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1. Introduction

Given a fixed m × m matrix, it is natural to study the distribution of
its eigenvalues, where each eigenvalue is chosen with probability 1

m . As
a motivating example, consider the n! × n! transition matrix for random
walk on the symmetric group Sn, where the generating set consists of all
i-cycles. Diaconis and Shahshahani [DSh] proved that the eigenvalues of

this matrix are the numbers
χλ

(i,1n−i)

dim(λ) occurring with multiplicity dim(λ)2.
Here λ parameterizes an irreducible representation of the symmetric group,
χλ

(i,1n−i)
is the corresponding character value on i-cycles, and dim(λ) is the

dimension of the irreducible representation. Since
∑

|λ|=n dim(λ)2 = n!, the

eigenvalue
χλ

(i,1n−i)

dim(λ) is chosen with probability dim(λ)2

n! .
The probability measure on irreducible representations of Sn which picks

the representation corresponding to λ with probability dim(λ)2

n! is known as
1
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the Plancherel measure of the symmetric group. Kerov [K1] proved that if
i ≥ 2 is fixed, and λ is random from the Plancherel measure of the sym-

metric group, then the random variable

q
(n

i)(i−1)!χλ
(i,1n−i)

dim(λ) is asymptotically
normal as n → ∞. Kerov used the method of moments and difficult com-
binatorics; a beautiful exposition of his work is the paper [IO]. Hora [Ho1]
gave another proof of Kerov’s result, also using the method of moments,
but with somewhat simpler combinatorics. In very recent work, Sniady [Sn]
uses the genus expansion of random matrix theory to give another method
of moments proof of Kerov’s result.

A more probabilistic approach to Kerov’s result for the case i = 2 was
given in [F1], where Stein’s method was used to obtain the first error term in
Kerov’s central limit theorem; an error term of O(n−1/4) was proved and an
error term of O(n−1/2) was conjectured. This error term was later improved
to O(n−s) for any s < 1/2 using martingale theory [F4]. More recently, a
proof of the O(n−1/2) conjecture appears in [ShSu], using a new refinement
of Stein’s method. See [F3] for another proof of the O(n−1/2) bound, using
Bolthausen’s variation of Stein’s method. All of these results, it should be
emphasized, were only for the case i = 2. However even in the simple setting
of i = 2, random character ratios arise in work on the moduli space of curves
[EO].

Before proceeding further, it should be mentioned that familiarity with
Stein’s method is not necessary to read this paper. Section 2 gives a brief
introduction to normal approximation by Stein’s method. It presents the
bare minimum needed to understand this paper, but gives a few pointers to
the literature for further reading.

Section 3 of this paper generalizes the set-up of Kerov’s central limit the-
orem to the case when G is a finite group and the generating set consists of a
single conjugacy class C. This elucidates our early work on this problem [F1]
which required different information than the current treatment. As a new
application, it is shown that for any fixed i ≥ 2, one obtains an error term
O(n−1/4) in Kerov’s central limit theorem. The approach presented here
uses only the most elementary ingredients, namely a well known character
formula for the irreducible representation parameterized by λ = (n − 1, 1)
on all elements of Sn, and estimates on the two step transition probabilities
of the random walk on Sn generated by C.

Section 4 uses Stein’s method to study random spherical functions of a
Gelfand pair. As an application, a new central limit theorem with error term
O(n−1/4) is obtained for the spectrum of certain random walks on the set
of perfect matchings of 2n symbols. Equivalently, a central limit theorem
is obtained for certain statistics under the Jack2 measure on partitions,
which is an interesting object [O2]. As in the group case, only the simplest
ingredients are needed in the proof.

Section 5 focuses on a specific example of a twisted Gelfand pair. An
error term is obtained for a central limit theorem of Ivanov [I] on character
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ratios of random projective representations of the symmetric group. There
is a close parallel to earlier sections, but new ideas are required since if one
tries to generalize the approach used in the treatment of Gelfand pairs, one
encounters a Markov chain which can have negative transition probabilities.
A main contribution of Section 5 is a combinatorial argument designed to
overcome this obstacle.

Section 6 develops limit theorems for the spectrum of an adjacency matrix
of an association scheme. The arguments are analogous to those in previous
sections. This is not surprising since Gelfand pairs and association schemes
are both generalizations of the finite group case. However the perspective
and examples are quite different. We treat the Hamming association scheme,
obtaining a central limit theorem for the spectrum of the Hamming graph,
or equivalently for values of q-Krawtchouk polynomials.

Having outlined the contents of this article, we mention further reasons
why the results are interesting. First, the construction of an exchangeable
pair and certain moment computations are applicable for distributional ap-
proximations other than normal approximation. The paper [CF] illustrates
this in the context of exponential approximation. Second, the spectrum of
random walks on G/K where (G,K) is a Gelfand pair, is of ongoing interest.
In particular if G,K are finite classical groups, this leads to difficult ques-
tions in number theory [Te1], [Te2] and we are optimistic that the exchange-
able pair constructed in this paper will yield useful information. Third,
Plancherel measure (which arises in the group case), Jack measure (which
arises in the Gelfand pair case), and shifted Plancherel measure (which arises
in the twisted Gelfand pair case), are all objects of interest to researchers
in random matrix theory [AlD], [BO1], [BOO], [De], [J], [Mat], [O1], [O2],
[TW]. As is evident from these papers, there are many interesting statistics
under these measures, and the method of constructing exchangeable pairs
in this paper allows one to study these statistics by Stein’s method. Fourth,
the examples in this paper will be a useful testing ground for results on
Stein’s method. For example the refinement of Stein’s method in [ShSu]
arose from trying to obtain an O(n−1/2) error term for the i = 2 case of
Kerov’s central limit theorem. In forthcoming work we obtain an O(n−1/2)
bound for Theorem 3.14, and a similar approach gives an O(n−1/2) bound
for Theorems 4.19 and 5.2.

2. Stein’s Method for Normal Approximation

In this section we briefly review Stein’s method for normal approximation,
using the method of exchangeable pairs [Stn]. One can also use couplings to
prove normal approximations by Stein’s method (see [Re] for a survey), but
the exchangeable pairs approach is effective for our purposes. For a survey
discussing both exchangeable pairs and couplings, the paper [RiRo2] can be
consulted.
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Two random variables W,W ′ on a state space X are called exchangeable
if for all w1, w2, P(W = w1,W

′ = w2) is equal to P(W = w2,W
′ = w1). As

is typical in probability theory, let E(A|B) denote the expected value of A
given B. The following result of Stein (which follows from page 35 of [Stn]
and Lemma 2.3 below) uses an exchangeable pair (W,W ′) to prove a central
limit theorem for W .

Theorem 2.1. ([Stn]) Let (W,W ′) be an exchangeable pair of real random
variables such that E(W 2) = 1 and E(W ′|W ) = (1 − a)W with 0 < a < 1.
Then for all real x0,∣∣∣∣P(W ≤ x0)−

1√
2π

∫ x0

−∞
e−

x2

2 dx

∣∣∣∣
≤

√
V ar(E[(W ′ −W )2|W ])

a
+ (2π)−

1
4

√
1
a

E|W ′ −W |3.

In order to apply Theorem 2.1 to study a statistic W , one needs an ex-
changeable pair (W,W ′). The usual way of doing this is to use Markov chain
theory. A Markov chain K (with chance of going from x to y denoted by
K(x, y)) on a finite set X is called reversible with respect to a probability
distribution π if π(x)K(x, y) = π(y)K(y, x) for all x, y. This condition im-
plies that π is a stationary distribution for K. It is straightforward to check
that if K is reversible with respect to π, then one obtains an exchangeable
pair (W,W ′) as follows: choose x ∈ X from π, then obtain x′ by taking one
step from x according to K, and set (W,W ′) = (W (x),W (x′)).

A drawback with Theorem 2.1 is that in many problems of interest, it
gives a convergence rate of O(n−1/4) rather than O(n−1/2). When |W ′−W |
is bounded, the following variation often gives the correct rate. A similar
result is in [RiRo1].

Theorem 2.2. ([ShSu]) Let (W,W ′) be an exchangeable pair of real random
variables such that E(W 2) = 1 and E(W ′|W ) = (1 − a)W with 0 < a < 1.
Suppose that |W ′ −W | ≤ A for some constant A. Then for all real x0,∣∣∣∣P(W ≤ x0)−

1√
2π

∫ x0

−∞
e−

x2

2 dx

∣∣∣∣
≤

√
V ar(E[(W ′ −W )2|W ])

2a
+ .41

A3

a
+ 1.5A.

The following general lemma will also be helpful.

Lemma 2.3. Let (W,W ′) be an exchangeable pair of random variables such
that E(W ′|W ) = (1− a)W and E(W 2) = 1. Then E(W ′ −W )2 = 2a.
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Proof. Since W and W ′ have the same distribution,

E(W ′ −W )2 = E(E(W ′ −W )2|W )
= E((W ′)2) + E(W 2)− 2E(WE(W ′|W ))
= 2E(W 2)− 2E(WE(W ′|W ))
= 2E(W 2)− 2(1− a)E(W 2)
= 2a.

�

3. Finite groups

This section uses Stein’s method to study the spectrum of random walk
on a finite group G, where the generating set is a conjugacy class C which
satisfies C = C−1. As will be explained in Subsection 3.1, by [DSh] this is
equivalent to studying the distribution of the character ratio χλ(C)

dim(λ) where
λ is chosen from the Plancherel measure of the group G.

The organization of this section is as follows. Subsection 3.1 recalls the
necessary background from representation theory. Subsection 3.2 then de-
fines a Markov chain on the set of irreducible representations of G, and uses
it to construct an exchangeable pair. This leads to a general central limit
theorem. Subsection 3.3 applies the theory to the symmetric group Sn with
C the conjugacy class of i-cycles, where i is fixed and n is large.

3.1. Background from representation theory. We recall facts from the
representation theory of finite groups, referring the reader to Chapter 1 of
[Sa] or to the first few chapters of [Se] for more details. In what follows,
χ denotes a character of the finite group G, dim(χ) is the dimension of
the corresponding representation, and Irr(G) is the set of all irreducible
characters of G. Also z denotes the complex conjugate of a number z.

Lemma 3.1. Let χ be an irreducible representation of G. Then χ(C−1) =
χ(C). Thus if C = C−1, then χ(C) is real.

Next we recall the orthogonality relations for irreducible characters of G.

Lemma 3.2. Let ν and χ be irreducible characters of a finite group G. Then

1
|G|

∑
g∈G

ν(g)χ(g) = δν,χ.

Lemma 3.3. Let C be the conjugacy class of G containing the element g.
Then for g ∈ G, ∑

χ∈Irr(G)

χ(g)χ(h)

is equal to |G|
|C| if h, g are conjugate and is 0 otherwise.
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Lemma 3.4 while known, is perhaps not well known, and since analogous
results will be needed in later sections, a proof along the lines of one in [HSS]
is included.

Lemma 3.4. Let G be a finite group with conjugacy classes C1, · · · , Ct.
Let Ck be the conjugacy class of an element w ∈ G. Then the number of
m-tuples (g1, · · · , gm) ∈ Gm such that gj ∈ Cij and g1 · · · gm = w is

m∏
j=1

|Cij |
∑

χ∈Irr(G)

dim(χ)2

|G|
χ(Ci1)
dim(χ)

· · · χ(Cim)
dim(χ)

χ(Ck)
dim(χ)

.

Proof. Identify each class Ci with its corresponding class sum in the complex
group algebra CG. If χ(1), · · · , χ(t) are the irreducible complex characters
of G, then the elements

Es =
dim(χ(s))

|G|

t∑
j=1

χ
(s)
j Cj (1 ≤ s ≤ t)

are a complete set of orthogonal idempotents for the center of CG, where
χ

(s)
j denotes the value of χ(s) at any g ∈ Cj . Lemma 3.3 implies that

Cj = |Cj |
t∑

s=1

χ
(s)
j

dim(χ(s))
Es.

Since the Ej ’s are orthogonal idempotents (i.e. ErEs = δr,sEr), it follows
that

Ci1Ci2 · · ·Cim = |Ci1 | · · · |Cim |
t∑

s=1

χ
(s)
i1
· · ·χ(s)

im

dim(χ(s))m
Es

=
|Ci1 | · · · |Cim |

|G|

t∑
k=1

Ck

t∑
s=1

χ
(s)
i1
· · ·χ(s)

im
χ

(s)
k

dim(χs)m−1
,

as desired. �

As a corollary one obtains the following result.

Corollary 3.5. ([DSh]) Suppose that C is a conjugacy class satisfying C =
C−1. Then the eigenvalues of the random walk on G with generating set
C are indexed by χ ∈ Irr(G) and are the numbers χ(C)

dim(χ) , occurring with
multiplicity dim(χ)2.

Proof. If M is the |G| × |G| transition matrix for the random walk, the
chance of being at the identity after k steps is the trace of Mk divided by
|G|. Thus Lemma 3.4 implies that for all k ≥ 0, the trace of Mk is equal to∑

χ∈Irr(G)

dim(χ)2
(

χ(C)
dim(χ)

)k

.

Since this holds for all k ≥ 0, the result follows. �
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As mentioned in the introduction, the Plancherel measure ofG is the prob-
ability measure on Irr(G) which chooses each χ with probability dim(χ)2

|G| .
So Corollary 3.5 says that the eigenvalues of the random walk on G gen-
erated by C are the “character ratios” χ(C)

dim(χ) occurring with multiplicity
proportional to the Plancherel probability of χ.

3.2. Central limit theorems for character ratios. The goal of this sub-
section is to prove a central limit theorem for the random variable W de-
fined by W (λ) = |C|1/2χλ(C)

dim(λ) , where C is a fixed conjugacy class such that
C = C−1 and λ is random from the Plancherel measure of G. From Lemmas
3.1 and 3.3 it follows that E(W ) = 0 if C is not the identity class, and that
E(W 2) = 1.

To apply Stein’s method it is useful to construct a Markov chain on the
set of irreducible representations of G as follows. First, fix an irreducible
representation τ whose character is real valued. This gives a Markov chain
Lτ by defining the probability of transitioning from λ to ρ as

Lτ (λ, ρ) :=
dim(ρ)

dim(λ)dim(τ)
1
|G|

∑
g

χλ(g)χτ (g)χρ(g).

Let us make some remarks about the chain Lτ . First, note that the
quantity 1

|G|
∑

g χ
λ(g)χτ (g)χρ(g) is the multiplicity of ρ in the tensor product

of λ and τ . (For probabilist readers who might be unfamiliar with such
algebraic facts, we refer to pages 37 and 50 of [Sa]). Hence the chance
of going from λ to ρ is determined by how the tensor product of λ and
τ decomposes into irreducibles. A closely related construction was used
for Stein’s method in the earlier work [F1]. It should also be noted that
the idea of using tensor products to define random walks on irreducible
representations had been previously used in the context of compact Lie
groups, where the state space is infinite (see for instance [ER]).

