
t=n

|Bt|tl

αtt!
≤ C

∞∑
t=n

tl(2πα)−t =
C

(2πα)n

∞∑
t=0

(t+ n)l

(2πα)t
≤ Cnl

(2πα)n

∞∑
t=0

(1 + t)l

(2πα)t

where C is a universal constant. The ratio test shows that
∑∞

t=0
(1+t)l

(2πα)t

converges for 2πα > 1 (and moreover is at most a constant depending on l
if α ≥ 1). �

We also require a result about Bernoulli numbers.

Lemma 4.4. Suppose that α > 1
2π . Then

(1)
∑∞

t=0
Bt
t!αt = 1

α(e1/α−1)
.

(2)
∑∞

t=0

Bt(t2)
t!αt = e1/α(−2αe1/α+2α+e1/α+1)

2α3(e1/α−1)3
.

(3)
∑∞

t=0
Bt+1

t!αt = αe1/α−e1/α−α
α(e1/α−1)2

.

(4)
∑∞

t=0

Bt+1(t2)
t!αt = e1/α(3αe2/α−e2/α−4e1/α−3α−1)

2α3(e1/α−1)4
.

Proof. We use the generating function f(z) =
∑

t≥0
Btzt

t! = z
ez−1 for the

Bernoulli numbers, which as mentioned earlier is analytic for |z| < 2π. For
the first assertion simply set z = 1/α. For the second assertion, one com-

putes z2

2
d
dz

d
dzf(z) and evaluates it at z = 1/α. For the third equation one

differentiates f(z) with respect to z and then sets z = 1
α . For the fourth

equation one differentiates f(z) three times with respect to z, then multiplies

by z2

2 and sets z = 1
α . �

Next we give an estimate for EC(c).

Proposition 4.5. Suppose that k = αn with α > 1
2π . Then

∣∣∣∣∣EC(c(π))− n

(
α− 1

e1/α − 1

)
− e1/α(−2αe1/α + 2α+ e1/α + 1)

2α2(e1/α − 1)3

∣∣∣∣∣ < Cα

n

where Cα is a constant depending on α (and which is independent of α for
α ≥ 1).
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Proof. By Lemma 4.1,

EC(c) = k − k
n−1∑
t=0

Bt(n)t
t!kt

= k − k
n−1∑
t=0

Btn
t

t!kt
+ k

n−1∑
t=0

Bt(n
t − (n)t)

t!kt

= αn− αn

n−1∑
t=0

Bt

t!αt
+ αn

n−1∑
t=0

Bt(1− (n)t
nt )

t!αt
.

From this and Lemma 4.2 it follows that∣∣∣∣∣EC(c)−

(
αn− αn

∞∑
t=0

Bt

t!αt
+ α

n−1∑
t=0

Bt

(
t
2

)
t!αt

)∣∣∣∣∣
≤ αn

∞∑
t=n

|Bt|
t!αt

+
α

2n

n−1∑
t=0

|Bt|
(
t
2

)2
t!αt

.

Thus ∣∣∣∣∣EC(c)−

(
αn− αn

∞∑
t=0

Bt

t!αt
+ α

∞∑
t=0

Bt

(
t
2

)
t!αt

)∣∣∣∣∣
is at most the “error term”

αn
∞∑
t=n

|Bt|
t!αt

+ α
∞∑
t=n

|Bt|
(
t
2

)
t!αt

+
α

2n

n−1∑
t=1

|Bt|
(
t
2

)2
t!αt

.

From Lemma 4.3, the error term is at most Cα
n where Cα is a constant

depending on α (and which is independent of α for α ≥ 1). The result now
follows from parts 1 and 2 of Lemma 4.4. �

Proposition 4.6 estimates the variance of c(π).

Proposition 4.6. Suppose that k = αn with α > 1
2π . Then∣∣∣∣∣V arC(c(π))− n

(
e1/α(α2e2/α + α2 − 2α2e1/α − e1/α)

α2(e1/α − 1)4

)∣∣∣∣∣ ≤ Aα

where Aα is a constant depending on α (and which is independent of α for
α ≥ 1).