Lemma 3.6 verifies that Lτ is a Markov chain which is reversible with
respect to Plancherel measure.

Lemma 3.6. The transition probabilities of Lτ are real and non-negative
and sum to 1. Moreover the chain Lτ is reversible with respect to the
Plancherel measure of G.

Proof. The transition probabilities of Lτ are real and non-negative since as
noted above,

1
|G|

∑
g

χλ(g)χτ (g)χρ(g)

is the multiplicity of ρ in the tensor product of λ and τ . Letting id denote
the identity, it follows from Lemma 3.3 that∑

ρ

Lτ (λ, ρ) =
1

dim(λ)dim(τ)|G|
∑

g

χλ(g)χτ (g)
∑

ρ

χρ(id)χρ(g) = 1.
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For the reversibility assertion, the fact that χτ and the transition probabil-
ities of Lτ are both real valued implies that

dim(λ)2

|G|
Lτ (λ, ρ) =

dim(ρ)2

|G|
Lτ (ρ, λ).

�

An exchangeable pair (W,W ′) is now constructed from the chain Lτ in
the standard way. First choose λ from the Plancherel measure of G, then
choose ρ with probability Lτ (λ, ρ), and finally let (W,W ′) = (W (λ),W (ρ)).
Note that if τ is the trivial representation, then W ′ = W . Since Stein’s
method is in the spirit of Taylor approximation, it is good for W ′ to be close
to W , so in examples τ should typically be chosen to be as close as possible
to the trivial representation.

The remaining results in this subsection show that the exchangeable pair
(W,W ′) has desirable properties.

Lemma 3.7. E(W ′|W ) =
(

χτ (C)
dim(τ)

)
W .

Proof. From the definition of W ′,

E(W ′|λ) = |C|1/2
∑

ρ

dim(ρ)
dim(λ)dim(τ)

1
|G|

∑
g

χλ(g)χτ (g)χρ(g)
χρ(C)
dim(ρ)

=
|C|1/2

|G|
∑

g

χλ(g)
dim(λ)

χτ (g)
dim(τ)

∑
ρ

χρ(C)χρ(g)

=
(
χτ (C)
dim(τ)

)
W (λ).

The second equality switched the order of summation and the last step is
Lemma 3.3. The result follows since this depends on λ only through W . �

Corollary 3.8 is not needed in what follows, but is worth recording.

Corollary 3.8. The eigenvalues of Lτ are χτ (C)
dim(τ) as C ranges over conjugacy

classes of G. The functions ψC(λ) = |C|1/2χλ(C)
dim(λ) are a basis of eigenvectors

of Lτ , orthonormal with respect to the inner product

〈f1, f2〉 =
∑

λ

f1(λ)f2(λ)
dim(λ)2

|G|
.

Proof. The proof of Lemma 3.7 shows that ψC is an eigenvector of Lτ with
eigenvalue χτ (C)

dim(τ) . The orthonormality assertion follows from Lemma 3.3,
and the basis assertion follows since the number of conjugacy classes of G
is equal to the number of irreducible representations of G. �

Lemma 3.9. E(W ′ −W )2 = 2
(
1− χτ (C)

dim(τ)

)
.

Proof. This is immediate from Lemmas 2.3 and 3.7. �



9

For the remainder of this subsection, if K is a conjugacy class of G, pm(K)
will denote the probability that the random walk generated by C started at
the identity is in K after m steps.

We remark that part 2 of Lemma 3.10 writes V ar(E[(W ′ −W )2|λ]) as a
sum of positive quantities.

Lemma 3.10. (1)

E[(W ′ −W )2|λ] = |C|
∑
K

p2(K)
(
χτ (K)
dim(τ)

+ 1− 2χτ (C)
dim(τ)

)
χλ(K)
dim(λ)

where the sum is over all conjugacy classes K of G.
(2)

V ar(E[(W ′ −W )2|λ]) = |C|2
∑

K 6=id

p2(K)2

|K|

(
χτ (K)
dim(τ)

+ 1− 2χτ (C)
dim(τ)

)2

where K ranges over all non-identity conjugacy classes of G.

Proof. Observe that

E((W ′)2|λ) =
1
|G|

∑
ρ

dim(ρ)
∑

g

χλ(g)
dim(λ)

χτ (g)
dim(τ)

χρ(g)

(
|C|1/2χρ(C)
dim(ρ)

)2

= |C|
∑

g

χλ(g)
dim(λ)

χτ (g)
dim(τ)

· 1
|G|

∑
ρ

dim(ρ)χρ(g)
(
χρ(C)
dim(ρ)

)2

= |C|
∑
K

p2(K)
χτ (K)
dim(τ)

χλ(K)
dim(λ)

.

The second equality switched the order of summation and the final equality
was Lemma 3.4.

Next we claim that W 2 = |C|
∑

K p2(K) χλ(K)
dim(λ) . To see this note from

Lemma 3.4 that
|K|
|G|

∑
ρ

χρ(C)2χρ(K)
dim(ρ)

= p2(K).

Multiplying both sides by |C|χλ(K)
dim(λ) and summing over all K, the claimed

expression for W 2 follows from Lemma 3.2.
Now note from Lemma 3.7 that

E[(W ′ −W )2|λ] = E((W ′)2|λ)− 2WE(W ′|λ) +W 2

= E((W ′)2|λ) +
(

1− 2χτ (C)
dim(τ)

)
W 2.

The first part of the lemma follows from this equation and the first two
paragraphs.
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From the first part of the lemma and Lemma 3.3, it follows that

E
(
E[(W ′ −W )2|λ]2

)
= |C|2

∑
K

p2(K)2

|K|

(
χτ (K)
dim(τ)

+ 1− 2χτ (C)
dim(τ)

)2

.

Note that ifK is the identity class then p2(K) = 1
|C| , so that the contribution

coming from the identity class is 4
(
1− χτ (C)

dim(τ)

)2
. The second part of the

lemma follows since by Lemma 3.9,

V ar(E[(W ′ −W )2|λ]) = E
(
E[(W ′ −W )2|λ]2

)
− 4

(
1− χτ (C)

dim(τ)

)2

.

�

Lemma 3.11. Let k be a positive integer.

(1) E(W ′ −W )k = |C|k/2
∑k

m=0(−1)k−m
(

k
m

)∑
K

χτ (K)
dim(τ)

pm(K)pk−m(K)
|K| .

(2) E(W ′ −W )4 is equal to

|C|2
∑
K

[
8
(

1− χτ (C)
dim(τ)

)
− 6

(
1− χτ (K)

dim(τ)

)]
p2(K)2

|K|
.

Proof. For the first assertion, note that

E((W ′ −W )k|λ) =
|C|k/2

dim(λ)dim(τ)

∑
ρ

dim(ρ)
|G|

∑
g

χλ(g)χτ (g)χρ(g)

·
k∑

m=0

(−1)k−m

(
k

m

)(
χρ(C)
dim(ρ)

)m( χλ(C)
dim(λ)

)k−m

=
|C|k/2

dim(λ)dim(τ)

k∑
m=0

(−1)k−m

(
k

m

)(
χλ(C)
dim(λ)

)k−m

·
∑

g

χτ (g)χλ(g)
∑

ρ

dim(ρ)
|G|

(
χρ(C)
dim(ρ)

)m

χρ(g)

=
|C|k/2

dim(λ)dim(τ)

k∑
m=0

(−1)k−m

(
k

m

)(
χλ(C)
dim(λ)

)k−m

·
∑
K

χ τ (K)χλ(K)pm(K).

The second step switched the order of summation and the final equality is
by Lemma 3.4. Thus E((W ′ −W )k) is equal to

E(E((W ′ −W )k|λ)) = |C|k/2
k∑

m=0

(−1)k−m

(
k

m

)∑
K

pm(K)
χτ (K)
dim(τ)

·
∑

λ

dim(λ)2

|G|
χλ(K)
dim(λ)

(
χλ(C)
dim(λ)

)k−m

.
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The first assertion now follows from Lemma 3.4 and the fact that χλ(C) is
real for all λ.

For the second assertion, note by the first assertion that

E(W ′ −W )4 = |C|2
4∑

m=0

(−1)m

(
4
m

)∑
K

χτ (K)
dim(τ)

pm(K)p4−m(K)
|K|

.

If τ is the trivial representation, then W ′ = W , which implies that

0 = |C|2
4∑

m=0

(−1)m

(
4
m

)∑
K

pm(K)p4−m(K)
|K|

.

Thus for general τ ,

E(W ′ −W )4 = −|C|2
4∑

m=0

(−1)m

(
4
m

)∑
K

(
1− χτ (K)

dim(τ)

)
pm(K)p4−m(K)

|K|
.

Observe that the m = 0, 4 terms in this sum vanish, since the only contri-
bution could come from the identity, which contributes 0. The m = 2 term
is

−6|C|2
∑
K

(
1− χτ (K)

dim(τ)

)
p2(K)2

|K|
.

The m = 1, 3 terms are equal and together contribute

8|C|2
∑
K

(
1− χτ (K)

dim(τ)

)
p1(K)p3(K)

|K|

= 8|C|
(

1− χτ (C)
dim(τ)

)
p3(C)

= 8|C|2
(

1− χτ (C)
dim(τ)

)
p4(id)

= 8|C|2
(

1− χτ (C)
dim(τ)

)∑
K

p2(K)2

|K|
,

where id is the identity and the last two equalities can be seen either directly
or from Lemma 3.4. This completes the proof of the second assertion. �

Putting the pieces together, one obtains the following theorem.

Theorem 3.12. Let C be a conjugacy class of a finite group G such that
C = C−1 and fix an irreducible representation τ of G whose character is real
valued, and such that 0 < χτ (C)

dim(τ) < 1. Let λ be a random irreducible repre-

sentation, chosen from the Plancherel measure of G. Let W = |C|1/2χλ(C)
dim(λ) .
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Then for all real x0,∣∣∣∣P(W ≤ x0)−
1√
2π

∫ x0

−∞
e−

x2

2 dx

∣∣∣∣
≤ |C|

a

√√√√∑
K 6=id

p2(K)2

|K|

(
χτ (K)
dim(τ)

+ 2a− 1
)2

+

[
|C|2

π

∑
K

(
8− 6

a

(
1− χτ (K)

dim(τ)

))
p2(K)2

|K|

]1/4

,

where a = 1− χτ (C)
dim(τ) .

Proof. One applies Theorem 2.1 to the exchangeable pair (W,W ′) of this
subsection. To handle the first term in Theorem 2.1, note that the condi-
tional version of Jensen’s inequality (Section 4.1 of [Du]) implies that

V ar(E[(W ′ −W )2|W ]) ≤ V ar(E[(W ′ −W )2|λ]).

Part 2 of Lemma 3.10 then gives the first term in the theorem. To up-
per bound the second term in Theorem 2.1, note by the Cauchy-Schwarz
inequality that

E|W ′ −W |3 ≤
√

E(W ′ −W )2E(W ′ −W )4.

Now use Lemma 3.9 and part 2 of Lemma 3.11. �

3.3. Example: Cayley Graphs of the Symmetric Group. This sub-
section applies the theory of Subsection 3.2 to the case where the group is
Sn and C is the conjugacy class of i-cycles.

It is useful to recall some facts about the symmetric group. Since K =
K−1 for all conjugacy classes K of Sn, Lemma 3.1 implies that all irreducible
characters of Sn are real valued. Also it is elementary that |K| = n!Q

j jmj mj !
,

where mj is the number of cycles of length j of an element of K.
In order to upper bound the error terms in Theorem 3.12, the follow-

ing estimate on the two step transition probabilities of the random walk
generated by C will be useful.

Lemma 3.13. Let C be the conjugacy class of cycles of length i of the
symmetric group Sn. Then for i fixed and n ≥ 2i, p2(K)2

|K| is equal to

(1) i2n−2i +O(n−2i−1) if K is the identity conjugacy class.
(2) 2i2n−2i + O(n−2i−1) if K is the conjugacy class consisting of two

cycles of length i.
(3) O(n−2i−1) otherwise.

Proof. The first assertion is clear since ifK is the identity class, p2(K) = 1
|C| .

For the second assertion, note that p2(K) = 1 +O(n−1) since the only way
that a product of two i-cycles is not in K is if the i-cycles have a symbol in
common.
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For the third assertion, there are two cases. The first case is that K has
exactly n− 2i fixed points. Then |K| is at least cin2i where ci is a constant
depending on i. Since K is not the class consisting of exactly two i-cycles,
p2(K) = O(n−1), proving the third assertion in this case. The second case
is that K has n− 2i+ r fixed points, where 1 ≤ r < 2i. Then |K| is at least
cin

2i−r where ci is a constant depending on i. However p2(K) = O(n−r),
since in the product of the two i-cycles, there are r symbols moved by the
first i-cycle each of which is mapped back to itself by the second i-cycle.
Thus in this case also, the third assertion is proved. �

Theorem 3.14. Let C be the conjugacy class of i-cycles in Sn, with i ≥ 2.
Choosing λ from the Plancherel measure of the symmetric group, define a

random variable W =

q
(n

i)(i−1)!χλ(C)

dim(λ) . Then there is a constant Ai such that
for all real x0, ∣∣∣∣P(W ≤ x0)−

1√
2π

∫ x0

−∞
e−

x2

2 dx

∣∣∣∣ ≤ Ain
−1/4.

Proof. One applies Theorem 3.12, choosing τ to be the irreducible represen-
tation corresponding to τ = (n − 1, 1). Then χτ (K) is the number of fixed
points of K −1, dim(τ) = n − 1, and a = 1 − χτ (C)

dim(τ) = i
n−1 . Note that for

any non-identity conjugacy class K,

p2(K)2

|K|

(
χτ (K)
dim(τ)

+ 2a− 1
)2

= O(n−2i−3).

This follows from Lemma 3.13 and the fact that χτ (K)
dim(τ) +2a−1 vanishes if K

has n− 2i fixed points and is O(n−1) for any other class K with p2(K) 6= 0,
since such a class has at least n − 2i fixed points. Since |C| = n!