Proof. From Proposition 2.8 and the expansion of partial power sums in
[GR]:

a−1∑
r=0

rn =
an

n+ 1

(
a+

n−1∑
t=0

Bt+1(n+ 1)t+1

(t+ 1)!at

)
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it follows that

EC(c
2)

= k2 − n(n+ 1)

kn−1

k−1∑
j=1

jn +
n(nk − n− k)

kn−1

k−1∑
j=1

jn−1

= k2 − nk

(
k +

n−1∑
t=0

Bt+1(n+ 1)t+1

(t+ 1)!kt

)

+(nk − n− k)

(
k +

n−2∑
t=0

Bt+1(n)t+1

(t+ 1)!kt

)

= −nk − nk
n−1∑
t=0

Bt+1(n+ 1)t+1

(t+ 1)!kt
+ (nk − n− k)

n−2∑
t=0

Bt+1(n)t+1

(t+ 1)!kt

= −nk − nk
n−1∑
t=0

Bt+1[(n+ 1)t+1 − (n)t+1]

(t+ 1)!kt
− (n+ k)

n−1∑
t=0

Bt+1(n)t+1

(t+ 1)!kt

−(nk − n− k)Bn

kn−1
.

This simplifies to

−nk − nk

n−1∑
t=0

Bt+1(n)t
t!kt

− (nk + k2)

n−1∑
t=0

Bt+1(n)t+1

(t+ 1)!kt+1

−(nk − n− k)Bn

kn−1

= k2 − nk
n−1∑
t=0

Bt+1(n)t
t!kt

− (nk + k2)
n∑

t=0

Bt(n)t
t!kt

− (nk − n− k)Bn

kn−1

= α2n2 − αn2
n−1∑
t=0

Bt+1

t!αt
− (αn2 + α2n2)

n∑
t=0

Bt

t!αt

+αn2
n−1∑
t=0

Bt+1(1− (n)t
nt )

t!αt
+ (αn2 + α2n2)

n∑
t=0

Bt(1− (n)t
nt )

t!αt

−(αn2 − n− αn)Bn

(αn)n−1
.

Lemma 4.2 implies that the absolute value of the difference between
EC(c

2) and

α2n2 − αn2
∞∑
t=0

Bt+1

t!αt
− (αn2 + α2n2)

∞∑
t=0

Bt

t!αt

+αn

n−1∑
t=0

Bt+1

(
t
2

)
t!αt

+ (αn+ α2n)

n∑
t=0

Bt

(
t
2

)
t!αt
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is at most

αn2
∞∑
t=n

|Bt+1|
t!αt

+ (αn2 + α2n2)
∞∑

t=n+1

|Bt|
t!αt

+
α

2

n−1∑
t=0

|Bt+1|
(
t
2

)2
t!αt

+
(α+ α2)

2

n∑
t=0

|Bt|
(
t
2

)2
t!αt

+
|αn2 − n− αn||Bn|

(αn)n−1
.

Thus the difference between EC(c
2) and

α2n2 − αn2
∞∑
t=0

Bt+1

t!αt
− (αn2 + α2n2)

∞∑
t=0

Bt

t!αt

+αn

∞∑
t=0

Bt+1

(
t
2

)
t!αt

+ (αn+ α2n)

∞∑
t=0

Bt

(
t
2

)
t!αt

is upper bounded by the “error term”

αn2
∞∑
t=n

|Bt+1|
(
1 +

(t2)
n

)
t!αt

+ (αn2 + α2n2)

∞∑
t=n+1

|Bt|
(
1 +

(t2)
n

)
t!αt

+
α

2

n−1∑
t=0

|Bt+1|
(
t
2

)2
t!αt

+
(α+ α2)

2

n∑
t=0

|Bt|
(
t
2

)2
t!αt

+
|αn2 − n− αn||Bn|

(αn)n−1
.

Next it is necessary to bound the five summands in the error term. Lemma
4.3 shows that the first four summands in the error term are at most a
constant depending on α (or a universal constant if α ≥ 1). Since Bt vanishes
for t ≥ 3 odd, |B2t| ≤ 8

√
πt( t

πe)
2t [Le], and 2πα > 1, the fifth summand in

the error term goes to 0 much faster than a universal constant.
The result now follows by combining the above observations with Lemma

4.4 and Proposition 4.5. �

4.2. Further properties of the exchangeable pair. This subsection
develops further properties of the exchangeable pair (d, d′) from Section
2. Since we are interested in central limit theorems, it is natural to in-

stead study (W,W ′) where W = d−EC(d)√
V arC(d)

and W ′ = d′−EC(d)√
V arC(d)

. Note

that from Lemma 2.1 one knows EC(W
′ −W |π). In what follows we study

EC(W
′−W |W ), which is typically used in normal approximation by Stein’s

method.

Proposition 4.7.