(n−i)!i and
a = i

n−1 , it follows that the first error term in Theorem 3.12 is at most
A′in

−1/2, where A′i is a constant depending on i.
To bound the second error term in Theorem 3.12, observe that Lemma

3.13 implies that ∑
K

(
8− 6

a

(
1− χτ (K)

dim(τ)

))
p2(K)2

|K|

is O(n−2i−1). Indeed, the identity class contributes 8i2n−2i +O(n−2i−1) and
the class of two i-cycles contributes −8i2n−2i +O(n−2i−1). All other K for
which p2(K) 6= 0 have at least n− 2i fixed points, so

(
8− 6

a

(
1− χτ (K)

dim(τ)

))
is O(1) and it follows from Lemma 3.13 that the contribution of any such
K is O(n−2i−1). The same is true for the combined contribution of all such
K since the number of K with at least n− 2i fixed points is bounded by a
constant depending on i. Hence the second error term in Theorem 3.12 is
at most A′′i n

−1/4 where A′′i is a constant depending only on i. �
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To conclude this example, we note that there are many conjugacy classes
C of the symmetric group for which W does not have a normal limit (see
[Ho1] for a detailed discussion of the limit laws). In fact even if C has n− i
fixed points (like the class of i-cycles), it need not be the case that the
distribution of W is approximately normal.

4. Gelfand pairs

If G is a finite group and K is a subgroup of G such that the induced rep-
resentation 1G

K is multiplicity free, then the pair (G,K) is called a Gelfand
pair. Gelfand pairs have applications in number theory (see [G] for a sur-
vey). Chapter 3 of [Di] shows that Gelfand pairs are useful for studying the
convergence rate of random walks on G/K. The purpose of this section is
to show that the results of Section 3 extend to the setting of Gelfand pairs,
and can be used to study the spectrum of random walks on G/K.

Subsection 4.1 discusses the representation theory of Gelfand pairs. Sub-
section 4.2 derives a general central limit theorem for random spherical func-
tions of a Gelfand pair. Subsection 4.3 illustrates the theory on a toy exam-
ple, proving a central limit theorem for the spectrum of the hypercube. A
more serious example is considered in Subsection 4.4, which obtains a new
central limit theorem for the spectrum of certain random walks on the per-
fect matchings of 2n symbols. As indicated there, this result can be stated
in terms of Jack2 measure, which is of interest to workers in random matrix
theory.

4.1. Background from representation theory. We discuss some facts
about the representation theory of Gelfand pairs. A useful reference is Chap-
ter 7 of [Mac].

The induced representation 1G
K decomposes in a multiplicity free way as

⊕s
r=0Vr, where V0 denotes the trivial representation of G. Let dr denote the

dimension of Vr. For 0 ≤ r ≤ s, let ωr denote the corresponding spherical
function on G, defined by

ωr(x) =
1
|K|

∑
k∈K

χ(r)(x−1k)

where χ(r) is the character of Vr. The functions ωr are a basis of the space
of functions on G which are constant on the double cosets of K in G. Let
K0, · · · ,Ks denote the double cosets of K in G and let g0, · · · , gs be corre-
sponding double coset representatives, so that Ki = KgiK. It is convenient
to take g0 to be the identity element of G. From page 389 of [Mac], one has
that ωi(g0) = 1 for all i.

Lemma 4.1. ([Mac], page 389) Let ω be a spherical function of the Gelfand
pair (G,K). Then ω(x−1) = ω(x).

The following two orthogonality relations are also useful.
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Lemma 4.2. ([Mac], page 389) For 0 ≤ i, j ≤ s,

di

|G|

s∑
r=0

|Kr|ωi(gr)ωj(gr) = δi,j .

Lemma 4.3. For 0 ≤ r, t ≤ s,
s∑

i=0

diωi(gr)ωi(gt) = δr,t
|G|
|Kr|

.

Proof. Consider the s×smatrix whose entry in the ith column and rth row is√
di|Kr|
|G| ωi(gr). By Lemma 4.2, the columns of this matrix are orthonormal.

Hence so are its rows, proving the lemma. �

If P is a K biinvariant probability on G (i.e. constant on double cosets
of K in G), let pm(Kr) denote the probability that the m-fold convolution
of P assigns to the double coset KgrK. Lemma 4.4 is an analog of Lemma
3.4 and could be proved along similar lines, as in [HSS]. Instead, we use the
language of Fourier analysis, as developed on page 395 of [Mac].

Lemma 4.4. Let P be the K biinvariant probability on G which associates
mass 1 to the double coset Ku and mass 0 to all other K double cosets of
G. Then for 0 ≤ r ≤ s,

pm(Kr) = |Kr|
s∑

i=0

di

|G|
ωi(gu)mωi(gr).

Proof. If f is a complex valued K biinvariant function on G, define f̂(ωi)
(the Fourier transform of f at the spherical function ωi) by

f̂(ωi) =
∑
g∈G

f(g)ωi(g).

Then the Fourier inversion theorem gives that

f =
1
|G|

s∑
i=0

f̂(ωi)diωi.

It is also true that the Fourier transform of the convolution of two K biin-
variant functions is the product of their Fourier transforms. Thus the m-fold
convolution of f is equal to

1
|G|

s∑
i=0

(
f̂(ωi)

)m
diωi.

The lemma now follows by taking f = P . �

To connect the study of random spherical functions with spectral graph
theory, suppose for convenience that (G,K) is a symmetric Gelfand pair,
which means that KgK = Kg−1K for all g. This condition holds for the
examples in Subsections 4.3 and 4.4. Then fixing a double coset Ku, one can
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define a graph Hu whose vertices are the right cosets of K by connecting
Kh1 to Kh2 if and only if Kh1h

−1
2 K = Ku. A more general construction

appears in [Le]. The graph Hu is vertex transitive, since G acts transitively
on the right cosets of K by sending Kh to Khg−1, and Kh1 is connected to
Kh2 if and only if Kh1g

−1 is connected to Kh2g
−1. Lemma 4.5 determines

the spectrum of random walk on Hu.

Lemma 4.5. Let (G,K) be a symmetric Gelfand pair. Then for any double
coset Ku, random walk on the graph Hu has eigenvalues ωi(gu) occurring
with multiplicity di for 0 ≤ i ≤ s.

Proof. Let M be the transition matrix for random walk on Hu. Since Hu is
vertex transitive, the trace of Mk is |G|/|K| multiplied by the probability
that the random walk on Hu started at the right coset K is at K after k
steps. By Theorem 7.5 of [Le], this return probability is

|K|
|G|

s∑
i=0

diωi(gu)k,

so that the trace of Mk is
∑s

i=0 diωi(gu)k. Since this is true for all k ≥ 0,
the result follows. �

Note that since d0+· · ·+ds = |G/K|, one can define a probability measure
on {0, · · · , s} (or equivalently on the set {ω0, · · · , ωs}) by choosing i with
probability di|K|

|G| . This is the Gelfand pair analog of the Plancherel measure
of a finite group, and in this paper it will be referred to as Plancherel mea-
sure. Lemma 4.5 showed that if (G,K) is a symmetric Gelfand pair, then the
eigenvalues of certain graphs on G/K occur with multiplicity proportional
to Plancherel measure.

4.2. Central limit theorem for spherical functions. The aim of this
subsection is to prove a central limit theorem for the random variable W
defined byW (i) = |Ku|1/2

|K|1/2 ωi(gu). Here gu is fixed satisfyingKguK = Kg−1
u K

and i is random from the Plancherel measure of the Gelfand pair (G,K).
Lemma 4.1 implies that W is real valued. It is not assumed that the Gelfand
pair (G,K) is symmetric. Note that by Lemma 4.3, E(W ) = 0 ifKguK 6= K,
and E(W 2) = 1.

To construct an exchangeable pair to be used for Stein’s method, it is
helpful to define a Markov chain on the set of spherical functions of (G,K).
Motivated by the construction in Subsection 3.2, we proceed as follows. Fix
t with 0 ≤ t ≤ s such that the spherical function ωt is real-valued. Let Lt

be the Markov chain on the set {ω0, · · · , ωs} which transitions from ωi to
ωj with probability

Lt(ωi, ωj) :=
dj

|G|

s∑
r=0

|Kr|ωi(gr)ωt(gr)ωj(gr).
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Lemma 4.6 verifies that Lt is a Markov chain which is reversible with
respect to Plancherel measure.

Lemma 4.6. Let t be such that the spherical function ωt is real-valued.
Then the transition probabilities of Lt are real and non-negative and sum to
1. Moreover the chain Lt is reversible with respect to the Plancherel measure
of the pair (G,K).

Proof. From page 396 of [Mac], if ak
it are defined by

ωiωt =
s∑

k=0

ak
itωk

(where the notation ωiωt denotes the pointwise product), then ak
it are real

and non-negative. Hence Lemma 4.2 implies that Lt(ωi, ωj) is real and non-
negative. Since ωj(g0) = 1 for all j, Lemma 4.3 gives that

s∑
j=0

Lt(ωi, ωj) =
s∑

r=0

|Kr|ωi(gr)ωt(gr)
1
|G|

s∑
j=0

djωj(g0)ωj(gr) = 1.

Reversibility of Lt with respect to Plancherel measure is equivalent to
showing that

didj |K|
|G|

s∑
r=0

|Kr|ωi(gr)ωt(gr)ωj(gr) =
didj |K|
|G|

s∑
r=0

|Kr|ωj(gr)ωt(gr)ωi(gr).

Both sides are real by the previous paragraph, so the result follows by the
assumption that ωt is real valued. �

An exchangeable pair (W,W ′) to be used in a Stein’s method approach
to studying W can be constructed from the chain Lt in the usual way. First
choose i from Plancherel measure, then choose j with probability Lt(ωi, ωj),
and finally let (W,W ′) = (W (ωi),W (ωj)). As in the group case, it is useful
to have W ′ close to W , and thus one typically wants to choose ωt as close
as possible to the trivial spherical function.

Lemma 4.7. E(W ′|W ) = ωt(gu)W .

Proof. From the definitions and Lemma 4.3,

E(W ′|ωi) =
|Ku|1/2

|K|1/2

s∑
j=0

dj

|G|

s∑
r=0

|Kr|ωi(gr)ωt(gr)ωj(gr)ωj(gu)

=
|Ku|1/2

|K|1/2

s∑
r=0

|Kr|ωi(gr)ωt(gr)
s∑

j=0

dj

|G|
ωj(gu)ωj(gr)

= ωt(gu)W (ωi).

The result follows since this depends on ωi only through W . �

Corollary 4.8 is not needed in the sequel but is interesting.
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Corollary 4.8. The eigenvalues of Lt are ωt(gr) for 0 ≤ r ≤ s. The func-
tions ψr(ωi) = |Kgr |1/2

|K|1/2 ωi(gr) are a basis of eigenvectors of Lτ , orthonormal
with respect to the inner product

〈f1, f2〉 =
s∑

i=0

f1(ωi)f2(ωi)
di|K|
|G|

.

Proof. By the proof of Lemma 4.7, ψr is an eigenvector of Lt with eigenvalue
ωt(gr). The orthonormality assertion follows from Lemma 4.3, and the basis
assertion follows since the number of spherical functions is equal to the
number of K double cosets of G. �

Lemma 4.9. E(W ′ −W )2 = 2(1− ωt(gu)).

Proof. This is immediate from Lemmas 2.3 and 4.7. �

Lemma 4.10. (1)

E[(W ′ −W )2|ωi] =
|Ku|
|K|

s∑
r=0

p2(Kr) (ωt(gr) + 1− 2ωt(gu))ωi(gr).

(2)

V ar(E[(W ′ −W )2|ωi]) =
|Ku|2

|K|

s∑
r=1

p2(Kr)2

|Kr|
(ωt(gr) + 1− 2ωt(gu))2 .

Note that the sum in the second part of the lemma begins at r = 1 and so
excludes the r = 0 term which corresponds to the trivial spherical function.

Proof. Observe that

E((W ′)2|ωi) =
|Ku|
|K|

s∑
j=0

dj

|G|

s∑
r=0

|Kr|ωi(gr)ωt(gr)ωj(gr)ωj(gu)2

=
|Ku|
|K|

s∑
r=0

|Kr|ωi(gr)ωt(gr)
1
|G|

s∑
j=0

djωj(gu)2ωj(gr)

=
|Ku|
|K|

s∑
r=0

ωi(gr)ωt(gr)p2(Kr).

The second equality switched the order of summation and the final equality
was Lemma 4.4.

Next we claim that W 2 = |Ku|
|K|

∑s
r=0 p2(Kr)ωi(gr). To see this note by

Lemma 4.4 that

|Kr|
s∑

j=0

dj

|G|
ωj(gu)2ωj(gr) = p2(Kr).

Multiplying both sides by |Ku|
|K| ωi(gr) and summing over r, the claimed ex-

pression for W 2 follows from Lemma 4.2.
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To prove the first part of the lemma, note that Lemma 4.7 gives that

E[(W ′ −W )2|ωi] = E((W ′)2|ωi)− 2WE(W ′|ωi) +W 2

= E((W ′)2|ωi) + (1− 2ωt(gu))W 2.

Now use the previous two paragraphs.
The first part of the lemma and Lemma 4.3 imply that

E
(
E[(W ′ −W )2|ωi]2

)
=
|Ku|2

|K|

s∑
r=0

p2(Kr)2

|Kr|
(ωt(gr) + 1− 2ωt(gu))2 .

From Lemmas 4.4 and 4.3, p2(K) = |K|
|Kµ| , so the r = 0 term contributes

4(1− ωt(gu))2. The second part of the lemma follows since by Lemma 4.9,

V ar(E[(W ′ −W )2|ωi]) = E(E[(W ′ −W )2|ωi]2)− 4(1− ωt(gu))2.

�

Lemma 4.11. Let k be a positive integer.

(1) E(W ′ −W )k is equal to

(
|Ku|
|K|

)k/2 k∑
m=0

(−1)k−m

(
k

m

) s∑
r=0

|K|
|Kr|

ωt(gr)pm(Kr)pk−m(Kr).

(2) E(W ′ −W )4 = |Ku|2
|K|

∑s
r=0 [8 (1− ωt(gu))− 6 (1− ωt(gr))]

p2(Kr)2

|Kr| .

Proof. For the first assertion, note that E((W ′ −W )k|ωi) is equal to(
|Ku|
|K|

)k/2 s∑
j=0

dj

|G|

s∑
r=0

|Kr|ωi(gr)ωt(gr)ωj(gr)

·
k∑

m=0

(−1)k−m

(
k

m

)
ωj(gu)mωi(gu)k−m

=
(
|Ku|
|K|

)k/2 k∑
m=0

(−1)k−m

(
k

m

)
ωi(gu)k−m

·
s∑

r=0

|Kr|ωi(gr)ωt(gr)
s∑

j=0

dj

|G|
ωj(gu)mωj(gr)

=
(
|Ku|
|K|

)k/2 k∑
m=0

(−1)k−m

(
k

m

)
ωi(gu)k−m

s∑
r=0

ωi(gr)ωt(gr)pm(Kr).
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The first equality switched the order of summation and the last equality is
Lemma 4.4. Hence

E(W ′ −W )k = E(E((W ′ −W )k|ωi))

=
(
|Ku|
|K|

)k/2 k∑
m=0

(−1)k−m

(
k

m

)

·
s∑

r=0

ωt(gr)pm(Kr)
s∑

i=0

di|K|
|G|

ωi(gr)ωi(gu)k−m.