EC(W
′ −W |d = r)

= −W

n
+

1

n
√
V arC(d)

(
PC(c = r + 1)

PC(d = r)

(r + 1)(n− 1)

n
− EC(d)

)
.
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Proof. Since d is a function of π,

EC(W
′ −W |d = r) =

∑
a

aPC(W
′ −W = a, d = r)

PC(d = r)

=
∑
a

∑
π:d(π)=r

aPC(W
′ −W = a, π)

PC(d = r)

=
∑

π:d(π)=r

PC(π)

PC(d = r)

∑
a

aPC(W
′ −W = a, π)

PC(π)

=
∑

π:d(π)=r

PC(π)

PC(d = r)
EC(W

′ −W |π).

By Lemma 2.1, this is equal to

1√
V arC(d)

 ∑
π:d(π)=r

PC(π)

PC(d = r)

[
− r

n
+

n− 1

n
Iχn(π)=1

]
=

−r + EC(d)

n
√

V arC(d)
+

(∑
π:d(π)=r

PC(π)
PC(d=r)

[
(n− 1)Iχn(π)=1 − EC(d)

])
n
√
V arC(d)

= −W

n
+

1

n
√
V arC(d)

(
(n− 1)

∑
π:d(π)=r PC(π)Iχn(π)=1

PC(d = r)
− EC(d)

)

= −W

n
+

1

n
√
V arC(d)

(
PC(c = r + 1)

PC(d = r)

(r + 1)(n− 1)

n
− EC(d)

)
.

�
In most examples of Stein’s method for normal approximation of a random

variableW , there is an exchangeable pair (W,W ′) such that E(W ′|W ) = (1−
λ)W . There are two recent papers ([RR],[Ch]) in which the Stein technique
has been extended to handle the case where E(W ′|W ) = (1− λ)W +G(W )

where G(W ) is small. The bounds in these papers require that E|G(W )|
λ

goes to 0. Proposition 4.9 uses interesting properties (Lemma 4.8) and
asymptotics of Eulerian numbers to prove that for our exchangeable pair
E(|G(W )|)

λ is bounded away from 0, even for C∞,k (the uniform distribution
on the symmetric group), where we know that a central limit theorem holds.

Lemma 4.8. Let An,k denote the number of permutations on n symbols with
k − 1 descents.

(1) If n is odd and 0 ≤ r ≤ n− 1, then (r+ 1)An−1,r+1 ≥ (n− r)An−1,r

if and only if 0 ≤ r ≤ n−1
2 .

(2) If n is even and 0 ≤ r ≤ n−1, then (r+1)An−1,r+1 ≥ (n− r)An−1,r

if and only if 0 ≤ r ≤ n
2 − 1.

Proof. Suppose first that n is odd. For the if part, we proceed by reverse
induction on r; thus the base case is r = n−1

2 , and then the inequality is an
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equality since An−1,k = An−1,n−k for all k. A result of Frobenius [Fr] is that

the polynomial
∑

k≥1 z
kAn−1,k has only real roots. Thus an inequality of

Newton (page 52 of [HLP]) implies that

(r + 1)An−1,r+1

(n− r)An−1,r
≥ An−1,r+2

An−1,r+1

(r + 2)(n− r − 1)

(n− r − 2)(n− r)
.

By the induction hypothesis the right hand side is at least (n−r−1)2

(n−r−2)(n−r) > 1.

The only if part follows from the if part since An−1,k = An−1,n−k for all k.
The case of n even is similar. For the if part, we proceed by reverse

induction on r. The induction step is the same but base case r = n
2 − 1 is

not automatic. However it follows using Newton’s inequality of the previous
paragraph together with the symmetry property An−1,k = An−1,n−k:

(An−1,n
2
)2 ≥ (An−1,n

2
−1)(An−1,n

2
+1)

(n2 + 1)

(n2 − 1)

= (An−1,n
2
−1)

2 (
n
2 + 1)

(n2 − 1)

> (An−1,n
2
−1)

2(1 +
2

n
)2.

Now take square roots. The only if part follows from the if part since
An−1,k = An−1,n−k for all k. �
Proposition 4.9. Let Un denote the uniform distribution on Sn. Also let
(W,W ′) be the exchangeable pair of this subsection, so that by Proposition

4.7, E(W ′|W ) = (1− λ)W +G(W ) with λ = 1
n . Then

EUn |G(W )|
λ is bounded

away from 0 as n → ∞.