The first assertion follows from Lemma 4.4 and the fact that ωi(gu) is real.
For the second assertion, one knows from the first assertion that

E(W ′ −W )4 =
(
|Ku|
|K|

)2 4∑
m=0

(−1)m

(
4
m

) s∑
r=0

|K|
|Kr|

ωt(gr)pm(Kr)p4−m(Kr).

The special case t = 0 gives the equation

0 =
(
|Ku|
|K|

)2 4∑
m=0

(−1)m

(
4
m

) s∑
r=0

|K|
|Kr|

pm(Kr)p4−m(Kr).

Hence in general, E(W ′ −W )4 is equal to

−|Ku|2

|K|2
4∑

m=0

(−1)m

(
4
m

) s∑
r=0

|K|
|Kr|

(1− ωt(gr))pm(Kr)p4−m(Kr).

The m = 0, 4 terms both vanish since p0(Kr) = 0 if r 6= 0. The m = 2 term
is equal to

−6|Ku|2

|K|

s∑
r=0

(1− ωt(gr))p2(Kr)2

|Kr|
.

The m = 1, 3 terms are equal and together contribute

8|Ku|2

|K|

s∑
r=0

(1− ωt(gr))p1(Kr)p3(Kr)
|Kr|

=
8|Ku|
|K|

(1− ωt(gu))p3(Ku)

=
8|Ku|2

|K|2
(1− ωt(gu))p4(K0)

=
8|Ku|2

|K|
(1− ωt(gu))

s∑
r=0

p2(Kr)2

|Kr|
.

The last two equations can be seen directly or from Lemma 4.4. This com-
pletes the proof of the second assertion. �

Arguing as in the proof of Theorem 3.12, and using the above lemmas,
one obtains the following result.
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Theorem 4.12. Let (G,K) be a Gelfand pair, and fix a double coset Ku =
KguK of G satisfying KguK = Kg−1

u K. Let ωt be a real valued spherical
function such that 0 < ωt(gu) < 1. Choosing ωi from the Plancherel measure
of the pair (G,K), let W = |Ku|1/2

|K|1/2 ωi(gu). Then for all real x0,∣∣∣∣P(W ≤ x0)−
1√
2π

∫ x0

−∞
e−

x2

2 dx

∣∣∣∣
≤ |Ku|

a|K|

√√√√ s∑
r=1

|K|p2(Kr)2

|Kr|
(ωt(gr) + 2a− 1)2

+
1

(π)1/4

|Ku|1/2

|K|1/2

[
s∑

r=0

(
8− 6(1− ωt(gr))

a

)
|K|p2(Kr)2

|Kr|

]1/4

,

where a = 1− ωt(gu).

4.3. Example: The Hypercube. The n dimensional hypercube Zn
2 con-

sists of n-tuples of 0’s and 1’s. Random walk on it proceeds by picking a
random coordinate and changing it. The spectrum of this random walk is
well known; for each 0 ≤ i ≤ n there is an eigenvalue 1− 2i

n occurring with
multiplicity

(
n
i

)
(see for instance page 28 of [Di]). Thus by the usual central

limit theorem for the binomial distribution, the spectrum of the hypercube
is asymptotically normal with an error term O(n−1/2). The purpose of this
subsection is to revisit this classical result from the viewpoint of Gelfand
pairs, illustrating the construction of Subsection 4.2.

To begin, note from the remarks on page 58 of [Di], that the hypercube
can be viewed as G/K for a certain Gelfand pair (G,K). Namely G is
the semidirect product of Zn

2 with Sn, where the group multiplication is
(x, π)(y, τ) = (x + π(y), πτ), where π(y) permutes the coordinates of y. K
is the subgroup {(0, π) : π ∈ Sn}. The induced module 1G

K decomposes as
⊕n

r=0Vr where dr =
(
n
r

)
. Thus the Plancherel measure chooses i ∈ {0, · · · , n}

with probability (n
i)

2n . For 0 ≤ r ≤ n, the double coset Kr in G consists of
elements (x, π) where x has r coordinates equal to 1. Thus |Kr| =

(
n
r

)
n!,

and as usual let gr denote some element of Kr. The spherical function ωi

(0 ≤ i ≤ n) is given by

ωi(gr) =
1(
n
i

) i∑
m=0

(−1)m

(
r

m

)(
n− r

i−m

)
,

which is a Krawtchouk polynomial if one overlooks the
(
n
i

)
in the denomi-

nator.
The following result emerges from Theorem 4.12. Since ωi(g1) = 1− 2i

n (or
by Lemma 4.5), it can be seen as a central limit theorem for the spectrum
of random walk on the hypercube.
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Theorem 4.13. Let W =
√
nωi(g1) where i is chosen from Plancherel

measure. Then for all real x0,∣∣∣∣P(W ≤ x0)−
1√
2π

∫ x0

−∞
e−

x2

2 dx

∣∣∣∣ ≤ ( 8
πn

)1/4

.

Proof. Apply Theorem 4.12 with u = 1 and t = 1. Then a = 2
n . Note

that p2(Kr) is the chance that random walk on the hypercube started at the
vertex with all coordinates 0 will have r coordinates equal to 1 after 2 steps.
Thus p2(K0) = 1

n , p2(K2) = 1 − 1
n , and p2(Kr) = 0 for all r 6= 0, 2. Since

ω1(g2) = 1− 4
n , one has that ω1(g2) + 2a− 1 = 0. Thus the first error term

in Theorem 4.12 is 0. The second error term in Theorem 4.12 is computed
to be

(
8

πn

)1/4, implying the result. �

To get O(n−1/2) bounds by Stein’s method, it will be shown that |W ′−W |
is bounded, so that one can use the version of Stein’s method in Theorem
2.2 instead of that in Theorem 2.1. The boundedness of |W ′−W | will follow
from Lemma 4.14, which proves that L1 is in fact a birth-death chain.

Lemma 4.14. The chain L1 on the set {0, · · · , n} is a birth-death chain
with transition probabilities

L1(i, j) =
{

i
n if j = i− 1
1− i

n if j = i+ 1

Proof. From the three term recurrence for Krawtchouk polynomials on page
152 of [MaSl], it follows that

(i+ 1)
(

n

i+ 1

)
ωi+1(gr) = (n− 2r)

(
n

i

)
ωi(gr)− (n− i+ 1)

(
n

i− 1

)
ωi−1(gr).

Since n− 2r = nω1(gr), one obtains that

n

(
n

i

)
ω1(gr)ωi(gr) = (i+ 1)

(
n

i+ 1

)
ωi+1(gr) + (n− i+ 1)

(
n

i− 1

)
ωi−1(gr).

Simplifying one obtains the relation

ω1(gr)ωi(gr) =
(

1− i

n

)
ωi+1(gr) +

(
i

n

)
ωi−1(gr).

The result now follows from Lemma 4.2 and the definition of L1. �

Now an O(n−1/2) error term is established.

Theorem 4.15. Let W =
√
nωi(g1) where i is chosen from Plancherel

measure. Then for all real x0,∣∣∣∣P(W ≤ x0)−
1√
2π

∫ x0

−∞
e−

x2

2 dx

∣∣∣∣ ≤ 5n−1/2.
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Proof. Apply the variation of Theorem 4.12 which would arise from using
Theorem 2.2 instead of Theorem 2.1. Recall that a = 2

n . Also |W ′−W | ≤ A

with A = 2√
n

since L1 is a birth-death chain. As explained in the proof of
Theorem 4.13, V ar(E[(W ′ −W )2|W ]) = 0. The result follows. �

As a final remark, Lemma 4.14 shows that L1 is closely related to the
birth-death chain used by Stein [Stn] in proving a central limit theorem for
X1 + ... + Xn, where the X ′s are independent and each equal to 0 or 1
with probability 1/2. To form an exchangeable pair Stein chose a random
l ∈ {1, · · · , n} and then replaced Xl by a new random variable which is also
0 or 1 with probability 1/2 and independent of all of the X ′s. The chain L1

would arise by picking a random index l and switching the value of Xl.

4.4. Example: Random Walk on Perfect Matchings. In this example
G = S2n and K is the hyperoctahedral group of signed permutations on n
symbols, of size 2nn!. This Gelfand pair is discussed at length in Chapter 7
of [Mac] and in Section 3 of [HSS], to which we refer the reader for proofs
of facts in the next two paragraphs. Another useful reference is [DHol].

The induced representation 1G
K decomposes as ⊕|λ|=nVλ, where λ ranges

over all partitions of size n. An explicit formula for the numbers dλ appears
in [Mac] and is not needed in what follows. However it is worth remarking
that the Plancherel measure of (G,K), which chooses λ with probability
2nn!dλ
(2n)! , is the α = 2 case of the so called Jackα measure on partitions, which

chooses λ with probability
αnn!∏

s∈λ(αa(s) + l(s) + 1)(αa(s) + l(s) + α)

where the product is over all boxes of the partition. Here a(s) is the number
of boxes in the same row of s and to the right of s (the “arm” of s), and
l(s) is the number of boxes in the same column of s and below s (the “leg”
of s). For example the partition of 5 below

would have Jackα measure

60α2

(2α+ 2)(3α+ 1)(α+ 2)(2α+ 1)(α+ 1)
.

The Jack measure on partitions is of interest to researchers in random matrix
theory [BO1],[O2], [K2].

The double cosets Kµ of K in G are parameterized by partitions µ of
size n and have the following concrete description. A perfect matching of
{1, · · · , 2n} can be regarded as a 1-regular graph with vertex set {1, · · · , 2n}.
Let ε be the “identity matching” in which i is adjacent to n+ i for 1 ≤ i ≤
n. Given a permutation w in S2n, let δ(w) be the perfect matching of
{1, · · · , 2n} in which i is adjacent to j if and only |w(i) − w(j)| = n. For
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example, δ(id) = ε. Note that the union δ1 ∪ δ2 of two 1-regular graphs
is a 2-regular graph, and thus a disjoint union of even length cycles. Let
Λ(δ1, δ2) be the partition of n whose parts are half the cycle lengths of
δ1 ∪ δ2. Then Kw1K = Kw2K if and only if Λ(ε, δ(w1)) = Λ(ε, δ(w2)).
Thus Kw−1K = KwK for all w, so that the machinery of Subsection 4.2 is
applicable. One also has that Kw1 = Kw2 if and only if δ(w1) = δ(w2). It
follows that G/K is in bijection with the perfect matchings of {1, · · · , 2n}
and that |Kµ|

|K| is equal to the number of perfect matchings δ with Λ(ε, δ) = µ,

which by elementary counting is 2nn!

2l(µ)
Q

j mj(µ)!jmj(µ) where l(µ) is the number

of parts of µ and mj(µ) is the number of parts of µ of size j.
The main purpose of this subsection is to prove a central limit theorem

for the random variable W =
√

2i−1
(
n
i

)
(i− 1)!ωλ(g(i,1n−i)), where i is fixed

and λ is chosen from the Plancherel measure of (G,K). Then Lemma 4.5
gives a central limit theorem for the spectrum of random walk on the graph
H(i,1n−i), whose vertices are the perfect matchings of {1, · · · , 2n}, with an
edge between matchings δ1 and δ2 if and only if Λ(δ1, δ2) = (i, 1n−i). In
the case i = 2, the spectrum of this graph was determined in [DHol], and
was shown to be asymptotically normal in [F2] (with error term O(n−1/4))
and in [F3] (with error term O(n−1/2)). But the arguments in those papers
used different information, and it was not clear that they could be pushed
through to larger i. Theorem 4.12 will be used to deduce a central limit
theorem for any fixed i with error term O(n−1/4).

To apply Theorem 4.12, ωt will be taken to be the spherical function
ω(n−1,1). An explicit formula for ω(n−1,1) is available.

Lemma 4.16. ([Mac], p. 411) Let m1(µ) denote the number of parts of size
1 of µ. Then

ω(n−1,1)(gµ) =
(2n− 1)m1(µ)− n

2n(n− 1)
for all µ of size n.

Lemma 4.17 is helpful.

Lemma 4.17. ([HSS], Lemma 3.2) The coefficient of Kµ in KτK(i,1n−i) is

equal to |K|2
|Kµ| multiplied by the number of pairs of perfect matchings (δ, γ)

such that Λ(ε, δ) = τ , Λ(δ, γ) = (i, 1n−i), and Λ(ε, γ) = µ.

The final combinatorial ingredient is an analog of Lemma 3.13.

Lemma 4.18. Consider the random walk on G generated by K(i,1n−i). Then

for i fixed and n ≥ 2i, p2(Kµ)2|K|
|Kµ| is equal to

(1) i2

4i−1n
−2i +O(n−2i−1) if Kµ = K(1n) = K.

(2) 2i2

4i−1n
−2i +O(n−2i−1) if Kµ = K(i,i,1n−2i).

(3) O(n−2i−1) otherwise.
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Proof. Lemma 4.17 implies that
p2(Kµ)|K(i,1n−i)|

2

|K|2 is equal to the number of
pairs of matchings (δ, γ) such that Λ(ε, δ) = (i, 1n−i), Λ(δ, γ) = (i, 1n−i),
and Λ(ε, γ) = µ.

For the first assertion, it follows either from the previous paragraph or
from Lemmas 4.4 and 4.3 that p2(K) = 1

2i−1(n
i)(i−1)!

. For the second asser-

tion, it is straightforward from the previous paragraph that p2(K(i,i,1n−2i)) =

1 +O(n−1). Then use the formula for |Kµ|
|K| given earlier in this subsection.

For the third assertion, there are two cases. The first case is that µ has
n−2i parts of size 1, but is not equal to (i, i, 1n−2i). Then p2(Kµ) = O(n−1)
and the formula for |K|

|Kµ| shows it to be at most cin−2i where ci is a constant
depending on i. So in the first case, the result is proved. The second case
is that µ has n − 2i + r parts of size 1, where 1 ≤ r < 2i. From the first
paragraph of the proof, it is straightforward to see that p2(Kµ) = O(n−r).
Also the formula for |K|

|Kµ| shows it to be O(nr−2i), proving the result. �

Combining the ingredients, one deduces the following result.

Theorem 4.19. Choose λ from the Plancherel measure of the Gelfand pair
(G,K), and define a random variable W =

√
2i−1

(
n
i

)
(i− 1)!ωλ(g(i,1n−i)).

Then there is a constant Ai such that for all real x0,∣∣∣∣P(W ≤ x0)−
1√
2π

∫ x0

−∞
e−

x2

2 dx

∣∣∣∣ ≤ Ain
−1/4.

Proof. One applies Theorem 4.12, choosing u = (i, 1n−i) and ωt to be the
spherical function ω(n−1,1). By Lemma 4.16, ωt is real valued and a =
i(2n−1)
2n(n−1) . Observe that ωt(gµ) + 2a − 1 vanishes if µ = (i, i, 1n−2i) and by
Lemma 4.16 is O(n−1) for any other µ such that p2(Kµ) 6= 0, since any such
µ has at least n− 2i parts of size 1. Thus by Lemma 4.18,∑

µ 6=(1n)

|K|p2(Kµ)2

|Kµ|
(ωt(gµ) + 2a− 1)2 = O(n−2i−3).

Since |Ku|
|K| = 2i−1

(
n
i

)
(i− 1)!, the first error term in Theorem 4.12 is at most

A′in
−1/2, where A′i is a constant depending on i.

To bound the second error term in Theorem 4.12, we claim that∑
µ

(
8− 6(1− ωt(gµ))

a

)
|K|p2(Kµ)2

|Kµ|
= O(n−2i−1).

Indeed, by Lemmas 4.16 and 4.18, the term µ = (1n) contributes 8i2

4i−1n
−2i +

O(n−2i−1) and the term µ = (i, i, 1n−2i) contributes − 8i2

4i−1n
−2i +O(n−2i−1).

These lemmas also show that all other terms coming from a µ with p2(Kµ) 6=
0 contribute O(n−2i−1), and the number of such µ is bounded by a constant
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depending on i. It follows that the second error term is at most A′′i n
−1/4,

where A′′i is another constant depending only on i. �

5. Twisted Gelfand Pairs

The approach taken in this section is a bit different than that in the
sections on finite groups and Gelfand pairs. Due both to a lack of interesting
examples of twisted Gelfand pairs which are not already Gelfand pairs and
to technical complications which did not arise in earlier sections of this paper
(see the discussion in Section 5.2 for details), a completely general theory is
not developed. Instead, we focus on one very interesting example: character
values of random projective representations of the symmetric group. It
should however be noted that many of the lemmas resemble those of earlier
sections, and the calculations are organized in a way which should generalize
to other examples.

A partition λ of n is called strict if all of its parts are distinct, and is
called odd if all of its parts are odd. It will be useful to have that notation
that DP (n) is the set of strict partitions of size n and OP (n) is the set of
odd partitions of size n.

This section uses Stein’s method to study the probability measure on
strict partitions of n which chooses λ with probability

2n−l(λ)g2
λ

n!
,

where l(λ) is the number of parts of a partition λ and gλ is the number
of standard shifted tableaux of shape λ ([HH],[Mac]). This measure on
strict partitions is known as shifted Plancherel measure, and is of interest
to researchers in random matrix theory [Mat], [TW].

Ivanov [I] studied character values of random projective representations
of the symmetric group. It is known (see [HH] for a friendly exposition) that
the character values in question are expressed in terms of the coefficients Xλ

ρ ,
where λ is a strict partition of n that parameterizes an irreducible character,
and µ is an odd partition of n that parameterizes a conjugacy class. One
also has that gλ = Xλ

(1n). Ivanov proved the following central limit theorem
for these character values..

Theorem 5.1. ([I]) Fix i ≥ 1. Let λ be chosen from the shifted Plancherel
measure on strict partitions of size n. Then as n→∞, the random variable
n

2i+1
2 Xλ

(2i+1,1n−2i−1)

2i
√

2i+1gλ
converges in distribution to a normal random variable

with mean 0 and variance 1.

This section refines the result of Ivanov, which was proved by the method
of moments, so as to obtain an error term. In the statement of the result,
recall that zµ =

∏
j≥1 j

mj(µ)mj(µ)!, where mj(µ) is the number of parts of
µ of size j.
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Theorem 5.2. Fix i ≥ 1 and let µ = (2i+1, 1n−2i−1). Choosing λ from the
shifted Plancherel measure on partitions of size n, define a random variable

W =

√
n!

zµ2n−l(µ)

Xλ
µ

gλ
.

Then there is a constant Ai such that for all real x0,∣∣∣∣P(W ≤ x0)−
1√
2π

∫ x0

−∞
e−

x2

2 dx

∣∣∣∣ ≤ Ain
−1/4.

The organization of this section is as follows. Subsection 5.1 defines
twisted Gelfand pairs and collects and develops facts about their repre-
sentation theory. Subsection 5.2 defines and studies a Markov chain to be
used in the construction of an exchangeable pair for a Stein’s method proof
of Theorem 5.2. This is more subtle than the corresponding treatment in
earlier sections and involves interesting combinatorics, since the “obvious”
adaptation of the construction for Gelfand pairs does not work. Subsection
5.3 studies the exchangeable pair arising from the Markov chain in Section
5.2, and uses it to prove Theorem 5.2.

5.1. Background from representation theory. If G is a finite group, K
a subgroup of G, and φ a linear character of K such that IndG

K(φ) is multi-
plicity free, the triple (G,K, φ) is called a twisted Gelfand pair (this termi-
nology was introduced in [Stm]). The Hecke algebra of the triple (G,K, φ)
is the CG subalgebra eCGe, where e is the primitive idempotent of CK
defined by

e =
1
|K|

∑
k∈K

φ(k−1)k.

One reason that twisted Gelfand pairs are interesting is that the Hecke
algebra of the triple (G,K, φ) is commutative. The paper [Stm] is a good
reference for the theory of twisted Gelfand pairs.

The twisted Gelfand pair of interest to us is the one studied in [Stm]. Thus
G = S2n and K is the hyperoctahedral group Bn of signed permutations,
imbedded in G as the centralizer of the involution (1, 2)(3, 4) · · · (2n−1, 2n).
To define φ, note that Bn is the semidirect product of the groups Tn and Σn,
where Tn is the subgroup (isomorphic to Zn

2 ) generated by (1, 2), · · · , (2n−
1, 2n) and Σn is the subgroup (isomorphic to Sn) generated by the “double
transpositions” (2i−1, 2j−1)(2i, 2j) for 1 ≤ i < j ≤ n. Then φ is the linear
character of Bn whose restriction to Σn is the sign character, and whose
restriction to Tn is trivial.

Stembridge [Stm] defines twisted spherical functions for twisted Gelfand
pairs (the analog of spherical functions for Gelfand pairs). One of his main
results is that for (S2n, Bn, φ), their values are (aside from scalar multiples)
equal to the Xλ

µ , where λ is a strict partition and µ is an odd partition.
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Next we record orthogonality relations for the quantities Xλ
µ . These or-

thogonality relations are a special case of more general orthogonality rela-
tions for coefficients of power sum symmetric functions in Hall-Littlewood
polynomials, where the parameter t in the Hall Littlewood polynomial is
−1. What this paper calls Xλ

µ is written as Xλ
µ(−1) in Chapter 3 of [Mac].

Lemma 5.3. ([Mac], page 247) For λ, ρ ∈ DP (n),∑
µ∈OP (n)

2l(µ)

zµ
Xλ

µX
ρ
µ = δλ,ρ2l(λ).

Lemma 5.4. ([Mac], page 247) For µ, σ ∈ OP (n),∑
λ∈DP (n)

1
2l(λ)

Xλ
µX

λ
σ = δµ,σ

zµ

2l(µ)
.

As in Subsection 4.4, the double cosets of Bn in S2n are indexed by
partitions ν of n. It is useful to specify representatives wν . For the case
ν = (n), one defines

w(n) = (1, 2, · · · , 2n),
and for the general case ν = (ν1, · · · , νl), one defines

ων = w(ν1) ◦ · · · ◦ w(νl)

where the operation x ◦ y (for x ∈ S2i, y ∈ S2j) denotes the embedding
of S2i × S2j in S2i+2j with S2i acting on {1, · · · , 2i} and S2j acting on
{2i+ 1, · · · , 2i+ 2j}.

For ν ∈ OP (n), define

K̃ν =
1

|Bn|2
∑

x1,x2∈Bn

φ(x1x2)x1wνx2.

Corollary 3.2 of [Stm] shows that if ν 6∈ OP (n), then K̃ν = 0, and that
{K̃ν : ν ∈ OP (n)} is a basis for the Hecke algebra of (S2n, Bn, φ). Thus for
µ, ν ∈ OP (n), it is natural to study the coefficient of K̃ν in (K̃µ)m. Lemma
5.5 gives a character theoretic expression for this coefficient and is analogous
to Lemmas 3.4 and 4.4.

Lemma 5.5. Suppose that µ1, · · · , µm, ν ∈ OP (n). Then the coefficient of
K̃ν in K̃µ1 · · · K̃µm is equal to

2l(µ1)−n · · · 2l(µm)−n

zν

∑
ρ∈DP (n)

2n−l(ρ)g2
ρ

Xρ
ν

gρ

Xρ
µ1

gρ
· · · X

ρ
µm

gρ
.

In particular, the coefficient of K̃ν in (K̃µ)m is

n!(2l(µ)−n)m

zν
E
[
Xρ

ν

gρ

(
Xρ

µ

gρ

)m]
,

where ρ is random from shifted Plancherel measure on partitions of size n.
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Proof. The equality is immediate from the definition of shifted Plancherel
measure, so it is enough to establish the first expression. Stembridge [Stm]
provides a basis of orthogonal idempotents {Eρ : ρ ∈ DP (n)} of the Hecke
algebra of (G,H, φ) in terms of the projective characters of the symmetric
group. More precisely, it follows from Proposition 4.1 and Corollary 6.2 of
[Stm] that one obtains such a basis of orthogonal idempotents by defining

Eρ = 2n−l(ρ)gρ

∑
µ∈OP (n)

Xρ
µ

zµ
K̃µ.

Multiplying both sides of this equation by 2l(µ)−n Xρ
µ

gρ
and summing over

all ρ ∈ DP (n), it follows from Lemma 5.4 that

K̃µ = 2l(µ)−n
∑

ρ∈DP (n)

Xρ
µ

gρ
Eρ.

Thus

K̃µ1 · · · K̃µm = 2l(µ1)−n · · · 2l(µm)−n
∑

ρ∈DP (n)

Xρ
µ1

gρ
· · · X

ρ
µm

gρ
Eρ.

The result now follows by the formula for Eρ in the previous paragraph. �

Lemma 5.6 derives an explicit formula for X(n−1,1)
µ . This is crucial to our

approach.

Lemma 5.6. Let m1(µ) denote the number of parts of size 1 of µ. Suppose
that n ≥ 3, so that (n− 1, 1) is a strict partition. Then

X(n−1,1)
µ = m1(µ)− 2

for all odd partitions µ of size n.

Proof. Recall the definition of power sum symmetric functions: for i ≥ 1,
one sets pi =

∑
j x

i
j , and for µ a partition of n, one sets pµ =

∏
i p

mi(µ)
i . The

argument also uses Schur’s Q-functions ([Mac], Sec. 3.8). More precisely,
equation 7.5 on page 247 of [Mac] shows that for µ ∈ OP (n) and λ ∈ DP (n),
the coefficient of the power sum symmetric function pµ in Qλ is equal to
2l(µ)Xλ

µ

zµ
.

To proceed one needs an expression for Q(n−1,1). Using the notation that
[xn]f(x) is the coefficient of xn in f(x), one has by page 253 of [Mac] that

Q(n−1,1) = [tn−1
1 t2]

(
1− t2/t1
1 + t2/t1

) 2∏
i=1

∞∏
j=1

1 + tixj

1− tixj

= [tn−1
1 ]

∞∏
j=1

1 + t1xj

1− t1xj
[t2]

∞∏
j=1

1 + t2xj

1− t2xj
− 2[tn1 ]

∞∏
j=1

1 + t1xj

1− t1xj

= 2p1Qn−1 − 2Qn.
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By page 248 of [Mac], Xn
µ = 1 for all µ ∈ OP (n). It follows from the

first paragraph that for µ ∈ OP (n), the coefficient of pµ in Qn is 2l(µ)

zµ
and

(by considering separately the cases that m1(µ) = 0 and m1(µ) 6= 0) that
the coefficient of pµ in p1Qn−1 is m1(µ)2l(µ)−1

zµ
. Thus the coefficient of pµ in

Q(n−1,1) is (m1(µ)−2)2l(µ)

zµ
, which by the first paragraph proves the result. �

5.2. Markov chains on strict partitions. This subsection discusses a
Markov chain on DP (n) to be used in defining an exchangeable pair for the
proof of Theorem 5.2.

Motivated by constructions in the group and Gelfand pair cases, it would
be natural, for τ a fixed element of DP (n), to define a “Markov chain” Jτ

on DP (n) with transition “probabilities”

Jτ (λ, ρ) :=
gρ

2l(ρ)gλgτ

∑
ν∈OP (n)

2l(ν)Xλ
νX

ρ
νXτ

ν

zν
.

Using Lemma 5.4, one can see that
∑

ρ Jτ (λ, ρ) = 1 for all λ. Moreover Jτ

satisfies the reversibility condition

2n−l(λ)g2
λ

n!
Jτ (λ, ρ) =

2n−l(ρ)g2
ρ

n!
Jτ (ρ, λ)

for all λ, ρ ∈ DP (n). Unfortunately, the quantity Jτ (λ, ρ) can be negative.
For instance one can check from Lemma 5.6 that J(2,1)((2, 1), (2, 1)) = −1.

To deal with the complication raised in the previous paragraph, it is
helpful to introduce a genuine Markov chain L on DP (n), with transition
probabilities

L(λ, ρ) =
2gρ

ngλ

∑
η∈DP (n−1)
η↗λ,η↗ρ

2l(η)−l(ρ).

Here η ↗ λ means that η is obtained from λ by decreasing the size of some
part by exactly one.

Lemma 5.7 proves that L is a Markov chain which is reversible with
respect to shifted Plancherel measure. As is mentioned in the proof, the
definition of L was motivated by the theory of harmonic functions on Bratelli
diagrams.

Lemma 5.7. The transition probabilities of L are real and non-negative
and sum to 1. Moreover the chain L is reversible with respect to shifted
Plancherel measure.

Proof. This is a special case of a construction in Section 2 of [F1]. To see
this, one takes the underlying Bratelli diagram to be the Schur graph, the
properties of which are discussed in Section 5 of [BO2]. The vertices of the
Schur graph are all partitions of all non-negative integers with distinct parts,
and the edge multiplicity between η ∈ DP (n − 1) and λ ∈ DP (n) is 1 if
η ↗ λ, and is 0 otherwise. The combinatorial dimension of a shape λ is gλ,
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and if π denotes shifted Plancherel measure, the function π(λ)
gλ

is harmonic
on the Schur graph. �

Proposition 5.9 will establish a fundamental relation between the Markov
chain L and the “Markov chain” J(n−1,1). The argument involves symmetric
function theory, and first a lemma is needed about properties of a certain
subring Γ of the ring of symmetric functions, defined on page 252 of [Mac].