Proof. It is elementary that EUn(d) = n−1
2 . Thus Proposition 4.7 implies

that

EUn |G(W )| = (n− 1)

n2
√

V arUn(d)

n−1∑
r=0

∣∣∣(r + 1)PUn(c = r + 1)− n

2
PUn(d = r)

∣∣∣ .
Using the equality

PUn(d = r) =
(r + 1)

n
PUn(c = r + 1) +

(n− r)

n
PUn(c = r),

this simplifies to

(n− 1)

2n2
√
V arUn(d)

n−1∑
r=0

|(r + 1)PUn(c = r + 1)− (n− r)PUn(c = r)| .

By Lemma 2.5, this further simplifies to

(n− 1)

(n− 1)!2n2
√
V arUn(d)

n−1∑
r=0

|(r + 1)An−1,r+1 − (n− r)An−1,r| ,

where An,k denotes the number of permutations in Sn with k − 1 descents.
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Now suppose that n is odd. Then the previous paragraph, Lemma 4.8,
and the symmetry An−1,k = An−1,n−k imply that EUn |G(W )| is equal to

(n− 1)

(n− 1)!n2
√

V arUn(d)

n−3
2∑

r=0

((r + 1)An−1,r+1 − (n− r)An−1,r)

=
(n− 1)

(n− 1)!n2
√

V arUn(d)

n−1
2∑

r=1

rAn−1,r −

n−3
2∑

r=1

(n− r)An−1,r


=

(n− 1)

(n− 1)!n2
√

V arUn(d)

n+ 1

2
An−1,n−1

2
+

n−1
2∑

r=1

(2r − n)An−1,r


=

(n− 1)

n2
√
V arUn(d)

(
n+ 1

2

An−1,n−1
2

(n− 1)!
− EUn−1

∣∣d− EUn−1(d)
∣∣)

≥ (n− 1)

n2
√
V arUn(d)

(
n+ 1

2

An−1,n−1
2

2(n− 1)!
−
√
V arUn−1(d)

)
.

A similar argument for n even shows that

EUn |G(W )| ≥ (n− 1)

n2
√
V arUn(d)

(
nAn−1,n

2

2(n− 1)!
−
√

V arUn−1(d)

)
.

To conclude the argument, note that for n ≥ 2, V arUn(d) = n+1
12 , and

that
A

n−1,⌈n−1
2 ⌉

(n−1)! is asymptotic to
√

6
nπ [CKSS], [T]. Thus nEUn |G(W )| is

bounded away from 0, as desired. �

4.3. A Sampling Algorithm. To conclude the paper, we record a fast
algorithm for drawing samples from the measure Rk,n. Since Ck,n can be
obtained by sampling from Rk,n and then performing uniformly at random
one of the n cyclic rotations of the bottom row in the two line form of
a permutation, we only give an algorithm for sampling from Rk,n. This
algorithm should be quite useful for empirically studying the transition from
Poisson to normal behavior.

We use the terminology that if π is a permutation on n symbols, the
permutation τ on n + 1 symbols obtained by inserting n + 1 after position
j (with 0 ≤ j ≤ n) is defined by τ(i) = π(i) for 1 ≤ i ≤ j, τ(j + 1) = n+ 1,
and τ(i) = π(i − 1) for j + 2 ≤ i ≤ n + 1. For instance inserting 5 after
position 2 in the permutation 3 4 1 2 gives the permutation 3 4 5 1 2.

Proposition 4.10. Starting with the identity permutation in S1, transition
from an element π of Sn to an element τ of Sn+1 by inserting n + 1 as
described by the following 2 cases:

(1) If either j = n or π(j) > π(j + 1) and 1 ≤ j ≤ n− 1, the chance of

inserting n+ 1 after j is n+k−d(π)
k(n+1) .
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(2) If either j = 0 or π(j) < π(j + 1) and 1 ≤ j ≤ n− 1, the chance of

inserting n+ 1 after j is k−d(π)−1
k(n+1) .

Then after running the algorithm for n − 1 steps, the distribution obtained
on Sn is precisely Rk,n.

Proof. First note that the transition probabilities of the algorithm sum to
1, since

(d(π) + 1)

(
n+ k − d(π)

k(n+ 1)

)
+ (n− d(π))

(
k − d(π)− 1

k(n+ 1)

)
= 1.

Now observe that if τ is obtained from π by a Case 1 move, then d(τ) =

d(π). Thus from the formula for Rk,n,
Rk,n+1(τ)
Rk,n(π)

= n+k−d(π)
k(n+1) . Similarly

if τ is obtained from π by a Case 2 move, then d(τ) = d(π) + 1. Thus
Rk,n+1(τ)
Rk,n(π)

= k−d(π)−1
k(n+1) . �
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