Recall from page 255 of [Mac] that there is an inner product on Γ which
satisfies the properties

(1) 〈pλ, pµ〉 = 2−l(λ)zλδλ,µ if λ, µ ∈ OP (n).
(2) 〈Pλ, Pµ〉 = 2−l(λ)δλ,µ if λ, µ ∈ DP (n).

Here pλ is a power sum symmetric function and Pλ is a Hall-Littlewood
polynomial with the parameter t = −1. It is also helpful to recall, from
page 247 of [Mac], that for λ ∈ DP (n),

Pλ = 2−l(λ)
∑

ν∈OP (n)

2l(ν)

zν
Xλ

ν pν .

Lemma 5.8. Let p⊥1 be the adjoint in Γ of multiplication by p1.

(1) ([Mac], page 265) p⊥1 = 1
2

∂
∂p1

.
(2) p⊥1 Pλ =

∑
η∈DP (n−1)

η↗λ

2l(η)−l(λ)Pη.

Proof. Only the second assertion needs to be proved. Consider the coefficient
of Pη in p⊥1 Pλ. It is

〈p⊥1 Pλ, Pη〉
〈Pη, Pη〉

=
〈Pλ, p1Pη〉
〈Pη, Pη〉

= 2l(η)〈Pλ, p1Pη〉.

From Section 3.8 of [Mac],

p1Pη =
∑

λ∈DP (n)
η↗λ

Pλ,

which implies the result. �

Proposition 5.9 can now be proved.

Proposition 5.9. Suppose that n ≥ 3, so that (n−1, 1) is a strict partition.
Then

L(λ, ρ) =
n− 2
n

J(n−1,1)(λ, ρ)

for λ, ρ ∈ DP (n) such that λ 6= ρ.

Proof. By Lemma 5.6,

J(n−1,1)(λ, ρ) =
gρ

2l(ρ)gλ(n− 2)

∑
ν∈OP (n)

2l(ν)Xλ
νX

ρ
ν (m1(ν)− 2)
zν

.
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Since λ 6= ρ, Lemma 5.3 and part 1 of Lemma 5.8 imply that this is equal
to

gρ

2l(ρ)gλ(n− 2)

∑
ν∈OP (n)

2l(ν)Xλ
νX

ρ
νm1(ν)

zν

=
gρ

2l(ρ)gλ(n− 2)

〈 ∑
ν∈OP (n)

m1(ν)
2l(ν)

zν
Xλ

ν pν ,
∑

ν∈OP (n)

2l(ν)

zν
Xρ

νpν

〉

=
2l(λ)gρ

gλ(n− 2)
〈2p1p

⊥
1 Pλ, Pρ〉

=
2l(λ)+1gρ

gλ(n− 2)
〈p⊥1 Pλ, p

⊥
1 Pρ〉.

By part 2 of Lemma 5.8, this is

2l(λ)+1gρ

gλ(n− 2)

〈 ∑
η∈DP (n−1)

η↗λ

2l(η)−l(λ)Pη,
∑

η∈DP (n−1)
η↗ρ

2l(η)−l(ρ)Pη

〉

=
2gρ

gλ(n− 2)

∑
η∈DP (n−1)
η↗λ,η↗ρ

2l(η)−l(ρ)

=
n

n− 2
L(λ, ρ).

�

5.3. Central limit theorem for shifted Plancherel measure. This
subsection studies the statistic W =

√
n!

zµ2n−l(µ)

Xλ
µ

gλ
, where µ ∈ OP (n) is

fixed and λ ∈ DP (n) is chosen from shifted Plancherel measure. The main
goal is a proof of Theorem 5.2. Note that Lemma 5.4 implies that E(W ) = 0
if µ 6= (1n) and that E(W 2) = 1.

Using L, one constructs an exchangeable pair (W,W ′) as follows. Choose
λ from the shifted Plancherel measure on partitions of size n. Then choose
ρ with probability L(λ, ρ) and let (W,W ′) = (W (λ),W (ρ)). Using Jτ , one
constructs an “exchangeable pair” (W,W ∗) as follows. Choose λ from the
shifted Plancherel measure on partitions of size n. Then choose ρ with
“probability” Jτ (λ, ρ) and let (W,W ∗) = (W (λ),W (ρ)). The pair (W,W ′)
is a valid candidate for Stein’s method. However the pair (W,W ∗) is much
easier to work with, and by Proposition 5.9, when τ = (n − 1, 1), this
gives insight into the genuine exchangeable pair (W,W ′). Even though the
transition probabilities of Jτ can be negative, for convenience the usual
language of probability theory (expected value, variance, etc.) will be used
when working with them.

Lemma 5.10. (1) E(W ∗|W ) =
(

Xτ
µ

gτ

)
W .

(2) E(W ′|W ) = m1(µ)
n W .



33

Proof. For the first assertion, the definition of J(n−1,1) and Lemma 5.4 imply
that

E(W ∗|λ) =

√
n!

zµ2n−l(µ)

∑
ρ∈DP (n)

gρ

2l(ρ)gλgτ

∑
ν∈OP (n)

2l(ν)Xλ
νX

ρ
νXτ

ν

zν

Xρ
µ

gρ

=

√
n!

zµ2n−l(µ)

1
gλgτ

∑
ν∈OP (n)

2l(ν)Xλ
νX

τ
ν

zν

∑
ρ∈DP (n)

Xρ
νX

ρ
µ

2l(ρ)

=

√
n!

zµ2n−l(µ)

Xλ
µ

gλ

Xτ
µ

gτ

=
(
Xτ

µ

gτ

)
W (λ).

The first assertion follows since this depends on λ only through W .
For the second assertion, observe that by Proposition 5.9,

E(W ′ −W |λ) =
∑

ρ

L(λ, ρ) (W (ρ)−W (λ))

=
n− 2
n

∑
ρ

J(n−1,1)(λ, ρ) (W (ρ)−W (λ))

= −
(
n− 2
n

)
W (λ) +

n− 2
n

∑
ρ

J(n−1,1)(λ, ρ)W (ρ).

By the first assertion and Lemma 5.6, this is

−
(
n− 2
n

)
W (λ) +

n− 2
n

m1(µ)− 2
n− 2

W (λ) =
(
m1(µ)
n

− 1
)
W (λ),

which implies the result. �

Corollary 5.11 will not be needed but is worth recording.

Corollary 5.11. The eigenvalues of Jτ are Xτ
µ

gτ
as µ ranges over OP (n).

The functions ψµ(λ) =
√

n!
zµ2n−l(µ)

Xλ
µ

gλ
are a basis of eigenvectors of Jτ , or-

thonormal with respect to the inner product

〈f1, f2〉 =
∑

λ∈DP (n)

f1(λ)f2(λ)
2n−l(λ)g2

λ

n!
.

Proof. The proof of part 1 of Lemma 5.10 shows that ψµ is an eigenvector of
Jτ with eigenvalue Xτ

µ

gτ
. The orthonormality assertion follows from Lemma

5.4 and the fact from [Mac] that all Xλ
µ are real valued. The basis assertion

follows since |DP (n)| = |OP (n)|. �

Lemma 5.12. E(W ∗ −W )2 = 2
(
1− Xτ

µ

gτ

)
.
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Proof. This follows from the proof of Lemma 2.3 (which does not require
non-negative transition probabilities) and part 1 of Lemma 5.10. �

For the remainder of this subsection, pm(K̃ν) will denote the coefficient
of K̃ν in (K̃µ)m. When m = 0 this is to be interpreted through Lemma 5.5,
so that p0(K̃(1n)) = 1 and p0(K̃ν) = 0 for ν 6= (1n). Due to the signs in the
definition of K̃ν , these numbers are not probabilities so care must be taken in
working with them. For instance it is not true that

∑
ν∈OP (n) pm(K̃ν) = 1.

However the following three relations will be useful.

Lemma 5.13.
∑

ν∈OP (n) p2(K̃ν)2l(ν)−n = 22[l(µ)−n].

Proof. Using Lemma 5.5, one has that,∑
ν∈OP (n)

p2(K̃ν)2l(ν) = 22l(µ)−n
∑

ρ∈DP (n)

2−l(ρ) (X
ρ
µ)2

gρ

∑
ν∈OP (n)

2l(ν)

zν
Xρ

ν .

By page 248 of [Mac], Xn
ν = 1, so that Lemma 5.3 implies that∑
ν∈OP (n)

2l(ν)

zν
Xρ

νX
n
ν = 2δρ,n.

The result follows. �

Lemma 5.14. E
(

Xλ
µ

gλ

)4

= (2n−l(µ))4
∑

ν∈OP (n) p2(K̃ν)2 2l(ν)zν
2nn! .

Proof. Consider the coefficient of K̃(1n) in (K̃µ)4. On one hand, by Lemma

5.5 it is equal to (2l(µ)−n)4E
(

Xλ
µ

gλ

)4

. On the other hand,

(K̃µ)4 = (K̃µ)2(K̃µ)2 =

 ∑
ν∈OP (n)

p2(K̃ν)K̃ν

2

.

From Lemmas 5.5 and Lemma 5.4, it follows that the coefficient of K̃(1n) in

K̃ν1K̃ν2 is 0 if ν1 6= ν2, and that the coefficient of K̃(1n) in (K̃ν)2 is 2l(ν)−nzν
n! .

Thus the coefficient of K̃(1n) in (K̃µ)4 is equal to∑
ν∈OP (n)

p2(K̃ν)2
2l(ν)−nzν

n!
.

Comparing the two expressions for the coefficient of K̃(1n) in (K̃µ)4 proves
the result. �

Lemma 5.15. p3(K̃µ) = 2n−l(µ)

zµ

∑
ν∈OP (n) p2(K̃ν)22l(ν)−nzν .

Proof. By Lemma 5.5,

p3(K̃µ) =
n!(2l(µ)−n)3

zµ
E

(
Xλ

µ

gλ

)4

.
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Now use Lemma 5.14. �

The next lemmas are crucial.

Lemma 5.16. (1)

E[(W ∗ −W )2|λ] =
n!

zµ2l(µ)

∑
ν∈OP (n)

2l(ν)p2(K̃ν)
(
Xτ

ν

gτ
+ 1−

2Xτ
µ

gτ

)
Xλ

ν

gλ

(2)

V ar(E[(W ∗ −W )2|λ]) =
n!2n

z2
µ22l(µ)

∑
ν∈OP (n)
ν 6=(1n)

2l(ν)p2(K̃ν)2zν

(
Xτ

ν

gτ
+ 1−

2Xτ
µ

gτ

)2

Proof. Note that E((W ∗)2|λ) is equal to

n!
zµ2n−l(µ)

∑
ρ∈DP (n)

gρ

2l(ρ)gλgτ

∑
ν∈OP (n)

2l(ν)Xλ
νX

ρ
νXτ

ν

zν

(
Xρ

µ

gρ

)2

=
n!

zµ2n−l(µ)

∑
ν∈OP (n)

Xλ
ν

gλ

Xτ
ν

gτ
2l(ν)

 1
zν

∑
ρ∈DP (n)

g2
ρ

2l(ρ)

Xρ
ν

gρ

(
Xρ

µ

gρ

)2


=
n!

zµ2l(µ)

∑
ν∈OP (n)

Xλ
ν

gλ

Xτ
ν

gτ
2l(ν)p2(K̃ν).

The first equality switched the order of summation and the second equality
is Lemma 5.5.

Next we claim that W 2 = n!
zµ2l(µ)

∑
ν∈OP (n) 2l(ν)p2(K̃ν)

Xλ
ν

gλ
. To see this

note by Lemma 5.5 that

22l(µ)−2n

zν

∑
ρ∈DP (n)

2n−l(ρ)X
ρ
ν

gρ
(Xρ

µ)2 = p2(K̃ν).

Multiplying both sides by 2l(ν)n!
2l(µ)zµ

Xλ
ν

gλ
, and summing over ν ∈ OP (n), the

claimed expression for W 2 follows from Lemma 5.3.
Now observe from Lemma 5.10 that

E[(W ∗ −W )2|λ] = E((W ∗)2|λ)− 2WE(W ∗|λ) +W 2

= E((W ∗)2|λ) +
(

1−
2Xτ

µ

gτ

)
W 2.

The first part of the lemma follows from this and the previous two para-
graphs.

From the first part of the lemma and Lemma 5.4, it follows that

E(E[(W ∗ −W )2|λ]2) =
n!2n

z2
µ22l(µ)

∑
ν∈OP (n)

2l(ν)p2(K̃ν)2zν

(
Xτ

ν

gτ
+ 1−

2Xτ
µ

gτ

)2

.
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Lemmas 5.5 and 5.4 imply that p2(K̃(1n)) = zµ

n!2n−l(µ) . The second part of
the lemma now follows since by Lemma 5.12,

V ar(E[(W ∗ −W )2|λ]) = E(E[(W ∗ −W )2|λ]2)− 4
(

1−
Xτ

µ

gτ

)2

.

�

Lemma 5.17. Let k be a positive integer.

(1) E(W ∗ −W )k is equal to

(
n!2n−l(µ)

zµ

)k/2 k∑
m=0

(−1)k−m

(
k

m

) ∑
ν∈OP (n)

Xτ
ν zν

gτn!2n−l(ν)
pm(K̃ν)pk−m(K̃ν).

(2) E(W ∗ −W )4 is equal to

(
n!2n−l(µ)

zµ

)2
 ∑

ν∈OP (n)

(
8
(

1−
Xτ

µ

gτ

)
− 6

(
1− Xτ

ν

gτ

))
zνp2(K̃ν)2

n!2n−l(ν)

 .
Proof. To prove the first assertion, observe that

E((W ∗ −W )k|λ)

=
(

n!
zµ2n−l(µ)

)k/2 ∑
ρ∈DP (n)

gρ

2l(ρ)gλgτ

∑
ν∈OP (n)

2l(ν)Xλ
νX

ρ
νXτ

ν

zν

·
k∑

m=0

(−1)k−m

(
k

m

)(
Xρ

µ

gρ

)m
(
Xλ

µ

gλ

)k−m

=
(

n!
zµ2n−l(µ)

)k/2 1
gλgτ

k∑
m=0

(−1)k−m

(
k

m

)(
Xλ

µ

gλ

)k−m

·
∑

ν∈OP (n)

2l(ν)Xλ
νX

τ
ν

zν

∑
ρ∈DP (n)

g2
ρ

2l(ρ)

Xρ
ν

gρ

(
Xρ

µ

gρ

)m

=
(

n!
zµ2n−l(µ)

)k/2 1
2ngλgτ

k∑
m=0

(−1)k−m

(
k

m

)
(2n−l(µ))m

(
Xλ

µ

gλ

)k−m

·
∑

ν∈OP (n)

2l(ν)Xλ
νX

τ
ν pm(K̃ν).
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The second equality switched the order of summation and the last equation
is Lemma 5.5. Hence E(W ∗ −W )k is equal to

E(E((W ∗ −W )k|λ))

=
(

n!
zµ2n−l(µ)

)k/2 (2n−l(µ))k

2n

k∑
m=0

(−1)k−m

(
k

m

)

·
∑

ν∈OP (n)

2l(ν)X
τ
ν

gτ

pm(K̃ν)
(2n−l(µ))k−m

E

Xλ
ν

gλ

(
Xλ

µ

gλ

)k−m
 .

The first assertion now follows from Lemma 5.5.
For the second assertion, the first assertion gives that E(W ∗ − W )4 is

equal to(
n!2n−l(µ)

zµ

)2 4∑
m=0

(−1)m

(
4
m

) ∑
ν∈OP (n)

zν

2n−l(ν)n!
Xτ

ν

gτ
pm(K̃ν)p4−m(K̃ν).

The special case τ = (n) gives that

0 =

(
n!2n−l(µ)

zµ

)2 4∑
m=0

(−1)m

(
4
m

) ∑
ν∈OP (n)

zν

2n−l(ν)n!
pm(K̃ν)p4−m(K̃ν).

Thus in general, E(W ∗ −W )4 is equal to

−

(
n!2n−l(µ)

zµ

)2 4∑
m=0

(−1)m

(
4
m

) ∑
ν∈OP (n)

(
1− Xτ

ν

gτ

)
zνpm(K̃ν)p4−m(K̃ν)

2n−l(ν)n!
.

The m = 0, 4 terms vanish since only ν = (1n) could contribute, but it
contributes 0. The m = 2 term contributes

−6

(
n!2n−l(µ)

zµ

)2 ∑
ν∈OP (n)

(
1− Xτ

ν

gτ

)
zνp2(K̃ν)2

n!2n−l(ν)
.

The m = 1, 3 terms are equal and together contribute

8

(
n!2n−l(µ)

zµ

)(
1−

Xτ
µ

gτ

)
p3(K̃µ).

By Lemma 5.15, this is

8

(
n!2n−l(µ)

zµ

)2(
1−

Xτ
µ

gτ

) ∑
ν∈OP (n)

zνp2(K̃ν)2

n!2n−l(ν)
.

Adding the terms together proves the second assertion. �

The final combinatorial ingredient for the proof of Theorem 5.2 is an upper
bound for p2(K̃ν). Lemma 5.18 reduces this to a result obtained earlier in
the section on Gelfand pairs.
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Lemma 5.18. Let p2(K̃ν) be as in this subsection and let p2(Kν) be as in
Subsection 4.4. Then p2(K̃ν) ≤ p2(Kν) for all ν ∈ OP (n).

Proof. Clearly p2(Kν) is equal to |BnωνBn| multiplied by the coefficient of
ων in  1

|Bn|2
∑

x1,x2∈Bn

x1ωµx2

2

.

Next consider p2(K̃ν). By definition it is the coefficient of K̃ν in (K̃µ)2.
Corollary 3.2 of [Stm] gives that the coefficient of ων in K̃ν is 1

|BnωνBn| .

Hence p2(K̃ν) is |BnωνBn| multiplied by the coefficient of ων in 1
|Bn|2

∑
x1,x2∈Bn

φ(x1x2)x1ωµx2

2

,

where φ is the linear character of Bn described in Subsection 4.1. Since
φ(x1x2) is always ±1, the result follows. �

Finally, we prove Theorem 5.2.

Proof. (Of Theorem 5.2) One can assume that n ≥ 2(2i + 1). In the O
notation throughout the proof, i is fixed and n is growing.

One applies Theorem 2.1 to the pair (W,W ′), where µ = (2i+1, 1n−2i−1).
Then a = 1− m1(µ)

n by part 2 of Lemma 5.10. Proposition 5.9 implies that

E((W ′ −W )2|λ) =
n− 2
n

E((W ∗ −W )2|λ)

for all λ. Thus

V ar(E[(W ′ −W )2|λ]) =
(
n− 2
n

)2

V ar(E[(W ∗ −W )2|λ]).

Also note, as in the proof of Theorem 3.12, that

V ar(E[(W ′ −W )2|W ]) ≤ V ar(E[(W ′ −W )2|λ]).

Lemmas 5.16 and 5.6 give that the first error term in applying Theorem 2.1
to the pair (W,W ′) is at most

n− 2
n

n!2n−l(µ)(
1− m1(µ)

n

)
zµ

√√√√√ ∑
ν∈OP (n)
ν 6=(1n)

zνp2(K̃ν)2

n!2n−l(ν)

(
n+m1(ν)− 2m1(µ)

n− 2

)2

.

Observe that n−2
n

n!2n−l(µ)“
1−m1(µ)

n

”
zµ

is O(n2i+2). In the sum over ν 6= (1n), the

term coming from ν = (2i+1, 2i+1, 1n−4i−2) contributes 0. Since n ≥ 2(2i+
1), Lemmas 5.18 and 4.18 imply that zνp2(K̃ν)2

n!2n−l(ν) = O(n−4i−3) for all other ν in
the sum, and the number of such ν is bounded by a constant depending on
i but not n. Moreover if p2(K̃ν) 6= 0, then p2(Kν) 6= 0, implying by Lemma
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4.17 that m1(ν) ≥ n − 4i − 2 and thus that n+m1(ν)−2m1(µ)
n−2 = O(n−1).

Combining these observations gives that the first term in the upper bound
of Theorem 2.1 is O(n−1/2).

By the Cauchy-Schwarz inequality,

E|W ′ −W |3 ≤
√

E(W ′ −W )2E(W ′ −W )4.

Proposition 5.9 implies that E(W ′−W )k = n−2
n E(W ∗−W )k for all k. Hence

Lemmas 5.12 and 5.6 imply that the second error term in Theorem 2.1 is at
most [

(n− 2)
πn

E(W ∗ −W )4

(1− m1(µ)
n )

]1/4

.

By part 2 of Lemma 5.17 and Lemma 5.6, this can be written as 1
π

(n!2n−l(µ))2

(1− m1(µ)
n )(zµ)2

∑
ν∈OP (n)

(
2− 8m1(µ)

n
+

6m1(ν)
n

)
zνp2(K̃ν)2

n!2n−l(ν)

1/4

.

The quantity (n!2n−l(µ))2

(1−m1(µ)
n

)(zµ)2
is O(n4i+3). The contribution from ν = (1n) to

the sum is 8(2i+1)
n p2(K̃(1n))2, which by Lemmas 5.5 and 5.4 is 8(2i+1)3

24i n−4i−3+
O(n−4i−4). By Lemmas 5.18 and 4.18, the contribution to the sum from
ν not equal to either (1n) or (2i + 1, 2i + 1, 1n−4i−2) is O(n−4i−4), and
the number of such ν with p2(K̃ν) 6= 0 is bounded by a constant depend-
ing on i. The contribution to the sum from ν = (2i + 1, 2i + 1, 1n−4i−2)
is −4(2i+1)

n
zνp2(K̃ν)2

n!2n−l(ν) . Lemma 5.13 implies that p2(K̃(2i+1,2i+1,1n−4i−2)) =
1 + O(n−1), since p2(K̃ν) = O(n−1) for ν 6= (2i + 1, 2i + 1, 1n−4i−2) by
Lemma 5.18. Thus the contribution from ν = (2i + 1, 2i + 1, 1n−4i−2) is
−8(2i+1)3

24i n−4i−3 +O(n−4i−4). Hence there is useful cancellation and∑
ν∈OP (n)

(
2− 8m1(µ)

n
+

6m1(ν)
n

)
zνp2(K̃ν)2

n!2n−l(ν)
= O(n−4i−4).

It follows that the second term in the upper bound of Theorem 2.1 is
O(n−1/4), completing the proof. �

6. Association Schemes

This final section adapts techniques from earlier sections to study the
spectrum of an adjacency matrix of an association scheme. As is well known
(see for instance Chapter 3 of [BaI]) this includes the spectrum of a distance
regular graph as a special case.

Subsection 6.1 discusses needed facts about association schemes. Sub-
section 6.2 derives a general central limit theorem for the spectrum of an
association scheme. Subsection 6.3 illustrates the theory of Subsection 6.2
for the special case of the Hamming scheme, where the result amounts to
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a central limit theorem for the spectrum of the Hamming graph, or equiva-
lently for values of q-Krawtchouk polynomials.

6.1. Background on association schemes. This subsection gives pre-
liminaries about association schemes, using notation from [MaSl]. Another
useful reference is [BaI], and what we call association schemes some authors
call symmetric association schemes.

Definition. An association scheme with n classes consists of a finite set
X with n+ 1 relations R0, · · · , Rn defined on X which satisfy:

(1) Each Ri is symmetric: (x, y) ∈ Ri ⇒ (y, x) ∈ Ri.
(2) For every x, y ∈ X, one has that (x, y) ∈ Ri for exactly one i.
(3) R0 = {(x, x) : x ∈ X} is the identity relation.
(4) If (x, y) ∈ Rk, the number of z ∈ X such that (x, z) ∈ Ri and

(y, z) ∈ Rj is a constant cijk depending on i, j, k but not on the
particular choice of x and y.

The adjacency matrix Di corresponding to the relation Ri is the |X|×|X|
matrix with rows and columns labeled by the points of X defined by

(Di)x,y =
{

1 if (x, y) ∈ Ri

0 otherwise.

The Bose-Melner algebra is defined to be the vector space consisting of
all matrices

∑n
i=0 aiDi with ai real. Since the matrices in the Bose-Melner

algebra are symmetric and commute with each other (by parts 1 and 4 of the
definition of an association scheme), the Bose-Melner algebra is semisimple
and has a distinguished basis of primitive idempotents J0, · · · , Jn satisfying

(1) J2
i = Ji i = 0, · · · , n.

(2) JiJk = 0 i 6= k.
(3)

∑n
i=0 Ji = I.

Here I is the identity matrix.
The D’s are also a basis of the Bose-Melner algebra, so one can write

Ds =
n∑

i=0

φs(i)Ji, s = 0, · · · , n

where the φs(i) are real numbers. Since DsJi = φs(i)Ji, the φs(i) are the
eigenvalues of Ds. For later use note that since D0 and

∑n
i=0 Ji are both

the identity matrix, φ0(j) = 1 for all j.
Let µi be the rank of Ji. For all s, this is the multiplicity of the eigenvalue

φs(i) of Ds. We define the Plancherel measure of the association scheme to
be the probability measure on {0, · · · , n} which chooses i with probability
µi

|X| .
Lemmas 6.1 and 6.2 are the orthogonality relations for eigenvalues of

association schemes. To state them it is helpful to define vi = cii0, so that
for any x, one has that vi is the number of pairs (x, y) ∈ Ri. Clearly∑n

i=0 vi = |X|.
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Lemma 6.1. ([MaSl], page 655) For 0 ≤ k, l ≤ n,
n∑

r=0

φr(k)φr(l)
vr

=
|X|
µk

δk,l.

Lemma 6.2. ([MaSl], page 655) For 0 ≤ k, l ≤ n,
n∑

i=0

µiφk(i)φl(i) = |X|vkδk,l.

Lemma 6.3 will be crucial.

Lemma 6.3. The coefficient of Dl in Ds1 · · ·Dsm is equal to

1
vl

n∑
i=0

µi

|X|
φs1(i) · · ·φsm(i)φl(i).

In particular, the coefficient of Dl in (Ds)m is

1
vl

E[φs(i)mφl(i)],

where i is random from Plancherel measure of the association scheme.

Proof. Since Ds =
∑n

i=0 φs(i)Ji, one knows that

Ds1 · · ·Dsm =
n∑

i=0

φs1(i) · · ·φsm(i)Ji.

By pages 654 and 655 of [MaSl],

Ji =
1
|X|

n∑
l=0

µiφl(i)
vl

Dl.

The result follows. �

Let pm(r) denote vr
(vs)m multiplied by the coefficient of Dr in (Ds)m. It

follows from the definitions that pm(r) admits the following probabilistic
interpretation. Start from some point x0 ∈ X, move to a random x1 ∈ X
such that (x0, x1) ∈ Rs, then to a random x2 ∈ X such that (x1, x2) ∈
Rs, and so on until one obtains xm. Then pm(r) is the probability that
(x0, xm) ∈ Rr.

The following fact will be useful.

Lemma 6.4. (1) p4(0) =
∑n

r=0
p2(r)2

vr
.

(2) p3(s) = vs
∑n

r=0
p2(r)2

vr
.

Proof. The first assertion is clear from the probabilistic interpretation of
pm(r). For an analytic proof, note that by Lemma 6.3 (in the first and
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fourth equalities) and Lemma 6.1 (in the second and third equalities)

n∑
r=0

p2(r)2

vr
=

n∑
r=0

1
vr

(
1

(vs)2

n∑
i=0

µi

|X|
φs(i)2φr(i)

)2

=
1

(vs)4

n∑
r=0

1
vr

n∑
i=0

(µi)2

|X|2
φs(i)4φr(i)2

=
1

(vs)4

n∑
i=0

µi

|X|
φs(i)4

= p4(0).

The second assertion follows from the first assertion since p3(s) = vsp4(0),
as can be seen either by the probabilistic interpretation of pm(r) or by
computing both sides of the equation using Lemma 6.3. �

6.2. Central limit theorem for the spectrum. Recall that the goal
is to study Plancherel measure of association schemes, which chooses i ∈
{0, · · · , n} with probability µi

|X| . More precisely, for s fixed, a central limit
theorem is proved for the random variable W whose value at i ∈ {0, · · · , n}
is φs(i)√

vs
. Note by Lemma 6.2 that E(W ) = 0 if s 6= 0 and that E(W 2) = 1.

Given t ∈ {0, · · · , n}, we define a Markov chain Lt on the set {0, · · · , n}
which moves from i to j with probability

Lt(i, j) :=
µj

|X|

n∑
r=0

φr(i)φr(t)φr(j)
(vr)2

.

Lemma 6.5. The transition probabilities of Lt are real and non-negative
and sum to 1. Moreover the chain Lt is reversible with respect to Plancherel
measure.

Proof. By Theorems 3.6 and 3.8 of [BaI], the Lt(i, j) are non-negative real
numbers. Next, observe that

n∑
j=0

Lt(i, j) =
1
|X|

n∑
r=0

φr(i)φr(t)
(vr)2

n∑
j=0

µjφr(j).

Since φ0(j) = 1 for all j, Lemma 6.2 implies that
n∑

j=0

Lt(i, j) = v0

n∑
r=0

φr(i)φr(t)
(vr)2

δr,0 = 1.

For the reversibility assertion, it is clear from the definition of Lt that
µi

|X|
Lt(i, j) =

µj

|X|
Lt(j, i)

for all i, j. �
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One uses the chain Lt to construct an exchangeable pair (W,W ′) in the
usual way. First choose i from Plancherel measure, then choose j with
probability Lt(i, j), and finally let (W,W ′) = (W (i),W (j)).

Lemma 6.6. E(W ′|W ) =
(

φs(t)
vs

)
W .

Proof. By the definitions and Lemma 6.2, one has that

E(W ′|i) =
1
√
vs

n∑
j=0

Lt(i, j)φs(j)

=
1
√
vs

1
|X|

n∑
r=0

φr(i)φr(t)
(vr)2

n∑
j=0

µjφs(j)φr(j)

=
(
φs(t)
vs

)
W (i).

The result follows since this depends on i only through W . �

Corollary 6.7 will not be used but is worth recording.

Corollary 6.7. The eigenvalues of Lt are φs(t)
vs

for 0 ≤ s ≤ n. The functions

ψs(i) = φs(i)√
vs

are a basis of eigenvectors of Lt, orthonormal with respect to
the inner product

〈f1, f2〉 =
n∑

i=0

f1(i)f2(i)
µi

|X|
.

Proof. The proof of Lemma 6.6 shows that ψs is an eigenvector of Lt with
eigenvalue φs(t)

vs
. The orthonormality assertion follows from Lemma 6.2, and

the basis assertion follows since n+1 linearly independent eigenvectors have
been given. �

Lemma 6.8. E(W ′ −W )2 = 2
(
1− φs(t)

vs

)
.

Proof. This is immediate from Lemmas 2.3 and 6.6. �

The next lemmas are quite helpful.

Lemma 6.9. (1)

E[(W ′ −W )2|i] = vs

n∑
r=0

p2(r)
(
φr(t)
vr

+ 1− 2φs(t)
vs

)
φr(i)
vr

.

(2)

V ar(E[(W ′ −W )2|i]) = (vs)2
n∑

r=1

p2(r)2

vr

(
φr(t)
vr

+ 1− 2φs(t)
vs

)2

.

Note that the sum in the second part of the lemma is over non-zero r.
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Proof. First observe that

E((W ′)2|i) =
1
vs

n∑
j=0

µj

|X|

n∑
r=0

φr(i)φr(t)φr(j)
(vr)2

φs(j)2

=
1
vs

n∑
r=0

φr(i)φr(t)
(vr)2

n∑
j=0

µj

|X|
φs(j)2φr(j)

= vs

n∑
r=0

φr(i)φr(t)
(vr)2

p2(r).

The second equality switched the order of summation and the third equality
was Lemma 6.3.

Next we claim thatW 2 = vs
∑n

r=0 p2(r)
φr(i)
vr

. To see this note that Lemma
6.3 gives

1
(vs)2

n∑
j=0

µj

|X|
φs(j)2φr(j) = p2(r).

Then multiply both sides of the equation by vs
φr(i)
vr

, sum over r, and apply
Lemma 6.1.

Now note from Lemma 6.6 that

E[(W ′ −W )2|i] = E((W ′)2|i)− 2WE(W ′|i) +W 2

= E((W ′)2|i) +
(

1− 2φs(t)
vs

)
W 2.

The first part of the lemma follows from this and the previous two para-
graphs.

From the first part of the lemma and Lemma 6.2, one has that

E(E[(W ′ −W )2|i]2) = (vs)2
n∑

r=0

p2(r)2

vr

(
φr(t)
vr

+ 1− 2φs(t)
vs

)2

.

Since p2(0) = 1
vs

, it follows that the contribution to the above expression

coming from r = 0 is 4
(
1− φs(t)

vs

)2
. The second part of the lemma follows

since by Lemma 6.8,

V ar(E[(W ′ −W )2|i]) = E(E[(W ′ −W )2|i]2)− 4
(

1− φs(t)
vs

)2

.

�

Lemma 6.10. Let k be a positive integer.

(1) E(W ′ −W )k = (vs)k/2
∑k

m=0(−1)k−m
(

k
m

)∑n
r=0

φr(t)
vr

pm(r)pk−m(r)
vr

.

(2) E(W ′ −W )4 = v2
s

[∑n
r=0

(
8
(
1− φs(t)

vs

)
− 6

(
1− φr(t)

vr

))
p2(r)2

vr

]
.
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Proof. For the first assertion, note that E((W ′ −W )k|i) is equal to

1
(vs)k/2

n∑
j=0

µj

|X|

n∑
r=0

φr(i)φr(t)φr(j)
(vr)2

(φs(j)− φs(i))k

=
1

(vs)k/2

k∑
m=0

(−1)k−m

(
k

m

)
φs(i)k−m

n∑
r=0

φr(i)φr(t)
(vr)2

·
n∑

j=0

µj

|X|
φs(j)mφr(j)

=
1

(vs)k/2

k∑
m=0

(−1)k−m

(
k

m

)
φs(i)k−m(vs)m

n∑
r=0

φr(i)φr(t)pm(r)
(vr)2

,

where the last equality is Lemma 6.3. Consequently,

E(W ′ −W )k = E(E((W ′ −W )k|i))

= (vs)k/2
k∑

m=0

(−1)k−m

(
k

m

)

·
n∑

r=0

φr(t)
(vr)2

pm(r)
n∑

i=0

µi

|X|
φs(i)k−mφr(i)

(vs)k−m
.

The first assertion now follows from Lemma 6.3.
For the second part, the first assertion gives that

E(W ′ −W )4 = (vs)2
4∑

m=0

(−1)m

(
4
m

) n∑
r=0

φr(t)
vr

pm(r)p4−m(r)
vr

.

By page 654 of [MaSl], φr(0) = vr for all r. Thus specializing to t = 0 shows
that

0 = (vs)2
4∑

m=0

(−1)m

(
4
m

) n∑
r=0

pm(r)p4−m(r)
vr

.

So for general t, one has that

E(W ′ −W )4 = −(vs)2
4∑

m=0

(−1)m

(
4
m

) n∑
r=0

(
1− φr(t)

vr

)
pm(r)p4−m(r)

vr
.

The contribution from the m = 0, 4 terms is 0, since p0(r) = 0 if r 6= 0. The
contribution from the m = 2 term is

−6(vs)2
n∑

r=0

(
1− φr(t)

vr

)
p2(r)2

vr
.
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The m = 1, 3 terms are equal and together contribute

8(vs)2
n∑

r=0

(
1− φr(t)

vr

)
p1(r)p3(r)

vr
= 8(vs)2

(
1− φs(t)

vs

)
p3(s)
vs

= 8(vs)2
(

1− φs(t)
vs

) n∑
r=0

p2(r)2

vr
,

where the final equality is part 2 of Lemma 6.4. Adding the terms completes
the proof of the second assertion. �

Arguing as in the proof of Theorem 3.12, and using the above lemmas,
one obtains the following result.

Theorem 6.11. Fix s ∈ {0, · · · , n}, and let W = φs(i)√
vs

where i is chosen
from the Plancherel measure of the association scheme. Fix t such that
0 < φs(t)

vs
< 1. Then for all real x0,∣∣∣∣P(W ≤ x0)−

1√
2π

∫ x0

−∞
e−

x2

2 dx

∣∣∣∣
≤ vs

a

√√√√ n∑
r=1

p2(r)2

vr

(
φr(t)
vr

+ 1− 2φs(t)
vs

)2

+
√
vs

(π)1/4

[
n∑

r=0

(
8− 6

a

(
1− φr(t)

vr

))
p2(r)2

vr

]1/4

,

where a = 1− φs(t)
vs

.

6.3. Example: Hamming Scheme. This subsection illustrates the the-
ory of Subsection 6.2 for the Hamming scheme H(d, q), where d, q ≥ 2 are
positive integers.

To begin we recall the definition of H(d, q) and its basic properties, refer-
ring the reader to Chapter 3 of [BaI] for more details. The elements X of
H(d, q) are d-tuples of numbers chosen from {1, · · · , q}; clearly |X| = qd. A
pair (x, y) is in Ri if x and y differ in exactly i coordinates. For 0 ≤ i ≤ d,
one has that vi = (q − 1)i

(
d
i

)
and µi = (q − 1)i

(
d
i

)
. Thus the Plancherel

measure on {0, · · · , d} chooses i with probability
(q−1)i(d

i)
qd . The numbers

φs(i) are equal to
s∑

j=0

(−1)j(q − 1)s−j

(
i

j

)(
d− i

s− j

)
.

The polynomial φs in the variable i is known as a q-Krawtchouk polynomial.
In what follows W = φ1(i)√

v1
, where i is chosen from Plancherel measure

of the Hamming scheme H(d, q). The Hamming graph has vertex set X
and an edge between two vertices if they differ in one coordinate. Thus the
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eigenvalues of the adjacency matrix of the Hamming graph are φ1(i) with
multiplicity µi, which motivates the study of W . Hora [Ho2] shows that if
d→∞ and q/d→ 0, then W converges in distribution to a normal random
variable with mean 0 and variance 1.

In fact since W (i) = (q−1)d−qi√
(q−1)d

and µi

|X| =
(q−1)i(d

i)
qd , it is straightforward

that W has the same distribution as

Y1 + · · ·+ Yd√
(q − 1)d

,

where the Y ’s are independent random variables, each equal to q − 1 with
probability 1

q and to −1 with probability 1 − 1
q . Hence the Berry-Esseen

theorem [Du] shows that W satisfies a central limit theorem with the error

term C
√

q
d where C is a small explicit constant.

For comparison, let us study W using Theorem 6.11 with s = 1 and t = 1.
Then a = q

(q−1)d and from the probabilistic interpretation of pm(r) one

computes that p2(0) = 1
(q−1)d , p2(1) = (q−2)

(q−1)d , and p2(2) = 1 − 1
d . The first

term in the error term of Theorem 6.11 is then computed to equal
√

(q−2)2

(q−1)d ,

which is less than
√

q
d . The second term in the error term of Theorem 6.11

is computed to equal
(

2q2

π(q−1)d

)1/4
, which is at most

(
2q
d

)1/4
. Thus one

obtains a central limit theorem for W with error term
√

q
d +

(
2q
d

)1/4
.

To close this section, it is shown how our exchangeable pair can be used
to give O(d−1/2) bounds for q fixed. The key is Lemma 6.12, which shows
that the Markov chain L1 is actually a birth-death chain..

Lemma 6.12. The Markov chain L1 on the set {0, · · · , d} is a birth-death
chain with transition probabilities

L1(i, j) =


i

d(q−1) if j = i− 1
i
d

(
1− 1

q−1

)
if j = i

1− i
d if j = i+ 1

Proof. Recall that L1(i, j) = µj

|X|
∑n

r=0
φr(i)φr(1)φr(j)

(vr)2
. From the formula for

φr(l) one sees that

φr(l) = (q − 1)r−l

(
d
r

)(
d
l

)φl(r)

for any 0 ≤ r, l ≤ d. Thus

L1(i, j) =
µj

|X|d
(
d
i

)(
d
j

)
(q − 1)i+j+1

n∑
r=0

(
d

r

)
(q − 1)rφ1(r)φi(r)φj(r).
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From page 152 of [MaSl], there is a recurrence relation

(i+ 1)φi+1(r) = [(d− i)(q − 1) + i− qr]φi(r)− (q − 1)(d− i+ 1)φi−1(r).

Since φ1(r) = d(q − 1)− qr, the recurrence is equivalent to

φ1(r)φi(r) = i(q − 2)φi(r) + (i+ 1)φi+1(r) + (q − 1)(d− i+ 1)φi−1(r).

Applying this to expression for L1(i, j) at the end of the previous paragraph,
the result follows from Lemma 6.2. �

Lemma 6.12 implies that |W ′ −W | ≤ A with A = q√
(q−1)d

. Thus one

can apply the version of Theorem 6.11 which would arise by using Theorem
2.2 instead of Theorem 2.1. Recalling that a = q

(q−1)d , one obtains an error

term of 1
2

√
q
d + .41q2+1.5q√

(q−1)d
. For q fixed this goes as d−1/2.
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châınes de Markov, Adv. Appl. Probab. 14 (1982), 272-294.

[Mac] Macdonald, I., Symmetric functions and Hall polynomials, Second edition, Oxford
University Press, New York, 1995.

[MaSl] Macwilliams, F. and Sloane, N., The theory of error-correcting codes, Elsevier
Science B.V., Amsterdam, 1977.

[Mat] Matsumoto, S., Correlation functions of the shifted Schur measure, J. Math. Soc.
Japan 57 (2005), 619-637.

[O1] Okounkov, A., Random matrices and random permutations, Internat. Math. Res.
Notices 20 (2000), 1043-1095.

[O2] Okounkov, A., The uses of random partitions, preprint math-ph/0309015 at
http://xxx.lanl.gov.

[Re] Reinert, G., Couplings for normal approximations with Stein’s method, in Micro-
surveys in discrete probability, DIMACS Ser. Discrete Math. Theoret. Comput.
Sci., Volume 41 (1998), 193-207.

[RiRo1] Rinott, Y. and Rotar, V., On coupling constructions and rates in the CLT for
dependent summands with applications to the antivoter model and weighted U-
statistics, Ann. of Appl. Probab. 7 (1997), 1080-1105.

[RiRo2] Rinott, Y. and Rotar, V., Normal approximations by Stein’s method, Decis. Econ.
Finance 23 (2000), 15-29.



50

[Sa] Sagan, B., The symmetric group. Representations, combinatorial algorithms, and
symmetric functions, Second edition, Springer-Verlag, New York, 2001.

[Se] Serre, J-P., Linear representations of finite groups, Springer-Verlag, New York,
1977.

[ShSu] Shao, Q., and Su, Z., The Berry-Esseen bound for character ratios, preprint (2004).
[Sn] Sniady, P., Gaussian fluctuations of characters of symmetric groups and of Young

diagrams, preprint math.CO/0501112 at http://xxx.lanl.gov.
[Stn] Stein, C., Approximate computation of expectations, Institute of Mathematical

Statistics Lecture Notes, Volume 7, 1986.
[Stm] Stembridge, J., On Schur’s Q-functions and the primitive idempotents of a com-

mutative Hecke algebra, J. Algebraic Combin. 1 (1992), 71-95.
[Te1] Terras, A., Fourier analysis on finite groups and applications, London Math. So-

ciety Student Texts 43, Cambridge University Press, Cambridge, 1999.
[Te2] Terras, A., Survey of spectra of Laplacians on finite symmetric spaces, Experiment.

Math. 5 (1996), 15-32.
[TW] Tracy, C. and Widom, H., A limit theorem for shifted Schur measures, Duke Math.

Journal 123 (2004), 171-208.


